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Abstract

A first-order well-balanced finite volume scheme for the solution of a multi-component
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and gravity and viscosity forces, coupled with the mass conservation equations of
species. We propose a segregated scheme in which the Euler and species equations
are solved separately. This methodology leads to a flux vector in the Euler equa-
tions which depends not only on the conservative variables but also on time and
space variables through the gas composition. This fact makes necessary to add
some artificial viscosity to the usual numerical flux which is done by introducing an
additional source term. Besides, in order to preserve the positivity of the species
concentrations, we discretize the flux in the mass conservation equations for species,
in accordance with the upwind discretization of the total mass conservation equation
in the Euler system. Moreover, as proposed in a previous reference by the authors,
[5], the discretizations of the flux and source terms are made so as to ensure that the
full scheme is well-balanced. Numerical tests including both academic and real gas
network problems are solved, showing the performance of the proposed methodology.
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1. Introduction

Mathematical modelling of gas flow in pipelines is an important subject in plan-
ning and operating gas transportation networks (see reference books, [24] and [30]).
Many papers and computer programs on the subject deal with the case of steady
state, based on which network optimization problems are considered. Most of them
aim at saving operation costs related to the self-consumption of gas in the compres-
sion stations, which are needed to compensate the pressure loss due to pipe wall
friction (see [1], [4], [28] and [35]).

In the last years several papers have been devoted to transient models for the case
where the gas flowing in the network is homogeneous. Let us mention [8], [18] and [25]
where isothermal or isentropic flow are assumed. However, in real networks neither
temperature nor entropy remain constant because, first, there is heat exchange with
the environment (see [12] and [31]) and second, there is viscous dissipation in the
boundary layer near the wall of the pipelines. These features complicate the model
because they make necessary to use the full Euler system of equations and to include
two respective source terms. Moreover, in real networks it is quite common that
the height of the pipeline with respect to a reference level changes according to the
topography. This fact leads to another source term in the Euler equations similar,
in some sense, to the one corresponding to bathymetry in variable-bottom elevation
shallow water flow models.

Summarizing, the full model for real gas flow in transportation networks con-
sists of a non-linear system of hyperbolic partial differential equations with several
source terms. As it is well-known, the numerical solution of this kind of systems
by finite volume discretizations and approximate Riemann solvers requires a non-
trivial treatment of sources, in order to get well-balanced schemes avoiding spurious
oscillations.

During the last two decades, a large number of papers have been devoted to derive
well-balanced schemes for non-linear balance laws with source terms. Most of them
concern the shallow water equations (see [20], [7], [9] and references therein). For
Euler equations with gravity the contributions are more recent, being the work by
Cargo and LeRoux [10] considered a pioneering paper (see also [13]). Other relevant
articles related to this topic are [23], [17] and [14]. The case of gas flow in one single
pipeline on non-flat topography, also including friction and heat exchange source
terms, has been considered in [5]. Moreover, passing from a pipeline to a network is
not an easy task because the treatment of junctions is not trivial. Let us mention
some articles devoted to this subject: [21], [2], [3], [16], [22], [32], [29] and [6]. In
the last one, a method for numerically handling pipe junctions has been introduced
based on modelling them as 2D containers.
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In all the above references the gas is homogeneous in composition. However, in
real gas networks, several gases from different origins are injected and subsequently
mixed at network junctions. This makes the modelling problem more difficult be-
cause it is needed to compute the gas composition at any network point and at any
time. More important, as the equation of state involve the gas composition, in prin-
ciple Euler equations are coupled with the mass conservation equations for species.
Nevertheless, in the present paper we propose a segregated scheme in which the Euler
and the species equations are solved separately. By doing so we have to face two new
difficulties. Firstly, we have to solve an Euler equation system involving a flux vector
that depends not only on the conservative variables but also on the time and space
variables through the gas composition. Secondly, when solving the mass conservation
equations of species to determine the gas composition, we need to preserve positivity
of concentrations. Dealing with the first problem makes necessary to add some artifi-
cial viscosity to the numerical flux, which is done in the present paper by introducing
an additional source term. Regarding the second one, in order to preserve positivity
of species concentrations, following [27] (see also [19]), we discretize the flux in the
mass conservation equations in accordance with the upwind discretization of the flux
we have made in the total mass conservation equation. Moreover, as proposed in a
previous reference by the authors, [5], the discretization of all the source terms is
upwinded so as to ensure that the full scheme is well-balanced.

The paper is organized as follows: in Section 2 we recall the mathematical model
for multi-component gas flow in a pipe, in the general case of real gases, viscous fric-
tion, non-flat topography and heat exchange. In Section 3 the numerical methodology
is developed. Section 4 is devoted to present some numerical tests. It is followed by
some conclusions and an Appendix containing further details on the mathematical
model.

2. Mathematical modelling

The starting mathematical model consists of Navier-Stokes equations for com-
pressible flows. Since the length of the pipe is much larger than its diameter, a
one-dimensional model can be used (see AppendixA for further details). In order
to write this model in a compact way, we introduce the following notations for the
conservative variables: W1 = ρ, mass density (kg/m3), W2 = ρv, mass flux or linear
momentum density (kg/m2s), W3 = ρE, total energy density (J/m3), ρk = ρYk,
partial density of the k-th species (kg/m3), where Yk denotes its the mass fraction.
Notice that W1 =

∑Ne

k=1 ρk. Let us denote W := (W1,W2,W3)t, ρ = (ρ1, · · · , ρNe)
t

and Y = (Y1, · · · , YNe)
t, being Ne the number of species. Then, ρ = ρY = W1Y .
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By using these notations, the balance equations given in AppendixA can be
rewritten in the compact form:

∂W

∂t
(x, t) +

∂FW

∂x
(W(x, t),ρ(x, t)) =

3∑
j=1

Gj(x, t,W(x, t),ρ(x, t)), (2.1)

∂ρ

∂t
(x, t) +

∂Fρ

∂x
(W(x, t),ρ(x, t)) = 0, (2.2)

where the flux vectors are

FW (W,ρ) =


W2

W 2
2

W1

+ p̂(W,ρ)(
W3 + p̂(W,ρ)

)W2

W1

 , (2.3)

Fρ(W,ρ) =
W2

W1

ρ, (2.4)

and the source terms in (2.1) are

G1(x, t,W,ρ) =


0

− λ

2D

W2|W2|
W1

0

 , G2(x, t,W,ρ) =

 0
−gW1h

′(x)
−gW2h

′(x)

 ,

G3(x, t,W,ρ) =

 0
0

4β
D

(
θext(x, t)− θ̂(W,ρ)

)
 .

Actually, G1 and G2 are independent of variables t and ρ and G1 is also independent
of x.

By p̂ and θ̂ we have denoted the mappings giving pressure and temperature from
the conservative variables through the state equations (A.7), (A.8). Similarly, we will
denote by θ̂ the mapping giving the temperature from the conservative variables. Let
us notice that the couple (p, θ) with p = p̂(W,ρ) and θ = θ̂(W,ρ) is a solution of
the following non-linear system of numerical equations:
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p =

(
Ne∑
k=1

ρk
Mk

)
Rθ, (2.5)

Ne∑
k=1

ρk

∫ θ

θref

ĉvk(s) ds = W3 −
1

2

W 2
2

W1

−W1ê(θref ). (2.6)

Remark 2.1. Let us notice that, since W1 =
∑Ne

k=1 ρk then it is enough to solve
Ne − 1 equations for the species in (2.2). Thus, the total number of PDEs is 3 +
Ne − 1. However, for the sake of simplicity in writing, in what follows we will not
take advantage of that.

Numerical solution of the non-linear system of partial differential equations (2.1),
(2.2) together with the algebraic equations (2.5) and (2.6), for the case without
sources, i.e., Gj ≡ 0, j = 1, 2, 3, has been addressed in many papers. Let us mention,
for instance, [27] and [15]. Generally speaking, the system can be solved as a fully
coupled hyperbolic system. In this case, the upwind discretization of both flux terms
is done simultaneously which becomes difficult and costly because it is necessary
to compute eigenvalues and eigenvectors of Jacobian matrices of order 3 + Ne. An
alternative approach consists in using a segregated scheme, i.e., for each time step W
and ρ are updated by solving “independently” equations (2.1) and (2.2). By doing
so we could adapt a computer code written, in principle, for the standard Euler
equations, to multicomponent gas flow. Therefore, a segregated scheme should be
more appealing. However, since the partial densities ρk are not conservative variables
for (2.1), neither the Wks for (2.2), a naïve application of standard upwind schemes
leads to some troubles related to strong inaccuracies in the first block of conservative
variables, i.e., in W, and to lacks of positivity in the second block, i.e., in the vector of
partial densities ρ. In this paper we propose methods to avoid these two drawbacks.

2.1. Initial conditions

W(x, 0) = W0(x), ρ(x, 0) = ρ0(x), x ∈ (0,L).

In practice, we know initial values for density, velocity, temperature and mass
fractions of the species at each cross-section of the pipeline to be denoted by ρ0(x) re-
spectively, v0(x), θ0(x) and Yk0(x), k = 1, · · · , Ne. Then, W10(x) = ρ0(x), W20(x) =
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ρ0(x)v0(x), and W30(x) and ρk0, k = 1, · · · , Ne, can be computed by using (A.6) and
(A.8):

ρk0(x) = ρ0(x)Yk0(x), k = 1, · · · , Ne,

W30(x) = ρ0(x)E0(x) = ρ0(x)ê(θref ) +
Ne∑
k=1

ρk0(x)

∫ θ

θref

ĉvk(s) ds+
1

2
ρ0(x)(v0(x))2.

2.2. Boundary conditions
They can be of different kind (they are written at the left end of the pipe and

are similar for the right end):

• Inflow (W2(0, t) > 0): W2(0, t) = qL(t), θ(0, t) = θL(t), Yk(0, t) = Yk,L(t), k =
1, · · · , Ne,

• Outflow (W2(0, t) < 0): W2(0, t) = qL(t),

• Wall: W2(0, t) = 0,

• Free exit:
∂Wi

∂x
= 0, i = 1, 2, 3,

∂ρk
∂x

= 0, k = 1, · · · , Ne,

• Inlet/Outlet pressure: p(0, t) = pL(t); besides, θ(0, t) = θL(t), Yk(0, t) =
Yk,L(t), k = 1, · · · , Ne, if W2(0, t) > 0,

where qL(t), θL(t), pL(t) and Yk,L(t), k = 1, · · · , Ne, are the (given) mass flux,
temperature, pressure and mass fractions of species at x = 0 and time t, respectively.

3. Numerical solution

In this section we introduce a numerical method for solving the above gas flow
model. The problem to be solved is a system of non-linear hyperbolic partial dif-
ferential equations with source terms. Let us notice that if Gk ≡ 0, k = 1, 2, 3
and Y is constant (i.e., the gas composition is time-independent and the same along
the whole pipe) then (2.1) is nothing but the standard one-dimensional compressible
Euler equations. For their numerical solution, the finite volume method combined
with approximate Riemann solvers are well established techniques from the eighties
last century (see, for instance, [34]). However, if source terms are present the subject
is more tricky because a naïve discretization of these terms, e.g., by a centred for-
mula, does not always work properly. This fact was pointed out in [7] for the shallow
water equations with variable-bed elevation (an important example of hyperbolic
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system with source term) where a general theory for source term discretization was
introduced. Subsequently, in the last two decades, many research papers have been
written on the subject leading to the theory of well-balanced schemes for general
nonconservative hyperbolic systems (see, for example, [10], [9] or [13]). In a previous
paper by the authors, [5], the methodology from [7] has been applied to the Euler
equations with sources for a homogeneous gas. The main goal of the present work is
to extend the numerical methods from [5] to a multi-component heterogeneous gas.
We propose a segregated scheme in which the Euler and species equations are solved
separately.

Let us notice first that systems (2.1) and (2.2) are coupled because pressure and
temperature in the former depends on gas composition, that is, on the vector of
partial densities ρ which are the conservative variables in the latter. In its turn,
the velocity (which is given by W2/W1) appears in the flux term (2.4) of the second
system (2.2). In this paper we are interested in segregated schemes, i.e., in solving
the two systems “independently”. Thus, when solving (2.1) we must assume that ρ
is a given function of (x, t) and, similarly, when solving (2.2) we must assume that
W is a given function of (x, t). This fact leads us to write the above systems in a
slightly different form, for the sake of clarity. For this purpose, let us introduce the
following vector functions FW and Fρ associated, respectively, to FW and Fρ:

FW (x, t,W) := FW (W,ρ(x, t)), (3.7)
Fρ
(
x, t,ρ

)
:= Fρ

(
W(x, t),ρ

)
. (3.8)

Accordingly, for the source terms in (2.1) we define the vector function G by

Gj(x, t,W) := Gj(x, t,W,ρ(x, t)), j = 1, 2, 3. (3.9)

Then equations (2.1) and (2.2) can be rewritten as follows:

∂W

∂t
(x, t) +

dFW

dx
(x, t,W(x, t)) =

3∑
j=1

Gj(x, t,W), (3.10)

∂ρ

∂t
(x, t) +

dF ρ

dx
(x, t,ρ(x, t)) = 0, (3.11)

where
dFW

dx
(x, t,W(x, t)) :=

∂FW

∂x
(x, t,W(x, t)) +

∂FW

∂W
(x, t,W(x, t))

∂W

∂x
(x, t), (3.12)

dFρ

dx
(x, t,ρ(x, t)) :=

∂Fρ

∂x
(x, t,ρ(x, t)) +

∂Fρ

∂ρ
(x, t,ρ(x, t))

∂ρ

∂x
(x, t). (3.13)
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3.1. The Euler stage. A first segregated scheme (E1)
Let us consider a finite volume mesh of interval [0,L] = [x0, xN ]. The i-th interior

finite volume is denoted by Ci = (xi−1/2, xi+1/2), where xi−1/2 = 1
2
(xi−1 + xi), i =

1, · · · , N, and their lengths are Ai = xi+ 1
2
− xi− 1

2
, i = 1, · · · , N − 1. For boundary

nodes x0 and xN , we define C0 = [x0, x0+1/2), CN = (xN−1/2, xN ] so their lengths are
A0 = x 1

2
− x0 and AN = xN − xN− 1

2
(see Figure 1). For simplicity, we will consider

a uniform mesh and therefore ∆x = L/N, xi = i∆x, Ai = ∆x, i = 1, N − 1 and
A0 = AN = 1

2
∆x.

x0
x0+ 1

2

C0
� -

xN
xN− 1

2

CN� -

xi−1 xi xi+1
xi− 1

2
xi+ 1

2

Ci� -

Figure 1: Finite volume grid: interior finite volume Ci. Boundary finite volumes C0 and CN .

Firstly, let us consider (3.10). By integrating in Ci, i = 1, · · · , N − 1, we get

d

dt

∫
Ci

W(x, t) dx+ FW (xi+1/2, t,W(xi+1/2, t))− FW (xi−1/2, t,W(xi−1/2, t))

=
3∑
j=1

∫
Ci

Gj(x, t,W(x, t)) dx. (3.14)

Then we approximate this equality to introduce a discrete problem. The approx-
imate solution is taken constant on each finite volume Ci where its value at time
t is denoted by Wi(t). Since at the boundaries of the finite volumes the values of
the approximate solution are not well-defined then we replace the flux there by a
so-called numerical flux ΦW . More precisely,

FW (xi−1/2, t,W(xi−1/2, t)) ≈ ΦW (xi−1, xi, t,Wi−1(t),Wi(t)), i = 1, · · · , N − 1.

Let us notice that the flux approximation at point xi−1/2 only involves the approx-
imate values of the conservative variables on the two finite volumes sharing this
boundary point. Several numerical fluxes are proposed in the literature (see, for
instance, [34]). In this paper we have chosen the Q-scheme of van Leer for which
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ΦW is defined by (subscripts L and R stand for left and right):

ΦW (xL, xR, t,WL,WR) =
1

2

(
FW (xL, t,WL) + FW (xR, t,WR)

)
− 1

2
|QW (xL, xR, t,WL,WR)|(WR −WL), (3.15)

where

QW (xL, xR, t,WL,WR) =
∂FW

∂W

(1

2
(xL + xR), t,

1

2
(WL + WR)

)
. (3.16)

Let us recall that the absolute value of a diagonalizable matrix Q is defined as
follows: let Q = XΛX−1 where Λ is the diagonal matrix of the eigenvalues of Q.
Then |Q| = X|Λ|X−1, where |Λ| is the diagonal matrix of the absolute values of the
eigenvalues of Q and X the matrix of eigenvectors.

In order to make a full discretization, a mesh of the time interval is introduced:
tn = n∆t, n = 0, · · · ,M . Let us denote by Wn

i the cell average approximation of
W(x, tn) in the i-th cell, Ci, given by the explicit Euler numerical scheme

Wn+1
i −Wn

i

∆t
+

1

∆x

(
ΦW (xi, xi+1, tn,W

n
i ,W

n
i+1)−ΦW (xi−1, xi, tn,W

n
i−1,W

n
i )
)

=
3∑
j=1

Gn
j,i, (3.17)

where Gn
j,i denotes an approximation of

1

∆x

∫
Ci

Gj(x, tn,W(x, tn)) dx

to be defined below. For interior nodes,

Gn
j,i := Ψj(xi−1, xi, xi+1, tn,W

n
i−1,W

n
i ,W

n
i+1), j = 1, 2, 3, (3.18)

for some mappings Ψj. In order to get a well-balanced scheme, they have to be
defined in accordance with the numerical flux ΦW . For this purpose we employ the
general methodology introduced in [7]. In the present case, as we have taken the
Q-scheme of van Leer, we define

Ψj(xi−1, xi, xi+1, tn,W
n
i−1,W

n
i ,W

n
i+1) := ΨL

j (xi−1, xi, tn,W
n
i−1,W

n
i )

+ΨR
j (xi, xi+1, tn,W

n
i ,W

n
i+1), j = 1, 2, 3, (3.19)
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with

ΨL
j (xi−1, xi, tn,W

n
i−1,W

n
i ) :=

1

2

[
I + |QWn

i−1/2|(QWn
i−1/2)−1

]
Ĝj(xi−1, xi, tn,W

n
i−1,W

n
i ),

(3.20)

ΨR
j (xi, xi+1, tn,W

n
i ,W

n
i+1) =

1

2

[
I − |QWn

i+1/2|(QWn
i+1/2)−1

]
Ĝj(xi, xi+1, tn,W

n
i ,W

n
i+1),

(3.21)
where

QWn
i−1/2 = QW (xi−1, xi, tn,W

n
i−1,W

n
i ), (3.22)

QWn
i+1/2 = QW (xi, xi+1, tn,W

n
i ,W

n
i+1), (3.23)

Ĝj(x, y, t,UL,UR) ≈ Gj

(
x+ y

2
, t,

1

2
(UL + UR)

)
, j = 1, 2, 3. (3.24)

For boundary nodes, according to the definition of C0 and CN , we take

Gn
j0 := ΨR

j (x0, x1, tn,W
n
0 ,W

n
1 )

and
Gn
jN := ΨL

j (xN−1, xN , tn,W
n
N−1,W

n
N).

The well-balanced property of the above scheme has been shown in [5] for the
case of a homogeneous gas. Moreover, from the numerical results for static tests
included in that paper one can deduce that the best choice of the average mass
density involved in Gj is the logarithmic average introduced in [26]:

ρ̂(WL,WR) =


W1R −W1L

ln(W1R)− ln(W1L)
if W1R 6= W1L,

W1L if W1R = W1L.
(3.25)

However, the arithmetic average also gives good results, mainly for non-static cases.

3.2. The Euler stage. A new segregated scheme (E2)
As it is is well known, the above numerical scheme (3.17) does not work prop-

erly in the case of mixtures of gases. In order to explain its bad behaviour we
notice that the first term of the numerical flux ΦW defined in (3.15) leads to a cen-

tred scheme of the whole flux term
dFW

dx
(x, t,W). In principle, the second term,

i.e., −1
2
|QW |(WR −WL) is the numerical viscosity needed for the stability of the

scheme. Let us recall that adding this term is “equivalent” to introduce upwind-
ing. Now, the important remark is that it has been built with the Jacobian matrix
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∂FW

∂W
(x, t,W(x, t)) so it only adds artificial viscosity (equivalently, upwinding) to the

discretization of the second term in (3.12), namely, of
∂FW

∂W
(x, t,W(x, t))

∂W

∂x
(x, t)

but not to the discretization of the first one, i.e., of
∂FW

∂x
(x, t,W(x, t)). This lack of

upwinding causes the observed inaccuracies of the scheme.
Therefore, according to the previous analysis, the remedy to the bad behaviour

of (3.17) should consist in adding a new artificial viscosity term to get an upwind

discretization of
∂FW

∂x
(x, t,W(x, t)).

We propose to define this viscosity term as the difference between an upwind and
a centred discretization of this partial derivative. This is the underlying idea in the
discretization we propose below.

Firstly, by subtracting term
∫
Ci

∂FW

∂x
(x, t,W(x, t)) dx from the two sides of (3.14)

we get,

d

dt

∫
Ci

W(x, t) dx+ FW (xi+1/2, t,W(xi+1/2, t))− FW (xi−1/2, t,W(xi−1/2, t))

−
∫
Ci

V(x, t,W(x, t)) dx =
4∑
j=1

∫
Ci

Gj(x, t,W(x, t)) dx,

where we have used the following notations:

V(x, t,W) :=
∂FW

∂x
(x, t,W) and G4(x, t,W) := −∂FW

∂x
(x, t,W). (3.26)

Let us denote by Wn
i the approximation of W(xi, tn) given by the explicit Euler

method

Wn+1
i −Wn

i

∆t
+

1

∆x

{
ΦW (xi, xi+1, tn,W

n
i ,W

n
i+1)−ΦW (xi−1, xi, tn,W

n
i−1,W

n
i )
}

− Vn
i =

4∑
j=1

Gn
j,i, (3.27)

for n = 0, · · · ,M −1, where Vn
i := 1

2

(
VLn
i + VRn

i

)
denotes a centred approximation

of

2

∆x

∫ xi

x
i− 1

2

V(x, tn,W
n) dx+

2

∆x

∫ x
i+1

2

xi

V(x, tn,W
n) dx,
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(see below) and Gn
4,i denotes an upwind approximation of 1

∆x

∫
Ci

G4(x, tn,W
n) dx.

Let us compute V(x, t,W) for a mixture of calorically perfect gases. Firstly, the
physical flux in terms of the conservative variables can be rewritten as

FW (x, t,W) =


W2

(γ(x, t)− 1)W3 +
(3− γ(x, t))

2

W 2
2

W1

γ(x, t)
W2W3

W1

+ (1− γ(x, t))
W 3

2

2W 2
1

 ,

where γ is the ratio of specific heats:

γ(x, t) :=
cp(x, t)

cv(x, t)
=

∑Ne

k=1 Yk(x, t)cpk∑Ne

k=1 Yk(x, t)cvk
=

∑Ne

k=1 ρk(x, t)cpk∑Ne

k=1 ρk(x, t)cvk
.

Then, V is given by

V(x, t,W) :=
∂FW

∂x
(x, t,W) =

∂γ

∂x
(x, t)


0

W3 −
W 2

2

2W1
W2

W1

(
W3 −

W 2
2

2W1

)
 .

and we choose VLn
i and VRn

i as follows (recall that the first component of V is null):

V Ln
2,i =

γni − γni−1/2

∆x

(
W n

3,i −
(W n

2,i)
2

2W n
1,i

)
+
γni−1/2 − γni−1

∆x

(
W n

3,i−1 −
(
W n

2,i−1

)2

2W n
1,i−1

)
,

V Rn
2,i =

γni+1 − γni+1/2

∆x

(
W n

3,i+1 −
(
W n

2,i+1

)2

2W n
1,i+1

)

+
γni+1/2 − γni

∆x

(
W n

3i −
(W n

2,i)
2

2W n
1,i

)
,
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V Ln
3,i =

γni − γni−1/2

∆x

(
W n

3,i −
(W n

2,i)
2

2W n
1,i

)
W n

2,i

W n
1,i

+
γni−1/2 − γni−1

∆x

(
W n

3,i−1 −
(
W n

2,i−1

)2

2W n
1,i−1

)
W n

2,i−1

W n
1,i−1

,

V Rn
3,i =

γni+1 − γni+1/2

∆x

(
W n

3,i+1 −
(
W n

2,i+1

)2

2W n
1,i+1

)
W n

2,i+1

W n
1,i+1

+
γni+1/2 − γni

∆x

(
W n

3,i −
(W n

2,i)
2

2W n
1,i

)
W n

2,i

W n
1,i

,

with either

γni−1/2 =
1

2
(γ(xi−1, tn) + γ(xi, tn)) and γni+1/2 =

1

2
(γ(xi, tn) + γ(xi+1, tn)) (3.28)

or
γni−1/2 = γ

(
xi−1 + xi

2
, tn

)
and γni+1/2 = γ

(
xi + xi+1

2
, tn

)
. (3.29)

Finally, Gn
4,i is defined by (3.18) with (3.19), (3.20), (3.21) and (3.24) for j = 4.

In summary, the scheme given by (3.27) is

Wn+1
i = Wn

i −
∆t

∆x

{
ΦW (xi, xi+1, tn,W

n
i ,W

n
i+1)−ΦW (xi−1, xi, tn,W

n
i−1,W

n
i )
}

+
∆t

2

(
VLn
i + VRn

i

)
+ ∆t

4∑
j=1

(
ΨL
j (xi−1, xi, tn,W

n
i−1,W

n
i ) + ΨR

j (xi, xi+1, tn,W
n
i ,W

n
i+1)
)
.

(3.30)

with

ΨL
4 (xi−1, xi, tn,W

n
i−1,W

n
i ) =

1

2

[
I + |QWn

i−1/2|(QWn
i−1/2)−1

] (
−VLn

i

)
, (3.31)

ΨR
4 (xi, xi+1, tn,W

n
i ,W

n
i+1) =

1

2

[
I − |QWn

i+1/2|(QWn
i+1/2)−1

] (
−VRn

i

)
, (3.32)

where QWn
i−1/2 and QWn

i+1/2 are defined in (3.22) and (3.23), respectively. By replacing

13



in (3.30) we get

Wn+1
i = Wn

i −
∆t

∆x

{
ΦW (xi, xi+1, tn,W

n
i ,W

n
i+1)−ΦW (xi−1, xi, tn,W

n
i−1,W

n
i )
}

−∆t

2
|QWn

i−1/2|(QWn
i−1/2)−1VLn

i +
∆t

2
|QWn

i+1/2|(QW,ni+1/2)−1VRn
i

+∆t
3∑
j=1

(
ΨL
j (xi−1, xi, tn,W

n
i−1,W

n
i ) + ΨR

j (xi, xi+1, tn,W
n
i ,W

n
i+1)
)
. (3.33)

Thus, as it has been mentioned, this scheme is equivalent to introduce an additional
numerical viscosity into the scheme (3.17) in order to improve its stability properties,
namely, the terms

−∆t

2
|QWn

i−1/2|(QWn
i−1/2)−1VLn

i +
∆t

2
|QWn

i+1/2|(QWn
i+1/2)−1VRn

i .

3.3. The gas composition stage. A first segregated scheme (C1)
A similar problem to the one analyzed above also arises in solving the second block

of equations, i.e. (3.11), but unlike the Euler block they do not include any source
term. For upwind dicretization the numerical flux is also defined by the Q-scheme
of van Leer, that is,

Φρ(xL, xR, t,ρL,ρR) =
1

2

(
Fρ(xL, t,ρL) + Fρ(xR, t,ρR)

)
− 1

2
|Qρ(xL, xR, t,ρL,ρR)|(ρR − ρL), (3.34)

where

Qρ(xL, xR, t,ρL,ρR) :=
∂Fρ

∂ρ

(1

2
(xL + xR), t,

1

2
(ρL + ρR)

)
= v
(1

2
(xL + xR), t

)
I,

(3.35)
and I is the identity matrix. Hence,

Φρ(xL, xR, t,ρL,ρR) =
1

2

(
v(xL, t)ρL + v(xR, t)ρR

)
− 1

2

∣∣∣∣v(1

2
(xL + xR), t

)∣∣∣∣ (ρR − ρL),

and the corresponding scheme is

ρn+1
i − ρni

∆t
+

1

∆x

(
Φρ(xi, xi+1, tn,ρ

n
i ,ρ

n
i+1)−Φρ(xi−1, xi, tn,ρ

n
i−1,ρ

n
i )
)

= 0. (3.36)

The drawback of this scheme is that it does not satisfy the maximum principle so
the discrete partial densities ρnk,i can be negative. In order to avoid this inconvenient
two different schemes are introduced below.
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3.4. The gas composition stage. New segregated schemes
We want to apply the same methodology as for the Euler stage. Let us recall

that the physical flux term consists of two parts (see (3.13)):

dF ρ

dx
(x, t,ρ(x, t)) =

∂Fρ

∂x
(x, t,ρ(x, t)) +

∂Fρ

∂ρ
(x, t,ρ(x, t))

∂ρ

∂x
(x, t)

=
∂v

∂x
(x, t)ρ(x, t) + v(x, t)

∂ρ

∂x
(x, t),

but in scheme (3.36) we are only upwinding the second one.

3.4.1. The second scheme (C2)
This scheme relies upon the same ideas as those used for the Euler step. Firstly,

we integrate (3.11) in Ci:

d

dt

∫
Ci

ρ(x, t) dx+ Fρ(xi+1/2, t,ρ(xi+1/2, t))− Fρ(xi−1/2, t,ρ(xi−1/2, t)) = 0.

Then we subtract from both sides the term∫
Ci

∂Fρ

∂x
(x, t,ρ(x, t)) dx =

∫
Ci

∂v

∂x
(x, t)ρ(x, t) dx.

We get,

d

dt

∫
Ci

ρ(x, t) dx+ Fρ(xi+1/2, t,ρ(xi+1/2, t))− Fρ(xi−1/2, t,ρ(xi−1/2, t))

−
∫
Ci

R(x, t,ρ(x, t)) dx =

∫
Ci

G5

(
x, t,ρ(x, t)

)
dx, (3.37)

where, for the sake of simplicity, we have used the notations

R(x, t,ρ) :=
∂v

∂x
(x, t)ρ and G5(x, t,ρ) := −∂v

∂x
(x, t)ρ.

Then, we try the following full discretized scheme:

ρn+1
i − ρni

∆t
+

1

∆x

{
Φρ(xi, xi+1, tn,ρ

n
i ,ρ

n
i+1)−Φρ(xi−1, xi, tn,ρ

n
i−1,ρ

n
i )
}

−Rn
i = Gn

5,i, (3.38)
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where Φρ has been defined in (3.34), Rn
i := 1

2

(
RLn
i + RRn

i

)
denotes a centred ap-

proximation of

2

∆x

∫ xi

x
i− 1

2

R(x, tn,ρ(x, tn)) dx+
2

∆x

∫ x
i+1

2

xi

R(x, tn,ρ(x, tn)) dx,

and Gn
5,i denotes the upwind approximation of 1

∆x

∫
Ci

G5(x, tn,ρ
n) dx defined by

(3.18) with (3.19), (3.20), (3.21) and (3.24) for j = 5. In what follows we develop the
above calculations to get a more intelligible form of the numerical scheme. For this
purpose we first recall that the numerical flux of the Q-scheme of van Leer (3.34) is
given by

Φρ(xi−1, xi, tn,ρ
n
i−1,ρ

n
i ) =

1

2

(
vni−1ρ

n
i−1 + vni ρ

n
i

)
− 1

2
|vni−1/2|(ρni − ρni−1),(3.39)

Φρ(xi, xi+1, tn,ρ
n
i ,ρ

n
i+1) =

1

2

(
vni ρ

n
i + vni+1ρ

n
i+1

)
− 1

2
|vni+1/2|(ρni+1 − ρni ),(3.40)

and for the corresponding discretization of the source term Gn
5,i we have

ΨL
5 (xi−1, xi, tn,ρ

n
i−1,ρ

n
i ) = −1

2

(
I +
|vni−1/2|
vni−1/2

I
)

RLn
i , (3.41)

ΨR
5 (xi, xi+1, tn,ρ

n
i ,ρ

n
i+1) = −1

2

(
I −
|vni+1/2|
vni+1/2

I
)

RRn
i . (3.42)

Moreover, we choose the following expressions:

RLn
i =

vni − vni−1/2

∆x
ρni +

vni−1/2 − vni−1

∆x
ρni−1, (3.43)

RRn
i =

vni+1 − vni+1/2

∆x
ρni+1 +

vni+1/2 − vni
∆x

ρni . (3.44)

This scheme is fully independent of the one proposed for the Euler stage. It only
considers the velocity computed at that stage. Consequently, the approximation of
partial densities ρ(xi, tn) is quite different from the one used to approximate the total
density W1(xi, tn). This fact provokes that the physical relation W1 =

∑Ne

k=1 ρk is
not satisfied. Let us confirm this drawback by analysing a particular case: assuming
that vni−1/2 > 0 and vni+1/2 > 0 we will prove that the previous identity does not hold.
Indeed, in this case, after some algebra scheme (3.38) becomes

ρn+1
i = ρni −

∆t

∆x

(
vni ρ

n
i − vni−1ρ

n
i−1

)
. (3.45)
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Let us assume that, at time tn, W n
1,i =

∑Ne

k=1 ρ
n
k,i. Then we have

Ne∑
k=1

ρn+1
k,i =

Ne∑
k=1

ρnk,i −
∆t

∆x

(
vni

Ne∑
k=1

ρnk,i − vni−1

Ne∑
k=1

ρnk,i−1

)

= W n
1,i −

∆t

∆x

(
vniW

n
1,i − vni−1W

n
1,i−1

)
. (3.46)

Moreover, the expression of W n+1
1,i is given by (3.27)

W n+1
1,i = W n

1,i −
∆t

∆x

(
ηRni − ηLni

)
, (3.47)

where ηLni and ηRni are obtained from the numerical flux of the total mass conservation
law in the Euler system, corrected by the upwind approximation of the source terms
(see §3.1). More precisely,

ηLni := φW1
(
xi−1, xi, tn,W

n
i−1,W

n
i

)
+ ∆x

4∑
j=1

ΨL
j,1

(
xi−1, xi, tn,W

n
i−1,W

n
i

)
, (3.48)

ηRni := φW1
(
xi, xi+1, tn,W

n
i ,W

n
i+1

)
−∆x

4∑
j=1

ΨR
j,1

(
xi, xi+1, tn,W

n
i ,W

n
i+1

)
. (3.49)

Let us recall that φW1 denotes the first component of the numerical flux defined by
(3.15)while ΨL

j,1 and ΨR
j,1 are the first components of the numerical sources defined by

(3.20) and (3.21), respectively. Hence, it is straightforward to check that if vni−1/2 > 0

and vni+1/2 > 0, the right-hand side of (3.46) is not equal to W n+1
1,i given by (3.47).

3.4.2. The third scheme (C3)
In this section we introduce a scheme that satisfies W1 =

∑Ne

k=1 ρk at time tn+1,
assuming that it is satisfied at time tn.

For this purpose we follow the same procedure introduced in 3.4.1 but we will
“couple” the composition stage to the Euler stage by replacing the velocities in the
numerical flux of the former with the ones obtained from (3.48) and (3.49). In other
words, we change the numerical fluxes of the Q-scheme of van Leer to introduce
information relative to the numerical flux used to compute W n+1

1,i in scheme (3.27).
More precisely, we define the new left and right numerical fluxes of the Q-scheme of
van Leer by

Φρ
L(xi−1, xi, tn,ρ

n
i−1,ρ

n
i ) :=

1

2

(
ṽnL,i−1ρ

n
i−1 + ṽnL,iρ

n
i

)
− 1

2
|ṽnL,i−1/2|(ρni − ρni−1),(3.50)

Φρ
R(xi, xi+1, tn,ρ

n
i ,ρ

n
i+1) :=

1

2

(
ṽnR,iρ

n
i + ṽnR,i+1ρ

n
i+1

)
− 1

2
|ṽnR,i+1/2|(ρni+1 − ρni ),(3.51)
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where the new approximations of velocities are

ṽnL,i−1 := ηLni
1

W n
1,i−1

, ṽnL,i := ηLni
1

W n
1,i

, (3.52)

ṽnL,i−1/2 :=
1

2

(
ṽnL,i−1 + ṽnL,i

)
= ηLni

1

2

(
1

W n
1,i−1

+
1

W n
1,i

)
, (3.53)

ṽnR,i := ηRni
1

W n
1,i

, ṽnR,i+1 := ηRni
1

W n
1,i+1

, (3.54)

ṽnR,i+1/2 :=
1

2

(
ṽnR,i + ṽnR,i+1

)
= ηRni

1

2

(
1

W n
1,i

+
1

W n
1,i+1

)
, (3.55)

where ηLni and ηRni are given by (3.48) and (3.49). Accordingly, the upwind dis-
cretization of the source term Gn

5,i correspond to

ΨL
5 (xi−1, xi, tn,ρ

n
i−1,ρ

n
i ) = −1

2

(
I +
|ṽnL,i−1/2|
ṽnL,i−1/2

I
)

RLn
i , (3.56)

ΨR
5 (xi, xi+1, tn,ρ

n
i ,ρ

n
i+1) = −1

2

(
I −
|ṽnR,i+1/2|
ṽnR,i+1/2

I
)

RRn
i , (3.57)

where

RLn
i =

ṽnL,i − ṽnL,i−1/2

∆x
ρni +

ṽnL,i−1/2 − ṽnL,i−1

∆x
ρni−1, (3.58)

RRn
i =

ṽnR,i+1 − ṽnR,i+1/2

∆x
ρni+1 +

ṽnR,i+1/2 − ṽnR,i
∆x

ρni . (3.59)

Let us observe that sign(ṽnL,i−1/2) = sign(ηLni ) and sign(ṽnR,i+1/2) = sign(ηRni ). Then,
after some algebra, we can rewrite this new scheme as

ρn+1
i − ρni

∆t
+

1

∆x

(
ϕRni (xi, xi+1, tn,ρ

n
i ,ρ

n
i+1)−ϕLni (xi−1, xi, tn,ρ

n
i−1,ρ

n
i )
)

= 0,

(3.60)
where the global numerical flux at the left boundary of the cell is defined by

ϕLni (xi−1, xi, tn,ρ
n
i−1,ρ

n
i ) =


ṽnL,i−1ρ

n
i−1 if ṽnL,i−1/2 > 0,

ṽnL,iρ
n
i if ṽnL,i−1/2 ≤ 0,

(3.61)
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and the global numerical flux at the right boundary of the cell by

ϕRni (xi, xi+1, tn,ρ
n
i ,ρ

n
i+1) =


ṽnR,iρ

n
i if ṽnR,i+1/2 > 0,

ṽnR,i+1ρ
n
i+1 if ṽnR,i+1/2 ≤ 0.

(3.62)

Let us prove that this new scheme satisfies the suitable property,W n+1
1 =

∑Ne

k=1 ρ
n+1
k ,

assuming that W n
1,i =

∑Ne

k=1 ρ
n
k,i, ∀i. Let us denote

ϕLnk,i := ϕLnk (xi−1, xi, tn,ρ
n
i−1,ρ

n
i ), ϕRnk,i := ϕRnk (xi, xi+1, tn,ρ

n
i ,ρ

n
i+1). (3.63)

We have

Ne∑
k=1

ϕLnk,i =


ṽnL,i−1

Ne∑
k=1

ρnk,i−1 = ηLni
1

W n
1,i−1

Ne∑
k=1

ρnk,i−1 if ṽnL,i−1/2 > 0

ṽnL,i

Ne∑
k=1

ρnk,i = ηLni
1

W n
1,i

Ne∑
k=1

ρnk,i if ṽnL,i−1/2 ≤ 0


= ηLni ,

Ne∑
k=1

ϕRnk,i =


ṽnR,i

Ne∑
k=1

ρnk,i = ηRni
1

W n
1,i

Ne∑
k=1

ρnk,i if ṽnR,i+1/2 > 0

ṽnR,i+1

Ne∑
k=1

ρnk,i+1 = ηRni
1

W n
1,i+1

Ne∑
k=1

ρnk,i+1 if ṽnR,i+1/2 ≤ 0


= ηRni ,

and then,

Ne∑
k=1

ρn+1
k,i =

Ne∑
k=1

ρnk,i −
∆t

∆x

(
Ne∑
k=1

ϕRnk,i −
Ne∑
k=1

ϕLnk,i

)

= W n
1,i −

∆t

∆x

(
ηRni − ηLni

)
= W n+1

1,i . (3.64)

Similar schemes have been introduced for the shallow water equations in [19]
and [11]. An important feature is that it preserves the positivity of partial densities
ρk if the CFL condition is satisfied, as the computations below show. We analyze
successively the different possibilities:
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• If ηLni < 0 and ηRni < 0, (3.60) becomes

ρn+1
i = ρni −

∆t

∆x

(
ηRni

1

W n
1,i+1

ρni+1 − ηLni
1

W n
1,i

ρni

)
. (3.65)

Then, the scheme can be rewritten as ρn+1
i := H(ρn)i where

H(ρn)i = ρni

(
1 +

∆t

∆x
ηLni

1

W n
1,i

)
+ ρni+1

(
−∆t

∆x
ηRni

1

W n
1,i+1

)
. (3.66)

The positivity conditions are

∂H(ρn)i
∂ρni

= 1 +
∆t

∆x
ηLni

1

W n
1,i

= 1 +
∆t

∆x
ṽnL,i ≥ 0, (3.67)

∂H(ρn)i
∂ρni+1

= −∆t

∆x
ηRni

1

W n
1,i+1

= −∆t

∆x
ṽnR,i+1 ≥ 0. (3.68)

Let us notice that (3.68) is always satisfied so the positivity is ensured if con-
dition (3.67) holds.

• If ηLni > 0 and ηRni > 0, (3.60) becomes

ρn+1
i = ρni −

∆t

∆x

(
ηRni

1

W n
1,i

ρni − ηLni
1

W n
1,i−1

ρni−1

)
. (3.69)

Then, function H(ρn)i is

H(ρn)i = ρni−1

(
∆t

∆x
ηLni

1

W n
1,i−1

)
+ ρni

(
1− ∆t

∆x
ηRni

1

W n
1,i

)
. (3.70)

The positivity conditions are

∂H(ρn)i
∂ρni−1

=
∆t

∆x
ηLni

1

W n
1,i−1

=
∆t

∆x
ṽnL,i−1 ≥ 0, (3.71)

∂H(ρn)i
∂ρni

= 1− ∆t

∆x
ηRni

1

W n
1,i

= 1− ∆t

∆x
ṽnR,i+1 ≥ 0. (3.72)

As (3.71) always holds, the positivity will be ensured if the maximum time step
satisfies (3.72).
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• If ηLni > 0 and ηRni < 0, (3.60) is

ρn+1
i = ρni −

∆t

∆x

(
ηRni

1

W n
1,i+1

ρni+1 − ηLni
1

W n
1,i−1

ρni−1

)
. (3.73)

Then, function H(ρn)i is

H(ρn)i = ρni−1

(
∆t

∆x
ηLni

1

W n
1,i−1

)
+ ρni + ρni+1

(
−∆t

∆x
ηRni

1

W n
1,i+1

)
. (3.74)

In this case the positivity conditions are always satisfied:

∂H(ρn)i
∂ρni−1

=
∆t

∆x
ηLni

1

W n
1,i−1

=
∆t

∆x
ṽnL,i−1 ≥ 0, (3.75)

∂H(ρn)i
∂ρni

= 1 ≥ 0, (3.76)

∂H(ρn)i
∂ρni+1

= −∆t

∆x
ηRni

1

W n
1,i+1

= −∆t

∆x
ṽnR,i+1 ≥ 0. (3.77)

• If ηLni < 0 and ηRni > 0, (3.60) becomes

ρn+1
i = ρni −

∆t

∆x

(
ηRni

1

W n
1,i

ρni − ηLni
1

W n
1,i

ρni

)
. (3.78)

Then, taking into account (3.27), function H(ρn)i is

H(ρn)i = ρni

[
1− ∆t

∆x

(
ηRni − ηLni

) 1

W n
1,i

]
= ρni

[
1 +

(
W n+1

1,i −W n
1,i

) 1

W n
1,i

]
= ρni

W n+1
1,i

W n
1,i

, (3.79)

where we have used the expression of W n+1
1,i to prove

−∆t

∆x

(
ηRni − ηLni

)
= W n+1

1,i −W n
1,i.

Hence, in this case the positivity condition holds as far as scheme (3.27) pre-
serves the positivity of the mixture density. Indeed, in this case we have

∂H(ρn)i
∂ρni

=
W n+1

1,i

W n
1,i

≥ 0. (3.80)
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3.4.3. The fourth scheme (C4)
The scheme presented in Section 3.4.2 has been introduced in [27] for the multi-

component Euler equations without sources (i.e., Gj ≡ 0, j = 1, 2, 3). Following
[27], the velocities ṽL and ṽR are defined by

ṽnL,i−1 := φWL
1i

1

W n
1,i−1

, ṽnL,i := φWL
1i

1

W n
1,i

, (3.81)

ṽnL,i−1/2 :=
1

2

(
ṽnL,i−1 + ṽnL,i

)
= φWL

1i

1

2

(
1

W n
1,i−1

+
1

W n
1,i

)
, (3.82)

ṽnR,i := φWR
1i

1

W n
1,i

, ṽnR,i+1 := φWR
1i

1

W n
1,i+1

, (3.83)

ṽnR,i+1/2 :=
1

2

(
ṽnR,i + ṽnR,i+1

)
= φWR

1i

1

2

(
1

W n
1,i

+
1

W n
1,i+1

)
, (3.84)

where φWL
1i is obtained from the numerical flux of the total mass conservation law

(see §3.1). More precisely,

φWL
1i := φW1

(
xi−1, xi, tn,W

n
i−1,W

n
i

)
,

φWR
1i := φW1

(
xi, xi+1, tn,W

n
i ,W

n
i+1

)
.

Let us recall again that φW1 denotes the first component of the numerical flux defined
by (3.15). The drawback of this velocities defined by (3.81)-(3.84) is that, if there
are sources in the Euler block of equations then the scheme does not satisfies the
suitable property, W n+1

1 =
∑Ne

k=1 ρ
n+1
k , assuming that W n

1,i =
∑Ne

k=1 ρ
n
k,i, ∀i. Indeed,

Ne∑
k=1

ϕLnk,i =


ṽnL,i−1

Ne∑
k=1

ρnk,i−1 = φWL
1i

1

W n
1,i−1

Ne∑
k=1

ρnk,i−1 if ṽnL,i−1/2 > 0

ṽnL,i

Ne∑
k=1

ρnk,i = φWL
1i

1

W n
1,i

Ne∑
k=1

ρnk,i if ṽnL,i−1/2 ≤ 0


= φWL

1i ,

Ne∑
k=1

ϕRnk,i =


ṽnR,i

Ne∑
k=1

ρnk,i = φWR
1i

1

W n
1,i

Ne∑
k=1

ρnk,i if ṽnR,i+1/2 > 0

ṽnR,i+1

Ne∑
k=1

ρnk,i+1 = φWR
1i

1

W n
1,i+1

Ne∑
k=1

ρnk,i+1 if ṽnR,i+1/2 ≤ 0


= φWR

1i ,
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and then,

Ne∑
k=1

ρn+1
k,i =

Ne∑
k=1

ρnk,i −
∆t

∆x

(
Ne∑
k=1

ϕRnk,i −
Ne∑
k=1

ϕLnk,i

)

= W n
1,i −

∆t

∆x

(
φWR

1i − φWL
1i

)
= W n+1

1,i −∆t

(
4∑
j=1

ΨR
j,1 −

4∑
j=1

ΨL
j,1

)
, (3.85)

where

ΨR
j,1 = ΨR

j,1

(
xi, xi+1, tn,W

n
i ,W

n
i+1

)
, (3.86)

ΨL
j,1 = ΨL

j,1

(
xi−1, xi, tn,W

n
i−1,W

n
i

)
. (3.87)

Therefore, this scheme satisfies
∑Ne

k=1 ρ
n+1
k,i = W n+1

1,i if and only if there is no upwind-
ing in the discretization of the source terms, but it has been proved in [5] that some
upwinding is needed in order to have a well-balance scheme.

3.5. Boundary conditions
The numerical treatment of the boundary conditions given in Section 2.2 requires

the use of special techniques involving so-called ghost cells. We refer the reader to
[5] where a detailed description has been included.

4. Numerical results

In this section we apply the numerical schemes introduced above to solve several
test problems.

4.1. Test 1
This test corresponds to a static situation (v = 0) with discontinuous composition

and temperature but with spatially constant product R(x)θ(x). This test is similar to
Test 1 presented in [5] for a homogeneous gas composition. Let us take an arbitrary
topography function h(x). We look for a steady solution such that

v(x) = 0, θ(x)R(x) = K (constant), ∀x ∈ (0,L). (4.88)

In this case, the momentum equation becomes

dp

dx
(x) = −gρ(x, t)h′(x). (4.89)
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Moreover, the equation of state gives the relation

ρ(x) =
p(x)

R(x)θ(x)
=
p(x)

K
. (4.90)

Then
K

dρ

dx
(x) = −gρ(x)h′(x), (4.91)

and therefore ρ(x) is given by

ρ(x) = ρ(0) exp
(
− g

K

(
h(x)− h(0)

))
, (4.92)

and p(x) by
p(x) = Kρ(0) exp

(
− g

K

(
h(x)− h(0)

))
. (4.93)

In this test we have taken

θ(x) =

{
θL if x < L

2
,

θR if x > L
2
,
, Yk(x) =

{
YkL if x < L

2
,

YkR if x > L
2
,
, k = 1, · · · , 5, (4.94)

where species are methane, ethane, propane, butane and nitrogen, respectively.

The initial conditions for the different variables can be computed from the data
shown in Tables 1 and 2. In all cases the CFL is 0.4 and ∆x = 200m. The logarithmic
average for density is used. Notice that G1 and G3 are null.

Y1L Y1R Y2L Y2R Y3L Y3R Y4L Y4R Y5L Y5R

0.95 0.70 0.03 0.05 0.015 0.10 0.025 0.15 00025 0

Table 1: Data for Test 1 (I).

In what follows we show the numerical results obtained from the different schemes
considered in this paper.
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θL (C) θR(C) Rθ h(x) (m) L (m)

4.965142 63.434338 140329 200 sin
(

4πx
L

)
10000

Table 2: Data for Test 1 (II).

Figure 2: Test 1. Initial conditions equal to exact solutions. Above: temperature (left) and pressure
(right). Below: velocity (left) and mass fraction 100Y1 (right).

4.1.1. Numerical results with (E1)+(C3)
Firstly, we will present numerical results for the combination of schemes (E1) and

(C3).
In Figures 3 and 4, temperature, pressure, velocity and mass fraction Y1 are

plotted at times t = 2 seconds and t = 200 seconds, respectively. The behavior of
the other species is similar.

Let us notice that for this scheme the velocity is fully wrong: roughly speaking
it oscillates between vmin ' −4.6 m/s and vMax ' 15 m/s while the exact velocity is
null. The computed pressure is also wrong near x = L

2
. These results illustrate the

relevance of adding artificial viscosity to the discretization of the second flux term,
∂F

∂x
, at the Euler stage.
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Figure 3: Test 1: Numerical results with scheme (E1)+(C3). Above: temperature (left) and pressure
(right). Below: velocity (left) and mass fraction 100Y1 (right). t = 2s.

4.1.2. Numerical results with (E2)+(C2)
In this case the numerical results are shown in Figures 5 and 6. Notice that the

numerical results are in good agreement with the exact solution.
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Figure 4: Test 1. Numerical results with scheme (E1)+(C3). Above: temperature (left) and
pressure (right). Below: velocity (left) and mass fraction 100Y1 (right). t = 200s.

Figure 5: Test 1. Numerical results with (E2)+(C2). Above: temperature (left) and pressure
(right). Below: velocity (left) and mass fraction 100Y1 (right). t = 2s (notice that the scale of
velocities has to be multiplied by 10−15).
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Figure 6: Test 1. Numerical results with (E2)+(C2). Above: temperature (left) and pressure
(right). Below: velocity (left) and mass fraction 100Y1 (right). t = 200s (notice that the scale of
velocities has to be multiplied by 10−15).

Figure 7: Test 1. Numerical results with scheme (E2)+(C3). Above: temperature (left) and
pressure (right). Below: velocity (left) and mass fraction 100Y1 (right). t = 2s (notice that the
scale of velocities has to be multiplied by 10−15).

4.1.3. Numerical results with (E2)+(C3)
In Figures 7 and 8 temperature, pressure, velocity and mass fraction Y1 are plotted

at times t = 2s and t = 200s, respectively.
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Figure 8: Test 1. Numerical results with scheme (E2)+(C3). Above: temperature (left) and
pressure (right). Below: velocity (left) and mass fraction 100Y1 (right). t = 200s (notice that the
scale of velocities has to be multiplied by 10−15).

Let us notice that for this scheme the static state is preserved up to the machine
precision, see Figure 9.
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Figure 9: Test 1. L1-error evolution in time with scheme (E2)+(C3). Top: temperature (left) and
pressure (right). Middle: density (left) and mass flux (right). Bottom: partial density ρ1 (left).
t = 200s.

4.1.4. Numerical results with (E2)+(C4)
In Figures 10 and 11 temperature, pressure, velocity and mass fraction 100Y1 are

plotted at time t = 2s and t = 200s, respectively.
Let us notice that for this scheme the results are not in good agreement with the

exact solution plotted in Figure 2.
As a conclusion from the results for Test 1, in the remaining tests we will only

consider the schemes (E2)+(C2) and (E3)+(C3).
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Figure 10: Test 1. Numerical results with scheme (E2)+(C4). Above: temperature (left) and
pressure (right). Below: velocity (left) and mass fraction 100Y1 (right). t = 2s.

Figure 11: Test 1. Numerical results with scheme (E2)+(C4). Above: temperature (left) and
pressure (right). Below: velocity (left) and mass fraction 100Y1 (right). t = 200s.

4.2. Test 2
This case concerns a non-static situation (v = vc 6= 0). We look for a steady

solution for ρ and v such that

ρ(x, t) = ρc, v(x, t) = vc, θ(x)R(x) = K, ∀x ∈ (0,L). (4.95)
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where ρc, vc and K are constants. We assume that h′(x) = 0, and G1 and G3 are null
at the Euler stage. Then, it is easy to check that the total energy E is the solution
of a transport equation with constant velocity vc. Moreover, if we assume that ρc,
vc are constant, then mass fractions Yk, k = 1, · · · , Ne are also solution of the same
linear transport equation.

Figure 12: Test 2. Initial conditions. Above: temperature (left) and pressure (right). Below:
velocity (left) and mass fraction 100Y1 (right).

The initial conditions for the different variables (see Figure 12) are the functions,

θ(x) =

{
θL if x < L

2
,

θR if x > L
2
,
, Yk(x) =

{
YkL if x < L

2
,

YkR if x > L
2
,
, k = 1, · · · , 5, (4.96)

where species are methane, ethane, propane, butane and nitrogen, respectively. The
values of the constants considered in this test are given in Table 3 and Table 4. In
all cases the CFL is 0.5 and ∆x = 200m.

We will present numerical results for the schemes (E2)+(C2) and (E2)+(C3). In
this test both schemes yield numerical results in good agreement with the expected
solution. In Figure 13 and Figure 14 it is clear that the initial discontinuities of
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Y1L Y1R Y2L Y2R Y3L Y3R Y4L Y4R Y5L Y5R

0.70 0.95 0.05 0.03 0.10 0.015 0.15 0.0025 0 0.0025

Table 3: Data for Test 2 (I).

θL (C) θR(C) K = Rθ h(x) (m) L (m) ρc (kg/m3) vc (m/s)

63.434338 4.965142 140329 0 10000 40 2

Table 4: Data for Test 2 (II).

Figure 13: Test 2. Numerical solutions with scheme (E2)+(C2) (blue), and with scheme (E2)+(C3)
(red). Above: temperature (left) and pressure (right). Below: velocity (left) and mass fraction
100Y1 (right). t = 5s.

temperature and mass fraction 100Y1 at x = 5000 m are moving to the right (vc = 2
m/s).
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Figure 14: Test 2. Numerical solutions with scheme (E2)+(C2) (blue), and with scheme (E2)+(C3)
(red). Above: temperature (left) and pressure (right). Below: velocity (left) and mass fraction
100Y1 (right). t = 200s.

At final time t = 200 s, we compute the L1-norm of the error between the
approximate solution and the exact solution divided by the length of the domain,
L = 10000 m (see Tables 5 and 6 for scheme (E2)+(C2), and Tables 7 and 8 for
scheme (E2)+(C3)). The solution is not smooth, so for this test we do not show the
order of convergence.
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Mesh ∆x W1 (kg/m3) W2 (kg/(m2s)) W3 (J/m3)
M1 500,000 2,28E-02 4,86E-01 1,18E+05
M2 250,000 1,74E-02 2,73E-01 9,10E+04
M3 125,000 1,29E-02 2,44E-01 6,96E+04
M4 62,500 9,49E-03 2,87E-01 4,55E+04
M5 31,250 6,84E-03 3,04E-01 3,09E+04
M6 15,625 4,80E-03 2,59E-01 2,21E+04

Table 5: Test 2. L1 absolute error divided by L with scheme (E2)+(C2) for Euler conservative
variables. t = 200 s. CFL = 0.5.

Mesh ∆x 100Y1 (%) 100Y2 (%) 100Y3 (%) 100Y4 (%) 100 Y5 (%)
M1 500,000 9,02E-01 7,76E-02 3,06E-01 5,26E-01 8,40E-03
M2 250,000 6,80E-01 5,84E-02 2,31E-01 3,97E-01 6,34E-03
M3 125,000 5,11E-01 4,37E-02 1,74E-01 2,99E-01 4,79E-03
M4 62,500 3,37E-01 2,90E-02 1,14E-01 1,97E-01 3,14E-03
M5 31,250 2,32E-01 2,00E-02 7,88E-02 1,35E-01 2,15E-03
M6 15,625 1,65E-01 1,42E-02 5,60E-02 9,62E-02 1,53E-03

Table 6: Test 2. L1 absolute error divided by L with scheme (E2)+(C2) for mass fractions. t = 200
s. CFL = 0.5.

Mesh ∆x W1 (kg/m3) W2 (kg/(m2s)) W3 (J/m3)
M1 500,000 2,30E-02 4,65E-01 1,15E+05
M2 250,000 1,75E-02 2,79E-01 8,86E+04
M3 125,000 1,31E-02 2,58E-01 6,80E+04
M4 62,500 9,78E-03 3,04E-01 4,41E+04
M5 31,250 7,19E-03 3,18E-01 2,98E+04
M6 15,625 5,19E-03 2,68E-01 2,13E+04

Table 7: Test 2. L1 absolute error divided by L with scheme (E2)+(C3) for Euler conservative
variables. t = 200 s. CFL = 0.5.
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Mesh ∆x 100Y1 (%) 100Y2 (%) 100Y3 (%) 100Y4 (%) 100 Y5 (%)
M1 500,000 8,72E-01 6,98E-02 2,96E-01 5,15E-01 8,72E-03
M2 250,000 6,58E-01 5,26E-02 2,24E-01 3,88E-01 6,58E-03
M3 125,000 4,96E-01 3,97E-02 1,69E-01 2,93E-01 4,96E-03
M4 62,500 3,25E-01 2,60E-02 1,10E-01 1,92E-01 3,25E-03
M5 31,250 2,22E-01 1,78E-02 7,55E-02 1,31E-01 2,22E-03
M6 15,625 1,58E-01 1,26E-02 5,37E-02 9,31E-02 1,58E-03

Table 8: Test 2. L1 absolute error divided by L with scheme (E2)+(C3) for mass fractions. t = 200s.
CFL = 0.5.

4.3. Test 3
This case is similar to Test 2 but with sinusoidal initial condition for species and

temperature, that is,

Yk(x) =
1

2
(YkL + YkR) +

1

2
(YkR − YkL) sin

(
5π

L x+
3

2
π

)
, k = 1, · · · , 5, (4.97)

θ(x) =
K

R(x)
, (4.98)

where the values of the constant are given in Table 9, see Figure 15.

Y1L Y1R Y2L Y2R Y3L Y3R Y4L Y4R Y5L Y5R

0.70 0.95 0.05 0.03 0.10 0.015 0.15 0.0025 0 0.0025

Table 9: Data for Test 3 (I).

K = Rθ h(x) (m) L (m) ρc (kg/m3) vc (m/s)

140329 0 10000 40 2

Table 10: Data for Test 3 (II).
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Figure 15: Test 3: Initial conditions. Above: temperature (left) and pressure (right). Below:
velocity (left) and mass fraction 100Y1 (right).

Figure 16: Test 3. Numerical solutions with scheme (E2)+(C2) (blue), and with scheme (E2)+(C3)
(red). Above: temperature (left) and pressure (right). Below: velocity (left) and mass fraction
100Y1 (right). t = 5s.
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Figure 17: Test 3. Numerical solutions with scheme (E2)+(C2) (blue), and with scheme (E2)+(C3)
(red). Above: temperature (left) and pressure (right). Below: velocity (left) and mass fraction
100Y1 (right). t = 200s.

At final time t = 200 s, we compute the L1-norm of the error between the
approximate solution and the exact solution. The considered schemes in this test give
similar results, but errors obtained with scheme (E2)+(C3), Tables 15 and 17, are
always lower compared to those reported in Tables 11 and 13 for scheme (E2)+(C2).

The order of convergence of these errors are shown in Tables 12 and 14 for scheme
(E2)+(C2), and Tables 16 and 18 for scheme (E2)+(C3). It is nearly 1. Figures 16
and 17 show the numerical results with both schemes at time t = 2 seconds and
t = 200 seconds.
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Mesh ∆x W1 (kg/m3) W2 (kg/(m2s)) W3 (J/m3)
M1 500,000 4,98E-02 6,78E+00 2,36E+05
M2 250,000 2,84E-02 2,39E+00 1,28E+05
M3 125,000 1,50E-02 8,79E-01 6,57E+04
M4 62,500 7,61E-03 3,59E-01 3,33E+04
M5 31,250 3,93E-03 1,67E-01 1,68E+04
M6 15,625 2,63E-03 8,60E-02 8,51E+03

Table 11: Test 3. L1 absolute error divided by L with scheme (E2)+(C2) for Euler conservative
variables. t = 200 s. CFL = 0.5.

Mesh W1 W2 W3

M1-M2 0,81 1,51 0,88
M2-M3 0,93 1,44 0,96
M3-M4 0,98 1,29 0,98
M4-M5 0,95 1,10 0,99
M5-M6 0,58 0,96 0,98

Table 12: Test 3. Order of convergence for the errors given in Table 11 with scheme (E2)+(C2).

4.4. Test 4, real case
The ultimate goal of the methodology proposed in this article is the prediction of

the physical variables involved in real gas transportation networks. In order to check
if this is made accurately, we present a test involving real data. In [6] our industrial
partner Reganosa allowed us to use a large data basis with the measurements it
makes in real time on its own gas network. With this information, we are able to
compare the numerical results of our model against their respective experimental
values.

The network, depicted in Figure 18, consists of 11 nodes, joined by 10 pipes.
Moreover, at each “interior node” a fictitious pipe is introduced in order to prescribe
the flow rate exchanged with the network outside. Node 1 represents the Reganosa
regasification plant where we impose a pressure boundary condition taken from the
data basis. This is the only gas inlet into the whole network: the rest of the nodes
are outlets. The main gas outlet is located at node 5 which is a terminal node of the
network where an outflow boundary condition is considered. In this experiment, the
consumptions of the rest of the nodes are very small in comparison with this one. In
order to take into account the consumption at the interior (i.e., non-terminal) nodes
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Mesh ∆x 100Y1 (%) 100Y2 (%) 100Y3 (%) 100Y4 (%) 100 Y5 (%)
M1 500,000 1,82E+00 1,63E-01 6,17E-01 1,06E+00 1,66E-02
M2 250,000 9,85E-01 8,90E-02 3,34E-01 5,71E-01 8,71E-03
M3 125,000 5,02E-01 4,59E-02 1,70E-01 2,90E-01 4,36E-03
M4 62,500 2,54E-01 2,33E-02 8,60E-02 1,46E-01 2,19E-03
M5 31,250 1,28E-01 1,17E-02 4,33E-02 7,38E-02 1,10E-03
M6 15,625 6,49E-02 5,95E-03 2,20E-02 3,75E-02 5,61E-04

Table 13: Test 3. L1 absolute error divided by L with scheme (E2)+(C2) for mass fractions. t = 200
s. CFL = 0.5.

Mesh Y1 (%) Y2 (%) Y3 (%) Y4 (%) Y5 (%)
M1-M2 0,89 0,88 0,89 0,89 0,93
M2-M3 0,97 0,96 0,97 0,98 1,00
M3-M4 0,99 0,98 0,99 0,99 1,00
M4-M5 0,99 0,99 0,99 0,99 0,99
M5-M6 0,98 0,98 0,98 0,98 0,97

Table 14: Test 3. Order of convergence for the errors given in Table 13 with scheme (E2)+(C2).
t = 200 s. CFL = 0.5.

Mesh ∆x W1 (kg/m3) W2 (kg/(m2s)) W3 (J/m3)
M1 500,000 4,80E-02 6,62E+00 2,20E+05
M2 250,000 2,66E-02 2,32E+00 1,19E+05
M3 125,000 1,40E-02 8,62E-01 6,04E+04
M4 62,500 7,21E-03 3,51E-01 3,04E+04
M5 31,250 3,66E-03 1,61E-01 1,53E+04
M6 15,625 1,84E-03 8,27E-02 7,65E+03

Table 15: Test 3. L1 absolute error divided by L with scheme (E2)+(C3) for Euler conservative
variables. t = 200 s. CFL = 0.5.

we introduce a new edge for each of them and impose an outflow boundary condition
at its terminal node.

Since we have measurements of pressure and mass flow rate (apart from tempera-
ture) at all nodes of the network, we compare the measured values of the magnitude
that was not imposed in the model with its respective numerical results. In [6] the
results are computed with a homogeneous gas composition model.
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Mesh W1 W2 W3

M1-M2 0,85 1,51 0,89
M2-M3 0,92 1,43 0,98
M3-M4 0,96 1,30 0,99
M4-M5 0,98 1,12 1,00
M5-M6 0,99 0,96 1,00

Table 16: Test 3. Order of convergence for the errors given in Table 15 with scheme (E2)+(C3).

Mesh ∆x 100Y1 (%) 100Y2 (%) 100Y3 (%) 100Y4 (%) 1100Y5 (%)
M1 500,000 1,69E+00 1,36E-01 5,76E-01 9,99E-01 1,69E-02
M2 250,000 9,08E-01 7,26E-02 3,09E-01 5,36E-01 9,08E-03
M3 125,000 4,59E-01 3,67E-02 1,56E-01 2,71E-01 4,59E-03
M4 62,500 2,31E-01 1,84E-02 7,84E-02 1,36E-01 2,31E-03
M5 31,250 1,16E-01 9,24E-03 3,93E-02 6,82E-02 1,16E-03
M6 15,625 5,78E-02 4,63E-03 1,97E-02 3,41E-02 5,78E-04

Table 17: Test 3. L1 absolute error divided by L with scheme (E2)+(C3) for mass fractions. t = 200
s. CFL = 0.5.

Mesh Y1 (%) Y2 (%) Y3 (%) Y4 (%) Y5 (%)
M1-M2 0,90 0,90 0,90 0,90 0,90
M2-M3 0,98 0,98 0,98 0,98 0,98
M3-M4 0,99 0,99 0,99 0,99 0,99
M4-M5 1,00 1,00 1,00 1,00 1,00
M5-M6 1,00 1,00 1,00 1,00 1,00

Table 18: Test 3. Order of convergence for the errors given in Table 17 with scheme (E2)+(C3).
t = 200 s. CFL = 0.5.

We show the results obtained with schemes (E2)+(C2) and (E2)+(C3) along
edge number 2 in Figure 18. The variable height profile along this pipe is shown in
Figure 19. We select a real case with methane constant composition along the edge
(100Y1 = 81.372634114) and show the numerical results obtained with the above
mentioned schemes. At t = 20 s the velocity along the pipe is not constant and,
furthermore it changes sign. For this magnitude both schemes gives similar results
(see Figure 20 and Figure 21 for schemes (E2)+(C2) and E2)+(C3), respectively).
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Figure 18: Test 4. Real gas network, with node (rectangle) and edge (circle) identifications.

However, regarding methane mass fraction these schemes give different solutions (see
Figures 22 and 23 obtained with schemes (E2)+(C2) and (E2)+(C3), respectively).

The computer code was written in Fortran 2008 and ran on a processor Intel
(R) Core (TM) i3-2328M CPU @ 2.20GHz. It has two cores, four threads, and the
program has enabled the parallel computing. The CPU time for this network is
presented in Table 19, for t = 3600 s and two elections of ∆x.

∆x (m) CPU time (s)
125 653.12
250 174.57

Table 19: Test 4. CPU time.
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Figure 19: Test 4. Height profile along pipe number 4.

Figure 20: Test 4. Velocity along pipe number 2 with scheme (E2)+(C2). t = 20 s.

Figure 21: Test 4. Velocity along pipe number 2 with scheme (E2)+(C3). t = 20 s.
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Figure 22: Test 4. Mass fraction 100Y1 along pipe number 2 with scheme (E2)+(C2). t = 20 s.

Figure 23: Test 4. Mass fraction 100Y1 along pipe number 2 with scheme (E2)+(C3). t = 20 s.
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Figure 24: Test 5. Pressure at node 5 for one day. Black: real measurement. Blue: computed.

4.5. Test 5, real case
Now, for the same network introduced in Test 4, let us suppose that the compo-

sition of the inlet gas changes along the time. In this case we compare the evolution
along the time of computed pressure and methane mass fraction with their respective
measurements. at node number 5. This can be seen in Figures 24 and 25.

45



Figure 25: Test 5. 100Y1 at node 5 for one day. Black: real measurement. Blue: computed.

Finally, for a better understanding of the numerical results we have included
Table 20 where a summary of the different tests and schemes can be found.

5. Conclusions

In this paper, segregated schemes for computing the flow of a compressible multi-
component gas in a pipe has been introduced and analyzed. The numerical fluxes
and the discretization of the source terms are carefully defined in order to keep the
physical conservation properties. The performance of the methods has been shown
by means of several test examples including academic, both static (null velocity) and
stationary (non-null constant velocity) ones, as well as real life simulations of gas
transportation networks for which the numerical results are compared with measure-
ments.
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Discretization
Euler Stage Gas Composition Stage

(E1) §3.1 (E2) §3.2 (C2) §3.4.1 (C3) §3.4.2 (C4) §3.4.3
Test 1. §4.1.1 X X
Test 1. §4.1.2 X X
Test 1. §4.1.3 X X
Test 1. §4.1.4 X X
Test 2. §4.2 X X
Test 2. §4.2 X X
Test 3. §4.3 X X
Test 3. §4.3 X X
Test 4. §4.4 X X
Test 4. §4.4 X X
Test 5. §4.5 X X

Table 20: Summary of numerical result and schemes.

project GRC2013/014.

AppendixA. Full 1D model for multi-component gas flow in a pipe

Let us assume that the gas is a mixture of Ne species that are perfect gases and
denote Yk(x, t) the mass fraction of the k-th species at point x of the pipe and at
time t. In particular,

Ne∑
k=1

Yk(x, t) = 1.

We denote by Y(x, t) the column vector of mass fractions. Then the flow model
consists of the following non-linear system of first-order partial differential equations
(see [5] for details):

1. Balance equations for total mass, linear momentum, total energy and masses
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of species:

∂ρ

∂t
(x, t) +

∂(ρv)

∂x
(x, t) =0, (A.1)

∂(ρv)

∂t
(x, t) +

∂(ρv2 + p)

∂x
(x, t) =− λρ(x, t)

2D
|v(x, t)|v(x, t)− gρ(x, t)h′(x), (A.2)

∂(ρE)

∂t
(x, t) +

∂((ρE + p)v)

∂x
(x, t) =

4β

D
(θext(x, t)− θ(x, t))− gρ(x, t)v(x, t)h′(x). (A.3)

∂(ρYk)

∂t
+
∂(ρYkv)

∂x
=0, k = 1, · · · , Ne. (A.4)

x(s)

L
π − α(x(s))

α(x(s))

ρg sin(π − α(x(s)) ≃ −ρg tanα(x(s)) ≃ −ρgh′(x(s))

s0

h(x(s))

s

Figure A.26: Geometry and approximation of the gravity force term assuming x′(s) ≈ 1.

• ρ is the average mass density (kg/m3),

• v is the mass-weighted average velocity on cross-sections of the pipe sec-
tions (m/s),

• p is the average thermodynamic pressure (N/m2),

• g is the gravity acceleration (m/s2),

• h(x) is the height of the pipe at the x cross-section (m),

• D is the diameter of the pipe (m),
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• λ is the friction factor between the gas and the pipe walls; it is a non-
dimensional number depending on the diameter of the pipe, the rugosity
of its wall and the Reynolds number of the flow. The computation of λ
can be made by using the Colebrook’s equation (see [33]):

1√
λ

= −2 log10

(
2.51

Re
√
λ

+
k

3.7D

)
= −2 log10

(
2.51πDη

4 |q|
√
λ

+
k

3.7D

)
,

(A.5)
where k is the roughness coefficient of the pipe (m).

• E is the average specific total energy (J/kg):

E = e+
1

2
v2, (A.6)

e being the specific internal energy (J/kg).

• β is a heat transfer coefficient (W/m2K),

• θ is the average temperature (K),

• θext is the exterior temperature (K).

2. State equations

thermodynamic : p = ρR(Y)θ, (A.7)

caloric : e = ê(θ) = ê(θref ) +

∫ θ

θref

ĉv(s, ,Y) ds, (A.8)

where

• R(Y) is the gas constant of the mixture (J/(kg K)). We have

– R(Y) =
R

M(Y)
, with

– R = 8.3144598 J mol−1 K−1, the universal gas constant.

– M(Y) =

(
Ne∑
k=1

Yk
Mk

)−1

,

– Mk being the molecular mass of the k-th species.

• e is the specific internal energy (J/kg),

• θref is a reference temperature (K),
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• ĉv(θ,Y) is the specific heat at constant volume of the mixture, at temper-
ature θ (J/kg K):

ĉv(θ,Y) =
Ne∑
k=1

Ykĉvk(θ),

where ĉvk(θ) is the specific heat at constant volume of the k-th species, at
temperature θ.

Let us transform equations (A.7) and (A.8) by using the partial densities of
species:

ρk(x, t) = ρ(x, t)Yk(x, t), k = 1, · · · , Ne.

We have,

p = ρR(Y)θ = ρR
Ne∑
k=1

Yk
Mk

θ =

(
Ne∑
k=1

ρk
Mk

)
θ, (A.9)

ρe = ρê(θref ) + ρ

∫ θ

θref

ĉv(s,Y) ds = ρê(θref ) + ρ
Ne∑
k=1

Yk

∫ θ

θref

ĉvk(s) ds (A.10)

= ρê(θref ) +
Ne∑
k=1

ρk

∫ θ

θref

ĉvk(s) ds. (A.11)

3. Conservative variables: ρ, ρv, ρE, ρk, k = 1, · · · , Ne,
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