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Abstract

In this work we apply multipath canonical variational transition state theory with

small-tunneling corrections (MP-CVT/SCT) to the hydrogen abstraction reaction from

ethanol by atomic hydrogen in aqueous solution at room temperature. This reaction

presents two transition states which can interconvert by internal rotations about single

bonds and another two transition states that are non interconvertible enantiomers to

the former structures. The study also includes another three reactions with isotopically

substituted species for which there are experimental values of thermal rate constants
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and kinetic isotope effects (KIEs). The agreement between the MP-CVT/SCT ther-

mal rate constants and the experimental data is good. The KIEs obtained by the

MP-CVT/SCT methodology are factorized in terms of individual transition state con-

tributions to facilitate the analysis. It was found that the percentage contribution of

each transition state to the total KIE is independent of the isotopic substitution.
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1 Introduction

Variational transition state theory (VTST),1–3 a much improved version of conventional

transition state theory (TST),4 is one of the most applied and successful methodologies to

calculate thermal rate constants and kinetic isotope effects (KIEs).5 Although, VTST has

been mostly used to study gas-phase reactions, it can also deal with reactions in solution,6

enzyme catalysis7 and gas-surface reactions.8

TST assumes that the molecules that cross the dividing surface, which is located at the

transition state (the bottleneck for reaction), never return to reactants.9 In the canonical

version of VTST this approximation is smothered by allowing the dividing surface to move

along a given path. The location of the dividing surface is the one that maximizes the

free energy. A maximum in the free energy along a given reaction path is a minimum in the

forward flux toward products, so the CVT rate constant is always smaller or equal to its TST

counterpart.10 In most cases, this search is carried out along dividing surfaces orthogonal to

the minimum energy path (MEP),11 and each of the locations of the dividing surface defines

a generalized transition state, being the one that maximizes the free energy the variational

transition state.12 On the other hand, VTST also incorporates quantum effects (mainly

tunneling),13,14 so it can deal with proton transfer reactions at low temperatures.

A recent extension of VTST, called multipath VTST (MP-VTST),15,16 is designed to

calculate thermal rate constants in flexible molecules with multiple conformations. In those

cases, all the conformations of reactants can be reached by internal rotations about single

bonds, and it is assumed that the interconversion barriers between conformers are smaller

than the barriers for reaction. One interesting alternative to VTST for hydrogen transfer

reactions in which tunneling effects are important is instanton theory.17–19 However, in a case

with multiple transition states, we prefer to use a methodology which can easily incorporate

this feature. Therefore, in this work we apply MP-VTST to calculate the thermal rate

constant of the hydrogen abstraction reaction from ethanol by atomic hydrogen in aqueous

solution at room temperature:
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H + CH3CH2OH −−→ H2 + CH3CHOH (R1)

The molecule of ethanol presents three different conformations as shown in Scheme 1.

The hydrogen of the -OH group can be oriented in gauche (g+ and g−) or in trans (t)

configurations with respect to the methyl group. These conformations can be reached by

internal rotations with barriers which are much lower than the barrier for reaction.
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Scheme 1: Conformations of ethanol.

Recently, one of us studied reaction R1 and the H-abstraction from the methyl and −OH

groups in gas-phase in a wide range of temperatures.20 It was found that below T = 500 K

only R1 contributes to the total rate constant. However, the H-abstraction from a hydrogen

atom bonded to the secondary carbon leads to a reaction channel with two transition states

as indicated in Scheme 2.
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Scheme 2: Transition state conformations. The structures on both sides of the vertical line
are enantiomers. H2 indicates the hydrogen being abstracted.

In structures TS-g+ and TS-t the methyl group is in gauche and trans dispositions,

respectively, with respect to the -OH group. Both transition states can interconvert between

them by internal rotation about the C-O bond. Obviously, there are two additional transition
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states (TS?-g− and TS?-t) when the other hydrogen is abstracted. Transition state with the

TS-g− or TS?-g+ configurations were not found in the potential energy surface. Because there

are more than one transition state, it is interesting to calculate the contribution of each of

the transition states to the total reaction and to analyze how this percentage changes with

isotope substitutions. This is the goal of this work. Specifically, we study the following

reactions:

H + CD3CD2OH −−→ HD + CD3CDOH (R2)

D + CH3CH2OD −−→ DH + CH3CHOD (R3)

D + CD3CD2OD −−→ D2 + CD3CDOD (R4)

Room temperature thermal rate constants in aqueous solution have been measured by

Roduner and Bartels21 (reactions R1 and R2) and by Lossack et al.22 (reactions R3 and

R4), who found relatively high kinetic isotope effects (KIEs) with values of 7.4 and 6.4 for

the ratios R1/R2 and R1/R4, respectively, whereas the ratio R1/R3 leads to an inverse

KIE of 0.73. These data show important differences in the magnitude of KIEs depending

on which atoms are deuterated. In this work, we also carry out an analysis of each of the

contributions in which the KIE is partitioned to clarify this issue. Our partition of the KIEs

has some similarities to the work of Perńıa and Williams,23 but the procedure we describe

in Section 2 is based on MP-VTST, and no ensemble averages are performed. For the above

reactions there is a small number of transition state structures and the solvent is treated by

a continuum model instead of performing molecular dynamics simulations, so it is possible

to analyze in detail the contributions to the KIE of each individual transition state.

Section 2 briefly describes the MP-VTST methodology and how to factorize the KIE

in order to gain insight into the reaction mechanism. Section 3 contains computational

details. Section 4 presents the application of the described methodology to reactions R1 to

R4. Section 5 concludes.
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2 Methodology

The calculation of thermal rate constants in solution using VTST can be carried out by

different approaches. Here we employ the equilibrium solvation path approximation (ESP)24

in which the reaction path is calculated over the potential of mean force:

W (R, T ) = V (R) + ∆Go
S(R, T ) (1)

where V (R) is the potential energy in the gas-phase, R being the coordinates of the solute

and ∆Go
S(R, T ) is the standard-state free energy of solvation. The solution-phase standard-

state free energy Go(R, T ) at a given structure R is given by:

Go(R, T ) = W (R, T ) +GRVE(R, T ) (2)

where GRVE(R, T ) is the rovibrational free energy of structure R, which hereafter will be

written as a function of the rovibrational partition functions. In the ESP approximation the

bottleneck for reaction is located at the value of the reaction coordinate that maximizes the

free energy of activation calculated from Eq. 2. The solvent molecules are treated by using the

canonical-mean-shape (CMS) potential,25 U(R, T ), which in the zero-order approximation

(CMS-0) is given by:

U(R, T ) = W (R, T ) (3)

In this context the VTST calculations carried out in the gas-phase and in solution within

the ESP approximation are quite similar in the sense that in the former the potential energy

along the MEP is substituted by the potential of Eq. 3. The same type of modification

is incorporated to the ground-state vibrationally adiabatic potential in the evaluation of

quantum effects.

If the bottleneck for reaction is located at the transition state and variational and quan-

tum effects are negligible, the thermal rate constants can be evaluated using conventional
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transition state theory (TST) which only needs information of the reactants (R) and the

transition state (‡), and is given by

kTST(T ) = B(T )
Q‡rotQ

‡
vib

Qrot,RQvib,R

(4)

Qrot and Qvib are the rotational and vibrational partition functions. The latter is calculated

using as reference the bottom of the well. The factor B(T ) is given by:

B(T ) =
1

hβ

Q‡e
Qe,R

1

Φrel

e−βU
‡
0 (5)

It is a coefficient which includes the electronic partition functions (Qe) of the transition

state and of the reactants; the partition function including the relative translational motion

of the reactants, Φrel, which is the unity for unimolecular reactions; and the difference in

the CMS-0 potential, U ‡0 , between the reactants and the transition state. If both variational

and quantum effects are of importance, canonical variational transition state theory with

multidimensional corrections for tunneling (CVT/MT) should be used. The relation between

TST and CVT is through a multiplicative transmission coefficient, γCVT/MT, i.e.,

kCVT/MT(T ) = γCVT/MT(T )kTST(T ) (6)

and

γCVT/MT(T ) = ΓCVT(T )κCVT/MT(T ) (7)

where ΓCVT(T ) and κCVT/MT(T ) incorporate variational and quantum effects, respectively.

If we label the rate constants for the hydrogen and deuterium transfer reactions as

k
CVT/MT
H (T ) and k

CVT/MT
D (T ), then the KIE, η(T ), is given by the ratio:

η(T ) =
k
CVT/MT
H (T )

k
CVT/MT
D (T )

(8)
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It is possible to factorize the total KIE into the following contributions:

η = ηtransη
‡
rvηvtun (9)

where ηtrans is the translational contribution to KIE

ηtrans =
Φrel,D

Φrel,H

(10)

The TST rovibrational contribution to KIE is given by:

η‡rv =
QR,D

QR,H

Q‡rot,HQ
‡
vib,H

Qrot,R,DQvib,R,D

(11)

and the variational and tunneling contributions by:

ηvtun =
γ
CVT/MT
H

γ
CVT/MT
D

(12)

In flexible molecules it is possible to have more than one transition state for a given

reaction channel k. The set of all the n‡k transition states which can be reached by internal

rotations about single bonds is called conformational reaction channel (CRC). If there are

K CRCs (with k = 1, . . . , K), the total number of transition states is n‡ = n‡1 + . . . + n‡K .

If the reactants are also flexible and have several conformations nR with interconversion

barriers between conformers lower than the barrier to reach the most stable transition state,

all conformers from reactants contribute to any of the transition states n‡. The total rate

constant evaluated by TST is a multipath rate constant and it is a sum over all of the

CRCs of interest. Multipath TST can also include anharmonic effects due to the hindered

rotations,26–29 which in the two-dimensional nonseparable approximation30 are included as
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a multiplicative coefficient, αtor,k, to the harmonic rate constant:

kMP−TST(T ) =
K∑
k=1

αtor,kk̃
TST
har,k(T ) (13)

and is given by

αtor,k =
α‡tor
αtor,R

(14)

and α‡tor,k and αtor,R are the anharmonic corrections at the TSs of the kth CRC and of

reactants, respectively. The harmonic TST thermal rate constant of a given CRC is given

by:

k̃TST
har,k(T ) = B(T )e−βW

‡
k
Q̃‡har,k

Q̃har,R

, (15)

where W ‡
k is the difference in energy between the lowest energy transition state and the

lowest energy transition state of the k-th CRC. The multi-conformational partition function

of reactants is given by:

Q̃har,R =

nR∑
j

QRRHO
j,R (16)

where

QRRHO
j,R = Qrot,j,RQvib,j,Re

−βUj (17)

and Uj is the difference in energy between the lowest conformation of reactants and confor-

mation j. Similarly, for the transition states

Q̃‡har,k =

n‡k∑
ik=1

QRRHO,‡
ik

(18)

and

QRRHO,‡
ik

= Q‡rot,ikQ
HO,‡
ik

e
−βU‡ik (19)

where Q‡rot,ik and QHO,‡
ik

are rotational and vibrational partition functions, respectively, of

each of the individual transition states (ik = 1, . . . , n‡k) that belong to the k-th CRC. The
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barrier Ui‡k
refers to the difference in energy between the lowest energy transition state and

transition state ik within the same CRC. The TST rate constant due to transition state ik

is given by

kTST
har,ik

(T ) = B(T )e−βW
‡
k
QRRHO,‡
ik

Q̃har,R

(20)

and

k̃TST
har,k(T ) =

n‡k∑
ik=1

kTST
har,ik

(T ) (21)

Quantum effects and recrossing are both incorporated in CVT/MT, as in Eq. 6, through

a multiplicative coefficient γ
CVT/MT
ik

to each of the transition states, i.e.,

k
CVT/MT
har,ik

= γ
CVT/MT
ik

kTST
har,ik

(T ) (22)

where

γ
CVT/MT
ik

= ΓCVT
ik

κ
CVT/MT
ik

, (23)

The recrossing is given by:

ΓCVT
ik

=
kCVT
har,ik

kTST
har,ik

(24)

and the quantum effects evaluated by the multidimensional semiclassical approximation MT,

are incorporated through the transmission coefficient κ
CVT/MT
ik

. The multipath CVT/MT

rate constant is given by:

kMP−CVT/MT(T ) =
K∑
k=1

αtor,kk̃
CVT/MT
har,k (T ) (25)

To simplify the notation, let’s assume that there is only one CRC, i.e., K = 1, although

the following equations can be extended to any number of CRC’s. The KIE due to a given

isotopically substituted species is obtained from the ratio:

ηMP−CVT/MT =
k
MP−CVT/MT
H

k
MP−CVT/MT
D

(26)

10



where k
MP−CVT/MT
H and k

MP−CVT/MT
D are the MP-CVT/MT thermal rate constants for the

root and isotopically substituted species, respectively. For the case of one CRC, the ratio of

Eq. 26 coincides with the ratio:

η̃ =
k̃
CVT/MT
H

k̃
CVT/MT
D

(27)

Multiplying and dividing the above expression by k
CVT/MT
i,D and rearranging the terms,

the following expression is obtained:

η̃ = ηtor

n‡∑
i

Pi,Dηi (28)

where the anharmonic contribution to the KIE is given by the ratio:

ηtor =
αtor,H

αtor,D

(29)

The contributions to ηi, which is the KIE due to the ith TS,

ηi =
k
CVT/MT
i,H

k
CVT/MT
i,D

(30)

are factorized in the same terms as Eq. 9 plus the anharmonic contribution:

η = ηtorηtransη
‡
rvηvtun (31)

However, in this case the rovibrational contribution to the KIE involves multiconformational

partition functions of reactants, i.e.,

η‡i,rv =
Q̃har,R,D

Q̃har,R,H

QRRHO,‡
i,H

QRRHO,‡
i,D

(32)

The coefficient Pi,D is the ratio between the individual and total rate constants of the iso-
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topically substituted species, i.e.,

Pi,D =
k
CVT/MT
i,D

k̃
CVT/MT
D

(33)

It can be rewritten as:

Pi,D =
γ
CVT/MT
i,D QRRHO,‡

i,D∑n‡

i γ
CVT/MT
i,D QRRHO,‡

i,D

(34)

If we define the weighted individual KIE as

η̃i = Pi,Dηi, (35)

the total KIE is given by:

η̃ =
n‡∑
i

η̃i (36)

It is also interesting to calculate the ratio between the weighted individual KIE and the

total KIE, which it leads to:

Pi,H =
η̃i
η̃

=
γ
CVT/MT
i,H QRRHO,‡

i,H∑n‡

i γ
CVT/MT
i,H QRRHO,‡

i,H

(37)

Eq. 37 provides the contribution of each TS to the total KIE. The result is invariant on the

isotopic substitution, depending only on the characteristics of the transition states. This

equation is further discussed in Section 4.

3 Computational details

Solvent effects were incorporated by using the PCM model31 together with the DFT elec-

tronic structure MPWB1K method,32 with the augmented polarized double-ζ basis set, 6-

31+G(d,p).33 This level of calculation performs well for nonmetallic thermochemical data

and thermochemistry.34 The energies, optimized geometries and Hessians of the stationary

points were obtained with Gaussian09.35 The normal-mode frequencies were scaled by a fac-

tor of 0.964.36 Very recently, it has been found that scaled frequencies give better results
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than unscaled harmonic frequencies in the evaluation of KIEs.37 The anharmonic effects due

to the torsions were included through the 2D-NS approximation.30 This method involves

the construction of global two-dimensional torsional potential energy surfaces, which are

built by partial optimization, as described in Ref. 20. The CMS-0 potential along the re-

action path (the liquid-phase MEP) was followed using the Page-McIver algorithm38 with

a stepsize of 0.01 a0 and Hessian calculations every 9 steps. The frequencies along the

reaction path were projected using redundant internal coordinates.39 The variational transi-

tion state theory individual thermal rate constants were evaluated using CVT together with

small-curvature tunneling corrections40,41 (CVT/SCT). These calculations were carried out

with the PolyRate 9.7 program42 and this information served as feedback to calculate the

multipath thermal rate constants and the KIEs.

4 Results and discussion

Ethanol molecule and the hydrogen abstraction transition states in the continuum model

of water present the same conformations as in the gas phase (Schemes 1 and 2), but as

expected the barrier height for reaction is significantly reduced. Specifically, for reaction

R1 the reduction is of 1.47 kcal/mol for both conformers when comparing the gas-phase

MC3BB calculations with the PCM/MPWB1K/6-31+G(d,p) calculations of this work. The

calculation of the harmonic MP-CVT/SCT thermal rate constants requires the evaluation

of the partition function of reactants. This should include the three indistinguishable con-

formations of ethanol through the multiconformational partition function:

Q̃har,R = QRRHO
R−t + 2QRRHO

R−g+ (38)

The difference in energy between the R-t and R-g+ conformations in this case is just 0.02

kcal/mol. The last partition function of the rhs of Eq. 38 is multiplied by two because R-g+

and R-g− are enantiomers. The transition state multiconformational partition function of
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one of the CRCs is given by:

Q̃‡har,1 = QRRHO,‡
TS−t +QRRHO,‡

TS−g+ (39)

For the other CRC the multiconformational partition function of the transition state is given

by:

Q̃‡har,2 = QRRHO,‡
TS?−t +QRRHO,‡

TS?−g− (40)

where TS?-t and TS?-g− are the enantiomers of TS-t and TS-g+, respectively, as shown in

Scheme 2. The partition functions of Eqs. 39 and 40 are equal so the MP-TST thermal rate

constant will be given by:

kMP−TST(T ) = k̃TST
har,1(T ) + k̃TST

har,2(T ) = 2k̃TST
har,1(T ) (41)

where the factor of two takes into account the enantiomers. The energy difference between

TS-t and the most stable conformation of reactants is 6.38 kcal/mol, whereas this difference

increases to 6.57 in the case of TS-g+. The information from Eqs. 38 and 39 together with the

barrier heights allows the calculation of the multipath-TST thermal rate constants (Table 1).

Unfortunately, the MP-TST calculations produce rate constants which are too low, be-

cause they neglect quantum effects on the reaction coordinate, which are important in hy-

drogen transfer reactions. The MP-CVT/SCT calculations lead to larger values, closer to

the experimental findings (Table 1). For reaction R1 this effect increases the MP-TST value

more than three times. The magnitude of the imaginary frequencies may be also an indi-

cation of the importance of tunneling; larger values usually result in tighter reaction path

potentials and, therefore, in larger tunneling contributions. Notice that in a one-dimensional

potential the imaginary frequency is directly related to the curvature of the potential at the

transition state (larger frequency translates into narrower potential and therefore more tun-
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neling). However, the TSs of reaction R2 have smaller imaginary frequencies than the TSs

of reaction R3 but larger tunneling contributions (see Table 2). The result can be under-

stood taking into account that tunneling is a multidimensional process, so there is coupling

between the reaction coordinate and the other degrees of freedom with a substantial change

in the shape of the potential with respect to the one-dimensional picture. Thus, for the two

transition states of reaction R2 the profiles of the ground-state vibrationally adiabatic po-

tentials are wider than the profiles of R3 despite the magnitude of the imaginary frequency

(see Fig. 1). Notice that tunneling decreases with the width of the potential. Besides, for the

two TSs of R3 variational effects are quite important, which indicates that the maxima of

the free energy are quite displaced from the TS structures. In the case of R3 at one point on

the reactants side the formation of the C-H bond as the reaction proceeds towards reactants

makes the zero-point energy to increase faster than the decrease of the CMS-0 potential, so

the maximum of the ground-state vibrationally adiabatic potential appears displaced (see

Fig. 1). This situation does not occur in R1 because the CMS-0 potential decreases faster

than for R3, so it partially compensates the increment of the zero-point energy.

The anharmonicity due to the torsions about the C-C and C-O bonds is more important

for the reactants than for the transition states as shown in Table 1. The anharmonic coeffi-

cients are larger than unity because the density of states of the torsional partition function

increases faster than that of the harmonic oscillator. In any case the torsional anharmonicity

slightly lowers the thermal rate constants and has no effect on the KIEs.

The different contributions to the total KIE are factorized in Table 3. Notice that in this

case the KIE obtained from Eq. 26 and the one obtained from Eq. 27 are identical. The

rovibrational contribution to the KIE is the one that involves the larger changes depending

upon the isotopic substitution. It is close to 7 for the ratio R1/R2 and about 0.20 for R1/R3.

In general the rovibrational KIE is large when the abstracted hydrogen is substituted by a

deuterium. This occurs because the ratio between the reactants partition functions is large

(mainly due to the difference in frequency between the C-H and C-D bonds), i.e., larger
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than the ratio between transition state partition functions, which, in general, is smaller than

unity. This effect was also observed in the hydrogen abstraction reaction from methanol.43

In the present study it is definititely observed for R1/R2. The effect of ηvr is also seen for

R1/R4, however the effect is not as large (Table 3). The translational KIE is temperature

independent and large when the hydrogen atom that collides with the molecule is isotopically

substituted by a deuterium (R1/R3 and R1/R4 cases), because of the increase in the reduced

mass of the two particle system. The contribution of tunneling to the KIE is not as important

as in hydrogen abstraction reactions in which the donor and the acceptor are heavy atoms,

and the most probable path is quite far from the MEP. An increase of the transferred particle

from hydrogen to deuterium has an important impact in the magnitude of the transmission

coefficients for tunneling. For reactions R1 to R4 the acceptor is not a heavy atom, so the

tunneling path is closer to the MEP than in a heavy-light-heavy system and therefore the

contribution of tunneling to the KIE is smaller. The only exception is the R1/R3 KIE, but in

this case the larger value of ηvtun is due to the presence of variational effects for reaction R3.

With the exception of the ratio R1/R2 there are some discrepancies between the calculated

and experimental KIEs. They may be related to the fact that specific solvation was not

included in the description of the processes and, therefore, the coupling between explicit

water molecules and the reactive species has been neglected.

Table 3 also list the contribution of each of the two transition states to the KIE. Eq. 37

shows that the weighted contribution of each individual transition state, i.e., the ratio η̃i/η̃, is

independent of the isotopic substitution at a given temperature. In fact, it is also independent

of the characteristics of the reactants, and in this case equals 56.9% and 43.1% for all the

isotopically substituted reactions occurring through the TS-t and TS-g+ transition states,

respectively. However, the ratio

ηi
η̃

=
Pi,H
Pi,D

(42)

is obviously not a constant, although it depends only on the characteristics of the transition

state structures if TST is used. If the KIE is calculated using VTST, information along
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the reaction path starting from each individual transition state is also required in order to

evaluate the variational and tunneling effects. Eq. 42 shows the importance of the KIE due

to an individual transition state i in the total KIE, i.e., if that particular transition state

is above (ηi/η̃ > 1) or below (ηi/η̃ < 1) the total contribution. For instance, the transition

state TS-t contributes above the total value for the KIEs R1/R2 and R1/R4 but below the

average in the case R1/R3.

Notice that Eq. 37 can also be obtained from the ratio

Pi,H =
k
CVT/MT
i,H

k̃
CVT/MT
H

(43)

which is an extension of the Curtin-Hammett principle.20,44 This principle states that the

contributions of the individual transition states to the total rate constant depend exclusively

on relative transition state free energies (partition functions). This principle only applies if

TST assumptions are valid and usually fails when dealing with hydrogen transfer reactions

due to the presence of tunneling, as in the computational study of the Swern oxidation

mechanism.45 In that work the calculated KIEs are too low when compared with experiment,

which is also the case in this work if we ignore tunneling and variational effects, with KIEs

of 0.53 and 3.82 for the ratios R1/R3 and R1/R4, respectively. Therefore Eq. 37 is the

one to apply in cases in which we suspect tunneling and variational effects may play a role.

Additionally, in this work we show that the implications of Eq. 37 go beyond the individual

contributions to the thermal rate constant because it also indicates that the contribution

in percentage of a given transition state to the total KIE is independent of the isotopic

substitution.

5 Conclusions

In the present work we have studied the hydrogen atom abstraction from ethanol by atomic

hydrogen using the MP-CVT/SCT methodology. Different isotopic substitutions within the
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ethanol molecule as well as abstracting species have been considered which led to four sets of

data. Within each of them, we have discussed the individual contribution of each transition

state to torsional, rovibrational, translational, and tunneling KIE factors. There is a wide

variety of contributing factors to the KIE depending on the isotopic substitution: R1/R2 is

characterized by large rovibrational factor, small tunneling and neglegible translational con-

tributions; R1/R4 has much smaller but not negligible rovibrational factor and substantial

translational contribution; R1/R3 turned out to be unique in such respect that the rovibra-

tional factor was very significant in the inverse sense and tunneling effect was the largest

among all three studied substitutions. Overall, taking into account the quite different sce-

narios studied, the agreement with experiment is quite satisfactory. Additionally, we stress

the importance of incorporating tunneling and variational effects into this type of reactions.

We have found that in the case of several transition states that can interconvert between

them, the contribution in percentage of each of them to the total KIE is invariant to the

isotopic substitution.
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(15) Meana-Pañeda, R.; Fernández-Ramos, A. Tunneling and Conformational Flexibility

Play Critical Roles in the Isomerization Mechanism of Vitamin D. J. Am. Chem. Soc.

2012, 134, 346–354; (E) 2012, 134, 7193.

(16) Yu, T.; Zheng, J.; Truhlar, D. G. Multi-Path Variational Transition State Theory: Rate

Constant of the 1,4-Hydrogen Shift Isomerization of the 2-Cyclohexylethyl Radical. J.

Phys. Chem. A 2012, 116, 297–308.

(17) Fernandez-Ramos, A.; Smedarchina, Z.; Siebrand, W.; Zgierski, M. A Direct-Dynamics

Study of the Zwitterion-to-Neutral Interconversion of Glycine in Aqueous Solution. J.

Chem Phys. 2000, 113, 9714–9721.

(18) Smedarchina, Z.; Siebrand, W.; Fernández-Ramos, A.; Cui, Q. Kinetic Isotope Effects

for Concerted Multiple Proton Transfer: a Direct Dynamics Study of an Active-Site

Model of Carbonic Anhidrase II. J. Am. Chem. Soc. 2003, 125, 243.

(19) Meisner, J.; Rommel, J. B.; Kästner, J. Kinetic Isotope Effects Calculated with the

Instanton Method. J. Comput. Chem. 2011, 32, 3456–3463.

20



(20) Meana-Pañeda, R.; Fernández-Ramos, A. Accounting for Conformational Flexibility

and Torsional Anharmonicity in the H + CH3CH2OH Hydrogen Abstraction Reactions:

A Multi-Path Variational Transition State Theory Study. J. Chem. Phys. 2014, 140,

174303.

(21) Roduner, E.; Bartels, D. M. Solvent and Isotope Effects on Addition of Atomic Hydro-

gen to Benzene in Aqueous Solution. Ber. Bunsenges. Phys. Chem. 1992, 96, 1037–

1042.

(22) Lossack, A. M.; Roduner, E.; Bartels, D. M. Kinetic Isotope Effects in H and D Ab-

straction Reactions from Alcohols by D Atoms in Aqueous Solution. J. Phys. Chem. A

1998, 102, 7462–7469.
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Table 1: Room temperature multipath TST and CVT/SCT thermal rate constants (in
cm3molecule−1s−1) for reactions R1 to R4 calculated within the harmonic (har subscript) or
anharmonic 2D-NS (tor subscript) approximations to treat hindered rotors. The contribu-
tions in percentage of the transition states TS-t(plus enantiomer)/TS-g+ (plus enantiomer)
to the multipath thermal rate constants. The anharmonic coefficients α for reactants (R)
and transition state structures (‡).

R1 R2 R3 R4

kMP−TST
har 4.43×10−15 6.39×10−16 8.16×10−15 1.16×10−15

%TSTi 57.1/42.9 56.7/43.3 57.3/42.7 56.9/43.1

k
MP−CVT/SCT
har 1.46×10−14 1.90×10−15 1.45×10−14 2.82×10−15

%CVT/SCTi 56.9/43.1 55.7/44.3 57.5/42.5 55.9/44.1
αtor,R 1.291 1.283 1.264 1.256

α‡tor 1.196 1.187 1.172 1.167
kMP−TST
tor 4.11×10−15 5.92×10−16 7.56×10−15 1.08×10−15

k
MP−CVT/SCT
tor 1.35×10−14 1.76×10−15 1.35×10−14 2.62×10−15

kexp 3.39×10−14a 4.60×10−15a 4.63×10−14b 4.98×10−15b

a From Ref. 21; b From Ref. 22.
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Table 2: Variational ΓCVT and tunneling κCVT/SCT transmission coefficients for the TS-t
(conformer 1) and the TS-g+ (conformer 2) transition states at room temperature. The
imaginary frequency at the transition state (ω?) and the difference in the vibrationally adia-
batic potential (in kcal/mol) between the transition states and the most stable conformation
of reactants are also listed.

Reaction TS conformer ω? ∆V ‡Ga ΓCVT κCVT/SCT

R1
1 1281i 4.87 0.994 3.30
2 1285i 5.05 0.987 3.35

R2
1 981i 6.01 0.907 3.23
2 984i 6.17 0.894 3.41

R3
1 1240i 4.13 0.690 2.59
2 1247i 4.32 0.691 2.57

R4
1 944i 5.27 0.998 2.40
2 949i 5.44 0.997 2.50
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Table 3: Contribution at room temperature of each of the two transition state conformers
to the terms in which the KIE was factorized. The total theoretical and experimental KIEs
are also listed.

KIE TS conformer ηtor ηtrans η‡rv ηvtun Pi,D η̃i η̃ ηexp

R1/R2
1 1.001 1.003 6.958 1.120 0.557 4.360

7.66 7.38+0.94
−0.85

a

2 1.001 1.003 6.845 1.095 0.443 3.304

R1/R3
1 0.999 2.740 0.197 1.832 0.575 0.570

1.00 0.73+0.06
−0.05

b

2 0.999 2.740 0.199 1.861 0.425 0.432

R1/R4
1 0.997 2.757 1.394 1.369 0.559 2.934

5.16 6.80+1.28
−0.98

b

2 0.997 2.757 1.383 1.327 0.441 2.223
a From Ref. 21; b From Ref. 22.
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Figure 1: Plot of the vibrationally abiabatic potential, V G
a as a function of the reaction

coordinate s for reactions R1 to R4 starting from transition state TS-t. The profiles starting
from TS-g+ are similar to the ones of the plot.
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