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ABSTRACT: GATG (gallic acid-triethylene glycol) dendrimers represent appealing nanostructures for 

biomedical applications. The incorporation of specific ligands, targeting, and imaging agents on their 

surface has resulted in promising tools in diagnosis and drug delivery. With the aim of further exploring 

the versatility of GATG dendrimers in the biomedical field, in this work we study the effect of the 

peripheral substitution on their uptake and intracellular trafficking in living cells. To this end, peripheral 

groups with different physicochemical properties and biological relevance have been installed on the 

surface of GATG dendrimers, and their interactions, uptake efficacy, and specificity for certain cell 

populations studied by confocal microscopy. Finally, this information was used to design a pH-sensitive 

drug delivery system for the selective release of cargo molecules inside cells after lysosomal 

localization. These results along with the easy functionalization and modular architecture of GATG 

dendrimers reveal these systems as promising nanotools in biomedicine. 
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Introduction 

Dendrimers are promising nanostructures for biomedical applications such as drug and gene delivery, 

diagnosis, and biosensing (1-4). Their characteristic monodispersity and tree-like structure endows 

dendrimers with unique properties such as controlled physicochemical properties and globular 

morphology. In addition, their inherent multivalency allows for the display of specific ligands, drugs, 

targeting, and imaging agents (5-9). The Vögtle “cascade synthesis” constituted the first strategy 

towards dendritic structures (10). This was followed by reports on polyamidoamine (PAMAM) 

dendrimers by Tomalia (11) and arborols by Newcome (12). Since then, alternative dendritic 

architectures and synthetic strategies have been proposed in the search of novel and improved properties 

(13-16). 

Our group has recently reported on the preparation of dendrimers and their block copolymers with 

poly(ethylene glycol) (PEG), that incorporate a gallic acid-triethylene glycol repetition unit (GATG 

dendrimers) ([Gn]-N3 and PEG-[Gn]-N3, where n is the generation number, Scheme 1) (17-20). These 

structures are characterized by peripheral azides which facilitate their direct surface functionalization by 

means of the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) (21,22). Alternatively, reduction of 

the azides by hydrogenation or Staudinger reaction affords terminal amino groups which can be further 

elaborated by classical means (e.g.; amide or thiourea formation, reductive amination). The 

incorporation of the PEG chain in the block copolymers pursues to improve the biocompatibility, 

solubility, and biodistribution of the final conjugates (23,24). GATG dendrimers and block copolymers 

have emerged as promising tools for bioapplications, such as the study of the multivalent carbohydrate-

receptor interaction (25) and the dynamics of glycodendrimers (26), or the preparation of drug and gene 

delivery nanosystems (27,28). More recently, GATG dendrimers have been also developed as contrast 

agents for MRI (29) and as inhibitors of the dimerization of the capsid protein of HIV-1 (30). 

With the aim of further exploring the versatility of GATG dendrimers as tools in the biomedical field, 

in this work we exploit their easy click functionalization to synthesize a small library of dendrimers and 

PEG-dendritic block copolymers carrying different peripheral groups, and we evaluate their behavior in 
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living cells. Two series of dendritic systems were studied: one peripherally functionalized with 

charged/neutral groups having different physicochemical properties, and another one decorated with 

biologically relevant ligands such as, carbohydrates and peptides. Confocal microscopy was used to 

study the effect of functionalization on cell-uptake and intracellular trafficking, both properties of 

particular interest in drug delivery and other biomedical applications. Finally, this information was used 

to design a tailored carrier for the intracellular delivery and selective release of biologically active 

molecules. A PEG-dendritic copolymer carrying cargo molecules bound through a pH-sensitive linker 

was designed for selective cell uptake and release after lysosomal localization. The performance of this 

system was evaluated with a double fluorescent-labeling allowing for simultaneous monitoring the 

localization of the dendritic carrier and payload molecules. 

 

Experimental Section 

Materials and methods. CuSO4ꞏ5H2O and sodium bicarbonate were obtained from Prolabo. 4'-

Ethynyl acetophenone and sodium ascorbate were purchased from Acros Organics. AMCA-hydrazide 

(AMCA, aminomethylcoumarin acetate) was purchased from Pierce Thermo Fisher Scientific. 

Triphenylphosphine and t-butanol were obtained from Sigma-Aldrich. PEG5000-[G3]-N3 (17) and [G3]-

N3 (18) were prepared following procedures previously described by our group. Alkynated fluorescein 

(FITC) (1) (31), sodium 3-butyn-1-sulfate (2) (27), and 2-propynyl -D-lactopyranoside (3) (18) were 

prepared following reported procedures. Alkynated RDG peptide cyclo(RGDfPra) (4) was purchased 

from Peptide Synthetics. H2O was of Mili-Q grade. All other reagents were of analytical grade. 

Ultrafiltration was performed on Amicon stirred cells with Amicon YM3 membranes. NMR spectra 

were recorded on a Bruker DRX 500 MHz and Varian Mercury 300 MHz spectrometers. Chemical 

shifts are reported in ppm (δ units) downfield from internal tetramethylsilane (CDCl3), the HOD solvent 

peak (D2O) or residual solvent peak (DMSO-d6). Resonances corresponding to FITC are only visible 

when spectra recorded in DMSO-d6. UV-Vis spectra were performed on a HP 8452A Diode Array and 
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Jasco V-630 spectrophotometers. FT-IR spectra were recorded on a Bruker IFS-66v (neat samples, CsI 

window) or a Varian 670-IR equipped with a Varian 610-IR microscope. 

 

Synthesis and labeling 

PEG-[G3]-FITC-N3. PEG-[G3]-N3 (15 mg, 1.15 µmol) was dissolved in t-BuOH (0.16 mL) and H2O 

(0.12 mL). Then, alkynated FITC 1 (1.5 mg, 3.46 µmol) and freshly prepared aqueous solutions of 

NaHCO3 (7 µL, 6.92 µmol, 1 M), CuSO4 (14 µL, 0.69 µmol, 0.05 M), and sodium ascorbate (17 µL, 

3.46 µmol, 0.2 M) were added. The resulting mixture was stirred at rt for 48 h, and then was purified by 

ultrafiltration (H2O, 5 x 30 mL) to afford PEG-[G3]-FITC-N3 (13.9 mg, 89%) as an orange foam. 1H 

NMR (500 MHz, DMSO-d6) δ: 8.54 (s, 1.2H), 8.50-8.39 (m, 10.8H), 7.25-7.10 (m, 26H), 4.50-3.93 (m, 

82H), 3.88-3.43 (m, ~808H), 3.25 (s, 3H), 3.13-3.04 (m, 2H); (methylene protons adjacent to the azide 

groups are buried by the H2O signal). IR (KBr, cm-1): 3278, 2871, 2106, 1112. UV-Vis (H2O) λmax: 296, 

490 nm. UV-Vis (DMSO) λmax: 520 nm. An average of 1.2 fluorescein molecules in PEG-[G3]-FITC-N3 

was determined by absorbance at 520 nm in DMSO, applying an extinction coefficient of 60800 M-1 

cm-1. Same functionalization degree was obtained by integration of the triazol protons at 8.54 ppm in the 

1H NMR (DMSO-d6) spectrum. 

PEG-[G3]-FITC-NH3
+. PPh3 (9.5 mg, 34.0 µmol) was added to a solution of PEG-[G3]-FITC-N3 

(13.9 mg, 1.03 µmol) in 2% H2O/MeOH (1.0 mL). The resulting mixture was stirred at rt for 12 h. After 

addition of aqueous HCl (21 µL, 0.1 M), reaction was purified by ultrafiltration (50% MeOH/H2O, 5 x 

30 mL) to afford PEG-[G3]-FITC-NH2ꞏHCl (12.2 mg, 85%) as an orange foam. 1H NMR (500 MHz, 

D2O) δ: 7.21-7.08 (m, 26H), 4.32-4.07 (m, 80H), 3.98-3.50 (m, ∼805H), 3.43 (s, 3H), 3.29-3.18 (m, 

54H). IR (ICs window, MeOH, cm-1): 2924, 1109. UV-Vis (H2O) λmax: 298, 490 nm. Peracetylation of 

this material with excess Ac2O in the presence of Et3N in MeOH (overnight, rt) afforded PEG-[G3]-

FITC-NHAc after purification by extensive dialysis against H2O (MWCO 10 KDa). 

PEG-[G3]-FITC-OSO3
-. PEG-[G3]-FITC-N3 (13.2 mg, 0.97 µmol) was dissolved in t-BuOH (0.13 

mL) and H2O (0.07 mL). Then, sulfate 2 (9.1 mg, 52.6 µmol) and freshly prepared aqueous solutions of 
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CuSO4 (26 µL, 1.32 µmol, 0.05 M) and sodium ascorbate (33 µL, 6.58 µmol, 0.2 M) were added. The 

resulting mixture was stirred at rt for 48 h, and then was purified by ultrafiltration (H2O, 5 x 30 mL) to 

afford PEG-[G3]-FITC-OSO3Na (16.7mg, 95%) as an orange foam. 1H NMR (500 MHz, D2O) δ: 8.14-

7.83 (m, 27H), 7.30-7.00 (m, 26H), 4.62-4.50 (m, 54H), 4.47-4.01 (m, 132H), 4.00-3.49 (m, ~803H), 

3.42 (s, 3H), 3.28-3.22 (m, 2H), 3.14-2.90 (m, 52H). IR (ICs window, neat, cm-1): 3312, 2874, 1105. 

UV-Vis (H2O) λmax: 296, 490 nm. 

PEG-[G3]-FITC-Lac. PEG-[G3]-FITC-N3 (12.4 mg, 0.92 µmol) was dissolved in t-BuOH (0.12 mL) 

and H2O (0.07 mL). Then, lactoside 1 (19.6 mg, 49.4 µmol) and freshly prepared aqueous solutions of 

CuSO4 (25 µL, 1.24 µmol, 0.05 M) and sodium ascorbate (31 µL, 6.18 µmol, 0.2 M) were added. The 

resulting mixture was stirred at 65 ºC for 60 h, and then was purified by ultrafiltration (H2O, 5 x 30 mL) 

to afford PEG-[G3]-FITC-Lac (18.6 mg, 86%) as an orange foam. 1H NMR (500 MHz, D2O) δ: 8.09-

8.00 (m, 27H), 7.13-6.96 (m, 26H), 4.61-4.37 (m, 106H), 4.24-3.42 (m, ~1164H), 3.38 (s, 3H), 3.31-

3.24 (m, 28H); (anomeric protons in lactose residues are buried by the HOD signal). IR (KBr, cm-1): 

3392, 2876, 1112. UV-Vis (H2O) λmax: 300, 490 nm. 

[G3]-FITC-Lac. [G3]-N3 (15 mg, 1.91 µmol) was dissolved in t-BuOH (0.26 mL) and H2O (0.19 

mL). Then, alkynated FITC 1 (2.6 mg, 5.73 µmol) and freshly prepared aqueous solutions of NaHCO3 

(12 µL, 11.5 µmol, 1 M), CuSO4 (23 µL, 1.15 µmol, 0.05 M), and sodium ascorbate (29 µL, 5.73 µmol, 

0.2 M) were added. After 48 h of stirring at rt, lactoside 1 (40.9 mg, 0.103 mmol) and additional 

portions of CuSO4 (14 µL, 1.43 µmol, 0.1 M) and sodium ascorbate (14 µL, 7.16 µmol, 0.5 M) were 

added. The resulting mixture was stirred at 65 ºC for 48 h, and then was purified by ultrafiltration (H2O, 

5 x 30 mL) to afford [G3]-FITC-Lac (27.3 mg, 77%) as an orange foam. 1H NMR (500 MHz, D2O) δ: 

8.20-7.97 (m, 27H), 7.25-6.85 (m, 26H), 4.94-4.85 (m, 26H), 4.76-4.69 (m, 26H), 4.61-4.38 (m, 106H), 

4.18-3.39 (m, 700H), 3.36-3.27 (m, 26H), 3.26-3.19 (m, 2H), 1.60-1.45 (m, 2H), 0.94-0.81 (m, 3H). IR 

(KBr, cm-1) 3418, 2925, 1077. UV-Vis (H2O) λmax: 262, 495 nm. UV-Vis (DMSO) λmax: 520 nm. An 

average of 1.0 fluorescein molecules in [G3]-FITC-Lac was determined by absorbance at 502 nm in 

50% DMSO/H2O, applying an extinction coefficient of 61000 M-1 cm-1. 
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PEG-[G3]-FITC-RGD. PEG-[G3]-FITC-N3 (2 mg, 0.15 µmol) was dissolved in t-BuOH (20 µL). 

Then, alkynated RGD peptide 4 (5.5 mg, 7.97 µmol) and freshly prepared aqueous solutions of CuSO4 

(10 µL, 0.20 µmol, 0.02 M) and sodium ascorbate (10 µL, 1.02 µmol, 0.1 M) were added. The resulting 

mixture was stirred at 65 ºC for 60 h, and then was purified by ultrafiltration [0.02 M EDTA (2 x 30 

mL), H2O (2 x 30 mL), 0.01 M HCl (2 x 30 mL), H2O (5 x 30 mL)] to afford PEG-[G3]-FITC-

RGDꞏHCl (3.6 mg, 84 %) as an orange foam. IR (ICs window, MeOH, cm-1): 2866, 1582, 1496, 1109. 

UV-Vis (H2O) λmax: 234, 262, 502 nm. 

PEG-[G3]-AP-N3. PEG-[G3]-N3 (36 mg, 2.77 µmol) was dissolved in t-BuOH (0.37 mL) and H2O 

(0.32 mL). Then, 4'-ethynyl acetophenone (0.8 mg, 5.53 µmol) and freshly prepared aqueous solutions 

of CuSO4 (22 µL, 1.11 µmol, 0.05 M) and sodium ascorbate (28 µL, 5.53 µmol, 0.2 M) were added. 

The resulting mixture was stirred at rt for 48 h, and then was purified by ultrafiltration (50% 

MeOH/H2O, 5 x 30 mL) to afford PEG-[G3]-AP-N3 (36.1 mg, 98%) as a white foam. 1H NMR (500 

MHz, CDCl3) δ: 8.27-8.02 (m, 1.4H), 8.00-7.69 (m, 5.6H), 7.22-7.01 (m, 26H), 4.68-4.47 (m, 2.8H), 

4.46-3.96 (m, 80H), 3.95-3.44 (m, ~798), 3.42-3.21 (m, 56H), 2.58 (s, 2.1H), 2.54 (s, 2.1H). IR (KBr, 

cm-1): 3438, 2874, 2108, 1113. An average of 1.4 acetophenone groups in PEG-[G3]-AP-N3 was 

determined by integration of the characteristic aromatic signals of the acetophenone and dendritic 

scaffold in the 1H NMR spectrum in CDCl3. 

PEG-[G3]-AP-FITC-N3. PEG-[G3]-AP-N3 (18 mg, 1.37 µmol) was dissolved in t-BuOH (0.18 mL) 

and H2O (0.15 mL). Then, 1 (1.8 mg, 4.10 µmol) and freshly prepared aqueous solutions of NaHCO3 (8 

µL, 8.21 µmol, 1 M), CuSO4 (16 µL, 0.82 µmol, 0.05 M), and sodium ascorbate (20 µL, 4.10 µmol, 0.2 

M) were added. The resulting mixture was stirred at rt for 48 h, and then was purified by ultrafiltration 

(H2O, 5 x 30 mL) to afford PEG-[G3]-AP-FITC-N3 (16.2 mg, 87%) as an orange foam. 1H NMR (500 

MHz, DMSO-d6) δ: 8.63 (s, 1.2H), 8.58 (s, 1.4H), 8.52-8.39 (m, 10.8H), 8.00-7.83 (m, 5.6H), 7.25-7.08 

(m, 26H), 4.69-4.48 (m, 5.2H), 4.45-3.94 (m, 80H), 3.88-3.44 (m, ~805H), 3.25 (s, 3H), 3.13-3.04 (m, 

2H); (methylene protons adjacent to the azide groups are buried by the H2O signal and methyl protons 

in acetophenone by residual DMSO). IR (KBr, cm-1): 3381, 2873, 2106, 1116. UV-Vis (H2O) λmax: 296, 
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495 nm. UV-Vis (DMSO) λmax: 520 nm. An average of 1.2 fluorescein molecules in PEG-[G3]-AP-

FITC-N3 was determined by absorbance at 520 nm in DMSO, applying an extinction coefficient of 

60800 M-1 cm-1. 

PEG-[G3]-AMCA-FITC-N3. PEG-[G3]-AP-FITC-N3 (16.2 mg, 1.18 µmol) and AMCA-hydrazide 

(2.5 mg, 10.1 µmol, 620 mol% per ketone) were dissolved in DMF (0.12 mL). Then, a pyridine/acetic 

acid mixture (3:1, 120 µL) was added. The resulting solution was stirred at rt for 48 h, and then it was 

concentrated and purified by ultrafiltration (50% MeOH/H2O, 5 x 30 mL) to afford PEG-[G3]-AMCA-

FITC-N3 (16.1 mg, 97%) as a yellow foam. 1H NMR (500 MHz, CDCl3) δ: 8.22-8.05 (m, 1.4H), 7.98-

7.77 (m, 5.6H), 7.27-6.91 (m, 26H), 4.63-4.38 (m, 2.8H), 4.26-3.95 (m, 80H), 3.93-3.50 (m, ~800H), 

3.36-3.17 (m, 54H), 2.61-2.45 (m, 4.2H); (because of their low intensity, AMCA signals are not 

included). UV-Vis (H2O) λmax: 298, 350, 496 nm. 

PEG-[G3]-AMCA-FITC-NH2. PPh3 (10.0 mg, 38.4 µmol) was added to a solution of PEG-[G3]-

AMCA-FITC-N3 (16.1 mg, 1.15 µmol) in 2% H2O/MeOH (1.1 mL). The resulting mixture was stirred 

at rt for 12 h, and then it was purified by ultrafiltration (50% MeOH/H2O, 5 x 30 mL) to afford PEG-

[G3]-AMCA-FITC-NH2 (14.7 mg, 95%) as a yellow foam. IR (ICs window, CHCl3, cm-1): 3270, 2870, 

1107. UV-Vis (H2O) λmax: 302, 350, 500 nm. An average of 1.0 AMCA in PEG-[G3]-AMCA-FITC-

NH2 was determined by measuring the increase in absorbance at 350 nm in H2O with respect to PEG-

[G3]-AP-FITC-N3, applying an extinction coefficient of 19000 M-1 cm-1. 

Cell Culture. HeLa, MCF7, and HepG2 cells were purchased from ATCC and cultured following 

manifacturer’s instructions. For live cell microscopy, cells were plated onto 35 mm glass-bottom dishes 

(WillCo-dish GWSt-3522) and imaged at 37 ºC, 5% CO2. 

Confocal Imaging. Cell imaging was performed on a Leica TCS SP2 inverted confocal microscope 

(Leica Microsystems) equipped with a 40 × 1.25 NA oil immersion objective (Leica Microsystems). 

Imaging was obtained illuminating the samples with the inline Ar and He-Ne lasers of the microscope 

and with a 403 nm pulsed diode laser (M8903-01; Hamamatsu) at 50 MHz repetition rate. Fluorescence 

emission was collected with the AOBS-based built-in detectors of the confocal microscope (Hamamatsu 
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R6357). Nuclei were stained with Hoechst and imaged using the 403nm laser. Simultaneous AMCA and 

fluorescein imaging was performed by means of a Leica AF6000 wide-field setup. 

Propidium Iodide (PI) Assay. HeLa cells were incubated for 2 h at 37 ºC with DMEM (Dulbecco's 

Modified Eagle Medium) containing 8 μg/mL propidium iodide and different concentrations of 

dendrimer. The medium was then discarded and cells were washed with PBS buffer containing the same 

concentration of propidium iodide before confocal imaging. 

Flow Cytometry Measurements. Cells were grown in a six well plate and after treatment with 

labeled dendrimer were detached using trypsin-EDTA, washed with PBS buffer and fixed with 4% 

paraformaldheyde (PFA). Cells were washed with PBS until complete removal of PFA and finally 

resuspended in 250 μL of PBS. Flow cytometry was performed on a FACScalibur system (BD 

biosciences) by counting 10000 events. Histogram plots were analyzed using WinMDI 2.9 

(http://facs.scripps.edu/software.html). 

Toxicity Assay. HeLa cells were incubated for 1 h at 37 °C with DMEM containing 8 μg/mL 

propidium iodide and different concentrations of dendrimer. The medium was then discarded and the 

cells were washed with PBS buffer three times. Calcein-AM was then added and incubated for 15 min 

before confocal imaging. 

Internalization Assay and Colocalization Studies. To monitor dendrimer internalization, cells were 

incubated with 100 nM fluorescein-labeled dendrimers in DMEM for 1 h at 37 ºC. To remove unbound 

molecules in the medium, cells were rinsed twice with PBS. After the initial preloading and subsequent 

washing, cells were incubated again in DMEM and imaged at the indicated time point. In order to 

identify the endocytic vesicles involved in dendrimer internalization, colocalization assays were 

performed in living cells. HeLa cells were coincubated with dendrimers (as described above) and 

different dyes: 1 mg/mL of a 70 KDa dextran-TRITC conjugate at 37 ºC for 30 min to label 

macropinosomes, 50 mM Lysotracker for 10 min to label lysosomes, and 2 μg/mL of a transferrin-

Alexa568 conjugate to label clathrin-coated endosomes. Images were analyzed using ImageJ software 

version 1.37 (NIH Image; http://rsbweb.nih.gov/ij). 
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Results and Discussion 

With the aim of analysing the effect of the peripheral substitution of GATG dendrimers on their 

uptake and intracellular trafficking in living cells, biologically relevant ligands and groups with different 

physicochemical properties were selected to functionalize the surface of a dendrimer and a PEG5000-

dendritic block copolymer of G3 ([G3]-N3 and PEG-[G3]-N3) (Scheme 1). The 27 peripheral azides on 

these structures provide a large degree of multivalency for the easy incorporation of several tags and 

ligands, and for a subsequent effective interaction with cell surfaces. To this end, a common synthetic 

strategy was followed that involved an initial functionalization of PEG-[G3]-N3 and [G3]-N3 with the 

alkynated FITC derivative 1 by CuAAC (CuSO4, sodium ascorbate, t-BuOH-H2O) in excellent yields 

(Scheme 1). The incorporation of one FITC molecule on average, determined by absorbance and NMR, 

resulted in dendritic structures that can be monitored by confocal microscopy. Decoration of the 

remaining azides with cationic/neutral/anionic groups or biologically relevant ligands, such as 

carbohydrates and peptides, afforded a small library of dendritic structures as tools to evaluate the effect 

of peripheral groups on the cell-uptake and intracellular trafficking of GATG dendrimers (Scheme 1). 

To this end, anionic sulfate residues were easily introduced on the block copolymer by CuAAC (2, 

CuSO4, sodium ascorbate, t-BuOH-H2O) to give PEG-[G3]-FITC-OSO3
- in 95% yield. Cationic and 

neutral groups were incorporated via Staudinger reaction (PPh3, H2O-MeOH) and subsequent 

acetylation to afford respectively PEG-[G3]-FITC-NH3
+ꞏand PEG-[G3]-FITC-NHAc in excellent 

yields. In a similar way, the biologically relevant carbohydrate and peptide ligands, lactose and RGD, 

were introduced by CuAAC (3 or 4, CuSO4, sodium ascorbate, t-BuOH-H2O) leading to [G3]-FITC-

Lac, PEG-[G3]-FITC-Lac, and PEG-[G3]-FITC-RGD in excellent yields. Complete functionalization of 

peripheral azides in all these conjugates was confirmed by 1H NMR (D2O) by disappearance of the 

characteristic signal of the methylene protons adjacent to the azide groups (3.40 ppm). IR spectroscopy 

additionally confirmed complete functionalization by disappearance of the intense azide signal at around 

2100 cm-1. 
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Scheme 1 

 

Peripheral functionalization of PEG-GATG regulates cell uptake 

To address the ability of PEG-GATG block copolymers to cross the plasma membrane and to be 

internalized into living cells, we studied their interactions with cultured HeLa cells by confocal 

microscopy as a function of the physicochemical properties (charge and hydrophobicity) on their 

surface. In particular, we initially focused our attention on three surface groups: i) primary amines 

(PEG-[G3]-FITC-NH3
+), ii) acetylated amines (PEG-[G3]-FITC-NHAc), and iii) sulfate groups (PEG-

[G3]-FITC-OSO3
-), which display cationic, neutral, and anionic character at physiological pH, 

respectively. 

Figure 1 shows confocal images of HeLa cells treated with these three groups of FITC-labeled 

structures. A strong effect of the surface charge on cell uptake was observed in agreement with previous 

reports with alternative dendritic families (32,33). While cationic PEG-[G3]-FITC-NH3
+ showed a 
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strong internalization consistent with its ability to bind cell membranes through ionic interactions, 

anionic PEG-[G3]-FITC-OSO3
- showed only a weak internalization because of its lower affinity for cell 

membranes. This behavior is even more evident for neutral PEG-[G3]-FITC-NHAc, showing no 

internalization at all in HeLa cells. A strong difference between cationic and anionic dendritic structures 

has been also observed in the kinetics of internalization (see Figure S1 in the Supporting Information). 

Thus, PEG-[G3]-FITC-NH3
+ showed a long residence time on the plasma membrane and slow 

internalization, while no accumulation on the membrane and fast internalization (perinuclear 

localization after 1 h) was observed for the anionic counterpart. This observed relationship between 

charge and internalization efficiency is of great interest for the application of these materials in 

nanomedicine, as it would allow controlling the behavior of dendritic carriers by selecting the 

physicochemical properties on their surface. 

 

Figure 1. Confocal images of HeLa cells treated with PEG-GATG copolymers carrying different 

surface charge. Cells were incubated with labeled dendrimers for 1 h, and then were washed with PBS 

and imaged after 8 h. 

Further studies with the most internalizing derivative, PEG-[G3]-FITC-NH3
+, were performed to 

unveil the details of its uptake properties. Figure 2a shows a time lapse imaging of this copolymer where 

three main phases of internalization can be observed: i) membrane binding, ii) formation of intracellular 
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vesicles, and iii) delivery to the perinuclear region. These results are in good agreement with previous 

observations with PAMAM dendrimers and suggest endocytosis as the main way of entrance for these 

macromolecules inside cells. Next, we decided to investigate the mechanism of cell uptake by means of 

colocalization assays using red-labeled endocytic markers (Figure 2b). After 4 h of administration, a 

good colocalization of PEG-[G3]-FITC-NH3
+ (100 nM) was observed with a 70 KDa dextran, a specific 

marker of macropinocytosis. In contrast, no colocalization was observed with transferrin, indicating that 

the copolymer does not localize in clathrin-coated vesicles. This result slightly differs from previous 

observations with PAMAM dendrimers that showed a prevalence of macropinocytosis accompanied by 

a significant population of dendrimers entering cells through a clathrin-mediated pathway. In general, 

macropinocytosis is the preferred pathway for non-specific cell binding and although it converges with 

the clathrin pathway at a later stage, some significant differences between both exist; in particular the 

kinetic of internalization for macropinocytosis is usually slower. Further studies of colocalization with 

endocytic markers and inhibitors of the different pathways will be of help to confirm these results. 

Moreover, the final fate of PEG-[G3]-FITC-NH3
+ trafficking in HeLa cells was identified (Figure 2b). 

Colocalization with lysotroacker, a well-known lysosome marker, clearly showed the copolymer fully 

localizing in the lysosomes after 12 h, a fact which is considered of great interest for drug delivery 

applications as lysosomes are endowed with a peculiar chemical environment (low pH, high ionic 

strenght and abundance of hydrolytic enzymes). As shown below, advantage was taken of these 

internalization properties for the design of a drug delivery system with the ability to trigger the release 

of drugs. 



 14

 

Figure. 2. (a) Time lapse imaging of PEG-[G3]-FITC-NH3
+ (green) in HeLa cells and (b) colocalization 

assays with different endocytic markers (red): dextran for macropinocytosis (top), transferrin for 

clathrin pathway (middle), and lysotracker (bottom). 

 

Concentration-dependent uptake mechanism 

Internalization studies with PEG-[G3]-FITC-NH3
+ were performed in HeLa cells that shed light on 

the concentration-dependence of the process. Figure 3 shows the cellular localization of the copolymer 

at different concentrations after 15 min of incubation. At concentrations up to 1 μM, PEG-[G3]-FITC-

NH3
+ showed membrane binding as previously described. However, at higher concentrations, a 
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completely different localization pattern appeared with copolymers widely spread in the cytoplasm and 

accumulated into the nucleoli. This localization suggested the possibility of a direct membrane 

translocation mechanism in agreement with previous reports by Holl and coworkers on the ability of 

PAMAM dendrimers of high generations (from G7) to create temporary holes in the plasma membrane 

(34). To confirm this mechanism in our case, a propidium iodide assay was performed that revealed an 

altered permeability of the cell membrane for PEG-[G3]-FITC-NH3
+ at a concentration 10 μM. It is 

interesting to note that while this phenomenon operates in PEG-GATG copolymers of G3 with only 27 

amines, an order of magnitude higher in peripheral amines is required for PAMAM dendrimers to alter 

cell membranes. This difference could be related to the higher flexibility of the GATG dendritic scaffold 

which may exploit more efficiently the peripheral cationic groups as ionic binders. Interestingly, the 

observed nucleolar localization is in good agreement with previously reported intracellular studies with 

cationic PAMAM dendrimers (35). 

 

Figure. 3. Localization of FITC-labeled cationic PEG-[G3]-FITC-NH3
+ in HeLa cells after 15 min at 

different concentrations (top). Cells were treated with the copolymer in the presence of propidium 

iodide (bottom) to study the membrane permeability during treatment. 
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Carbohydrate-decorated copolymers 

Carbohydrates regulate a plethora of biological and pathological processes in Nature. Recognition 

events such as fertilization, toxin and hormone mediation, pathogen invasion, and cell-cell interactions 

rely on multivalent carbohydrate-receptor interactions (36-38). This cluster glycoside effect has 

prompted the development of glycodendrimers with the ability to interact with target lectins and to 

promote/inhibit natural carbohydrate-receptor interactions (25,39). In this context, an approach of our 

laboratory to speed up the preparation of glycodendrimers has taken advantage of the chemical 

compatibility of unprotected carbohydrates with the typical reaction conditions of CuAAC. This way, 

not only subsequent deprotection reactions are avoided, but also functionalization facilitated by reduced 

steric hindrance (17,18). 

Lactose (Lac) represents an especially attractive carbohydrate of low molecular weight. Thanks to its 

high biocompatibility and ability to target specific cell populations, Lac has been already proposed as 

coating agent for dendrimers with potential applications in antiadhesive therapy (40) and drug delivery 

toward hepatocytes (41). Focusing our attention on this latter application, HepG2 cells derived from 

hepatocarcinoma and endowed with the asialoglycoprotein receptor (ASGPR, that can recognize and 

internalize lactose moieties) were incubated with lactose-decorated PEG-[G3]-FITC-Lac (Figure 4). 

[G3]-FITC-Lac was also included in this study to investigate the influence of PEG on the ability of 

GATG dendrimers to interact with cell surfaces. Confocal microscopy revealed that both structures were 

taken up by cells, but with very different efficacy. Indeed, it is evident from Figure 4 that PEG-[G3]-

FITC-Lac is much less internalized by HepG2 cells compared to the non-PEGylated dendrimer, a 

difference that might arise from the ability of PEG to shield lactose ligands and hence, limit cell-

dendrimer interactions. Notably, when experiments were performed in the presence of an excess of free 

lactose (up to 150 mM), internalization revealed unaffected. In the same way, comparable levels of 

internalization were observed with HeLa cells, indicating that receptor-mediated endocytosis is not the 

only pathway of internalization in the case of these dendrimers. Based on this significant cell-uptake and 
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the known biocompatibility associated to carbohydrates, we believe these carbohydrate-coated 

dendrimers deserve further investigation as tools for cell internalization as alternative to classical 

cationic dendrimers, while avoiding the characteristic higher toxicity of the latter (Figure S2). 

 

Figure 4. Localization of PEG-[G3]-FITC-Lac (left) and [G3]-FITC-Lac (right) after 2 h incubation 

with HepG2 cells. 

 

Peptide-decorated copolymers 

Peptides are common targeting vectors in nanobiotechnology thanks to their small size, easy large-

scale synthesis, and retained activity upon conjugation. Solid-phase synthesis of peptides allows their 

easy modification with chemical handles for incorporation into nanostructures. In this work we report 

the synthesis and biological evaluation of a peptide-decorated PEG-[G3]-FITC-RGD which incorporates 

multiple copies of a cyclic RGD (Arg-Gly-Asp) peptide. RGD peptides are of great interest for their 

ability to be effectively recognized by integrins. These are heterodimeric cell-surface proteins that play 

important roles in cell adhesion and signalling (42), and are overexpressed in pathologies such as cancer 

and atherosclerosis (43). The clustered arrangement of integrins on cell surfaces has stimulated the 

preparation of RGD-coated dendrimers for enhanced affinity through multivalent interactions (44). The 

alkynated cyclo(RGDfPra) peptide 4 incorporated in PEG-[G3]-FITC-RGD is a mimetic of Cilengitide, 

a peptide with superior integrin binding affinity, currently under clinical trials in patients with 

glioblastoma (45-47). 
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Figure 5 shows the internalization efficacy of PEG-[G3]-FITC-RGD in two cell lines: HeLa cells that 

overexpress the αvβ3 integrin, and MCF7 which are reported to have low expression level of this 

membrane protein. Both confocal imaging and flow cytometry show a strong internalization in HeLa 

cells, but a response comparable to a negative control in MCF7 cells. Clearly, the presence of RGD 

peptides on the surface of PEG-[G3]-FITC-RGD grants the whole nanostructure with targeting and 

internalization properties to specific cell populations. These results along with the modular synthetic 

approach and easy functionalization of GATG dendrimers reveal PEG-[G3]-FITC-RGD as a prototype 

of a family of peptide-driven targeted nanostructures with promising biological applications. 

 

Figure 5. (a) Localization of PEG-[G3]-FITC-RGD in HeLa cells (left) and MCF7 (right). (b) Flow 

cytometry quantification of cell uptake in the two cell lines. 

 

Development of a dendritic pH-sensitive drug delivery system for selective release after 

lysosomal localization 

The possibility of delivering nanostructures to specific cell compartments with particular biochemical 

environments (pH, ionic strength, enzymatic activity) is of crucial interest for drug delivery applications 
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(48). Lysosomes are especially interesting in this context as their characteristic acidic pH (usually below 

5.0) can be exploited to trigger the release of active species inside cells (49). In the previous sections we 

have demonstrated the internalization mechanism of PEG-[G3]-FITC-NH3
+ through macropinocytosis 

and its final delivery to the lysosomal compartment. In this section, we describe a drug delivery 

prototype that based on this structure exploits pH-cleavable hydrazone linkers (stable at physiological 

pH but hydrolysable under acidic media) for the selective delivery of cargo molecules inside cells 

(Scheme 2). With the aim of simultaneously monitoring the localization of the dendritic carrier and 

payload molecules in this system, a dual fluorescent-labeling strategy was pursued combining FITC and 

a coumarin dye (AMCA-Hydrazide) as model cargo molecule (Scheme 2). 

For the preparation of this delivery system, an ethynyl acetophenone linker (AP) was first introduced 

by CuAAC into PEG-[G3]-N3 as a chemical handle for subsequent hydrazone formation (CuSO4, 

sodium ascorbate, t-BuOH-H2O, 98% yield). The resulting PEG-[G3]-AP-N3 conjugate carrying one 

acetophenone on average (as determined by NMR) was then tagged by CuAAC with a FITC dye (1, 

NaHCO3, CuSO4, sodium ascorbate, t-BuOH-H2O). PEG-[G3]-AP-FITC-N3 was obtained in 87% yield 

with an average of one FITC as determined by absorbance. The appearance of two singlets at 8.63 and 

8.58 ppm corresponding to two triazol protons in the 1H NMR spectrum of PEG-[G3]-AP-FITC-N3 

confirms the dual CuAAC labeling. Incorporation of AMCA-Hydrazide at this stage was followed by 

reduction of the remaining azides via Staudinger conditions to afford the desired PEG-[G3]-AMCA-

FITC-NH2 in excellent overall yield. Complete functionalization/reduction of peripheral azides in this 

system was confirmed by disappearance of the intense azide signal at around 2100 cm-1 in the IR 

spectrum. 
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Fluorescence experiments with PEG-[G3]-AMCA-FITC-NH2 were performed in HeLa cells over a 

period of 18 h (Figure 6). At short incubation times, high colocalization between FITC and AMCA was 

seen in the endolysosomal system in agreement with the integrity of the conjugate. The low 

fluorescence intensity of AMCA at this stage is probably due to a probe–probe quenching effect. At 

longer incubation times, two main phenomena revealed in dendrimer-treated cells: i) an increase in the 

fluorescence intensity of AMCA; and ii) a reduced colocalization of AMCA and FITC. These 

observations have been interpreted as resulting from hydrolysis of the hydrazone linkers at the lysosome 

and release of the AMCA molecules. Moreover, as AMCA seems to be localized in the cytoplasm, this 

suggests the ability of this small and hydrophobic dye to escape the endosome, while the hydrophilic 

and bulky dendrimer prevents the endosomal escape of the covalently attached fluorescein. 

Accordingly, this GATG-based conjugate is able to accomplish the main requirements for a successful 

drug delivery system: cell internalization, intracellular release, and endosome escaping. This promising 

proof of principle opens the way for the application of GATG dendrimers for specific issues in 

pharmacology. 
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Figure 6. HeLa cells treated for 18 h with PEG-[G3]-AMCA-FITC-NH2. Fluorescent signals from 

fluorescein (top panels) and AMCA (bottom panels) were recorded at different times. 

 

Conclusions 

In this paper we exploit the versatility of GATG dendrimers to obtain a wide array of surface 

functionality. The interaction of these materials with cells has been studied by confocal microscopy, 

unveiling a strong relationship between peripheral decoration at the dendrimer and relevant properties 

for their bioapplications, such as cell internalization and localization. This information has been 

exploited to design a drug delivery vector able to intracellularly release a model compound. These 

results disclose relevant insights about the behavior of GATG dendrimers in the biological environment 

and represent an important step toward their use for clinical purposes. 
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