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Abstract

In this work we present the extended two-dimensional torsion (E2DT) method and

use it to analyze the performance of several methods that incorporate torsional an-

harmonicity more approximately for calculating rotational-vibrational partition func-

tions. Twenty molecules having two hindered rotors were studied for temperatures

between 100 and 2500 K. These molecules present several kinds of situation; they

1



include molecules with nearly separable rotors, molecules in which the reduced mo-

ments of inertia changes substantially with the internal rotation and molecules pre-

senting compound rotation. Partition functions obtained by the rigid-rotor harmonic

oscillator approximation, a method involving global separability of torsions and the

multi-structural methods without explicit potential coupling [MS-T(U)] and with ex-

plicit potential coupling [MS-T(C)] of torsions are compared to those obtained with a

quantized version -called the extended two-dimensional torsion (E2DT) method- of the

extended hindered rotor approximation of Vansteenkiste et al. (J. Chem. Phys. 2006,

124, 044314). In the E2DT method, quantum effects due to the torsional modes were

incorporated by the two-dimensional non-separable method, which is a method that

is based on the solution of the torsional Schrödinger equation and that includes full

coupling in both the kinetic and potential energy. By comparing other methods to the

E2DT method and to experimental thermochemical data, this study concludes that:

the harmonic approximation yields very poor results at high temperatures; the global

separation of torsions from the rest of degrees of freedom is not justified even when

an accurate method to treat the torsions is employed; it is confirmed that methods

based on less complete potential energy coupling of torsions, such as MS-T(U), are

not accurate when dealing with rotors with different barrier heights; and more com-

plete inclusion of torsional coupling to the method in MS-T(C), improves substantially

the results in such a way that it could be used in cases where the E2DT method is

unaffordable.
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1 Introduction

The calculation of rotational-vibrational (rovibrational) partition functions in flexible

molecules is specially challenging if the goal is to evaluate accurate thermodynamic functions

or thermal rate constants. Recent theoretical studies show that these objectives can be

achieved by accounting for torsional anharmonicity1 and multiple reaction paths.2–6 The

present work is concerned with the first of these two issues. An accurate calculation of

rovibrational partition functions requires a good description of the coupling between the

tops themselves and between the tops and the other degrees of freedom. However, it is quite

common to calculate the rovibrational partition function within the rigid-rotor harmonic

oscillator (RRHO) approximation, because it allows the separation of the rotational (Qrot)

and vibrational (QHO
vib ) partition functions, and it makes QHO

vib be a product of easily calculated

factors for individual normal modes that can be easily obtained from standard electronic

structure programs, i.e.,

QRRHO = QrotQ
HO
vib (1)

and

QHO
vib =

3N−6∏
m=1

e−β~ωm/2

1− e−β~ωm
(2)

where β = kBT , kB is Boltzmann’s constant, T is temperature; ~ is Planck’s constant divided

by 2π; 3N − 6 is the number of normal-mode vibrations of a non-linear polyatomic molecule

(N is the number of atoms) and ωm is the frequency of each of these vibrations.

In general, this approximation is better at low temperatures because under these condi-

tions the partition function of a stable molecule is well described by a few levels belonging

to the global minimum of the potential energy surface, and that of a transition state is well

described by a few levels of the modes orthogonal to the reaction coordinate. However,

as temperature rises the torsional motions, which usually involve low-frequency vibrational

modes, are excited to high vibrational levels, and some molecules may have enough energy

to overcome the torsional barriers and populate two or more minima of the potential energy
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surface. Therefore, the methods that evaluate rovibrational partition functions in flexible

molecules should include the anharmonic effect due to these torsions and incorporate it into

the final result. Furthermore, torsions are often strongly coupled to overall rotation, and so

one should include vibration-rotation coupling.

The works of Pitzer and Gwinn (PG)7 and Kilpatrick and Pitzer (KP)8 addressed the

problem of how to calculate torsional partition functions even in situations involving strongly

coupled torsions and torsions coupled with overall rotation. Much of the later research is

based on finding approximations to and/or improvements to these two seminal works. How-

ever, there are aspects that were not discussed in depth in those two papers, but that are

important to obtain accurate rovibrational partition functions, i.e., how to account more

fully for anharmonicity in systems with multiple torsional minima, and how to incorporate

the torsional partition function into the total rovibrational partition function. The original

multi-structural method9 MS-T(U) where U is shorthand for uncoupled torsional potential

anharmonicity, and the multi-structural torsional anharmonicity method with effective bar-

riers based on a coupled potential10 [henceforth denoted MS-T(C) where C denotes coupled

potential anharmonicity] try to answer these two questions. However, these two methods

need further testing with a reference method allowing the analysis of their performance,

and that is provided in the present article. We also compare the theoretical ideal gas-phase

standard-state thermodynamic functions with the available experimental data.11 These two

issues are the goal of this work.

Recently, one of us developed the two-dimensional non-separable (2D-NS) method,12

which can be used as a benchmark in the calculation of torsional partition functions in

systems with two rotors. In the 2D-NS method the two-dimensional Schrödinger equation is

solved by the variational method assuming that the two torsions are coupled in the kinetic

and potential energy terms. This method13 has been compared with other more approximate

methods to treat torsions, such as the torsional eigenvalue summation14 (similar to 2D-NS

but using one-dimensional potentials) and the harmonic oscillator approximation. Here, for
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the reference rovibrational partition function we use the extended hindered rotor (EHR)

approximation of Vansteenkiste et al.,15 which treats all the vibrational modes, except the

torsions, as quantum harmonic oscillators. In the portion of the EHR treatment that we

use here, the torsions are treated classically, but to be able to apply it at low temperatures,

we include quantum effects using the 2D-NS method. We call this method the extended

two-dimensional torsion (E2DT) method and use it as benchmark. (Note that Vansteenkiste

et al.15 also made a correction for quantum effects in the torsional modes, but at a less

accurate level, and their correction is not tested here.)

For the comparison between methods we have chosen a series of 20 molecules, each of

them with two hindered rotors. The molecules are depicted in Figure 1. The relative energies

of the local torsional minima with respect to the global minimum are given in Table 1. There

are molecules with nearly independent (nearly separable) rotors, for instance S17, molecules

in which the two torsions are strongly coupled, such as S7, and molecules involving compound

rotation (one rotating group is attached to the other rotating group), such as S2, S8 and

S19. There are also different types of rotors: symmetric tops (no off-balance term during

rotation), in particular the methyl group, slightly asymmetric tops, in particular the -OH

group, and very asymmetric tops, such as the -COH and the -CFH2 groups. Therefore,

the set is diverse, spanning from cases with nearly separable torsions with constant reduced

moments of inertia to cases with coupled torsions with reduced moments of inertia that

change substantially with internal rotation.

A brief description of the methods is given in section 2 and the comparison between them

is discussed in section 4. The computational details are described in section 3, and section

5 summarizes the conclusions.
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2 Methodology

The rotational-torsional classical partition function that includes full kinetic and potential

energy couplings between torsions and between these torsions and the external rotation of a

molecule with two torsions is given by8

QFC
cl =

8π2

σtorσrot

(
1

2πβ~2

)5/2 ∫ 2π

0

∫ 2π

0

dφ1dφ2|S(φ1, φ2)|1/2e−βV(φ1,φ2), (3)

whereQFC
cl means fully coupled (FC) classical partition function; σrot is the symmetry number

for overall rotation;16 σtor = σtor,1σtor,2 is the product of the symmetry numbers for internal

rotation σtor,1 and σtor,2 about the dihedral angles φ1 and φ2, respectively; V (φ1, φ2) is the

torsional potential; |S(φ1, φ2)| is the determinant of the rotational kinetic energy matrix,

which after a congruent transformation (see ref 8) is given by:

|S| = |D|
3∏
i=1

Iroti (4)

where Iroti is one of the three principal moments of inertia and |D(φ1, φ2)| is the determinant

of the D matrix. The D matrix accounts for the kinetic energy couplings between the two

torsions and between the torsions and the external rotation:

D =

 I1 −Λ12

−Λ12 I2

 (5)

The reduced moments of inertia of the two torsions are I1 and I2, and Λ12 is the coupling.

The reduced moments of inertia can also be obtained by the method of Pitzer,17 and they are

commonly used in the evaluation of partition functions that consider torsions as separable

(Λ12 = 0). Often, a good approximation is to assume that the principal moments of inertia

do not change with the torsional angles, in which case we use the ones corresponding to the

global minimum. With that assumption (which is made in some but not all of the methods
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in this article), eq 3 is approximated to:

QFC
cl
∼= QrotQ

(C)
cl,tor (6)

where

Qrot =
8π2

σrot

(
1

2π~2β

)3/2√
Irot1 Irot2 Irot3 (7)

is the rotational partition function, and

Q
(C)
cl,tor =

1

σtor

1

2πβ~2

∫ 2π

0

∫ 2π

0

dφ1dφ2|D(φ1, φ2)|1/2e−βV(φ1,φ2), (8)

is the classical torsional partition function. In the case of symmetric tops eq 8 can be further

simplified because |D(φ1, φ2)| is independent of the torsional angles, i.e.,

Q
(C)?
cl,tor =

1

σtor

1

2πβ~2
|D|1/2

∫ 2π

0

∫ 2π

0

dφ1dφ2e
−βV(φ1,φ2) (9)

It is convenient to fit the torsional potential to a Fourier series of the type:

Vtor(φ1, φ2) =V1(φ1) + V2(φ2)+

L1∑
l1=1

L2∑
l2=1

cl1l2 cos(l1φ1) cos(l2φ2) +

L′
1∑

l′1=1

L′
2∑

l′2=1

c′l′1l′2 sin(l′1φ1) sin(l′2φ2)
(10)

where V1(φ1) and V2(φ2) are one-dimensional potentials given by:

Vτ (φτ ) = a0,τ +
Nτ∑
nτ=1

an,τ cos(nτφτ )) (11)

The parameters cl1l2 and c′l′1l′2
, as well as, the parameters for the one-dimensional potentials

are obtained from the fitting. The potentials of eqs 10 and 11 may also include odd terms

involving sin(n1φ1), sin(n2φ2), cos(l1φ1) sin(l2φ2) or sin(l′1φ1) cos(l′2φ2) functions, but they

are seldom needed to obtain a good fit.
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The torsional frequencies are calculated as the eigenvalues of the secular determinant:

|K− ω2
ηD| = 0 (12)

where

K =

 ∂2V
∂φ21

∂2V
∂φ1∂φ2

∂2V
∂φ1∂φ2

∂2V
∂φ22

 (13)

with the force constant matrix K of the torsional potential evaluated at the global minimum.

These force constants can be obtained from the force constants associated to the torsions,

which were calculated from the electronic structure calculations at the bottom of the poten-

tial or from the two-dimensional Fourier series potential used to fit the torsional potential.

Except when otherwise indicated, the frequencies ωη are calculated from the Fourier series

potential. Their values are listed in Table 1.

A quantum version of eq 8 for two coupled torsions is the 2D-NS method,12,13 in which the

torsional partition function is evaluated by directly solving the two-dimensional Schrödinger

equation with full coupling in the kinetic, Ttor, and potential energy terms, Vtor(φ1, φ2), i.e.:

{
Ttor

(
∂
∂φ1

, ∂
∂φ2

)
+ Vtor(φ1, φ2)

}
Φ(φ1, φ2) = EΦ(φ1, φ2) (14)

The kinetic energy is given by eq 8 of ref 12 and the potential is fitted to Fourier series. It

includes the variation of the reduced moments of inertia with the torsions φ1 and φ2, as well

as the coupling between these torsions. However, it does not include any term or coupling

associated with the non-torsional degrees of freedom. Thus it does not include, for example,

the Coriolis coupling between the internal rotors and the external rotors and the vibrational

angular momentum of the 3N − 8 vibrational modes. The Schrödinger equation of eq 14 is

solved by the variational method. The trial function is built as a linear combination products

of two one-dimensional wave functions that are solution of the Schrödinger equation for a
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particle in a ring, i.e.,

Φ(φ1, φ2) =
1

2π

K∑
k1=−K

K∑
k2=−K

ck1,k2e
ik1φ1eik2φ2 (15)

where K is of the order of one hundred to obtain convergent results.

The 2D-NS partition function is obtained from the direct sum of the eigenvalues Ej

obtained from eq 14 divided by the symmetry number due to the torsions, σtor:

Q2D−NS
tor =

1

σtor

∑
j

e−βEj (16)

and, therefore, the method can also be used to calculate the tunneling splitting of the lowest

vibrational level due to torsional motion.18

The 2D-NS method is usually prohibitively expensive to extend to more than two degrees

of freedom because of the size of the matrix to diagonalize when using the variational method.

PG proposed an approximation that avoids to solve the Schrödinger equation, but corrects

for quantum effects with a multiplicative factor Fq given by the ratio between the quantum

and classical partition harmonic oscillator partition functions at the global minimum. The

resulting torsional PG (TPG) partition function is given by:

QTPG
tor =

QHO
tor

QCHO
tor

Q
(C)
cl,tor = FTPG

q Q
(C)
cl,tor (17)

where

FTPG
q =

QHO
tor

QCHO
tor

(18)

The TPG partition function opens another possibility. It can be interpreted as an an-

harmonic correction to the harmonic oscillator torsional partition function (i.e., as the ratio

between the fully coupled classical partition function and the classical limit of the harmonic
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oscillator partition function). In this case

QTPG
tor = FclQ

HO
tor (19)

where

Fcl =
Q

(C)
cl,tor

QCHO
tor

(20)

There is no unique way to incorporate multiple torsional wells into the torsional partition

functions of eqs 17 and 19. One possibility is to substitute the HO and CHO partition func-

tions by multi-structural partition functions. The multi-structural HO and CHO partition

functions are

QMS−HO
tor =

J∑
j=1

e−βUj
2∏

η=1

e−β~ωj,η/2

1− e−β~ωj,η
, (21)

and

QMS−CHO
tor =

J∑
j=1

e−βUj
2∏

η=1

1

β~ωj,η
, (22)

respectively. The torsional frequencies, ωj,η with η = 1, 2, are calculated for each well j

through eq 12. The difference in energy between the global minimum and the well j is given

by Uj of Table 1. An equation similar to eq 17 but taking into account multiple wells would

be:

QMS−TPG
tor = FMS−TPG

q Q
(C)
cl,tor (23)

where

FMS−TPG
q =

QMS−HO
tor

QMS−CHO
tor

(24)

eq 23 can be considered to be an extension of the PG expression that takes into account

multiple wells.

Torsional partition functions need to be integrated into the total rovibrational partition

function to be used for calculating thermodynamic functions. One possibility is to start

from the multi-structural rigid rotor harmonic oscillator (MS-HO) partition function, which
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is given by

QMS−HO =
J∑
j=1

QRRHO
j (25)

where QRRHO
j uses the same RRHO approximation as eq 1, but for each of the wells, i.e.,

QRRHO
j = Qrot,jQ

HO
j e−βUj (26)

where QHO
j is the product of individual mode partition functions in eq 1 evaluated for con-

former j. The Boltzmann factor of eq 26 takes into account the difference in energy, Uj,

between conformer j and the conformer corresponding to the global minimum. In a previous

work, one of us introduced the following correction to the RRHO approximation:12

QGS2DT = α2D−NS
tor QMS−HO (27)

where GS2DT means globally separable two-dimensional torsional method. The coefficient

α2D−NS
tor accounts for deviations from the MS-HO partition function:

α2D−NS
tor =

Q2D−NS
tor

QMS−HO
tor

(28)

The accuracy of this approximation is discussed in section 4.

Another possibility is to extend the torsional TPG partition function to all of the vibra-

tional degrees of freedom. Instead of using the global separable approximation for torsions,

the non-torsional degrees of freedom are incorporated into the classical partition function of

eq 3.15 This procedure accounts for the variation of the vibrational non-torsional degrees of

freedom with the t torsions:

QEHR =
8π2

σtorσrot

(
1

2πβ~2

)3/2+t/2 ∫ 2π

0

∫ 2π

0

, · · · ,
∫ 2π

0

dφ1dφ2, · · · , dφt×

|S(φ1, φ2, · · ·φt)|1/2e−βV(φ1,φ2,··· ,φt)Q
HO

(φ1, φ2, · · · , φt)

(29)
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The extended hindered rotor (EHR) partition function of eq 29 treats all the vibrational

degrees of freedom, with the exception of the t torsions, quantum mechanically (within the

harmonic approximation). The vibrational partition function Q
HO

refers to the product of

the individual vibrational harmonic 3N − 6− t nontorsional vibrations and is given by:

Q
HO

(φ1, φ2, · · · , φt) =
3N−6−t∏
m=1

e−β~ωm(φ1,φ2,··· ,φt)/2

1− e−β~ωm(φ1,φ2,··· ,φt)
(30)

where the non-torsional frequencies ωm(φ1, φ2, · · · , φt) were calculated using nonredundant

internal coordinates as detailed in ref 10.

In the case of two torsions (t = 2) the EHR partition function is given by:

QEHR =
8π2

σtorσrot

(
1

2πβ~2

)5/2 ∫ 2π

0

∫ 2π

0

dφ1dφ2|S(φ1, φ2)|1/2e−βV(φ1,φ2)Q
HO

(φ1, φ2) (31)

The interpolation of the Q
HO

(φ1, φ2) partition function at different values of the two torsional

angles is discussed in the Computational details section.

Quantum effects due to the torsions can be incorporated into the partition function of

eq 31 as the ratio between quantum and classical torsional partition functions through a PG

multiplicative coefficient similar to the one of eq 17, i.e.,

QEX = FX
q Q

EHR (32)

where X indicates the method used to calculate the two dimensional torsional partition

function. It is also possible to use multi-structural partition functions as eq 24 or the 2D-

NS partition function, that does not invoke the harmonic approximation. In this case the

F 2D−NS
q is given by:

F 2D−NS
q =

Q2D−NS
tor

Q
(C)
tor,cl

(33)
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and therefore our proposed extended two-dimensional torsion (E2DT) method is given by:

QE2DT = F 2D−NS
q QEHR (34)

The E2DT method, in addition to the quantum effects due to the torsions, includes the

variation of the external rotation and of the 3N -8 vibrational degrees of freedom with the

two torsions, as well as, the coupling between torsions. It can be considered an exact

treatment of the two coupled torsions, also coupled as fully as possible to overall rotation

and to nontorsional modes. Notice that the coupling between the two torsions and the overall

rotation is treated classically through the |S| determinant. This coupling is not considered

in the quantum correction of eq 33.

On the other hand, the TPG partition function of eq 19 shows that it is possible to

correct the RRHO partition function for anharmonicity. If there are J distinguishable wells

in the potential energy surface, the correction could be performed locally at every well. This

is the basis of the multi-structural torsional (MS-T) methods. The rovibrational partition

function is given by:

QMS−T(Y) =
J∑
j=1

QRRHO
j F

MS−T(Y)
cl,j (35)

where Y indicates one of the following two approaches: (i) the uncoupled potential Y=(U)

multi-structural method with torsional anharmonicity [MS-T(U)] ; and (ii) coupled-potential

Y=(C) multi-structural method with torsional anharmonicity [MS-T(C)]. The coefficients

F
MS−T(U)
cl,j and F

MS−T(C)
cl,j are given by:

F
MS−T(U)
cl,j = Zj

t∏
τ=1

fj,τ = Zj

t∏
τ=1

q
RC(U)
j,τ

q
CHO(U)
j,τ

(36)

in the uncoupled-potential version, and by:

F
MS−T(C)
cl,j =

t∏
η=1

fj,η =
t∏

η=1

q
RC(C)
j,η

q
CHO(C)
j,η

(37)
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in the coupled-potential approximation. The fj,η factors evaluate the ratio between the

classical anharmonic and classical harmonic oscillator torsional partition functions as in

eq 20, but using approximations in the evaluation of the former. The definitions of Zj,

the classical q
RC(U)
j,τ and q

RC(C)
j,η , and the classical harmonic q

CHO(U)
j,τ partition functions and

q
CHO(C)
j,η are given below.

The main difference between the method of eq 35 and E2DT is that the latter is a global

method, in the sense that it needs a knowledge of the whole torsional potential, whereas the

MS-T(Y) methods are local and based on estimates of the anharmonicity in the surroundings

of the wells. As a result the evaluation of the E2DT partition function is quite expensive in

computer time (since the number of electronic structure calculations increases exponentially

with the number of torsions), and therefore it is difficult to extend beyond two or three

coupled torsions. In contrast the MS-T(Y) methods can readily be extended to higher

dimensions.

The classical harmonic oscillator partition function in the MS-T(U) method is given by:

q
CHO(U)
j,τ =

1

β~ω(U)
j,τ

(38)

and the torsional frequencies of each well are calculated as:

ω
(U)
j,τ =

√
kj,τ
Ij,τ

(39)

where Ij,τ and kj,τ are the reduced moment of inertia and the internal-coordinate force

constant, respectively, for torsion τ in the well j. Assuming that the potential in the sur-

roundings of minimum j is well represented by a reference PG potential, i.e., by a periodic

potential with only one term in the cosine, for which we have the expression:

Vj,τ (φτ ) = Uj +
1

2
W

(U)
j,τ [1− cosMj,τ (φτ − φj,τ,eq)];

−π
Mj,τ

≤ φτ − φj,τ,eq ≤
π

Mj,τ

(40)
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with φj,τ,eq being the torsional angle φτ at the equilibrium position. With this type of

potential, the torsional frequency ω
(U)
j,τ , the barrier height W

(U)
j,τ and the reduced moment of

inertia Ij,τ are related by,

W
(U)
j,τ =

2Ij,τ [ω
(U)
j,τ ]2

M2
j,τ

(41)

With the potential of eq 40 the classical partition function can be integrated analytically

yielding:

q
RC(U)
j,τ =

σtor,τ
Mj,τ

qFRτ,j exp(−βW (U)
j,τ /2)I0(βW

(U)
j,τ /2) (42)

where I0 is a modified Bessel function of the first kind, QFR
τ,j is the classical free-rotor partition

function of torsion τ of well j and is given by

qFRτ,j =
1

σtor,τ

(
2πIτ,j
β~2

)1/2

(43)

It should be noticed that σtor,τ/Mj,τ removes the torsional symmetry number of the free-rotor

partition function and establishes the domain of well j through the local periodicity param-

eter Mj,τ . This parameter is calculated through a Voronoi tessellation scheme.1 Finally, the

Zj factor is given by

Zj = gj + (1− gj)Z int
j Zcoup

j (44)

The factor Z int
j takes into account the coupling between torsions. It is given by the ratio

between the coupled and uncoupled CHO partition functions:

Z int
j =

∏t
η=1 ω

(C)
j,η∏t

τ=1 ω
(U)
j,τ

(45)

where the product of the coupled torsional frequencies ω
(C)
j,η is calculated as:

t∏
η=1

ω
(C)
j,η =

∏F
m=1 ωj,m∏F−t
m=1 ωj,m

(46)
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F being the number of vibrational degrees of freedom of the system; ωj,m represents the

normal mode frequencies at well j and ωj,m are the nontorsional frequencies calculated in

nonredundant internal coordinates.

On the other hand, the Zcoup
j term incorporates the coupling in the reduced moments of

inertia through the ratio:

Zcoup
j =

(
|Dj|∏t
τ=1 Ij,τ

)1/2

(47)

The factor gj tends to the unity at low temperatures, where the rovibrational coupling is

small and tends to zero at high temperatures. It is given by a switching function similar to

the one used in ref 19:

gj =
t∏

τ=1

tanh

(
σtor,τ
Mj,τ

qFRj,τ

q
CHO(U)
j,τ

)1/t

(48)

However, a given torsion may reach the high-temperature limit at a different rate than other

torsions if the barriers they have to overcome are different. The coupled multi-structural

method with torsional anharmonicity [MS-T(C)] solves this problem by removing the Zj term

and incorporating the couplings into the fj,η coefficients of eq 37. For the evaluation of the

q
CHO(C)
j partition function is enough to know the product of the coupled torsional frequencies

ω
(C)
j,η of eq 46, whereas the evaluation of the reference coupled classical partition function

about each well requires the calculation of coupled barrier heights, which are obtained from

the eigenvalues λ̃j,η of the equation:

F̃tor
j = LjF

tor
j Lj (49)

The force constant matrix Ftor
j in internal coordinates associated with the torsions includes

the coupling between the torsions, and Lj is a diagonal matrix with elements given by 1/Mj,τ .

The coupled torsional barriers are given by

W
(C)
j,η = 2λ̃j,η, (50)
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and the product of q
RC(C)
j,τ , which we call here QRC(C), is given by:

QRC(C) =
t∏

η=1

q
RC(C)
j,η = Zcoup

j

t∏
τ=1

σtor,τ
Mj,τ

qFRτ,j

t∏
η=1

exp(−βW (C)
j,η /2)I0(βW

(C)
j,η /2) (51)

It should be noticed that neitherW
(U)
j,τ norW

(C)
j,η correspond to calculated torsional barriers by

electronic structure methods, but to effective torsional barriers. Thus, the multi-structural

reference classical coupled torsional-rotational partition function [MS-RC(C)] given by

QMS−RC(C) =
J∑
j=1

Qj,rot

t∏
η=1

q
RC(C)
j,η (52)

may be different from the classical fully coupled partition function of eq 3, although in

the high-temperature limit both partition functions tend to the free rotor result, which is

independent of the torsional barriers.

3 Computational details

All the electronic structure calculations were performed at the MPWB1K method,20

with the minimally augmented polarized double-ζ basis set, 6-31+G(d,p).21 This level of

calculation performs well for nonmetallic thermochemical data and thermochemistry.22 The

energies, geometries and normal-mode frequencies of all the stationary points are listed in

the Supporting Information. The 2D-NS method needs the construction of a global two-

dimensional torsional potential energy surface for each molecule. Each point is obtained by

partial optimization, i.e., all the internal coordinates of the molecule were optimized except

the two torsions that were kept frozen. For the scan about the torsions we used a stepsize of

10◦. The elements of the D matrix were calculated for each of the geometries as described

in ref 8 and implemented in ref 9.

Notice that in this work all the calculated vibrational harmonic oscillator partition func-

tions of all the systems, including those that used projected normal mode frequencies (after
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removal of the torsional degrees of freedom), were scaled by the recommended scaling factor

of 0.964.23 Specifically, this scaling was applied to eqs 25 (through eq 26), 30, 35 and 46.

The two-dimensional torsional potential energy grid obtained from the electronic struc-

ture calculations was fitted to Fourier series, i.e. to a potential given by eq 10. The contour

plots of those two-dimensional surfaces are displayed in Figures 2 and 3. All classical parti-

tion functions that needed integration were evaluated by the trapezoidal rule with a stepsize

of 1◦. The D matrix was also fitted to Fourier series having the same terms as the potential.

All this information is listed in the Supporting Information. The fits to Fourier series were

carried out by the GNUplot program.24

The evaluation of the Q
HO

(φ1, φ2) partition function at specified values of the two tor-

sional angles, which is needed in the calculation of the EHR partition function, involved

the following steps: (i) evaluation of the force constants matrix (Hessian) at the stationary

points (minima, transition states and maxima); (ii) removal of the torsional frequencies; (iii)

interpolation of Q
HO

at non-stationary structures.

Step (i) is straightforward because the search is directly carried out on the fitted Fourier

series potential; once the stationary points are located the Hessian can be evaluated by

standard quantum chemistry programs.

Step (ii) involves the separation of torsions from the other degrees of freedom. This

is achieved by a transformation of the Hessian in Cartesian coordinates into a Hessian in

internal coordinates, in which the torsions are explicitly defined without redundancies and

removed from the the rest of the 3N -8 degrees of freedom by using the procedure described

in ref 10. This allows the calculation of ωm and, therefore, of Q
HO

at the stationary points.

For Step (iii), first we divide each of the two-dimensional surfaces into Delaunay triangles

using the software package TRIPACK of Renka.25 The vertices of the triangles correspond

to stationary points, so at these locations the rovibrational partition function is available.

If the value of the partition function is needed in an edge or inside the triangle, we need to

obtain it by interpolation. Specifically, we have used modified hyperbolic tangent functions
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to interpolate the edges in such a way that at each vertex the partition function coincides

with the calculated value and at each edge the hyperbolic tangent reaches half its value

when the difference between the potentials of the vertices is also half. For a point inside a

triangle the partition function is obtained by building three additional triangles in which two

of the points are the vertices and the third point is the one at which the partition function

has to be obtained. By calculating the three heights of the triangles and taking as bases

the edges, the interpolated partition function is given by the projected value over the edge

with the shortest height. This procedure is difficult to extend to higher dimensions, so we

have also tried a simpler approximation consisting in approximating the partition function at

non-stationary points by the one at the stationary point with the shortest distance between

them. The partition functions obtained by both approximations are practically identical at

high temperatures and about 1% different at the lowest temperatures. For a given point

at the edge or inside the triangle we approximate the partition function by the one at the

vertex with the shortest distance between the point an the vertex.

The eigenvalues needed to obtain the 2D-NS partition functions were calculated with

the JADAMILU software.26 The torsional 2D-NS partition function and the GS2DT and

E2DT rovibrational partition functions were obtained by the HR2D program.27 The MS-

T(U) and MS-T(C) partition functions were calculated with the MSTor program.9,28 For

each molecule all the electronic structure geometries and frequencies of the conformations are

listed in the Supporting Information. All the electronic structure calculations were performed

using the Gaussian 09 program.29

4 Results and discussion

In the temperature range from 100 and 2500 K, we compare the MS-HO, MS-T(U), MS-

T(C) and GS2DT rovibrational partition functions with the ones obtained by the E2DT

method. Deviations of the data P from the benchmark results Pref for the set of Ns = 20
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molecules S` (` = 1, 2, . . . , 20) at temperature T are given by the mean unsigned percentage

error (MUPE):

MUPE-P-X(T ) =
100

Ns

Ns∑
`=1

∣∣∣∣∣PX
ref(`, T )− PX(`, T )

PX
ref(`, T )

∣∣∣∣∣ (53)

where X indicates the method by which the data have been obtained. The data to be

compared are partition functions [Q or Q̃ calculated from the bottom of the potential or

from the zero-point energy (ZPE) of the global minimum, respectively], ratios between par-

tition functions (PG factors) or thermodynamic functions. The benchmark data for the

partition functions were obtained by the E2DT method, whereas in the case of the thermo-

dynamic functions they were obtained from the literature.11 In the case of the ideal gas-phase

standard-state (pressure of 1 bar) thermodynamic functions, the data used to calculate the

MUPEs were calculated as P = exp[−∆T
0G
◦/RT ] and P = exp[−∆T

0H
◦/RT ], in the case

of the free energy and enthalpy, respectively; R is the ideal gases constant. The values

∆T
0G
◦ and ∆T

0H
◦ correspond to the free energy G◦ and enthalpy H◦, respectively, referred

to the enthalpy at T = 0 K. In the case of the entropy, S◦, the data were calculated as

P = exp(S◦/R).

Before discussing the results for the rovibrational partition functions, it is interesting

to compare the multi-structural reference classical rotational-torsional partition function

QMS−RC(C) of eq 52 with the full classical partition function of eq 3 (taken as the benchmark).

The MUPE decreases as temperature increases. For instance at T = 300 K the MUPE is

14%, at T = 1000 K is 11% and at T = 1000 K is 8%. The largest percentage errors (PEs)

at both low and high temperatures correspond to system S6 with values of 43% and 27% at

100 and 2500 K, respectively. The advantage of the classical partition function QMS−RC(C)

over QFC(C) is that the former only needs information about the minima. Therefore, for

most of the systems QMS−RC(C) performs well at high temperatures, but is less accurate at

low temperatures, because the importance of the shape of the potential is more important

at those temperatures.

The zero-point energy of the E2DT partition function is given by the contribution of

20



the 3N-8 nontorsional degrees of freedom plus the lowest energy level obtained by direct

diagonalization of the 2D-NS torsional partition function. For molecules as S1, S2 or S6 this

ZPE is substantially different from the one obtained by normal-mode analysis (see Table 2).

In general, the normal mode frequencies associated with the torsions are lower when coupled

torsional frequencies are being considered (Table 1), so at very low temperatures the E2DT

partition function may be larger (higher density of states) than the harmonic oscillator

one. As temperature rises this effect reverses quite rapidly (the E2DT partition function

becomes lower than the MS-HO partition function) if there are other minima available, and

the barriers between them are not too high, so those minima can be reached. This is for

instance the case of molecule S2 that has a barrier between the two degenerate minima

of only 116 cm−1. On the other hand, S1 and S6 have large barrier heights between the

minima with the lowest energy and each well behaves close to a harmonic oscillator, but with

torsional frequencies with lower frequencies than the normal mode frequencies associated to

the torsions. The effect of having different ZPE thresholds shows in the MUPEs at low

temperatures. Thus, MUPE-Q at T = 150 K is 19% for the MS-HO and the MS-T(U)

methods and 21% for the MS-T(C) method. At T = 300 K MUPE-Q increases to 21% and

24% for the MS-HO and MS-T(U) methods, respectively, but it decreases to 15% for the

MS-T(C) method.

Pitzer8 and KP suggested that it might be better not to add the geometry dependence

of the moments of inertia unless one also accounts for the geometry dependence of the

vibrational treatment (for example, one could use instantaneous normal modes to account

for vibrational contributions away from stationary points). Therefore it is interesting to

know the effect of such variation on the EHR partition function by comparing these results

with the EHR partition function with constant ZPE and D values obtained at the global

minimum geometry.
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This one-well EHR partition function (1W-EHR) is given by:

Q1W−EHR =
8π2

σtorσrot

(
1

2πβ~2

)5/2

QrotQ
HO
|D|1/2

∫ 2π

0

∫ 2π

0

dφ1dφ2e
−βV(φ1,φ2) (54)

As expected, at low temperatures both results are quite similar, except for molecules S7

and S9 with percentage errors of 18% and 20% at T = 150 K. The reason is that these two

molecules present very low energy minima with values of 50 (M2-S7) and 3 cm−1 (M2-S9)

with respect to their global minimum M1-S7 and M1-S9, respectively. The ZPE increases

this difference in the case of M2-S7 by 35 cm−1 and in the case of M2-S7 by 27 cm−1,

therefore, the 1W-EHR partition function is larger than the normal EHR partition function

of eq 31. For the rest of molecules the percentage errors are smaller or even negligible, and

at T = 150 K the MUPE is only 4%. At T = 300 K the MUPE is still 4% but at higher

temperatures starts to increase and at T = 1000 K is 10% and at T = 2500 K is 18%. As

temperature increases the MUPE also increases because the normal EHR partition function

starts to have important contributions from the transition states and maxima. In general,

these stationary points have lower ZPEs than the minima resulting in a reduction of the

classical potential and therefore in the increase of the normal EHR partition function with

respect to the 1W-EHR partition function. Therefore, the approximation is not justified at

high temperatures, and at low temperatures its applicability is limited to systems with an

important difference in energy between the global minimum and the local minima.

On average quantum effects decrease the classical partition function (with zero of energy

at the bottom of the well) by about 80% at T = 150 K, but only by 15% at T = 300 K. These

quantum effects were incorporated into the EHR partition function as the ratio between

the quantum 2D-NS and the torsional classical partition function. However, if the 2D-NS

partition function is not available, quantum effects can be incorporated through any of the

methods discussed in section 2. At T = 150 K the MUPEs associated with the PG factors

given by the TPG and MS-TPG methods with respect to F 2D−NS are 6 and 5%, respectively.
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The small difference between the TPG and MS-TPG methods shows that quantum effects

can successfully be reproduced by the ratio between the quantum and classical harmonic

oscillator at the global minimum. The MUPEs decrease to less than 3% at T = 300 K.

Notice that this approximation is the same as the one assuming that the deviations from the

harmonic oscillator given by the quotient Q2D−NS/QMS−HO
tor in the quantum formulation are

very similar to those given by the quotient using the classical expression, Q
(C)
cl,tor/Q

MS−CHO
tor .

Thus, the ratio

R =
Q2D−NS

tor /QMS−HO
tor

Q
(C)
cl,tor/Q

MS−CHO
tor

(55)

should be very close to unity. Therefore this approximation, which has been incorporated

into the multi-structural method to avoid the evaluation of torsional quantum partition

function, is justified. However, it is important to use torsional frequencies instead of normal-

mode frequencies in the evaluation of the PG coefficients accompanying the EHR partition

function. At T = 150 K the MUPE doubles its value when normal-mode frequencies are

used instead of torsional frequencies.

The effect of including a global correction to the torsional anharmonicity can be checked

by comparing the GS2DT partition function of eq 27 with that obtained by the E2DT

method. At T = 150 K the PEs are quite large for systems S1, S6 and S20 with values

of 33%, 70% and 47%, respectively, and the MUPE is 14%. As temperature increases the

MUPE remains constant but increases slightly at very high temperatures reaching 17% at

T = 2500 K (see Figure 4). These results indicate that to incorporate torsional anharmonicity

on top of the MS-HO partition function, even when full couplings in the kinetic and potential

energies are taken into account, may lead to substantial errors. Some of us have used eq 27 to

study the the hydrogen abstraction from ethanol by atomic hydrogen,30 but for the ethanol

molecule the MUPEs between the E2DT and the GS2DT partition functions were always

between 6 and 8% in the whole range of temperatures studied in this work.

Hereafter, to establish a more direct comparison of the E2DT method with other methods

that evaluate the rovibrational partition function, but have different thresholds for the ZPEs,
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we compare rovibrational partition functions that are referred to the ZPE of the global

minimum, instead of to the bottom of the potential. In such comparison anharmonic effects

due to the ZPE are diminished. The comparison of MUPE-Q and MUPE-Q̃ is given in

Figs 4 and 5, which show that there is an increase of the former with respect to the latter

by about 10% at T = 150 K. This difference is reduced to only 3% at T = 300 K. Moreover,

ZPE-exclusive partition functions can also be used in the comparison between theoretical

and experimental thermodynamic functions, i.e., the entropy and the constant-pressure heat

capacity are independent of the ZPE of the system and the free energy and the enthalpy are

always referred to a reference state, which in general is the value of the enthalpy at T = 0 K,

so the effect of the ZPE is also removed in this case.

Figure 4 shows that at T ≤ 200 K the harmonic oscillator and the MS-T(U) approxi-

mations, which involve uncoupled torsions to the partition functions, agree quite well with

those obtained by the E2DT method. Notice that at low temperatures the MS-HO partition

functions are as good as the ones of anharmonic methods, but at room temperature the

MUPE is already 16%. As temperature increases the harmonic oscillator partition function

deviates substantially from the benchmark results, the MUPE being 82% at T = 2500 K. In

general the harmonic approximation leads to partition functions which are too high (with the

exception of molecules S1 and S6 discussed above). The reason is that at high temperatures

the space available to the molecular system is too large in the harmonic oscillator model,

because the harmonic oscillator is defined in the space −∞ ≤ φ ≤ +∞, whereas the internal

rotation is restricted to −π ≤ φ ≤ +π. At low temperature, the population of the harmonic

oscillator outside of −π ≤ φ ≤ +π is negligible, but at high temperature, it dominates the

error. Surprisingly the MS-HO partition functions yield values with smaller MUPEs than

the ones obtained by the MS-T(U) method at temperatures T ≤ 500 K. The best results

are obtained with the MS-T(C) method, which improves substantially the MS-T(U) method

above T = 200 K. The largest MUPE for the MS-T(C) is 14% and occurs at T = 2500 K.

In general, methyl groups are weakly coupled to other torsions, and the torsional potential
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has a periodicity of 120◦. One would expect a better performance of the anharmonic methods

with respect to the benchmark results when the MUPE only includes this type of tops. This

is the case for the MS-T(C) for which the MUPE drops to 7% at T = 2500 K. However,

the MS-T(U) method performs worse for molecules having methyl groups than for the whole

set. Specifically, the MUPE reaches its highest value of 41% at T = 500 K [the MUPE for

the MS-T(C) at this temperature is 9%]. At T = 500 K the largest percentage error is for

system S15 with a value of 169%; the two rotating tops of this molecule are the -CH3 and

the -COH groups, with torsional barriers with regards to the global minimum of 419 and

2508 cm−1, respectively. The two barriers for internal rotation are very different, so both

tops reach the high temperature limit at very different thresholds. This situation cannot be

handled properly by the switching function of eq 48, but it is properly taken into account

by the MS-T(C) method for which the percentage error decreases to 1%.

Values for thermodynamic functions and based at least in part on experimental data are

available from the literature11 for systems S4, S16 and S17 for temperatures from 100 to

2500 K and for S5 and S20 in the interval from 100 to 1500 K. In fact the data extracted from

ref 11 are taken from experiments or from an average of experimental data at temperatures

near room temperature. Therefore the comparison between the theoretical methods and

the data from ref 11 is more meaningful at temperatures in the interval between 200 and

400 K. Above T = 400 K the data from the literature are usually based on extrapolations

from the experimental data obtained at lower temperatures and often make use of simple

models (one-dimensional) to treat hindered rotations. The MUPEs are displayed in Figure 6.

The calculated free energies by the GS2DT method yield MUPE-Gs larger than 20% at

temperatures below T = 700 K. Those values are also larger than the obtained by the MS-

T(C), so taking into account that the GS2DT method is computationally more demanding,

the latter approximation is not pursued further. The values of Cp are not too sensitive to the

method employed and the MS-T(U), MS-T(C) and E2DT methods yield similar errors in the

whole interval of temperatures studied. At temperatures between 100 and 700 K the E2DT
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method is substantially better than the rest, when compared with the “experimental” values

of free energies, enthalpies and entropies. MS-T(C) is the second best method. This result

indicates that accounting for torsional potential coupling is important in the evaluation of

thermodynamic functions.

5 Conclusions

In this work we have presented a new benchmark torsional method, called E2DT, for

systems with two coupled torsions, and we have used it to test several rovibrational partition

functions (MS-HO, MS-T(U), MS-T(C) and GS2DT). For the tests we have used a set of

20 molecules with two hindered rotors for temperatures from 100 to 2500 K. From the

results obtained and the comparison with experimental thermodynamic functions we draw

the following conclusions:

i) The multi-structural reference classical rotational-torsional QMS−RCC(C) partition func-

tion when compared to the full coupled rotational-torsional partition function QFC(C) yields

MUPEs that decrease from 15% to 8% at the lowest and highest temperatures studied,

respectively.

ii) The accuracy of given rovibrational partition function depends not only on the accu-

racy of the anharmonic torsional partition functions but also on its implementation. Thus,

globally separable torsional approximations, as the one used in the GS2DT method, do not

improve the MS-T(C) results despite the fact that the former uses the 2D-NS method to

calculate the torsional partition function.

iii) Although it leads to large errors above room temperature, the multi-structural har-

monic approximation seems as good as any of the anharmonic methods described in this work

when calculating rovibrational partition functions at room temperature or below. However,

the comparison with the thermodynamic functions reported in the literature shows that ap-

proximations that include torsional anharmonicity and coupling perform also better than
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the harmonic approximation at low temperatures.

iv) As noted previously,10 the MS-T(U) method does not performs well if the two tops

have very different barriers about each torsion.

v) Overall, the E2DT method chosen as benchmark for the comparison of the systems

studied is also the method with the smallest MUPEs when compared with the available

experimental thermodynamic functions.

vi) If the E2DT method is not affordable, the MS-T(C) method is the best option to

calculate rovibrational partition functions including torsional anharmonicity. It only needs

information about the conformational minima, which is a highly desirable characteristic

when dealing with molecules having three or more hindered rotors.
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Table 1: Some parameters of interest for the conformers of the 20 systems studied, i.e.,
total number of wells, the symmetry numbers for internal rotation and the energy difference
between conformers Uj (in cm−1). It also indicates the two torsional angles φ1, φ2 of a

given conformer, the MS-T(C) torsional frequencies ω
(C)
j,η , the normal-mode frequencies ωj,

and if that conformer has an enantiomer. For the other enantiomer φ1 → 360 − φ1 and
φ2 → 360− φ2.

System Wells σ1, σ2 Conformer Enantiomer? [φ1, φ2] Uj ωj,η ωj
S1 4 1,1 S1-M1 No 180,0 0 153.4, 599.5 168.4, 668.0

S1-M2 No 180,180 337 98.6, 589.8 100.4, 667.8
S1-M3 No 0,180 787 92.4, 592.2 92.7, 677.3
S1-M4 No 0,0 3334 78.5, 428.4 80.1, 430.5

S2 6 1,1 S2-M1 Yes 359,118 0 236.6, 181.1 248.8, 176.3
S2-M2 Yes 199,109 535 268.6, 81.4 75.8, 260.9
S2-M3 Yes 200,231 556 234.3, 69.4 64.9, 227.9

S3 4 1,1 S3-M1 No 0,0 0 201.6, 404.8 198.0, 392.6
S3-M2 No 180,180 1189 86.7, 233.9 86.4, 227.9
S3-M3 Yes 194,79 1295 81.9, 295. 81.4, 285.7
S3-M4 No 0,180 2023 178.0, 259.5 165.6, 242.2

S4 9 1,3 S4-M1 No 180,60 0 294.9, 240.6 284.1, 241.3
S4-M2 Yes 61,57 42 296.9, 265.0 284.2, 262.3

S5 5 1,1 S5-M1 No 0,0 0 118.3, 606.1 119.1, 641.6
S5-M2 No 180,0 88 106.6, 565.0 112.7, 590.0
S5-M3 No 0,180 2278 94.5, 473.5 94.2, 428.3
S5-M4 Yes 158,171 2614 90.5, 479.4 94.5, 489.6

S6 4 1,1 S6-M1 No 0,0 0 209.4, 696.7 271.5, 900.2
S6-M2 No 180,0 3641 147.5, 466.0 152.7, 542.5
S6-M3 No 180,180 3695 148.1, 337.1 153.1, 264.4
S6-M4 No 0,180 4789 137.7, 435.0 142.6, 475.7

S7 7 1,1 S7-M1 No 0,0 0 369.3, 104.2 373.4, 108.5
S7-M2 Yes 199,142 50 433.1, 112.2 425.3, 118.2
S7-M3 Yes 6,242 439 390.0, 88.4 398.9, 90.7
S7-M4 Yes 156,354 1273 223.5, 105.8 217.0, 112.4

S8 9 1,3 S8-M1 No 0,60 0 241.9, 251.9 240.9, 261.3
S8-M2 Yes 171,57 958 14.3, 157.2 28.2, 164.1

S9 9 1,1 S9-M1 Yes 6,60 0 180.2, 312.8 183.2, 302.6
S9-M2 Yes 124,302 3 120.5, 350.1 118.8, 337.5
S9-M3 No 0,180 202 161.5, 249.8 150.5, 244.9
S9-M4 Yes 130,171 490 112.3, 257.0 111.1, 250.5
S9-M5 Yes 123,65 576 107.4, 228.1 101.7, 222.9

S10 6 1,3 S10-M1 No 0,0 0 419.6, 180.8 423.8, 180.8
S10-M2 No 180,0 781 232.8, 176.7 214.7, 169.3

S11 6 1,3 S11-M1 No 0,0 0 381.4, 52.7 329.2, 48.6
S11-M2 No 180,0 209 210.4, 108.5 199.4, 99.1

S12 6 1,3 S12-M1 No 180,0 0 159.6, 139.2 179.1, 146.1
S12-M2 No 0,0 1158 149.4, 106.9 111.9, 144.8

S13 5 1,1 S13-M1 No 180,0 0 107.2, 372.8 102.0, 290.8
S13-M2 No 180,180 146 127.9, 257.0 131.4, 215.7
S13-M3 Yes 39,6 233 134.2, 519.5 153.9, 595.8
S13-M4 No 0,180 916 93.6, 301.3 107.5, 274.8

S14 7 1,1 S14-M1 No 180,0 0 135.7, 358.9 143.9, 370.0
S14-M2 Yes 170,158 653 126.9, 279.6 141.0, 255.5
S14-M3 Yes 30,2 1069 102.0, 405.6 102.1, 383.3
S14-M4 Yes 41,198 1577 121.8, 306.0 123.7, 293.3

S15 9 1,3 S15-M1 No 180,0 0 122.0, 160.0 119.8, 158.0
S15-M2 No 0,0 324 26.5, 146.0 13.6, 133.9
S15-M3 No 0,60 325 40.4, 157.1 105.8, 196.2

S16 9 1,3 S16-M1 No 0,60 0 142.6, 304.6 166.5, 267.4
S16-M2 Yes 239,61 25 109.4, 233.4 106.6, 228.5

S17 9 3,3 S17-M1 No 0,0 0 128.2, 130.5 120.8, 132.1
S18 6 1,1 S18-M1 No 180,180 0 108.2, 201.7 203.5, 278.7

S18-M2 No 180,0 534 118.6, 192.6 126.6, 258.2
S18-M3 Yes 27,179 1088 117.0, 174.3 125.2, 277.4
S18-M4 Yes 30,0 1700 86.3, 190.9 80.9, 203.3

S19 6 2,1 S19-M1 Yes 36,59 0 53.3, 327.6 54.7, 320.9
S19-M2 No 0,180 328 15.8, 228.0 8.0, 180.9

S20 6 1,3 S20-M1 No 180,60 0 349.1, 122.2 343.6, 90.6
S20-M2 No 0,60 158 275.4, 163.1 289.4, 158.5
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Table 2: Zero-point energies (in kcal/mol) of the global minimum of each system obtained
by the harmonic oscillator (HO) and the E2DT approximations.

System ZPEHO ZPEE2DT

S1 27.37 27.24
S2 37.50 37.41
S3 38.21 38.26
S4 49.73 49.71
S5 42.11 42.09
S6 42.37 42.01
S7 48.40 48.37
S8 53.07 53.04
S9 52.96 52.91
S10 52.64 52.60
S11 52.79 52.80
S12 55.67 55.61
S13 56.27 56.29
S14 56.05 56.00
S15 55.85 55.84
S16 67.35 67.27
S17 66.96 66.95
S18 59.12 59.10
S19 83.00 82.99
S20 82.19 82.23
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Figure 1: Molecules studied in this work. The two dihedral angles indicate the atoms involved
in each torsional motion (C=cyan, O=red, H=gray, F=yellow).
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Figure 2: Contour plots for molecules S1 to S10.
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Figure 3: Same as 2 but for molecules S11 to S20.
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Figure 4: MUPE-Q calculated for several rovibrational partition functions at different tem-
peratures (the E2DT method is the benchmark).
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Figure 5: MUPE-Q̃ calculated for several torsional partition functions at different tempera-
tures (the E2DT method is the benchmark).
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Figure 6: MUPEs obtained from the comparison for systems S4, S16, S17, S5 and S20
between gas-phase standard-state thermodynamic functions from the literature11 (based at
least in part on experimental data) and those obtained by various theoretical methods de-
scribed in the main text.
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