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Abstract 

Type I Dehydroquinase (DHQ1) is a class I aldolase enzyme that catalyzes the reversible 

dehydration of 3-dehydroquinic acid to form 3-dehydroshikimic acid by multi-step mechanism that 

involves the formation of Schiff base species’. DHQ1 is present in plants and several bacterial 

sources but it does not have any counterpart in human cells. It has been suggested that DHQ1 may 

act as a virulence factor in vivo and therefore a promising target in the search for new anti-virulence 

agents to combat widespread antibiotic resistance. This review covers recent progress in the 

structure-based design and chemical modifications caused by selective irreversible inhibitors. 

Computational studies aimed at understanding the experimentally obtained covalent modifications 

and inhibitory potencies of these inhibitors are also described. 
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The challenge of antibiotic resistance – an overview of the problem 

The discovery and subsequent development of penicillin was one of the major achievements in 

medicine in the 20th century and this marked the beginning of the ‘golden age’ of antibiotic therapy. 

After the discovery of penicillin, a wide therapeutic arsenal was developed to combat various 

infectious diseases that had previously been potentially fatal. Unfortunately, the optimism associated 

with this success also led to the misconception that antibiotics were ‘miraculous drugs’ with ‘power’ 

that largely exceeded their real pharmacological properties. In most European countries, antibiotics 

are the second most widely used class of drugs after simple analgesics. The excessive use of these 

drugs, and in many cases their inappropriate use, in medicine, veterinary medicine and agriculture 

has led to a rapid and ever-increasing emergence of strains that are resistant to antibiotics. Today, 

infectious diseases caused by the development of drug resistance have become one of the most 

important public health issues of the early 21st century [1−5]. Severe hospital- and community-

acquired bacterial infections are rising sharply, with antibiotic-resistant nosocomial infections being 

a major concern [6,7]. Antibacterial drug resistance also has a huge economic and social impact 

[8,9]. For example, the European Centre for Disease Prevention and Control (ECDC) estimates that 

each year antimicrobial resistance results in 25,000 deaths and related costs of over 1.5 billion € in 

healthcare expenses and productivity losses. Despite the recognized need for new antibiotics, the 

investment in antibiotic research and development by the major pharmaceutical companies has 

declined dramatically in the last 40 years [10]. Therefore, if we do not want to return to the pre-

antibiotic era, it is necessary to develop alternative therapies, in particular drugs with new 

mechanisms of action, and to identify unexplored bacterial targets and gain a detailed knowledge of 

the catalytic mechanism and/or the binding determinants of those targets to combat the growth of 

antibiotic-resistant bacteria [11−13]. 

Anti-virulence therapies – an alternative 

The most widely used strategy to combat bacterial infections is based on the disruption of their 

viability by preventing the synthesis and assembly of key components for bacterial survival [14]. 

Almost all clinically used antibiotics inhibit cell wall biosynthesis, DNA replication, RNA 

transcription, folate biosynthesis, or protein biosynthesis by blocking fewer than twenty-five targets 

[1].
 
Although this strategy is highly effective, it causes substantial stress to the bacterium and this 

favors the growing emergence of antibiotic-resistant strains [15]. Therefore, in addition to the 

discovery of novel compounds to target bacterial viability, in recent years a great deal of effort has 

been devoted to the development of alternative therapies that target bacterial virulence, i.e., the 



3 

ability of a pathogen to cause disease [14−22]. The attenuation of bacterial virulence makes the 

bacterium less able to establish successful infection and, in consequence, it is cleared by the host 

immune response [14, 15]. Therefore, anti-virulence drugs will disarm bacteria and will create an in 

vivo scenario similar to that achieved by vaccination with a live attenuated strain. Such a strategy 

might lessen the pressure for the development of resistance as most virulence traits are not essential 

for bacterial survival. In principle, these types of drugs will also preserve the gut microbiota.  

Type I dehydroquinase – an anti-virulence target 

Among the enzymes that may be promising targets in the search for new anti-virulence agents to 

combat resistant bacteria it is important to highlight type I Dehydroquinase (DHQ1). It has been 

suggested that this enzyme may act as a virulence factor in vivo as the deletion of the aroD gene, 

which encodes DHQ1 from Salmonella typhi and Shigella flexneri, has been proven to afford 

satisfactory live oral vaccines, with the latter providing monkeys with protection against oral 

challenge with live S. flexneri 2457T [23−28]. The important features of the DHQ1 enzyme have not 

gone unnoticed by the scientific community and a great deal of effort has been focused on the 

development of inhibitors of this enzyme. The structure-based design of inhibitors of this challenging 

enzyme has undoubtedly benefited significantly from extensive mechanistic and biochemical studies 

[29], the increasing availability of DHQ1 crystal structures from different bacterial sources, as well 

as from the recent advances in computational methods that have consolidated their value as 

important complementary tools that can assist in providing a detailed knowledge of the enzymatic 

mechanism, the enzyme binding requirements and the essential motions required for catalysis. This 

review will provide an overview of the recent achievements related to the irreversible inhibition 

(covalent modification) of the DHQ1 enzyme. A detailed view of the substrate binding requirements 

and the essential motion for catalysis is also described. Particular attention will be focused on 

explaining the chemical modifications caused by these inhibitors. 

Dehydroquinase (3-dehydroquinate dehydratase, DHQ, EC 4.2.1.10) is the third enzyme in the 

shikimic acid pathway. This route involves seven enzymes that catalyze the sequential conversion of 

erythrose-4-phosphate and phosphoenolpyruvate to chorismic acid (Figure 1) [29]. The enzymes 

involved in the shikimic acid pathway are present in bacteria, fungi and higher plants, but they are 

absent in mammals. Some of these enzymes have also been detected in Toxoplasma gondii (which 

causes malaria) and Plasmodium falciparum extracts [30−32].  

DHQ catalyzes the reversible dehydration of 3-dehydroquinic acid (1) to form 3-dehydroshikimic 

acid (2) [29,33]. This reaction is part of two metabolic pathways: the biosynthetic shikimic acid 
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pathway, which leads to chorismic acid, and the catabolic quinic acid pathway, in which quinic acid 

is converted into protocatechuate (Figure 1). Chorismic acid is the precursor in the synthesis of 

aromatic amino acids, L-Phe, L-Tyr and L-Thr, and other important aromatic compounds such as 

folate cofactors, ubiquinone and vitamins E and K. Whereas protocatechuate is converted via the β-

adipate pathway to acetyl-CoA and succinyl Co-A. There are two distinct types of DHQ enzymes, 

known as type I (DHQ1, aroD gene) and type II (DHQ2, aroD/aroQ gene), which have different 

biochemical and biophysical properties and they do not show sequence similarity (Table 1) [34]. 

DHQ1, which is found in plants, fungi and many bacterial species such as Salmonella typhi, 

Staphylococcus aureus, Escherichia coli, Salmonella enterica subsp. enterica serovar typhimurium 

and Clostridium difficile, is exclusively biosynthetic and is a heat-labile dimer with a subunit of 

around 27 KDa (Figure 2A) [35,36]. In contrast, DHQ2 has both biosynthetic and catabolic roles. It 

is a heat-stable dodecamer formed from a tetramer of trimers, where a trimer is the minimum 

catalytic unit of the enzyme [37] (Figure 2B), and it has a subunit of 1618 KDa. DHQ2 is essential 

in pathogenic bacteria such as Mycobacterium tuberculosis (aroD gene), which is responsible for 

tuberculosis, and Helicobacter pylori (aroD/aroQ gene), which is the causative agent of gastric and 

duodenal ulcers and has also been classified as a type I carcinogen [38]. DHQ2 is a particularly 

attractive target for the development of new anti-tubercular drugs and alternative therapies for the 

treatment of Helicobacter pylori infections [39–42]. In this respect, compounds that target the DHQ2 

enzyme would have an influence on bacterial viability. The fact that two DHQ enzymes have 

evolved to catalyze the same reaction by entirely different mechanisms and stereochemical courses 

has been used in the design of compounds that specifically inhibit either the type I or type II enzymes 

[34]. This review is focused on the DHQ1 enzyme.   

DHQ1 mechanism – nucleophilic catalysis  

DHQ1 is a class I aldolase enzyme that catalyzes the overall syn elimination of water from 3-

dehydroquinic acid (1) by a multi-step mechanism that involves the formation of a Schiff base 

species. In the formation of such covalent intermediates Nature has found an excellent way to 

address mechanistically challenging transformations around the carbonyl group in aqueous solution 

[43−46]. Good examples are the PLP-dependent enzymes, which catalyze a wide range of reactions 

[47,48]. For enzyme-catalyzed reactions, covalent catalysis is a particularly effective strategy 

because: (a) it can place its substrate in the correct arrangement for further enantio- or 

diastereoselective transformations; (b) the formation of covalent intermediates in the reaction 

mechanism helps to stabilize subsequent transition states by lowering the activation energy; (c) it can 

generate a very high effective concentration of a desolvated nucleophile or base with the consequent 
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huge rate acceleration. Thus, considering that enzyme active sites are largely shielded from the 

solvent environment, usually by a substrate-covering loop that closes over the active site after 

substrate binding, the reactive side chain residues are likely to be desolvated and therefore a high 

effective concentration of a nucleophile or a base is achieved. 

The reaction catalyzed by DHQ1 is initiated by the formation of a Schiff base between the C3 

carbonyl group of the substrate and an essential lysine (Lys170 in S. typhi) (Figure 3). The role of the 

Schiff base is to act as an electron sink and it may also play a role in distorting the cyclohexyl ring to 

make the equatorial C2 hydrogen more reactive [49,50]. A basic residue of the active site then 

removes the C2 equatorial hydrogen (pro-R) to afford an enamine, which undergoes acid-catalyzed 

elimination of the C1 hydroxyl group  a reaction that is mediated by an essential histidine (His143 

in S. typhi) acting as a proton donor [51]. The role in the enzymatic mechanism of this histidine has 

been the subject of much controversy. Site-directed mutagenesis and biochemical studies have 

shown that His143 is clearly involved in both the formation and subsequent hydrolysis of the Schiff 

base intermediates [52−56]. In addition, based on the proximity of His143 to the C2 carbon in the 

crystal of the substrate-Schiff base (PDB entry 3M7W, 1.95 Å), it was also suggested that this 

residue would also be the base that removes the C2 equatorial hydrogen [57] (Figure 4A). However, 

its role as a general base appears to be more complex because the replacement of His143 residue by 

and an alanine (variant H143A protein), which showed a 10
6
-fold reduction in catalytic activity, is 

able to slowly transform substrate to product but stalls the hydrolytic release of product from the 

active site [55]. Computational studies suggest that the product-Schiff base hydrolysis is the rate-

determining step [58−60]. The crystal structure of the reduced form of the product-Schiff base (PDB 

entry 1SFJ, 2.4 Å, [61]), which was obtained by reduction of the imine bond with sodium 

borohydride, has also been solved (Figure 4B) [62]. This covalent attachment of the product 

molecule to the DHQ1 from E. coli does not cause a significant change in the protein conformation 

but it causes a dramatic increase in the stability of the protein against proteolysis [63,64]. Thus, the 

melting temperature of the covalently modified protein is 40 ºC higher than that of the unmodified 

one.  

DHQ1 active site and substrate binding  

Analysis of the amino acid sequence in various DHQ1 enzymes reveals that the active site is 

highly conserved (Figure 5). The available crystal structures of the Schiff base intermediates and 

Molecular Dynamics (MD) simulation studies carried out with the Michaelis complex of DHQ1 from 

Salmonella typhi (St-DHQ1) showed that the substrate binds in the active site by a series of strong 

electrostatic and hydrogen-bonding interactions [65]. This Michaelis complex was created from the 
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crystal structure of St-DHQ1 in complex with (2R)-2-methyl-3-dehydroquinic acid (PDB entry 

4CNO, 1.5 Å, [65]), which is a substrate analog that does not form an imine linkage with the enzyme 

and leads to an open conformation of the substrate-covering loop. In particular, the substrate is 

anchored to the active site by a salt-bridge between its carboxylate group and the guanidinium group 

of Arg213, which has previously been identified by chemical modification as the key residue for 

carboxylate recognition [50,66], along with a bidentate hydrogen bond between the carboxylate 

group of the conserved Glu46 and the C4 and C5 hydroxyl groups of the substrate (Figure 4). The C4 

hydroxyl group of the inhibitor also interacts by hydrogen bonding with the guanidinium group of 

Arg82 and a water molecule that is found in several crystal structures forming a bridge between 

Asp114 and Glu46, probably to avoid repulsion between the two residues. The C5 hydroxyl group 

establishes two additional hydrogen bonds, one with the guanidinium group of the conserved Arg48 

and one with the loop that closes the active site. The latter interaction, along with the hydrogen bond 

between the carboxylate group of the substrate and the side chain of a conserved Gln236, contributes 

to close the active site tightly. Harris et al. [67] showed that the binding interactions involving the C4 

hydroxyl group are very important for imine formation. Thus, whereas the removal of the C5 

hydroxyl group in 1 cause a reduction in specificity by 10
3
 (kcat = 3 s

–1
, Km = 700 µM; kcat/ Km = 4.3 

10
3 

s
–1 

M
–1

), removal of both C4 and C5 hydroxyl groups does not lead to formation of the Schiff 

base. Moreover, the C1 hydroxyl group of the ligand and the guanidinium group of Arg82 interact 

through a bridging water molecule. Finally, the appropriate disposition of the cyclohexane ring is 

controlled by key CH-π interactions between the phenyl ring of the functionally conserved Phe225 

(in S. typhi) and the axial hydrogens of the cyclohexane ring of the inhibitor. This residue, which is 

embedded within an apolar pocket involving Ile201, Val139, Leu78 and Ala223, seems to act as a 

‘bottom lid’ of the active site to isolate this part of the active site from the solvent environment and it 

also blocks one of the faces of the substrate for catalysis. Comparison of the amino acid sequence in 

several DHQ1 enzymes (Figure 5) revealed that in some cases this phenylalanine is replaced by a 

tyrosine, as for DHQ1 from S. aureus (Sa-DHQ1). In those cases, such interactions are only 

observed with the axial C2 hydrogen because the tyrosine phenol ring is shifted towards the essential 

lysine binding pocket. In both cases, the axial C2 hydrogen is protected by these aromatic residues. 

MD simulation studies carried out on the Michaelis complex of St-DHQ1 suggest that the 

formation of this complex involves five key steps [65] (Figure 6): (1) folding of the substrate-

covering loop triggered by the conserved Gln236; (2) reduction of the loop flexibility by a series of 

attractive hydrogen-bonding interactions involving Pro234, Ala233, Ser232 and Gln236 [66] 

residues that are located in the loop; (3) pushing the substrate into the bottom of the active site, 
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which involves Arg213 and Glu46 residues and the loop; (4) sealing of the active site with the 

entrance of the conserved Phe145 side chain into the active site after a small folding of the loop 

containing residues 144–151, a process that is triggered by a hydrogen-bonding interaction with the 

neighboring loop that contains residues 174–178; and (5) capture of the Phe145 side chain inside the 

active site by the conserved Met205 residue. These studies also showed that a closed conformation of 

the substrate-covering loop that seals the active site from the solvent environment is required for 

catalysis. 

Covalent DHQ1 inhibitors 

The first irreversible inhibitors of the DHQ1 enzyme, compounds 3−5, were reported by Bugg et 

al. [68] (Figure 7). These substrate analogs with reactive functional groups, which were synthesized 

as racemic mixtures, proved to inhibit irreversibly DHQ1 from E. coli with Ki values between 0.4 

and 1.1 mM, with epoxide 3 being the most potent of the three. However, details of the inhibition 

mechanism were not reported.  

Later on, reasoning that the reaction catalyzed by DHQ1 involves the abstraction of the equatorial 

(pro-R) C2 hydrogen of 3-dehydroquinic acid (1), this hydrogen was replaced by a halogen, i.e., 

(2R)-2-fluoro- (6a) and (2R)-2-bromo-3-dehydroquinic acid (6b), as a strategy to inhibit the enzyme 

[69,70] (Figure 7). These compounds, which are substrates for the DHQ2 enzyme since they still 

contain the axial C2 hydrogen that is removed by the enzyme [71], proved to be time-dependent 

irreversible inhibitors of DHQ1 from E. coli with Ki values of 80 µM and 3.7 mM, respectively. The 

electrospray mass spectra of the partially inactivated enzyme with compounds 6 showed the presence 

of covalently modified proteins corresponding to an additional mass of 123, which were similar in 

both cases. It was suggested that this chemical modification is due to the formation of compound 10, 

which would be obtained by a decarboxylation reaction (Figure 8). The distortion of the cyclohexyl 

ring induced by the formation of the Schiff base probably favors an antiperiplanar disposition of the 

carboxylate and the halide groups and this would allow the decarboxylation process to occur. 

Recently, epoxides 7 and 8 were designed as irreversible inhibitors of the DHQ1 enzyme to 

study the binding requirements of the linkage to the enzyme [72]. Both epoxides proved to have 

a highly differentiated activity against St-DHQ1. The epoxide with the R configuration, compound 

8, proved to be a weak inhibitor with an IC50 of 1 mM and this did not cause covalent modification 

of the enzyme. In contrast, the epoxide with the S configuration, compound 7, was found to be a 

time-dependent irreversible inhibitor of St-DHQ1. A 274 µM concentration of epoxide 7 caused 

50% enzyme inactivation in 30 minutes and 75% enzyme inactivation in 2 hours. These 
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studies also allowed the description of the first crystal structure of St-DHQ1 covalently 

modified by an inhibitor (PDB entry 4CLM) (Figures 9A and 9B). This structure, which was 

obtained by co-crystallization and was determined at 1.4 Å, revealed that surprisingly the 

modified ligand is covalently attached to the essential Lys170 through the formation of a 

stable Schiff base, which has two possible arrangements. The expected hydroxyl amino 

derivative that would be obtained after nucleophilic ring opening of the epoxide group in 7 by 

Lys170 was not obtained as electron density was not observed for the corresponding C3 hydroxyl 

group (Figure 9A). MD simulation studies carried out with the St-DHQ1/7 binary complex suggest 

that the resulting St-DHQ1/7 adduct would be obtained by activation of the epoxide oxygen by the 

essential histidine followed by nucleophilic ring opening of the epoxide by the lysine from the 

opposite face and subsequent dehydration and isomerization reactions. These studies provide strong 

evidence that the enzyme appears to be designed to form the substrate-Schiff base by activation and 

correct positioning of the oxygen atom of the ketone group in the natural substrate by His143 and 

subsequent nucleophilic attack by Lys170 from the Si face of the ketone group. This process requires 

an active site that is shielded from the solvent environment by the substrate-covering loop. 

The proposed covalent modification mechanism is shown in Figure 10. Firstly, nucleophilic attack 

by the -amino group of the essential lysine to epoxide 7 by activation of the essential histidine 

would take place to afford adduct 10. The resulting adduct could then be deprotonated by the neutral 

His143 to give the corresponding amino alcohol II. For the St-DHQ1 enzyme, a conserved water 

molecule (W173 in PDB entry 4CLM), which is also observed in all the available DHQ1 crystal 

structures, remains fixed between the side chain of the conserved Asp114 and Glu46 residues. In this 

arrangement, Asp114 would act as the base that deprotonates this water molecule to afford a 

hydroxide group, which triggers the elimination reaction. This hydroxide anion would be stabilized 

by the guanidinium group of Arg82. Dehydration of the C3 hydroxyl group would be mediated by 

His143 acting as a proton donor. As a result, enamine II, which is in equilibrium with its Schiff base 

11, would be obtained. The crystal structure of the latter adduct was obtained by co-crystallization of 

St-DHQ1 with epoxide 7 after several weeks (PDB entry 4CLM).  

Non-covalent DHQ1 Inhibitors 

 Ratia et al. carried out a high-throughput screening study and identified three non-covalent 

inhibitors of DHQ1 from Clostridium difficile, compounds 12−14, which had IC50 values between 31 

and 35 µM (Figure 11) [73,74]. NMR experiments showed that these compounds compete with the 

reaction product binding site. Considering that (a) these compounds proved to be selective inhibitors 

of the C. difficile enzyme but they were inactive against other DHQ1 enzymes such as the S. enterica 
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enzyme and (b) that the DHQ1 active site is highly conserved, the authors suggested that these 

compounds bind to the DHQ1 from C. difficile with the substrate-binding loop in the open 

conformation. The binding mode of these inhibitors is still unknown. 

Future Perspective 

After a gap in innovation of around 40 years (1960−2000) in the search for new antibiotic classes, 

and considering that very few new antibiotics have been brought to the market in the last decade, 

future research into the discovery of novel drugs and therapies promises to be exciting and 

challenging. Although the complexity of bacteria, which have had billions of years of evolution to 

cope with harsh environments, makes bacterial resistance an inevitable phenomenon, the 

development of drugs that deal with unexplored targets and/or with new mechanisms of action will 

help to reduce the rate and spread of this resistance. In this sense, anti-virulence drugs, which block 

the ability of bacteria to cause a disease or disrupt the interaction between the host and the pathogen, 

are attractive options. The significant effort devoted over the past few decades to understand how 

bacteria cause disease, along with the increasing availability of bacterial genome sequences, has 

created new opportunities for drug discovery that are increasingly being explored. More work needs 

to be done on the identification of unknown virulence factors involved in relevant pathogenic 

bacteria and a detailed knowledge of their mechanism of action needs to be gained. This knowledge 

will be an excellent starting point for the rational design of compounds and will provide a wider 

repertoire of agents to combat bacterial virulence.  

Although only a few inhibitors of the type I dehydroquinase enzyme − a promising virulence factor 

in vivo − have been developed to date, prelimary in vitro anti-virulence studies show their ability to 

reduce bacterial virulence and this encourages further studies on this target. A wider variety of 

covalent and non-covalent inhibitors based on the scaffolds that have already been described is 

needed to improve on the anti-virulence activity achieved to date. Covalent inhibitors are particularly 

attractive due to their higher efficiency, their low sensitivity toward pharmacokinetic parameters and 

their longer duration of action [75,76]. However, care must be taken when selecting functional 

groups for specific covalent linkage to the enzyme to avoid the production of non-specific drugs. As 

for the other enzymes involved in the shikimic acid pathway, the binding requirements of this 

enzyme, in particular regarding the carboxylate recognition that is required for good binding affinity, 

and the high polarity of the residues involved in the substrate recognition represent the most 

challenging issues for drug design.  
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Executive summary 

The challenge of antibiotic resistance – an overview of the problem 

 Drugs with new mechanisms of action, the identification of unexplored bacterial targets as 

well as a detailed knowledge of the catalytic mechanism and/or the binding determinants of 

those targets to combat the growth of antibiotic-resistant bacteria is urgently needed. 

Anti-virulence therapies – an alternative 

 Anti-virulence drugs will disarm bacteria and will create an in vivo scenario similar to that 

achieved by vaccination with a live attenuated strain. 

Type I dehydroquinase – an anti-virulence target 

 Type I dehydroquinase is a promissing target in the search of new anti-virulence agents to 

combat the widespread resistance to antibiotics.  

 There are two distinct types of DHQ enzymes (DHQ1 and DHQ2) and these have different 

biochemical and biophysical properties. 

 DHQ1 and DHQ2 enzymes catalyze the same reaction by very different mechanisms. 

DHQ1 mechanism – covalent catalysis 

 It is a class I aldolase involving the formation of Schiff-base species 

 Syn elimination of water.  

DHQ1 active site and substrate binding  

 Details of the binding requeriments and essential motion for catalysis is described. 

Covalent DHQ1 inhibitors 

 First irreversible inhibitors, compounds 3−5. 

 (2R)-2-halo-3-dehydroquinic acids (6). 

 Epoxides 7 and 8. 
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Non-covalent DHQ1 inhibitors 

 Non-covalent inhibitors discovered by high-throughput screening are disclosed. 

Future perspective 

 

Key Terms 

Virulence: It is the magnitude of the morbidity and the increase in the likelihood of mortality 

resulting from the colonization and proliferation of bacteria in or on a host. 

Nucleophilic catalysis: This type of enzymatic catalysis is a subtype of covalent catalysis and it 

involves nucleophilic attack of an active site residue to a reactive functional group of the substrate 

and subsequent formation of a covalent intermediate with the enzyme. 

Molecular dynamics (MD) simulations: These computational studies provide information about 

the dynamic behavior of complex molecular systems such as receptors and enzymes that can be 

studied in the presence or absence of ligands in aqueous solution. In comparison with docking 

studies, in which the macromolecule is considered as a rigid system and the ligand is flexible, 

MD simulation studies consider both the receptor and the ligand to be flexible.  
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Figure 1. The shikimic acid pathway. The reaction catalyzed by the dehydroquinase enzyme is part 

of two metabolic pathways: the biosynthetic shikimic acid pathway leading to chorismic acid and the 

catabolic quinic acid pathway that converts quinic acid into protocatechuate. 
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Table 1. Comparison of the different characteristics and mechanism of the DHQ enzymes 

 DHQ1 DHQ2 

Structural 

characteristics 

Heat-labile dimer 

Subunit 27 KDa 

Heat-stable dodecamer (tetramer of 

trimers) 

Subunit 16−18 KDa 

Bacterial 

sources 

Escherichia coli 

Salmonella typhi 

Staphylococcus aureus 

Salmonella enterica subsp. enterica 

serovar typhimurium 

Clostridium difficile 

Mycobacterium tuberculosis 

Helicobacter pylori 

Streptomyces coelicolor 

Francisella novicida 

Acinetobacter baylyi 

Acinetobacter baumannii 

Mechanism of 

action 

syn elimination of water 

equatorial (pro-R) C2 hydrogen  

covalent linkage to the enzyme (Lys) 

Schiff base species 

anti elimination of water 

axial (pro-S) C2 hydrogen  

non-covalent linkage to the enzyme 

enolate intermediate 

Essential 

residues for 

catalysis 

Lys, His Tyr, Arg, Asp, His 
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Figure 2. Tridimensional structure of the DHQ enzymes. A) DHQ1. B) DHQ2. Note how DHQ1 

is a dimer whereas DHQ2 is a tetramer of trimers. Only the trimer is shown. Note how the DHQ2 

active site is located in the interface between two chains. The substrate-covering loop for both 

enzymes is highlighted in red. 
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Figure 3. Proposed mechanism for the reaction catalyzed by DHQ1. 
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Figure 4. Crystal structures of DHQ1 substrate- and product-Schiff bases. A) Substrate-Schiff 

base of DHQ1 from S. typhimurium LT2 (PDB entry 3M7W, 1.95 Å, [51]). B) Product-Schiff base of 

DHQ1 from S. aureus (PDB entry 1SFJ, 2.4 Å, [48]). Hydrogen bonding and electrostatic 

interactions are shown as red dashed lines. Relevant residues are shown and labeled. 
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DHQ1_AA         MLIA----------------VPLDDTNFSENL---KKAKEKGADIVELRV 

DHQ1_CD         MKRKVQVKNITIGEGRPKICVPIIGKNKKDIIKEAKELKDACLDIIEWRV 

DHQ1_EC         MKT-VTVKDLVIGTGAPKIIVSLMAKDIASVKSEALAYREADFDILEWRV 

DHQ1_SA         MTH-VEV----VATITPQL-------YIEETLIQKINHRIDAIDVLELRI 

DHQ1_SA2        MTH-VEV----VATIAPQL-------SIEETLIQKINHRIDAIDVLELRI 

DHQ1_ST         MKT-VTVKNLIIGEGMPKIIVSLMGRDINSVKAEALAYREATFDILEWRV 

DHQ1_ST2        MKT-VTVRDLVVGEGAPKIIVSLMGKTITDVKSEALAYREADFDILEWRV 

                *                                     :    *::* *: 

 

DHQ1_AA         DQFSDTS-LNYVKEKLEEV--HSQGLKTILTIRSPEEGGREVKNREELFE 

DHQ1_CD         DFFENVENIKEVKEVLYELRSYIHDIPLLFTFRSVVEGGEKLISRDYYTT 

DHQ1_EC         DHYADLSNVESVMAAAKILRETMPEKPLLFTFRSAKEGGEQAISTEAYIA 

DHQ1_SA         DQFENVT-VDQVAEMITKLKVMQDSFKLLVTYRTKLQGGYGQFTNDSYLN 

DHQ1_SA2        DQIENVT-VDQVAEMITKLKVMQDSFKLLVTYRTKLQGGYGQFINDLYLN 

DHQ1_ST         DHFMDIASTQSVLTAARVIRDAMPDIPLLFTFRSAKEGGEQTITTQHYLT 

DHQ1_ST2        DHFANVTTAESVLEAAGAIREIITDKPLLFTFRSAKEGGEQALTTGQYID 

                *   :    . *      :         :.* *:  :**            

 

DHQ1_AA         EL-----SPLSDYTDIELSSRGLLVK--L-YNITKEAGKKLIISYHNFEL 

DHQ1_CD         LNKEISNTGLVDLIDVELFMGDEVID--EVVNFAHKKEVKVIISNHDFNK 

DHQ1_EC         LNRAAIDSGLVDMIDLELFTGDDQVK--ETVAYAHAHDVKVVMSNHDFHK 

DHQ1_SA         LISDLANINGIDMIDIEWQADIDIEKHQRIITHLQQYNKEVIISHHNFES 

DHQ1_SA2        LISDLANINGIDMIDIEWQADIDIEKHQRIITHLQQYNKEVVISHHNFES 

DHQ1_ST         LNRAAIDSGLVDMIDLELFTGDADVK--ATVDYAHAHNVYVVMSNHDFHQ 

DHQ1_ST2        LNRAAVDSGLVDMIDLELFTGDDEVK--ATVGYAHQHNVAVIMSNHDFHK 

                           *  *:*        .        :     :::* *:*.  

 

DHQ1_AA         TPPNWIIREVLREGYRYG-GIPKIAVKANSYEDVARLLCISRQ-----VE 

DHQ1_CD         TPKKEEIVSRLCRMQELGADLPKIAVMPQNEKDVLVLLEATNEMFKIYAD 

DHQ1_EC         TPEAEEIIARLRKMQSFDADIPKIALMPQSTSDVLTLLAATLEMQEQYAD 

DHQ1_SA         TPPLDELQFIFFKMQKFNPEYVKLAVMPHNKNDVLNLLQAMSTFS-DTMD 

DHQ1_SA2        TPPLDELQFIFFKMQKFNPEYVKLAVMPHNKNDVLNLLQAMSTFS-DTMD 

DHQ1_ST         TPSAEEMVLRLRKMQALGADIPKIAVMPQSKHDVLTLLTATLEMQQHYAD 

DHQ1_ST2        TPAAEEIVQRLRKMQELGADIPKIAVMPQTKADVLTLLTATVEMQERYAD 

                **    :   : .    .    *:*: .:.  **  **           : 

 

DHQ1_AA         GEKILISMGDYGKISRLAGYVFGSVITYCSLEKAFAPGQIPLEEMVELRK 

DHQ1_CD         RPIITMSMSGMGVISRLCGEIFGSALTFGAAKSVSAPGQISFKELNSVLN 

DHQ1_EC         RPIITMSMAKTGVISRLAGEVFGSAATFGAVKKASAPGQISVNDLRTVLT 

DHQ1_SA         CKVVGISMSKLGLISRTAQGVFGGALTYGCIGEPQAPGQIDVTDLKAQVT 

DHQ1_SA2        CKVVGISMSKLGLISRTAQGVFGGALTYGCIGEPQAPGQIDVTDLKAQVT 

DHQ1_ST         RPVITMSMAKEGVISRLAGEVFGSAATFGAVKQASAPGQIAVNDLRSVLM 

DHQ1_ST2        RPIITMSMSKTGVISRLAGEVFGSAATFGAVKKASAPGQISVADLRTVLT 

                   : :**.  * *** .  :**.. *: .  .  ***** . ::      

 

DHQ1_AA         KFYR--L 

DHQ1_CD         LLHKSIN 

DHQ1_EC         ILHQ--A 

DHQ1_SA         L-----Y 

DHQ1_SA2        L-----Y 

DHQ1_ST         ILHN--A 

DHQ1_ST2        ILHQ--A 

                        

 

Figure 5. Multiple sequence alignment. Amino acid sequence alignments for Aquifex aeolicus (AA), 

Clostridium difficile (CD), Escherichia coli (EC), Staphylococcus aureus (SA), Staphylococcus 

aureus (strain JH1, SA2), Salmonella typhi (ST), Salmonella typhimurium LT2 (ST2) DHQ1 

enzymes. Protein sequences were aligned using the CLUSTAL W (1.83) multiple sequence 

alignment (https://www.ebi.ac.uk/Tools/msa/clustalw2/). Fully conserved (*, grey) and functionally 

conserved (:, black) residues are highlighted.   

https://www.ebi.ac.uk/Tools/msa/clustalw2/
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Figure 6. Michaelis complex formation process obtained by MD simulations studies. The process 

involves: (a) substrate-covering loop folding triggered by the conserved Gln236 residue; (b) Loop 

flexibility reduction by formation of several hydrogen-bonding interactions within the loop residues; (c) 

Pushing the substrate into the Lys/His binding pocket by a combined action of the loop and Glu46 side 

chain. (d) Sealing of the active site with the entrance of Phe145 into the active site and its capture by 

interaction with the Met205 side chain. As a result of this process the Michaelis complex is obtained. 

Relevant residues are shown and labeled. 
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Figure 7. Irreversible inhibitors of DHQ1. 
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Figure 8. Proposed covalent modification of DHQ1 caused by irreversible inhibitors 6. 
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Figure 9. Crystal structure of the St-DHQ1 covalently modified by epoxide 7. A) Unbiased 

electron density for the modified inhibitor 7 (pink) and its covalent attachment to Lys170 of St-

DHQ1 (light orange). A maximum-likelihood weighted 2Fo – Fc map contoured at 1σ is shown up to 

1.6 Å around the inhibitor molecule (light orange) and water molecule W285 (blue). B) Interactions 

of the modified inhibitor 7 with St-DHQ1. Hydrogen bonding and electrostatic interactions (blue) 

between the ligand and the St-DHQ1 are shown. Relevant residues are shown and labeled. 
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Figure 10. Proposed covalent modification mechanism of St-DHQ1 caused by irreversible 

inhibitor 7.  
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Figure 11. Non-covalent inhibitors of DHQ1 from C. difficile discovered by high-throughput 

screening. 

 

 

 

 

 


