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ABSTRACT

Dendrimers are synthetic macromolecules composed of repetitive layers of branching units
that emerge from a central core. They are characterized by a tunable size and precise number of
peripheral groups which determine their physicochemical properties and function. Their high
multivalency, functional surface and globular architecture with diameters in the nanometer scale
makes them ideal candidates for a wide range of applications. GATG (gallic acid-triethylene
glycol) dendrimers have attracted our attention as a promising platform in the biomedical field
because of their high tunability and versatility. The presence of terminal azides in GATG
dendrimers and PEG-dendritic block copolymers allows their efficient functionalization with a
variety of ligands of biomedical relevance including, anionic and cationic groups,
carbohydrates, peptides or imaging agents. The resulting functionalized dendrimers have found
application in drug and gene delivery, as antiviral agents and for the treatment of
neurodegenerative diseases, in diagnosis and as tools to study multivalent carbohydrate
recognition and dendrimer dynamics. Herein we present an account on the preparation and

recent applications of GATG dendrimers in these fields.
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ABBREVIATIONS: AMCA, Aminomethylcoumarin, CA, HIV capsid protein, CTD, C-
Terminal domain; Con A, Concanavalin A; CuAAC, Cu(l)-catalyzed azide-alkyne
cycloaddition; DTPA, Diethylenetriaminepentacetate; DOTA, 1,4,7,10-Tetraazacyclododecane-
1,4,7,10-tetraacetic acid; DO3A, Tri-tert-butyl 1,4,7,10-tetraazacyclododecane-1,4,7-triacetate;
EGFP, Enhanced green fluorescent protein; FDA, Food and drug administration; FITC,
Fluorescein isothiocyanate; GATG, Gallic acid-triethylene glycol; G,, Dendrimer generation, n
denotes the generation number; Glc, Glucose; HEK293T, Human embryonic kidney cell line
293T; HIV, Human immunodeficiency virus; HPMA, N-(2-hydroxypropyl)methacrylamide;
HSV, Herpes simplex virus; ITC, Isothermal titration calorimetry; Man, Mannose; Mor,
Morpholine; MRI, Magnetic resonance imaging; NOE, Nuclear Overhauser effect; PAMAM,
Polyamidoamine; PEG, Poly(ethylene glycol); PPI, Polypropyleneimine; PIC, Polyion complex;
RGD, Arginylglycylaspartic acid; SPR, Surface plasmon resonance.

INTRODUCTION

Dendrimers are synthetic tree-like macromolecules composed of repetitive layers of
branching units that emerge from a central core (Fig. 1). They are synthesized in a controlled
iterative fashion through generations with nil dispersity, precise molecular weight, and discrete
properties (1-3). Their high functional surface, globular architecture in the nanometer scale, and
inherent multivalency makes them ideal candidates for a wide range of applications, from bio-

and nanotechnology (4-8) to catalysis and materials science (9-11). The first reports on
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dendrimers were published independently in the late 70s and early 80s of the last century by the
groups of Vogtle (12), Newkome (13), and Tomalia (14). Since then, over a hundred dendritic
architectures have been described in the search of improved and novel properties. Among them,
recognized dendritic families include polyamidoamine (PAMAM) (15), polypropyleneimine
(PPI) (16), and others based on polyamide (13), polyether (17), polyester (18, 19), and
phosphorous-based (20) scaffolds.

Recently, we have turned our attention to the GATG (gallic acid-triethylene glycol) dendritic
family as a promising platform in the biomedical field (Fig. 1). GATG dendrimers, first
described by the group of Roy (21-23), are composed of a repeating unit carrying a gallic acid
core and hydrophilic triethylene glycol arms with terminal azide groups. Advantage of the
azides is taken for the dendritic generation growth, easily accomplished by a reduction/amide
coupling sequence, as well as for the dendrimer decoration by means of the Cu(l)-catalyzed
azide-alkyne cycloaddition (CuAAC) (24-28) as demonstrated by our group. As part of our
effort to develop the biomedical applications of GATG, we have also described the
incorporation of the FDA-approved poly(ethylene glycol) (PEG) at the focal point of dendritic
wedges to render PEG-GATG block copolymers with increased solubility and stealth properties.
PEG-dendritic block copolymers constitute interesting hybrid structures where differences in the
solubility properties of the blocks can be exploited in the preparation of micelles and other
nanostructures of biomedical interest (29-31).

Herein we present an account of our journey with GATG that focuses on recent examples in
the fields of drug and gene delivery, diagnosis, and antiviral activity, as well as the use of

GATG as tools to study biological processes and the dynamics of dendrimers.

SYNTHESIS OF GATG DENDRIMERS AND PEGYLATED BLOCK COPOLYMERS

GATG dendrimers ([Gn]-N3, where n is the generation number) are synthesized divergently
from a repeating unit shown in Fig. 1, following a straightforward azide reduction/amide
coupling sequence. Initial reports by the group of Roy in the 90’s described GATG
sialodendrimers and dendronized chitosans up to the second generation (G2) as promising
microbicides (21-23). Nevertheless, the synthesis of the repeating unit (four steps from
triethylene glycol, 23% overall yield) proved to be a hurdle in accessing large quantities and
higher G of these dendrimers, which finally hampered their subsequent development.

Aware of these limitations, in 2006 our research group described an improved preparation of
this repeating unit from commercially available chlorotriethylene glycol in 77% overall yield
(32). By observing green chemistry principles (atom economy, safety, waste reduction), this
synthetic route has been further developed for the cost-effective production of the repeating unit
in batches larger than 100 g in excellent overall yield (86%) and purity (Fig. 1) (33). With an

easy and scalable access to the repeating unit, the preparation of GATG dendrimers and PEG-
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dendritic block copolymers has been efficiently achieved in large quantities up to G4 (243
peripheral azides) (32, 34, 35). The PEGylated block copolymers are synthesized following a
"chain first" approach where the PEG is initially incorporated at the focal point of a GATG
repeating unit and then, the higher G obtained divergently. Noteworthy, PEG facilitates the
purification steps in the synthesis of the block copolymers thanks to its properties as a soluble
polymeric support (36). As mentioned, the surface functionalization of GATG dendrimers and
block copolymers by CuAAC with unprotected ligands (carbohydrates, anionic and cationic
moieties, peptides, imaging agents) has proceeded straightforward in our hands, allowing the
preparation of a variety of functional dendritic structures of biomedical interest that will be

presented in the following sections.

CELLULAR INTERNALIZATION OF GATG DENDRIMERS

Dendrimers have traditionally found great attention in targeted drug delivery, particularly for
cancer therapy and diagnosis (5, 6). The high number of functional groups on their periphery
allows the simultaneous incorporation of bioactive molecules, cytostatic drugs, diagnostic
probes and targeting ligands. In addition, the combination of high water solubility and
hydrophobic cores is well suited for the covalent attachment or physical encapsulation of large
payloads of therapeutic molecules. Cellular uptake of dendrimer-based drug delivery systems
has proved significantly higher than that of linear polymeric carriers (37, 38), which can be
explained on the basis of their compact nano-sized architecture in solution.

In order to explore the versatility of PEG-GATG block copolymers as tools in the
biomedical field, we have analyzed in collaboration with Albertazzi their cellular internalization
and intracellular fate (39), both properties of particular interest in drug delivery. To this aim, a
PEGylated block copolymer of third generation (PEG-[G3]-N3) was functionalized via CuAAC
with different peripheral groups, including neutral and charged moieties, biologically active
carbohydrates, and peptides. All dendritic structures were labeled with fluorescein (FITC), and
the effect of the surface functionalization on cell-uptake and intracellular trafficking was studied
by confocal microscopy in HeLa cells. It was observed that, while cationic PEG-[G3]-NH;"
showed a strong internalization consistent with its ability to bind cell membranes through ionic
interactions, anionic PEG-[G3]-OSO;™ displayed only a weak internalization because of its
lower affinity for cell membranes. This behavior was even more evident for a neutral acetylated
PEG-[G3]-NHACc that exhibited no internalization at all. In addition, the intracellular final fate
of PEG-[G3]-NH;3" was tracked, revealing colocalization with lysosomes. The effect of the
surface functionalization with biologically relevant ligands, such as lactose and a cyclic RGD
peptide was also investigated (39). Confocal microscopy and flow cytometry assays showed
significant cellular uptake in HepG2 cells for dendritic structures decorated with lactose and in

HeLa cells for those containing the RGD sequence. Based on these results, a prototype of drug
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carrier capable of selectively entering cells and specifically releasing its payload in the acidic
lysosomal environment was designed from PEG-[G3]-NH;". With this aim, a coumarin dye was
bound through a pH-sensitive hydrazone linker to the dendritic platform (Fig. 2). The
performance of this system was evaluated with a double fluorescent-labeling allowing for
simultaneous monitoring the localization of the dendritic carrier (FITC) and the coumarin dye as
a model cargo molecule (AMCA-hydrazide). Fluorescence experiments at short incubation
times showed high colocalization between FITC and AMCA in the endolysosomal system.
However, reduced colocalization and increased fluorescence intensity due to AMCA could be
observed at longer incubation times (Fig. 2), which are consistent with a lysosomal hydrolysis
of the hydrazone linkers and subsequent release of AMCA to the cytoplasm. This GATG-based
conjugate accomplishes the main requirements for a successful drug delivery system (cell
internalization, intracellular release, endosomal escape) and represents a promising proof-of-

principle for further applications of GATG dendrimers and block copolymers in drug delivery.

GATG NANOSTRUCTURES FOR DRUG AND GENE DELIVERY

PEG-GATG block copolymers are especially suited for drug and gene delivery applications.
For instance, they have been used in the preparation of polyion complex (PIC) micelles. PIC
micelles are smart delivery systems originally described by the groups of Kataoka and Kabanov
(40, 41), that are formed by electrostatic interaction between oppositely charged polyions.
Similarly to classical polymeric micelles, PIC micelles have a core-shell structure with a core of
ionic blocks surrounded by a neutral hydrophilic corona, typically of PEG. Properties such as
their small size, electrical neutrality, and narrow size distribution make these systems highly
attractive for drug delivery applications (42, 43).

Our research group has reported the preparation of nanosized PIC micelles from an anionic
PEG-GATG block copolymer of G3 decorated with 27 peripheral sulfates and poly-L-lysine
(PLL) as a model polymer of opposite charge (Fig. 3) (44). Notably, these micelles displayed
enhanced stability towards ionic strength compared to conventional PIC micelles from linear
copolymers, a fact has been ascribed to the more rigid dendritic architecture. These micelles are
envisioned as attractive delivery systems for low molecular weight drugs, proteins, nucleic acids
and imaging agents. In another example, making use of the developed CuAAC conditions for
the anionic decoration of GATG dendrimers, carboxylates have been introduced onto the
dendritic periphery of PEG-GATG copolymers, which has allowed the preparation of related
pH-sensitive PIC micelles with potential applications in cancer therapy (45).

Cationic synthetic carriers have been widely assayed in the last decade as an alternative to
viral vectors for the delivery of nucleic acids (46). Among them, cationic dendrimers with the
ability to electrostatically interact with negatively charged nucleic acids have received special

attention (7, 47). The complexes, named dendriplexes, obtained from commercially available
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PAMAM and PPI dendrimers have been by far the most investigated ones. Unfortunately, some
limitations have arisen, mainly associated to the excess of positive charge necessary to
efficiently complex the genetic material, which results in aggregation with blood components
and cytotoxicity. One strategy to overcome these limitations has been the use of PEGylated
cationic block copolymers to mask the positive charge (48, 49). Similarly to PIC micelles, the
positively charged dendritic block interacts with the negatively charged nucleic acid forming an
inner core surrounded by a hydrophilic PEG corona. The obtained dendriplexes are sterically
stabilized and present lower z-potential, reduced cytotoxicity, and increased circulation times.

In light of these results, cationic GATG dendrimers and their block copolymers appeared to
be excellent candidates for gene delivery applications. Amine-decorated GATG scaffolds are
easily obtained by reduction of the terminal azides. This results in a high positive charge in
physiological media and so, in the ability to condense and protect nucleic acids. In addition, the
hydrophobic nature of the gallic acid was envisioned to enhance the cellular uptake and
transfection efficiency of the dendriplexes. In collaboration with the group of Alonso, we have
recently evaluated the ability of amino-functionalized GATG dendrimers and block copolymers
to complex plasmid DNA (pDNA) (34, 50). As a result of an analysis of the influence of G, N/P
ratio, and the presence/absence of PEG on the dendriplex size and z-potential, we have proposed
these dendriplexes as core—shell nanostructures with sterically induced stoichiometry. A single
pDNA condensed at the core surrounded by a shell of dendrimers with a stoichiometry
determined by the core/dendrimer relative size: the higher the dendrimer G, the fewer the
dendrimers that can be accommodated on the dendriplex surface (Fig. 4). Interestingly, in the
case of PEG-dendritic block copolymers, this implies the possibility of tuning the PEG density
on the dendriplex surface, which may be of interest to control the stealth properties for specific
gene therapy applications.

The stability, cytotoxicity and interaction with blood components of the dendriplexes were
studied, along with their ability to transfect mammalian cells (50). It was revealed that the
dendriplexes formed from GATG dendrimers are stable, biocompatible and do protect pDNA
from degradation. More importantly, dendriplexes were effectively internalized by HEK-293T
cells, which were successfully transfected. It was also observed that PEGylation remarkably
influences the properties of the dendriplexes. As previously seen in other nanostructures, PEG
improves the biocompatibility at the cost of a reduced cellular uptake (51). Our results
highlighted that the PEGylation degree of nanostructures should be carefully adjusted in order
to obtain an optimized stealth formulation without compromising the transfection efficiency. A
straightforward approach for modulating the density of the PEG shell that ensured a successful
transfection was developed by employing mixtures of GATG dendrimers and PEGylated

copolymers for the preparation of the dendriplexes (Fig. 4). Further investigations, including in
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vivo studies, are planned to draw definite conclusions on the efficacy of this mixed stealth

formulation in animal models.

GATG DENDRIMERS AS DRUGS: INTERACTIONS WITH PROTEINS AND PEPTIDES

Besides the aforementioned application of dendrimers as drug carriers, they can also act as
drugs by themselves (8). For instance, several dendritic structures have shown promising
antimicrobial and antibacterial activity that pave their way as alternatives to conventional
antibiotics (52-54). Anionic dendrimers with anti-inflammatory properties (55, 56) or as agents
for the multiplication of human natural killer cells (57) have been also described. The use of
dendrimers as inhibitors of viral infections has been investigated as well, in particular against
the human immunodeficiency (HIV) and herpes simplex viruses (HSV-1 and HSV-2) (58-60).
VivaGel™, a L-lysine-based dendritic microbicide decorated with anionic groups, undoubtedly
constitutes the most relevant example. It has been evaluated in Phase II clinical trials as a
vaginal gel for preventing/reducing transmission of HIV and genital herpes (61). There are also
reports on the use of dendrimers that dissolve prion-protein aggregates and hamper fibril
formation of prion and B-amyloid (AB) peptides (62, 63).

In this context, our group together with those of Velazquez-Campoy and Neira were
encouraged to explore the ability of GATG dendrimers to interact with HIV-1. We hypothesized
that if dendrimers can destabilize the tertiary structure of proteins, they could also disrupt the
quaternary structure of the capsid protein CA of HIV-1 and hamper its assembly to form the
viral capsid. Thus, CA has recently emerged as a promising target for the development of new
anti-HIV drugs based on its critical role during HIV morphogenesis (64). Our results
demonstrate that G1 GATG dendrimers bind to the C-terminal domain of CA (CTD) with a
dissociation constant in the micromolar range, as shown by isothermal titration calorimetry
(ITC) (65). The affinity of some of the dendrimers for CTD was similar to that of synthetic
peptides binding the dimerization region, and of comparable magnitude to the
homodimerization affinity of both CTD and CA. More importantly, a G1 dendrimer decorated
by CuAAC with peripheral benzoate groups ([G1]-CO,Na) was able to hamper the assembly of
the HIV capsid in vitro (Fig. 5), in what represents the first example of a dendrimer as a lead
compound for the development of anti-HIV drugs targeting the capsid assembly.

Nanomedicine has shown great potential for the treatment of many central nervous disorders,
such as brain cancer, epilepsy, Alzheimer’'s or Parkinson’s diseases. Among the different
nanostructures employed for this purpose, dendrimers have been intensively investigated in
neurodegenerative processes, especially Alzheimer’s disease (66). According to the amyloid
cascade hypothesis, amyloid peptide aggregation is closely related to the onset and development
of Alzheimer’s disease. Since AP peptide oligomers intermediate in the assembly of fibrils are

more neurotoxic than the end products, novel strategies aimed to reduce their toxic effects by
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affecting the aggregation process are of much relevance (62, 67, 68). Encouraged by the
promising properties of GATG dendrimers as inhibitors of the dimerization of CA, we
envisaged GATG interfering in the formation of amyloid fibrils. In a joint effort with the group
of Klajnert, a morpholine-decorated GATG dendrimer ([G3]-Mor) was identified to effectively
accelerate the formation of amyloid fibrils from a AP 1-28 peptide (thioflavin T assay, CD,
transmission electron microscopy) (Fig. 6) (69). Interestingly, when the cytotoxicity of the A
and the pair AB/[G3]-Mor was monitored at different stages of the aggregation process, it was
observed that [G3]-Mor significantly reduced the toxicity of the peptide, most likely by
speeding up the fibril formation and lowering the concentration of the toxic prefibrillar forms in

the system.

GATG GLYCODENDRIMERS AS TOOLS TO STUDY  MULTIVALENT
CARBOHYDRATE RECOGNITION

Carbohydrates cover a large spectrum of bioactivities from energy source and structural roles
to others crucial for the development, growth, function or survival of organisms. From bacteria
to mammals, cells are coated with sugars as first points of contact with their environment. Thus,
they are in a position to modulate a plethora of biological processes including, cell—cell
recognition, fertilization, pathogen invasion, and toxin and hormone mediation. Moreover,
strong evidence suggests that carbohydrates are key diagnostic and prognostic indicators as well
as therapeutic targets (70). In addition, the clustered arrangement of carbohydrates on the cell
surface enables their multivalent interaction in global processes characterized by affinities and
specificities much higher than monovalent interactions (71, 72). This fact has prompted the
development of synthetic multivalent glycoconjugates (linear polymers, micelles, nanoparticles,
nanotubes, dendrimers) with the ability to promote/inhibit biological events (73). Since
carbohydrate recognition is commonly mediated by proteins (lectins), the development of more
efficient diagnostic and therapeutic tools relies on a better understanding of the
carbohydrate—lectin interaction. However, the complexity of the binding mechanisms associated
with multivalency (intermolecular crosslinking, chelation, statistical rebinding) makes them
very difficult to measure experimentally. As a consequence, binding data are frequently
extracted from indirect competitive methods in solution where only relative affinities are
obtained (73). In addition, these experimental designs usually represent rough models for
mimicking surface-based interactions as underestimate the multivalency derived from the lectin
clustering.

With the aim of gaining insight into the fundamental mechanisms of multivalent
carbohydrate recognition we have synthesized GATG glycodendrimers by CuAAC from
unprotected alkynated saccharides (Fig. 7) (32, 35). These were foreseen as nanotools of precise

size and multivalency for mechanistic studies by surface plasmon resonance (SPR). We have
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compared the outcome of carbohydrate-lectin binding studies in solution (via competitive
experiments) and surface-bound direct experiments (with immobilized lectins on a chip surface)
(74, 75). To that end, we selected the lectin Concanavalin A (Con A) and four generations of
glycodendrimers carrying 3-81 mannose/glucose residues ([Gn]-Man and [Gn]-Glc). Solution
experiments demonstrated the importance of multivalency in carbohydrate recognition, with
affinity increases being observed from the monosaccharide to G2. The lack of further affinity
enhancements at higher G, however, contrasts with the surface-bound experiments. This
different outcome not only stresses the relevance of the experimental design for soluble vs
surface-bound lectins, but also that higher dendrimer G not necessarily result in higher affinities
in solution.

In the surface-bound experiments, a complex binding profile was disclosed with two limiting
binding modes, a low-affinity mode associated with dendrimers binding the lectin surface
monovalently, and a high-affinity mode associated with dendrimers with higher functional
valency. SPR studies also revealed the dynamic nature of the binding mechanisms, with
contributions depending on the glycoconjugate multivalency and lectin cluster density, but also
on the local concentration of glycoconjugates in the proximity of the lectin cluster, which is a
time-dependent factor (Fig. 7). As a result, an original SPR protocol was designed to gather
kinetic and thermodynamic information on the interaction by analyzing the early association and
late dissociation phases of the sensorgrams, areas where the low analyte concentration nearby
the receptor surface favors the highest affinity binding modes. In addition, it was concluded that
for surface-bound experiments, the density of receptors should be carefully selected to mimic as
much as possible the biological environment if relevant quantitative information is desired

beyond a list of relative affinities.

GATG AS CONTRAST AGENTS FOR MAGNETIC RESONANCE IMAGING

Magnetic resonance imaging (MRI) uses a strong magnetic field and radio frequency pulses
to obtain internal images of organs and lesions. Differences in contrast of the images reflect the
rate at which excited protons of water molecules return to the equilibrium state (relaxation
times, 7) (76). Although it is possible to obtain high quality images by manipulation of pulse
sequences, high contrast is better achieved by adding exogenous contrast agents that, upon
coordination to water, accelerate relaxation. Contrast agents in the clinic are based on
paramagnetic ions such as gadolinium (Gd*") complexed to low molecular weight ligands (e.g.;
DTPA, DOTA, DO3A) (77). These complexes present high relaxivity and adequate
biocompatibility, stability and solubility. However, because of their small size they suffer from
rapid excretion (high doses necessary) and passive distribution into the interstitial space. The
use of macromolecular contrast agents is envisioned to provide longer circulation times in the

bloodstream (adquisition windows) and selective diffusion through angiogenic tissue, along



297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333

with an increased relaxivity per Gd (78). Among the macromolecular contrast agents,
dendrimers are especially appealing because of their monodisperse nature and absolute control
of their size. Their branched structure imparts rigidity and a high density of functional groups
for the multivalent display of Gd and other synergistically integrated agents for therapy and
diagnosis. In addition, the pharmacokinetics and pharmacodynamics of dendrimers, their
permeability, excretion routes, and recognition by the reticulo-endothelial system can be
controlled by generation (78-80). The synthesis of dendritic contrast agents has been
conventionally achieved in a stepwise fashion through postlabeling approaches, which involve
the incorporation of suitable ligands onto the macromolecular scaffold, followed by
complexation to the desired metal ion. Unfortunately, these strategies suffer from incomplete
functionalization that results in mixtures of polydisperse compounds and reduced relaxivity. To
solve this inconvenience we have turned our attention to a prelabeling approach using Gd
complexes and CuAAC as an efficient coupling technology. This way, the complete
functionalization of three generations of PEG-GATG block copolymers was demonstrated with
an alkynated Gd-DO3A complex (Fig. 8) (81). The resulting monodisperse macromolecular
contrast agents, incorporating up to 27 Gd ions at the periphery, display molecular relaxivities
that increase with G up to values in the range of Gadomer-17 (82), a polylysine-based dendritic
contrast agents bearing 24 DO3A-Gd chelates and considered as a reference in the field. The
analysis of the pharmacokinetic properties of this new family of PEG-dendritic contrast agents
was studied in mice using a C6 glioma model (Fig. 8). After intravenous injection of the
contrast agents, 71-weighted images showed similar increments of signal intensity and kinetic
profiles to Gadomer-17 (with maximum intensities 4 min after injection), which reveals them as
a promising platform for the development of dendritic contrast agents for MRI. The
experimental simplicity of this CuAAC-based prelabeling approach should be of relevance for
the preparation of alternative macromolecular metal complexes for applications in chemical

exchange saturation transfer MRI, fluorescence imaging, and radiolabeling.

DENDRIMER DYNAMICS

The flexibility of the chemical bonds within dendrimers determines their internal dynamics,
hydrodynamic size and topological localization of the external groups, all of relevance for
pharmacological properties such as biodistribution and surface accessibility. In spite of initial
controversies about the dendritic conformation, shape and packing, a consensus has recently
emerged on dendrimers as flexible macromolecular structures with a dense core and fluctuating
repeating unit groups (83).

Nuclear magnetic resonance (NMR) is a powerful tool to study the dynamics of
macromolecules at atomic level (84). Information is usually extracted by measuring longitudinal

(Th) and transverse (7>) relaxation times and nuclear Overhauser effect (NOE). It is especially
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suited for the analysis of dendrimers since their repetitive nature offers the opportunity to probe
different layers and G. Because of our interest in developing the bioapplications of GATG
dendrimers, we decided to analyze their dynamical properties. With this aim we initially
performed a '"H NMR relaxation study in CDCl; (35). Increasing T; and 7> values were observed
on going from the core to the periphery that, according to the theoretical variation of relaxation
times with the correlation time (t) (Fig. 9) (85), were interpreted as a radial increase of
dynamics in the same direction (congested core protons surrounded by more flexible external
nuclei). This dynamical picture was later confirmed under more relevant aqueous conditions by
a quantitative '°C relaxation study in collaboration with the group of Widmalm (86).

In general, for NMR studies on the dynamics of macromolecules, quantitative modeling
from *C relaxation is preferred to "H. However, lengthy *C experiments and the necessity of
recording various parameters at different magnetic fields have limited such approach in
dendrimers to a single report apart from ours (86, 87). Conversely, a great deal of information
has been extracted by qualitative interpretation of "H and/or "*C relaxation. These studies have,
nevertheless, afforded conflicting results on the relative dynamics between the dendritic core
and the periphery. With the aim of throwing light on this controversy we have recently
performed a comprehensive relaxation study ('H, '*C; various magnetic fields and temperatures)
of Fréchet-type poly(aryl ether) dendrimers (Fig. 9) (17), as an example of a dendritic family
where conflicting relative dynamics between core and periphery have been reported by 'H T
relaxation (88, 89) and by alternative techniques (90, 91). As a result of this work (92) it was
revealed that NMR relaxation in dendrimers has been often misinterpreted in terms of dynamics.
Dendrimers show slower dynamics at internal layers and display internal nuclei with 7> values
shorter than the periphery, but 7' values that can be either shorter or larger depending on their
position in the fast or slow motional regimes (Fig. 9). Accordingly, only the recording of 7; data
at various temperatures (alternatively, 7> or NOE at one temperature) can ensure the correct
interpretation of dendrimer dynamics. The large number of dendritic families, other than
poly(aryl ether), where dynamics have been evaluated on the basis of 7 data at one temperature
urges necessity of revisiting previous NMR relaxation studies.

The fact that dendrimers obey a dense core model with increasing 7> values from the core to
the periphery has been more recently exploited in our laboratory in 7>-edited NMR experiments
(93) for the stepwise filtering of the internal nuclei (94). The resulting filtered spectra benefit
from reduced signal overlapping, which facilitates NMR assignment and characterization (Fig.
10). This filtering strategy has been applied to various dendritic families, nuclei ('H, "*C, *'P)
and 2D experiments (COSY and HSQC), and is envisaged to aid structural characterization and
end-group analysis in related dendritic structures, including block, dendronized, and

hyperbranched polymers functionalized with drugs, active targeting moieties and other labels.
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CONCLUSIONS

GATG dendrimers and their PEGylated block copolymers represent promising
macromolecular scaffolds for a plethora of biomedical applications. Key features in GATG are a
high tunability and versatility. The presence of terminal azides in GATG allows their efficient
functionalization with a variety of ligands of biomedical relevance. Depending on the desired
application, GATG dendritic scaffolds have been easily decorated in a single step with anionic
or cationic groups, carbohydrates, peptides or imaging agents. The resulting functionalized
dendrimers have found application as nanotools to study multivalent interactions, as building
blocks for the preparation of polymeric micelles and dendriplexes for gene delivery, as antiviral
drugs or agents for the treatment of neurodegenerative diseases, and as contrast agents for MRI.
In addition, the analysis of GATG dynamics by NMR relaxation has prompted a fundamental
study on dendrimer dynamics. As a result, profound differences between the relaxation behavior
of dendrimers and linear polymers were revealed that have been exploited in the filtering of
NMR spectra to facilitate signal assignment and characterization.

As a concluding remark, we would like to highlight that despite the promising results of
GATG dendrimers in the biomedical field, there are still ahead of us fascinating puzzles to be
solved where GATG might play a role. Examples of current challenges faced by this dendritic
family in our laboratory are the development of nanosystems able to tackle unresolved problems
in drug delivery and to avoid the limitations derived from the potential Cu contamination after
CuAAC. Regarding the first objective, advantage can be taken of the modularity of GATG
dendrimers. Indeed, by making discrete structural changes, such as varying the length of the
PEG chain, the dendritic generation or the hydrophobicity at the periphery, the solubility and
dynamical properties of GATG can be effectively tuned. As for the second challenge, we are
currently engaged in the development of Cu-free approaches that circumventing the generation
of reactive oxygen species, also avoid the use of large linkers like strained cycloalkynes.
Finally, we are motivated to transfer GATG dendrimers to in vivo situations where parameters
such as, biodegradability, immunogenicity or bioaccumulation, among others, will have to be

carefully evaluated to validate their clinical potential.
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Fig. 1. Structure, synthesis of the repeating unit, and applications of GATG dendrimers.
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Reprinted with permission from ref. (44).
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Fig. 4 Schematic representation of dendriplexes prepared from a plasmid DNA (pDNA) and two
generations of PEG-GATG block copolymers as nanostructures with core—shell stoichiometry.
Expression of EGFP in HEK-293T cells transfected with dendriplexes prepared with increasing
molar ratios of PEG-[G3]-NH»/[G3]-NH,: (a) 0% (solely G3), (b) 0.5%, (c) 1%, (d) 5%, (e)
10%, (f) 20%, (g) 50% and (h) 100% (solely PEG-G3). Reprinted with permission from ref.
(34) and (50).
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Fig. 5. Left: structure of [G1]-CO;Na. Centre: binding of GATG dendrimers to monomeric
CTDW184A by NMR (residues in red change their peak intensities in the presence of GATG).
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Right: inhibitory activity of [G1]-CO;Na on the in vitro assembly of CA. Oligomerization of
CA in the absence (black line) or presence of [G1]-CO;Na at a 5-fold (blue line) and 10-fold

molar excess (red line). Reprinted with permission from ref. (65).
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Fig. 6. Left: structure of [G3]-Mor. Right: electron micrographs of AP 1-28 at the end of an
aggregation process in the absence (A) and the presence of 1 uM [G3]-Mor (B). The length of

the bar equals to 200 nm. Reprinted with permission from ref. (69).
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Fig. 7. Synthesis of GATG glycodendrimers and schematic representation of the dynamic
binding heterogeneity of surface-bound experiments between lectin clusters and
glycodendrimers: (a) Initial binding of glycodendrimers to the lectin cluster with potential
stabilization via chelate mechanism depending on glycodendrimer size and lectin cluster
density. (b) At longer association times, competition between dendrimers for lectin
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by (d) a slower dissociation due to stabilization by rebinding and potential chelate effects.
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signal intensity (ASI) in tumor and contralateral hemisphere. Ti-weighted images of a mouse
brain before (a) and after (b) administration of PEG-[G2]-(DO3A-Gd). Squares in images show
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