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to the calculation of torsional tunneling splittings in systems with two hindered internal rotors. This
method could be considered an extension of one-dimensional methods for the case of two com-

pound tops. The 2D-NS method includes coupling between torsions in the kinetic and potential
energy. Specifically, it has been applied to benzyl alcohol (BA) and two of its fluorine derivatives:
3-fluorobenzyl alcohol (3FBA) and 4-fluorobenzyl alcohol (4FBA). These molecules present two
torsions, i.e., about the -CH,OH (¢;) and -OH (¢,) groups. The electronic structure calculations
to build the two-dimensional torsional potential energy surface were performed at the DF-LMP2-
F12//DF-LMP2/cc-pVQZ level of theory. For BA and 4FBA the calculated ground-state vibrational
level splittings are 429 and 453 MHz, respectively, in good agreement with the experimental val-
ues of 337.10 and 492.82 MHz, respectively. In these two cases there are four equivalent wells
and the tunneling splitting is the result of transitions between the two closer minima along ¢;. The
analysis of the wavefunctions, as well as the previous experimental work on the system, supports
this conclusion. For 3FBA the observed ground-state splitting is 0.82 MHz, whereas in this case
the calculated value amounts only to 0.02 MHz. The 2D-NS method, through the analysis of the
wavefunctions, shows that this tiny tunneling splitting occurs between the two most stable minima
of potential energy surface. Additionally, we predict that the first vibrationally excited tunneling
splitting will also be small and exclusively due to the interconversion between the second lowest

minima.

1 Introduction

Tunneling splittings are associated to a quantum mechanical ef-
fect which makes energy levels to split into doublets, triplets,
quadruplets, etc., due to the overlapping in the classically forbid-
den region of wave functions of identical wells. At low tempera-
tures, tunneling is the only mechanism through which a molecule
can reach another potential well, since it has not enough energy
to overcome the potential barrier. Tunneling is very sensitive to
the mass of the particle that penetrates through the potential bar-
rier and to the width of such a barrier, in a way that this quantum
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effect becomes more important for light particles (as for instance
protons and hydrogen atoms) passing through narrow barriers. It
should be noticed that tunneling splittings are physical observ-
ables and can be measured using different experimental tech-
niques. In fact, zero-point and selected mode-specific tunneling
splittings due to proton transfer reactions have been observed in
several molecules with symmetric double-well potentials. Malon-
aldehyde! is a classic example with a zero-point splitting of 21.6
em~!. From the theoretical point of view, this effect was firstly
described by Hund?, and nowadays, there is a wide variety of
multidimensional methods that can deal accurately with the ob-
served tunneling splittings due to proton transfer3-? or to the flip
of clusters. 10

Less attention has been paid to the study of tunneling splittings
that may arise from internal rotations, although there are notable
exceptions. !! Tunneling occurs when a flexible molecule with one
or more hindered rotations (i.e., torsions about single bonds with
a given energetic barrier) is able to reach a different well of the
torsional potential by penetration through the torsional barrier.
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For molecules with one torsional mode and two wells with the
same energy, the energy levels below the barrier may split into
a doublet, being one of the components symmetric (+) and the
other antisymmetric (—) with respect to that torsional mode (the
reaction coordinate). If there are more than two wells, we may
encounter more complicated patterns than just doublets.

The vibrational ground state level (v; =0, v, = 0) of molecules
with two rotating groups and torsional coordinates ¢; and ¢,
may also split, but the number of spectral lines will depend on
the characteristics of the system. Caminati and coworkers 2 ob-
tained the rotational spectra of benzyl alcohol (BA) using pulsed-
jet Fourier transform microwave and free jet absorption millime-
ter spectroscopy. These authors observed b-type transitions sep-
arated by 986 MHz, which correspond to a splitting of vibra-
tional ground-state of 492.8 MHz. The same research group
measured the vibrational-ground state tunneling splittings of 3-
fluorobenzyl alcohol!® (3FBA) and of 3, 4-difluorobenzyl alco-
hol!4 (3,4DFBA), this time due to c-type transitions. Their re-
sults indicated that the asymmetry generated by the replacement
of a hydrogen atom by a fluorine atom in the meta position of the
phenyl ring practically annihilates the tunneling splitting. These
splittings are much smaller than that of benzyl alcohol, i.e., 0.82
and 0.13 MHz for 3FBA and 3,4DFBA, respectively. Another fluo-
rine derivative of the benzyl alcohol was studied by Bird et al. 1°
who obtained the rotationally resolved electronic spectra of 4-
fluorobenzyl alcohol (4FBA) and a ground state tunneling split-
ting of 337.10 MHz.

Our theoretical study is focused on BA, 3FBA and 4FBA, which
are systems involving compound rotation (one rotating group at-
tached to another rotating group). Kilpatrick and Pitzer1® found
that accurate thermodynamic functions for flexible molecules of
this type can be obtained from partition functions in which the
torsional modes are treated as coupled anharmonic hindered ro-
tors and the remaining vibrational modes as harmonic oscillators.
We have extended the methodology developed by Kilpatrick and
Pitzer to low temperatures for system with two rotors by directly
solving the two-dimensional Schrédinger equation. We call this
approximation two-dimensional non-separable (2D-NS)!7 and it
has been used recently for the calculation of quantum hindered
rotor partition functions.!”>1® It incorporates full coupling be-
tween torsions in both kinetic and potential energy. In this work
we use this methodology to calculate tunneling splittings arising
from hindered rotations.

Previous theoretical calculations on some of these systems car-
ried out by Caminati and coworkers!%!3 were limited to one-
dimensional models, which can be considered as a particular case
of the two-dimensional problem. Those authors have chosen as
tunneling path the one passing through the transition states con-
necting the minima, but either they had to modify the calculated
parameters or to scale the potential in order to match the ob-
served tunneling splittings. This indicates that one-dimensional
methods are unreliable, and without any adjustment, the results
may differ from the experimental values by more than an order of
magnitude. The theoretical calculation of tunneling splittings us-
ing a prescribed one-dimensional coordinate involves the follow-
ing steps: (i) evaluation of the one-dimensional potential about
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the path; (ii) fitting of the potential, V(¢), to Fourier series; and
(iii) resolution of the Schrodinger equation of the type:

hod?

_5W¢(¢)+V(¢)¢(¢) = ED(9) o

where /i = h/2m, h is the Planck constant; I is the reduced moment
of inertia due to the rotating group and ®(¢) is the wavefunction.
For the systems mentioned above ¢ describes a full revolution
about the rotation attached to the molecular frame (hereafter ¢,),
but depending on the path, the other torsion (hereafter ¢,) may
take different values.

Torsions ¢, and ¢, define a two-dimensional potential energy
surface, so to solve the Schrodinger equation in two dimensions
using the 2D-NS method avoids a difficult search for the optimum
path for tunneling. In this method the potential is expressed as
a Fourier series expansion and the resulting Hamiltonian is intro-
duced in the Schrédinger equation, which is solved by the vari-
ational method. The objective of this work is to show that 2D-
NS is a benchmark method for the calculation of tunneling split-
tings arising from hindered rotations in molecules with two tops.
This methodology does not involve any empirical adjustment of
the potential energy surface beyond the choice of the level of the
electronic structure calculations, so it could be used as a tool to
predict tunneling splittings. Additionally, through the analysis of
the wavefunctions, the 2D-NS method can identify which are the
wells and the torsional motions that lead to the observed tunnel-
ing splitting. This is important because BA and 4FBA present four
wells with the same energy and it is not completely established
which are the internal rotations that generate the tunneling split-
tings.

Section 2 briefly describes the 2D-NS method (see Ref. 17 for
details). Computational details are given in Section 3. Section 4
discusses the energetic and structural parameters of the torsional
potential energy surface of the three systems, as well as, the re-
sults obtained by the 2D-NS method. Additionally, splittings are
also calculated with Eq. 1 for comparison. Section 5 summarizes
the conclusions.

2 Methodology

The Hamiltonian of the 2D-NS method for a molecule with two
hindered rotors ¢; and ¢, can be written as: 17

Jd 0 Jd d
Htor (T¢17T¢2;¢1>¢2) = Ttor (T%>T¢2) +Vtor(¢17¢2) 2

where the kinetic operator, Tior, is given by:

a 9 I @ 9? ddre 9
T S a. | — X d _— + —_—
”(&m a¢z) 2;; %00:09;  d9r Ig;

and the elements d¢¢, T = 1,2; ¢ = 1,2 are those the inverse ma-
trix:
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where |D(¢¢,)| is the determinant of the D matrix; /;(¢;,¢;) and
L(¢1,0,) are the reduced moments of inertia and Aj (¢, ¢2) is
the coupling between torsions. These quantities were calculated
by the method developed by Kilpatrick and Pitzer. 10

The electronic structure data are fitted to a Fourier series of the
type:

Vior (91,92) =V (1) + V(1) +
Ly max L2 max
Y crir,cos(Ligr)cos(Lagn)+
L]il inl
Py nax P max
Z Z dPlPZSin(Pl¢l)Sin(P2¢2)+
P=1 P=1
L imax Ly ma
Y. <y cos(Lig))sin(Lyén)+
Li=11,=1 -
Pl e P
Z dP{Pz,sin(P{m)cos(Pz’q)z) (5)
Pj=1P=1
Where CL1L27L1 = 17~~~7Ll¢maX7L2 = 17~~~7L2maX7dP1P27Pl
— J ! _ !/ / _
17' lemeZ - 1 . P2max: “L’IL/27L1 - 1 leaxaL -
! / / / s
I,..., 2max7dP’P’7 = Lol Py = 1,8, are fitting
parameters, and L1 imaxs Ll)max, L2 maxs L2,max’ Pt naxs P maxs
P max> and P} ... indicate the largest number of each series. The

one-dimensional potentials are:

M

Minax max

Vi(¢1) =ao+ Z aycos(M¢y) + Z djpsin(M’ ¢;) (6)
M=1

and

d
Npax N, max

Vo (¢2) =bo + Z bycos(N¢z) + Y bjisin(N'¢,) @)

N'=1

where, ag, by, ay(M = 1,...,Mpay), aM,(M/ =1,. max) by(N =
1, .o; Npnax), b (N' =1,. N,’nax) are fitting parameters, and M,uay,
M,’nax, Npax, and N, are the largest number of each series. Once
the number of terms for each of series of Eq. 5 are known, the
same type of series are used to fit each of the elements of the
inverse of the D(¢; ¢,) matrix of Eq. 4. All parameters are given
in the Supplementary Information.

The trial wavefunction used to solve the Schrédinger equation

d
or (55 7101002 ) @010 = ER010)  ®
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using the Hamiltonian of Eq. 2, can be written as the product
of two one-dimensional functions, and each of them is a linear
combination of wavefunctions which are solution of Schédinger
equation for the particle in a ring:

D(91,02) = P1(01)P2(02) 9
where,
1 k:kmax i
Q)= 7= X cr e, (10)
szkmax
and
1 N=N max .
¢2(¢2):\/T—ﬂ )y 2,06™%2, an

The lowest eigenvalues and wavefunctions calculated from
Eq. 8 are the ones of interest, and the results are discussed in
Section 4. Details about the matrix elements of the Hamiltonian
are given in Ref. 17.

3 Computational Details

The geometry optimization of all the stationary points was car-
ried out at the density fitted local MP2 (DF-LMP2) 1920 method
with the initial Hartree-Fock orbital optimization calculated us-
ing the DF-HF method?! and the correlation consistent valence
quadruple-zeta cc-pVQZ basis set.?2 The corresponding auxil-
iary basis sets cc-pVQZ/MP2 and cc-pVQZ/JKFIT of Weigend et
al. 2324 were employed in the DF-LMP2 and DE-HF calculations,
respectively. The two-dimensional torsional potential energy sur-
faces of BA, 3FBA and 4FBA were generated by full optimization
of all the degrees of freedom but the two torsions. The two tor-
sions were scanned using a stepsize of 10°. At each step, single
point DF-LMP2-F1225-27 calculations were performed to compute
accurate second-order correlation energies. Hereafter, torsions ¢,
and ¢, refer to torsions about the OC-CC and HO-CC single bonds,
respectively. The geometries of the minima of BA, 3FBA and 4FBA
are given in the Supplementary Information.

The potential energy grid obtained from the electronic struc-
ture calculations was fitted to Fourier series using the GNUPlot
program.28 The fit was considered satisfactory when the root
mean square of residuals was smaller than 1 cm~!. The one-
dimensional and the coupling parameters used in Eq. 5, as well
as those parameters used in the fitting of the kinetic energy, are
listed in the Supplementary Information. The calculation of the
lowest eigenvalues and the corresponding eigenvectors was car-
ried out with the help of the JADAMILU software library.2® All
electronic structure calculations were carried out with the MOL-
PRO 201039 suite of programs.

4 Results and Discussion

Table 1 indicates the values of ¢; and ¢, at the minima calculated
at the DF-LMP2-F12//DF-LMP2/cc-pVTZ level for the BA, 4FBA
and 3FBA systems. A representation of the minima of 3FBA and
4FBA is given in Figure 1. In the case of 3FBA, the scan about the
two asymmetric tops leads to a two-dimensional potential energy
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surface with six wells of which only four wells are distinguish-
able, as shown in Figure 2. The most stable minimum, 3FBA-M1,
is located at dihedrals [¢1,¢,] equal to [43, 58] whereas in the
case of 3FBA-M2 they are located at [135,-57]; the former is 47
cm~! more stable than the latter. Each of the two structures has
one enantiomer (3FBA-M1* and 3FBA-M2*) as shown in Figure
1. Hereafter, enantiomers are labeled with asterisk. The values
of the torsional angles at the equilibrium structures calculated by
Tang et al. 13 are close to the values obtained in this study. How-
ever, there are discrepancies related to the nature of the 3FBA-M3
and 3FBA-M4 stationary points, located at dihedrals [0, 180] and
[180, 180], respectively. In the work of Tang et al. 13 those sta-
tionary points are transition states, but our electronic structure
calculations show that they are minima. Actually, the relative en-
ergies calculated by them are much closer to the transition state
energies obtained in this work than to the energies of the minima
(see Table 2). The transition states for the torsions M1—M3 and
M2—M4 have energies of 525 and 535 cm~!, which are close to
the transition state energies of torsions M1—M1* and M2—M2*
described by Tang et al. 13 (with energies of 515 and 585 cm ™).
This shows that the interconversion from 3FBA-M1 to 3FBA-M1*
is a two step-process with an intermediate well located at 3FBA-
M3. The same circumstance occurs for the interconversion be-
tween 3FBA-M2 and 3FBA-M2%*, but in this case the intermediate
is 3FBA-M4.

3FBA-M1 3FBA-M3 3FBA-M1*
e o 4
3FBA-M2 3FBA-M4 3FBA-M2*
4FBA-M1 4FBA-M2 4FBA-M1*
U
4FBA-M1* 4FBA-M2 4FBA-M1

Fig. 1 Ball and stick representation of the equilibrium geometries of
3FBA and 4FBA listed in Table 1. The geometries of BA are very similar
to those of 4FBA, so they are not plotted. Light gray, red, brown and
cyan represent hydrogen, oxygen, fluorine and carbon atoms,
respectively.
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The torsional potential energy surface for the 4FBA is also il-
lustrated in the Figure 2. For BA the potential is not plotted
because it is very similar to that of 4FBA. The substituted ben-
zene ring in the para position changes the nature of the wells,
because now the molecule has symmetry with respect to the in-
ternal rotation about ¢. Any structure with torsions [¢;,¢.] is
equivalent to another structure with torsions [¢; + 180, ¢;1, so the
molecule presents a C, axes for internal rotation through the -C-
CH,OH single bond. The torsion about this chemical bond gen-
erates two indistinguishable minima 4FBA-M1 and each of them
has one enantiomer 4FBA-M1*. This leads to a potential energy
surface with four isoenergetic wells. The torsional internal angles
at the equilibrium geometry of 4FBA-M1 and 4FBA-M1* are in
good agreement with the four wells identified at the M05-2X/6-
31+G(d,p) level by Bird et. all®. There are also two indistin-
guishable wells at positions [0, 180] and [180, 180], which cor-
respond to the 4FBA-M2 wells and are 351 cm~! above the 4FBA-
M1 wells. In the case of BA the calculated barrier height by Utzat
et. al'? at the CBS extrapolation limit between BA-M1 and BA-
M1* is 319 ecm™!, which is in very good agreement with the DF-
LMP2-F12//DF-LMP2/cc-pVQZ barrier height. The minima and
the transition states for BA and 4FBA have similar energetics, al-
though the lowest rotational barrier in BA is 42 cm~! smaller
than the same barrier in 4FBA. This may be the reason why the
tunneling splitting in BA is larger than that in 4FBA.

Im et al. 3! indicated that the torsional potential energy surface
in benzyl alcohols is a combination of two factors: (i) the interac-
tion between the -CH,OH group and the hydrogen atoms located
at the ortho position of the ring and (ii) the interaction between
the hydroxyl group and the m-electrons of ring. The first inter-
action is repulsive and more important when the -CH,OH group
is in eclipsed position (¢; = 0°) with respect to the ring. On the
other hand the attractive interaction between the -OH group and
the m-electron cloud of the ring is favored at large values of ¢;
with the hydrogen atom of the hydroxyl group pointing toward
the ring. On the basis of these two interactions and on spec-

Table 1 Dihedral angles [¢1, ¢,] (in degrees) and relative energies U; (in
cm™!) of the minima of 3FBA and 4FBA obtained at the
DF-LMP2-F12//DF-LMP2/cc-pVQZ level. Results in parentheses for
3FBA, 4FBA and BA are taken from Ref. 13, Ref. 15 and Ref. 12,
respectively.

System  Well [91,02] U;
3FBA M1 (Z) [43, 58], ([49,56]) 0 (0)
M1* (Z)  [-43,-58], ([-49,-56]) 0 (0)
M2 (E) [135,-571, ([129,-55]) 47 (27)
M2* (E)  [-135,571, ([-129,55]) 47 (27)
M3 [0,180] 279 (—)
M4 [180,180] 343 (—)
4FBA M1 [53, 541, [-127, 54] 0
([44, 571, [-136, 571) 0)
M1* [-53, -54], [127, -54] 0
([-44, -571, [136, -571) (]
M2 [0, 1801, [180, 180] 351
BA M1 [53, 53], [-127, 53] 0
([55, 651, [-125, 65]) 0)
M1* [-53, -53], [127, -53] 0
([-55, -65], [125, -65]) 0)
M2 [0, 1801, [180, 180] 403
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Table 2 Same as Table 1, but for the transition states with the lowest

energy.
System TS [01,92] U;
3FBA M1—M3 [0, 125] 525
M3—M1* [0, -125] 246
(M1—M1%) (fo, 1801 (515)
M2—-M4 [174, 124] 535
M4—M2* [-174, -124] 192
(M2—M2%) ([180, 180]) (585)
M1—M2 [90, 0] 452 (509)
M1*—M2* [-90, 0] 452 (509)
4FBA M1—M1* [90, 0], [-90, 0] 371 (304)
M1—-M1 [136, 80], [-44, 80] 721
M1*—M1* [-136, -80], [44, -80] 721
Ml1—M2 [6,122], [-174,122] 603
M2—M1* [174, -122], [-6, -122] 603
BA M1—M1* [90, 0], [90, 0] 329 (319)
Ml1—M1 [137, 75], [-43, 75] 705
M1*—M1* [-137, -75], [43, -75] 705
M1—-M2 [7,123], [-173,122] 635
M2—M1* [173,-123], [-7, -123] 635

troscopy studies, Im et al. 31 concluded that for these substituted
benzyl alcohols, the wells should be located at ¢; =90° (i.e., with
the OH perpendicular to the ring). However, our theoretical cal-
culations, and those carried out by Tang et al. 13 and by Bird et.
all®, indicate that -OH group with respect to the ring is closer
to a gauche-type position. The hydrogen of the -OH group points
toward the ring except for the minima in which ¢; = 0°, because
of the repulsion with the ortho hydrogen atoms.

The agreement between calculated and experimental rotational
constants is good (see Table 3). The reduced moment of inertia
for the internal rotation of the -CH,OH group is about 20 times
larger than that of the -OH group. The moment of inertia in ro-
tational motion meets the same purpose as the mass in the linear
motion, and therefore their values have an important effect on the
magnitude of the tunneling splittings. Notice that the tunneling
effect is affected by the shape of the potential barrier between the
wells (width and height) and by the mass (or moment of inertia
in rotational motion) of the tunneling particle. In the case of BA
and 4FBA, if we assume that the barriers M1—M1 and M1—M1*
are isoenergetic, the former transit would have a much lower tun-
neling splitting because it involves a larger rearrangement of the

Table 3 Rotational constants (in MHz) of all conformers of 3FBA, 4FBA
and BA (experimental values in parentheses). Reduced moments of
inertia I;, I, in amu AZ.

System  Conformer A,B,C LI, L
3FBA 3FBA-M1 2804, 1210, 870 18.02, 0.830
3FBA-M1 (2757, 1210, 863)* —
3FBA-M2 3413, 1067, 842 19.59, 0.824
3FBA-M3 2679, 1231, 848 16.06, 0.826
3FBA-M4 3571, 1038, 810 18.13, 0.830
4FBA 4FBA-M1 4648, 932, 808 17.64, 0.825
4FBA-M1 (4629, 929, 803)” —
4FBA-M2 4770, 945, 793 16.61, 0.805
BA BA-M1 4787, 1480, 1192 16.89, 0.823
BA-M1 (4759, 1475, 1193)¢ —
BA-M2 4959, 1504, 1163 15.38, 0.800
“ Ref. 13
b Ref. 15
¢ Ref. 12
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Fig. 2 Contour plots of the potential energy surface resulting from the
rotation about the torsional angles ¢; and ¢, for 3FBA (top) and 4FBA
(bottom). The location of the minima is indicated. The green lines show
the linear reaction path.

¢, dihedral (i.e. 180° for the former and 74° for the latter).

The tunneling splitting can also be calculated from the path
that minimizes the Euclidean action. This tunneling trajectory,
which is the best compromise between paths of varying length
and height, is called instanton. One of us have used two approx-
imate methods based in this methodology to calculate tunneling
splittings in several proton transfer reactions. 3-8:32-3% In this case,
we directly solve the two-dimensional Schrédinger equation of
Eq. 8 to obtain the eigenvalues and the tunneling splittings listed
in Table 4.

As we have mentioned in the Introduction Section, it is possi-
ble to solve the one-dimensional Schrodinger equation of Eq. 1
using a potential which is a function of the two torsions and with
all the other degrees of freedom relaxed. In a compound rotation
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this path should involve a full rotation about the OC-CC single
bond (¢,), but it is not clear how to proceed with the HO-CC
torsion (¢,) to obtain the optimum tunneling path. As shown in
Figure 2 the minima are located not only at different values of
¢1, but also of ¢, because both torsions are strongly coupled. To
evaluate the tunneling splittings along a one-dimensional trajec-
tory we have chosen the linear reaction path, which is the short-
est path between minima. These potentials are plotted in Figure 3
for the three systems. The tunneling splittings were obtained via
Eq. 1 using as reduced moment of inertia the one of ¢; at the
global minimum, and as potential a cosine Fourier series that fits
the one-dimensional potential. The calculated values for 3FBA,
4FBA and BA are 0.26, 2.75 and 44.8 MHz, respectively, which
are substantially smaller than the experimental values. These re-
sults show that one-dimensional methods have difficulty provid-
ing tunneling splittings of the same order of magnitude as the
experimental values if empirical parameters are not used. Even
if the linear reaction path is the best choice to calculate the tun-
neling splitting, the results may not be accurate because of the
kinetic energy term, which should somehow include the coupling
between torsions. For instance, the above result can be improved
if the reduced moment of inertia I; is substituted in Eq. 1 by an
effective reduced moment of inertia Iz which accounts for the
variation of the two torsions (A¢; and A¢,) along the linear reac-
tion path between the minima that lead to the tunneling splitting:

_ 1A+ 5|Ag|
\/ AP+ A3

With this modification the tunneling splittings for 3FBA, 4FBA
and BA are 0.30, 117 and 965 MHz, respectively, which are in
much better agreement with experiment. The problem is that
Eq. 12 is an empirical expression, which may not work in other
cases, as for instance if the chosen tunneling path is far from the
linear reaction path. These results indicate that one-dimensional
methods for the study of compound rotations have limited ac-
curacy, because it is difficult to estimate the coupling between
torsions. However, this term can be easily evaluated within the
2D-NS approach. Therefore, if we can afford the construction
of the two-dimensional potential energy surface, it is better to
directly solve the two-dimensional Schrédinger equation by the

et (12)

Table 4 Energy levels (in cm~!) and torsional tunneling splittings (in
MHz) calculated by the 2D-NS for the 3FBA, 4FBA and BA systems

Level Energy (3FBA) Level Energy (4FBA) Energy (BA)

0t 164.0662515 0tot 155.5125144 149.8691346
0~ 164.0662523 0t0~ 155.5125144 149.8691346
1+ 201.1701021 00" 155.5268182 149.8842329
1~ 201.1701187 070" 155.5268182 149.8842329
Tunneling Splittings

AEy 0.02 429 453
Exp. 0.82¢ 337.10° 492.82¢
AE, 0.50

9 Ref. 13

b Ref. 15

¢ Ref. 12
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2D-NS method than search for the best tunneling path in the two-
dimensional surface.

Potential (cm™)

Fig. 3 Potential along the linear reaction path between minima plotted
as a function of the torsional angle ¢; (in degrees) for BA (solid line),
3FBA (dashed line) and 4FBA (dotted line). This potential is also
represented by lines in the two-dimensional potentials of Figure 2 for the
case of 3FBA and 4FBA

The calculated 2D-NS tunneling splitting for 3FBA is 0.02 MHz,
whereas the observed tunneling splitting is 0.82 MHz. Although
the 2D-NS method correctly predicts that the observed tunneling
splitting is very small, the difference between observed and cal-
culated tunneling splittings is quite large. We provide a possible
explanation for this discrepancy at the end of the Section.

The 2D-NS ground-state wavefunctions plotted in Figure 4 pro-
vide valuable information about the wells involved in the split-
ting. It should be noticed that the two wavefunctions of the
level that splits are symmetric 0" (the lowest energy level of the
doublet) and antisymmetric 0~ (the highest energy level of the
doublet) with respect to the tunneling coordinate, respectively.
Both wavefunctions are localized in the two minima 3FBA-M1
and 3FBA-M1*, which clearly demonstrates that the tunneling
splitting is due to the interconversion between these two species.
Notice that the barrier between M1 and M2 is smaller than the
two barriers that separate M1 from M1* by 73 cm~!. However,
M2 is 47 cm~! less stable than M1 and this asymmetry avoids
the participation of the M2 well in the tunneling splitting. In this
context, our calculations are in total agreement with the exper-
imental work of Tang et al. 13, who indicated that the observed
tunneling splitting is due to the transition between M1 and M1*
structures (Z and Z’ in their nomenclature). The tunneling split-
ting is small because the internal rotation involves the passage
through the eclipsed configuration with ¢; = 0 which has a sub-
stantial barrier of 525 cm~! for internal rotation. This is con-
sistent with the experimental observation of a c-type transition,
which inverts when the -CH,OH group tunnels from above and
below the ring. There is also a substantial rearrangement of the
torsions with a change of 86° in ¢; and 116° in ¢,.

A somewhat larger tunneling splitting (0.52 MHz) is predicted
for the doublet 1+ and 1~, which is 47 cm™! above the ground
state. The wavefunctions associated to these two energy levels
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Fig. 4 Three-dimensional representation of the torsional wavefunctions
of the 0" (a), 0~ (b), 1" (c) and 1~ (d) energy levels of 3FBA. The
location of the minima is indicated.

lay on M2 and M2*, indicating that first excited state tunneling
splitting is due to transitions between these two wells without the

This journal is © The Royal Society of Chemistry [year]

participation of M1 or M1*. Localized wavefunctions in isoener-
getic wells of the same type, even when there are other wells
available, are not exclusive to this case. They were also obtained
when studying the tunneling splittings due to the double proton
transfer in porphycene. 3¢

The cases of BA and 4FBA are different, because the wells M1
and M2 are equivalent, so there are four wells which are isoener-
getic. In principle, the four wells may lead to a quadruplet, but
the experiments 121> showed that only one doublet has been ob-
served. In this case it is possible the conversion between M1 and
M1* without passing through the eclipsed configuration which
has a higher barrier than the direct interconversion. Bird et. all®
indicated that the observed tunneling splitting of 337.10 MHz
must be due to a 60° rotation about ¢, instead of to a 120° rota-
tion. Our calculations show that the former rotation corresponds
to the direct interconversion (74° variation in ¢; and barrier of
371 em~ '), whereas the latter is associated to the pass through
the eclipsed configuration with a 106° variation in ¢; and a bar-
rier of 603 cm~!. Therefore, the tunneling splitting of 429 MHz
calculated by the 2D-NS method in 4FBA follows a direct tunnel-
ing path between M1 and M1* in contrast to the case in the 3FBA
system. Similarly, in the case of BA the calculated tunneling split-
ting of 453 MHz, which agrees very well with the experimental
value of 492.82 MHz, is a consequence of hindered rotor tunnel-
ing between M1 and M1* in the same side of the benzyl ring.

To identify the transitions that lead to the tunneling split-
ting in BA and 4FBA we have inspected the symmetry of the
wavefunctions with respect to the interconversions M1—M1*
and M1—M1. Thus, the wavefunctions of the two degener-
ated ground-state levels depicted in Figures 4(a) and 4(b) are
symmetric and antisymmetric, respectively, with respect to the
M1—MI1 rotation. Both of them are symmetric with respect to
the M1—M1* transition, so they are labeled as 070" and 070~
in Table 4. This internal rotation does not lead to any tunnel-
ing splitting because the barrier height for the M1—M1 transition
state is quite high (721 cm~!) and involves a large rotation about
01. The degenerate levels 070~ and 0~ 0" with wavefunctions
depicted in Figures 4(c) and 4(d) are both antisymmetric with
respect to the M1—M1* transition, showing that the tunneling
splitting is due to this internal rotation, and in agreement with
the experimental findings.

Finally, it is interesting to analyze why the 2D-NS method
works well for BA and 4FBA but leads to a splitting which is much
too low in the case of 3FBA. The 2D-NS method includes the cou-
pling between the two torsions and incorporates the structural
changes in the rests of degrees of freedom through the variation
of the reduced moments of inertia (kinetic energy) and of the
potential. However, the structural changes may also affect the
zero-point energy of the system, whose variation has been ne-
glected in this work. In the case of BA and 4FBA the tunneling
splittings are due to motions of the two torsional modes in the
same plane of the benzyl ring, with small changes in the rest of
the structural parameters, and therefore with minimal changes in
the zero-point energy of the remaining degrees of freedom. In the
case of 3FBA the tunneling path involves that the rotating groups
pass through an eclipsed configuration, which involves an impor-
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(d)
Fig. 5 Three-dimensional representation of the torsional wavefunctions
of the 070" (a), 070~ (b), 0-0~ (c) and 0~ 0" (d) energy levels of 4FBA.

Similar wavefunctions are obtained for BA, and therefore not plotted
here. The location of the minima is indicated.

tant rearrangement of some structural parameters. For instance,
the OCC angle changes from 109.5° at M1 to 113.1° at M3 and

8| Journal Name, [year], [vol.],1—9

the zero-point energy is 168 cm~! lower in M3 than in M1. This
indicates that the barrier between M1 and M3 will probably be
lower when the zero-point energy is included and the splitting
will increase. The contribution of the zero-point energy of the
3N-8 non-torsional degrees of freedom (where N is the number
of atoms) can be included by expressing the force constant ma-
trix in internal coordinates and projecting out the two torsions.
This projected zero-point energy can be easily added to the po-
tential of Eq. 2. However, the calculation of the grid of Hessians
needed to build this new two-dimensional potential energy sur-
face at the DF-LMP2/cc-pVQZ level is very expensive in computer
time, and out of the scope of this work. The search for an efficient
incorporation of zero-point energy effects in hindered rotor tun-
neling splittings is a major task, which we would try to address in
future studies.

5 Conclusions

The two-dimensional non-separable (2D-NS) method can be re-
garded as an extension of one-dimensional methods to study com-
pound rotation in systems with two rotors. It incorporates cou-
pling between the torsions and there is no need to choose a path
for tunneling. We have shown that the 2D-NS method is a pow-
erful tool to study hindered rotor tunneling splittings in systems
with two coupled torsions if the remaining degrees of freedom
do not vary substantially. The methodology was applied to BA
and two benzyl alcohol derivatives, i.e., 3FBA and 4FBA. The
calculated tunneling splittings of 429 and 453 MHz for 4FBA
and BA, respectively, obtained using a torsional potential energy
surface calculated at the DF-LMP2-F12//DF-LMP2/cc-pVQZ level
and without any empirical adjustment, compare well with the ex-
perimental values of 337.10 and 492.82 MHz. The agreement
is not as good in the case of 3FBA, with a calculated value of
0.02 MHz versus the experimental value of 0.82 MHz. In this
case there are important structural changes of the non-torsional
modes, so the variation of the zero-point energy due to these
modes may affect the tunneling splitting substantially. This effect
is not implemented in current version of the 2D-NS method.

Additionally, the 2D-NS method through the analysis of the
wavefunctions provides valuable information about the wells that
are involved in the tunneling splitting. We have found that for
3FBA the ground-state splitting is due to tunneling between the
M1 and M1* wells passing through an eclipsed configuration,
whereas the first excited state tunneling splitting follows the same
mechanism but between M2 and M2*. In the case of BA and 4FBA
the tunneling path that leads to the tunneling splitting occurs in
the same side of the benzyl ring. The ground-state wavefunc-
tions show that the torsional motion M1—M1 does not lead to
any splitting and that the observed doublet is due to the intercon-
version between M1 and M1*.
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