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Abstract

The enol–keto transition rate constants in 2’-methylacetophenone observed by Grellmann et

al. [Chem. Phys. Lett. 95 (1983) 195] are calculated from first principles. The results rein-

terpret the proposed mechanism and show that proton tunneling is preceded by dissociation

of a substrate-solvent complex rather than by rotamer interconversion.

1 Introduction

Although proton tunneling is a well-established mechanism in chemical kinetics in general

and enzyme kinetics in particular, there are few experimental and theoretical studies in

which this transfer process has been followed over a wide range of temperatures for both

protons and deuterons. Experimentally, such a study requires measurement of rate constants

that vary greatly, often over many orders of magnitude; theoretically, it requires many time-

1

*The Manuscript
Click here to view linked References



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

consuming calculations based on methods that can deal accurately with both overbarrier

and throughbarrier transfer mechanisms. The temperature dependence of the transfer rate

constants will typically give rise to a curved Arrhenius plot, i.e. a nonlinear relationship

between the logarithm of the rate constant and the inverse temperature. Although this is

well understood, the quasi-linearity of such plots when the measurements are confined to

a narrow temperature interval has prevented proper exploitation of this curvature. While

the parameters derived from such quasi-linear plots have been recognized as evidence for

tunneling, they have rarely been used to investigate the physical parameters governing the

tunneling process [1].

The search for a molecule that exhibits a curved Arrhenius plot along with a strong

kinetic isotope effect (KIE, defined as the ratio of H and D transfer rate constants) and is

small enough to allow high-level calculations of these rate constants led us to the enol–keto

transition in 2’-methylacetophenone (2MAP). This is an historically important example of

a tunneling system, studied experimentally by Scaiano [2] and, in much greater detail, by

Grellmann, Weller and Tauer (GWT) [3]; the latter study covers a wide range of temperatures

for both H and D transfer and presents a semi-empirical analysis of the transfer mechanism.

Optical excitation turns the ketone into a mixture of two enol isomers, labeled Z and E by

the authors, of which only one, namely Z, was found to reketonize within the timeframe of

the experiment, the difference being due to the orientation of the =C(CH3)OH side chain

relative to the =CH2 group. The Z isomer occurs in the form of two rotamers, with different

orientations of the OH bond relative to this group, as depicted in Fig. 1; GWT assumed

the rotamer with the orientation away from this group, labeled Z-I, to be planar and the

one with the orientation towards the group, labeled Z-II, to be nonplanar because of H-H

repulsion. The two rotamers interconvert by rotation about the CO bond. GWT measured

the first-order rate of decay of Z by monitoring the decay of the enol absorption band

at 410 nm following flash excitation of the ketone. They found that this rate exhibits

a strong temperature dependence in the range 118-298 K as well as a KIE that increased

rapidly with decreasing temperature, indicating that the enol–keto transition involves proton

tunneling. After carrying out semi-empirical tunneling calculations based on transfer through

a symmetric Eckart barrier, they concluded that the observed activation energy was far too
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large to derive solely from the tunneling process.

To interpret the observed rate constants, they therefore ascribed them to two consecutive

processes, namely interconversion between the two Z rotamers followed by proton transfer

from the hydroxyl to the methylene group. To be able to assign part of the observed activa-

tion energy to interconversion, they had to assume that the rotamer with the shorter transfer

distance, i.e. rotamer Z-II in Fig. 1, has a higher energy than rotamer Z-I. To account for

the observed exponential decay signals, they further assumed rotamer interconversion to be

much faster than tunneling transfer and represented it by an equilibrium constant, which

they described by a weighted Boltzmann factor C exp[−(EII−EI)/kBT ], where C is a statis-

tical factor. Strictly speaking C should be represented by the ratio of the partition functions

of the two rotamers, but in the absence of a vibrational force field it seems reasonable to

approximate it by a factor of 2, since there should be two forms of the nonplanar rotamer

Z-II, but only one of Z-I if it is planar. However, GWT used a value C = 10, which is

clearly unjustified, since the principle of microscopic reversibility implies that the forward

and back transitions proceed by the same route. The removal of a factor of five from the

calculated transition rate constants implies that the deduced values for the proton transfer

distance and the two activation barriers require revision.

However, there is another, more serious reason to revisit the interpretation, namely the

fact that it does not take account of the presence of alcohol in the solvent. Since enols

are acidic, they are proton donors and tend to form strong hydrogen bonds with proton

acceptors. This is well known from analogous reactions involving phenols [4]. Such hydrogen

bonding would reduce tunneling because it introduces an equilibrium constant between free

and hydrogen-bonded enol groups. Hence the assumption that rotamer interconversion but

not hydrogen bonding with the solvent affects the proton transfer rate needs to be recon-

sidered. Since both processes would contribute a Boltzmann factor to the rate, they would

be kinetically indistinguishable. To decide whether either or both of them contribute to the

observed rate constants, we need a quantitative evaluation of the energetics of the system.

This is also required for the replacement of the empirical symmetrical Eckart barrier by a

calculated multidimensional potential-energy surface that includes the strong asymmetry of

the barrier as well as all vibrational degrees of freedom.

3
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Since the mechanism proposed by GWT hinges on the relative energies of the two enol

rotamers Z-I and Z-II, we first calculate the structure and energy of their equilibrium

configurations and relevant transition states for the unsolvated molecule. These results we

use as input in the approximate instanton method (AIM) as implemented in the DOIT1.2

program [5], which is particularly well suited to calculate rate constants for proton and

deuteron transfer over a wide range of temperatures, since it does not require evaluation

of the tunneling trajectories. We then calculate the structure and energy of the relevant

configurations of the hydrogen-bonded complexes and compare the calculated rate constants

with experimental values so as to be able to draw conclusions about the transfer mechanism.

2 The unsolvated molecule

To investigate proton transfer in the isolated 2MAP molecule, we focus on five stationary

structures, namely Z-I, Z-II, the keto form, and the transition states between the two

rotamers and between Z-II and the keto form. For this purpose we perform MPWB1K/6-

31+G(d,p) [6] electronic calculations using Gaussian03 [7].

The structure and energy of Z-I, Z-II, and the keto form are illustrated in Fig. 1

and Table 1. It follows immediately that the energy of the Z-I rotamer exceeds that of

the Z-II rotamer by almost 4 kcal/mol, so that the mechanism proposed by GWT does

not apply. Hence Z-I will not be significant for the rate of proton transfer in the isolated

molecule. The transition state between Z-II and the keto form, also illustrated in Fig. 1,

exhibits a very asymmetric barrier corresponding to an exothermicity of 36.64 kcal/mol and

a barrier height of 7.28 kcal/mol illustrated in Fig. 2. The experimental data of GWT cover

a temperature range between 100 K and 300 K, indicating that the mechanism of proton

transfer governed by this potential will change from deep tunneling at the lower limit to

thermally-activated transfer at the upper limit. The AIM/DOIT1.2 program to be used for

the calculation of the rate constants has yielded satisfactory results in our earlier studies of

proton transfer across strongly asymmetric barriers in the 1:1 complexes of 7-azaindole [8]

and 3-hydroxyisoquinoline [9] with water. Since the method was described there in detail,

we limit ourselves to a summary of the approach in the Appendix and concentrate here on
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its application to the problem at hand.

The calculated rate constants of the Z-II–keto transformation by H and D transfer, de-

noted as k2(T ), are listed in Table 2 and displayed as thin solid lines in Fig. 3. Comparison

with the observed rate constants, also shown in Fig. 3, shows that the calculation greatly

overestimates the rate constants and underestimates their temperature dependence. How-

ever, a reasonable fit of the form k(T ) = k2(T ) exp(−Ea/kBT ) is obtained if the calculated

rate constants are multiplied by a Boltzmann factor corresponding to an energy Ea=5.55

kcal/mol, as shown by the thick lines. Since this value is typical for hydrogen bonding be-

tween oxygen centers [4], the reaction step assigned to rotamer interchange by GWT can be

plausibly assigned to hydrogen-bond breaking. Hence we extend the calculations to solvated

molecules.

3 The solvated molecule

To investigate the effect of solvation, we study complexes of 2MAP hydrogen-bonded to a

methanol molecule; for simplicity we use methanol rather than ethanol, as it has been found

[2,3] that the kinetic data are the same in this solvent as in the solvent mixture containing

ethanol used by GWT. The solvating methanol molecule may itself be part of a chain of

methanol molecules, but for the present purpose, we assume that the essential part of the

solvation effect is covered by the formation of a hydrogen bond between 2MAP and one

solvent molecule. There are two ways in which a methanol molecule can form a hydrogen

bond with Z-II: It can donate its hydroxyl hydrogen to the oxygen of the enol or it can

accept the hydrogen of the enol group at its oxygen atom; we denote these complexes by

2MAP-dMe and 2MAP-aMe, respectively. Using the same method as above, we calculate the

structure and energetics of the equilibrium configurations and the transition states of both

complexes; the results are displayed in Fig. 4 and Table 1. To make the listed stationary state

energies comparable to those of the unsolvated molecule, we have subtracted the energy of an

isolated methanol molecule. This yields identical energies for the Z-I configurations of the

two complexes, namely a value of 8.80 kcal/mol below the Z-I configuration of the unsolvated

molecule. For the Z-II configurations, the corresponding energies are 4.34 kcal/mol for

5
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2MAP-dMe and 5.89 kcal/mol for 2MAP-aMe. As expected on the basis of the relative

acidities of enols and alcohols, the structure of fig. 4a, in which methanol is the hydrogen

donor, is less stable that that of fig. 4b, in which it is the acceptor, at least in the Z-

II configuration, which is relevant for tunneling. However, in the Z-I configuration these

energies are virtually the same, which indicates that steric effects play a role as well.

The results indicate that there are at least three pathways for the enol–keto reaction:

(1) An enol-alcohol complex may dissociate, leading to proton transfer in the unsolvated

molecule, as calculated in the preceding section; this involves a Boltzmann factor corre-

sponding to the energy of the broken bond, namely 4.34 kcal/mol for 2MAP-dMe and 5.89

kcal/mol for 2MAP-aMe; to the former the energy difference between these two rotamers,

0.98 kcal/mol, should be added to account for the required transfer between them, the Z-II

configuration of the former being a minority component in the solution.

(2) Transfer may occur directly in 2MAP-aMe; this involves no significant Boltzmann factor,

since the Z-II configuration of this complex is the dominant component in the solution.

(3) Transfer may occur directly in 2MAP-dMe; this involves a Boltzmann factor correspond-

ing to an energy of about 1.55(=0.98+0.57) kcal/mol, which reflects the low concentration

of the Z-II configuration of this complex in the solution.

Evidently, the fit shown in Fig. 3 favors the first option. In terms of the quoted energies

(in kcal/mol), we express the temperature dependence of the rate constants in the form

k(T ) = 2K(T )k2(T ){[1− exp(−0.98/kBT )] exp(−5.89/kBT ) + exp[−(0.98 + 4.34)/kBT ]}

≃ 2K(T )k2(T )[exp(−5.89/kBT ) + exp(−5.32/kBT )], (1)

where K(T ) is the equilibrium constant between Z-I and Z-II and the coefficient 2 reflects

the fact that Z-II has two structures (non planar) while Z-I has only one.

Fig. 3 illustrates this equation, which is in reasonable agreement with the expression

k(T ) = k2(T ) exp(−5.55/kBT ) with the empirical Boltzmann factor used in the figure; it

therefore qualifies as a valid interpretation of the observations. Hence we conclude that the

actual mechanism of the reaction is breaking of the hydrogen bond between 2MAP and the

solvent followed by proton transfer in the unsolvated molecule with no significant involvement

of rotamer interconversion.

6
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This begs the question why the second and third options do not contribute significantly

to the reaction. Explorative calculations show that tunneling in the 1:1 complexes is accom-

panied by an extensive reorientation of the the methanol relative to MAP. The corresponding

very small Franck-Condon factor reduces the tunneling rate to a value where tunneling is no

longer competitive with overbarrier transfer. In the solvent such large displacements may

be obstructed, but this would imply coupling to low-frequency bath modes, which would

have the same effect. The ensuing proton transfer along the minimum energy path would

encounter a barrier considerably larger than the barrier involved in breaking the MAP-

methanol bond. Hence the favored transfer mechanism will be breaking this bond followed

by proton tunneling in the bare molecule.

Moreover, in the stable 2MAP-aMe complex, the Z-II configuration is stabilized by

the strong hydrogen bond, leading to a significantly higher tunneling barrier. The actual

tunneling process would involve two protons, namely transfer of the enol proton to the

alcohol and transfer of the alcohol proton to the methylene group. We have found from

model calculations that such a relay process is considerably slower than direct tunneling.

Hence, the rate of this process in the stable complex will be considerably lower than that of

hydrogen-bond dissociation.

In the metastable 2MAP-dMe complex, which is present in low concentration, the hy-

drogen bond destabilizes the Z-II configuration. Although it has a lower tunneling barrier,

this barrier is still substantially higher than the barrier for splitting off the solvent molecule,

thus favoring the latter process. The observation of a large KIE confirms that overbarrier

proton transfer is not competitive for this complex either.

4 Discussion

Because of their wide temperature range, the measurements of GWT on 2MAP provide a

unique set of data on a proton transfer reaction, showing curved Arrhenius plots along with

a strong dependence of the KIE on temperature. However, these data have never found a

satisfactory explanation. Although GWT, who noted the discrepancy between the isotope

effect and the effective activation energies, correctly surmised that the reaction involved more

7
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than one step, their identification of the additional step as a rotamer transition was not based

on specific evidence. No further attempts have been reported to account for the observations.

The present calculation corrects this situation by showing that the additional reaction step

proposed by GWT must be discarded on energetic grounds: The suspected metastable enol

rotamer turns out to be the stable one by a substantial margin. Tunneling calculations based

on a direct dynamics method that includes all molecular vibrations lead to a model in which

the enol–keto reaction occurs in two steps, namely dissociation of the enol-alcohol hydrogen

bond followed by proton tunneling. The nonlinearity of the Arrhenius plot is well reproduced

by the tunneling calculations. The contribution from the dissociation steps of the donor and

acceptor complexes is small. The apparent absence of a direct tunneling contribution of the

undissociated complexes is in line with observations made earlier [4] for phenolic compounds.

Our conclusion that the anomalous temperature dependence of this tunneling reaction

is a solvent effect can be tested experimentally by carrying out the reaction in an aprotic

solvent, if this can be found. Our prediction is that the reaction will then proceed much faster

and show a much weaker temperature dependence, while the curvature of the Arrhenius plots

and the isotope effect remain essentially unaltered.

Appendix: Summary of the AIM/DOIT approach

The instanton formalism is a multidimensional quasiclassical approach to tunneling rate phe-

nomena based on the concept of least action. Here it is applied to a system where tunneling

along the reaction coordinate x is coupled to vibrations y, described by the Hamiltonian

H [x(τ),y(τ)] =
1

2
ẋ2 +

1

2
ẏ2 + U(x,y). (A.1)

The Euclidian action of this system (in imaginary time τ = it; β = 1/kBT )

SE(T ) =
∫ βh̄/2

−βh̄/2
dτH [x(τ),y(τ)] (A.2)

has an extremum, defined by the equation δSE = 0. Two trivial solutions of this equation

correspond to the (quasi)equilibrium configuration and the transition state (TS), the latter

being a saddle point. Below a specific (crossover) temperature Tins, there is another extremal

trajectory, called the instanton (bounce) path, which is also a saddle point. The two saddle

8
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points contribute to the imaginary part of the partition function, which in turn defines

the rate constant of decay of the metastable configuration. The TS contributes a term

proportional to e−U0/kBT , where U0 is the barrier height, and the instanton a term propotional

to e−SI(T ), where SI is the Euclidian action (in units h̄) corresponding to the instanton path.

The rate constant at T < Tins is thus of the form

ktun(T ) = A(T )e−SI(T ), (A.3)

where the prefactor A(T ) represents the effect of trajectories adjacent to the instanton path.

At T → Tins the instanton converges into the TS and the rate is that of an over-the-barrier

transition. At T > Tins the rate can thus be evaluated by standard methods, e.g. by

transition-state theory

kcl(T ) =
kBT

h

ZTS

ZR
e−U0/kBT , (A.4)

where ZTS and ZR are the partition functions of the TS and the reactant, respectively.

If many degrees of freedom affect the transfer, direct evaluation of the instanton trajectory

is not feasible and therefore approximations are necessary. AIM is an approximation scheme

for the evaluation of SI(T ) whereby direct search for the instanton trajectory is avoided.

First, the multidimensional potential-energy surface is generated in a form suitable for the

instanton calculations. It is derived from ab initio calculations of the structure, energy, and

force field of the initial, final, and TS configuration, and formulated in terms of the normal

modes of the TS which is taken as the origin. The mode x with imaginary frequency ω∗ is

the reaction coordinate and the remaining transverse modes y are treated as independent

harmonic oscillators coupled linearly to x. Then the required coupling constants are derived

from the displacements of the modes between the stable configurations and the TS. This

coupling will enhance or suppress tunneling, depending on whether the coupled mode is

symmetric (s) or antisymmetric (a) relative to reflection in the dividing plane x = 0. For

systems with a symmetric double-well potential, the displaced modes are either (s) or (a),

the reaction coordinate being of the latter type. For asymmetric systems, like the one

at hand, the displacement of each mode can be separated into an (s) and (a) component.

Antisymmetric coupling contributes effectively to the Franck-Condon factor of the transition

(or friction) and thus lowers the rate. Symmetric coupling facilitates the transfer through

9
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the lowering of the effective barrier height and width. The instanton action SI(T ) is obtained

based on generalizations of known solution for low-dimensional models, in the form

SI(T ) =
S0
I (T )

1 +
∑

s δs(T )
+ α

∑
a

δa(T ), (A.5)

and the preexponential factor A(T ) is approximated by

A(T ) = ω0/2π, (A.6)

ω0 being the effective frequency of the reaction coordinate in the initial state. In Eq. (A.5)

S0
I (T ) is the instanton action of 1D motion in the vibrationally-adiabatic potential (i.e. the

adiabatic potential with zero-point corrections to the barrier height) and with renormalized

mass meff(x). As seen from Fig. 2, the tunneling potential is strongly asymmetric and

very steep at the point where the tunneling proton exits the barrier; it is therefore treated

as an “absorbing wall”. The action S0
I (T ) is evaluated as the “short” action, i.e. start-

ing from the zero-point energy in the well, which in turn defines the preexponent in the

form of Eq. (A.6). The renormalized mass comprises the effect of (a,s) modes that are

“fast” on the time-scale t∗ ∼ 1/|ω∗| of motion under the barrier, and is of the general form

meff(x) = 1+∆ma+∆msx2 ≥ 1 (in dimensionless units). Coupling to the “slow” (a,s) modes

contributes via the corrections δa,s(T ) and the factor α < 1 describes the modulation of the

Franck-Condon factor by the (s) modes. The effective parameters ω0 and meff(x) and the

corrections δa,s(T ) are expressed analytically in terms of the normal mode frequencies and

displacements, and the evaluation of S0
I (T ) for a given temperature is performed through a

simple numerical integration. The temperature dependence of S0
I (T ) is weak, since it corre-

sponds to thermal excitation of the motion of the high-frequency O-H vibration. The main

temperature dependence of the tunneling rate in Eq. (A.3) with the action from Eq. (A.5) is

thus due to the terms δa,s(T ), as it is related to thermal excitation of relatively low-frequency

modes. The crossover temperature is of the order Tins ∼ |ω∗|/2π, which means that for prac-

tical implementation one needs a smooth link between the low-temperature range of deep

tunneling and the high-temperature range of pure classical transfer. In AIM/DOIT1.2 such

link is provided by representing the overall rate constant in the form

k(T ) = ktun(T ) + kcl(T ), (A.7)

10
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which is the expression used in the main text for the rate constant of the Z-II–keto trans-

formation.

The input parameters for the DOIT1.2 code are standard electronic-structure data and

Hessians of the three stationary configurations: reactant, TS and product. The adiabatic

potential, illustrated in Fig. 2, was calculated as projection onto x of the potential along

the minimum energy path. In the present study the data were obtained at the MPWB1K/6-

31+G(d,p) level of theory; the main parameters are summarized in Table 1. The main

parameters of the AIM/DOIT1.2 calculations are summarized in Table 2. More detail on

the AIM/DOIT1.2 procedure in application to proton transfer in asymmetric potentials can

be found in refs. [5,8,9].
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Table 1: Calculated relative energies (in kcal/mol) of the equilibrium configurations and

(rotational and tunneling) transition states of 2MAP and two 1:1 complexes with (proton-

donor and -acceptor) methanol molecules. ∆EI,II represents the hydrogen bond energy.

Molecule Z-I Z-II keto TS(rot) TS(tun) ∆EI ∆EII

2MAP 3.89 0 -36.64 8.25 7.28 - -

2MAP-dMe -0.57 0 -38.93 4.15 6.47 4.91 4.34

2MAP-aMe 0 -0.98 -38.93 5.69 9.27 4.91 5.89
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Table 2: Main parameters of AIM/DOIT1.2 related to the evaluation of the rate constant

k2(T ) of proton-transfer between Z-II and the keto form (see Appendix).

Parameter 2MAP 2MAP-d1

Vibrationally-adiabatic barrier height 7.92 kcal/mol 7.85 kcal/mol

Displacement Donor-TS 0.692 Å.amu1/2 0.870 Å.amu1/2

Displacement TS-Acceptor 1.014 Å.amu1/2 1.393 Å.amu1/2

Effective frequency of the reactant well 2484.8 cm−1 1806.1 cm−1

Effective frequency of the product well 1475.9 cm−1 1133.0 cm−1

Imaginary frequency |ω⋆| 1403.7 cm−1 1073.3 cm−1

1D action S0
1D(T = 0/T = 300K) 8.782/7.786 14.895/10.308

Parameter of enhancing coupling
∑

s δs(T = 0/T = 300K) 0.251/0.347 0.208/0.340

Parameter of suppressing coupling α
∑

a δa(T = 0/T = 300K) 9.933/3.603 9.934/3.522

Effective mass of tunneling meff(x) 1.12+3.63x2 1.16+3.71x2

k2,tun(T = 0 K) 3.23.106 s−1 1.16.104 s−1

k2,tun(T = 300 K) 7.70.109 s−1 9.86.108 s−1

k2,cl(T = 300 K) 1.30.109 s−1 2.55.108 s−1
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Figure captions

1. Structures of the keto, the two Z-enol forms and two transition states (between Z-

I−Z-II and between Z-II−keto) of 2MAP. Some distances (in Å) associated to the proton

transfer are indicated.

2. The adiabatic potential for the Z-II−keto transition used in the AIM/DOIT calcu-

lations, shown as a function of the reaction coordinate, which is the mode with imaginary

frequency at the transition-state configuration in our approach. The potential is scaled by

the barrier height listed in Table 1 and the coordinate is scaled by the displacement between

the donor and the transition-state configuration listed in Table 2. The solid/broken lines

correspond to H/D transfer.

3. Arrhenius plot of the Z-II−keto transition rate constants kH,D(T ). The two thick

solid lines in the center are the calculated results from Eq. (1) and the solid and open circles

are the experimental results for 2MAP and 2MAP-d1, respectively, as reported by GWT [3].

The two thin lines at the top represent the calculated proton and deuteron rate constants

kH
2 (T ) and kD

2 (T ). The broken line at the bottom represents the statistical factor to k2(T ),

given by Eq. (1). The two thick dot-dashed lines represent the rates from the exponential

fit k(T ) = k2(T ) exp(−5.55/kBT ).

4. Structures of the two Z-II-methanol complexes in the equilibrium configuration and

in the Z-II−keto transition state: (a) the hydrogen-donor complex and (b) the hydrogen-

acceptor complex. Some distances (in Å) associated to the proton transfer are indicated.
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