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Preface

The purpose of this thesis is the mathematical study and numerical solution of a range of prob-
lems that arise in low-frequency electromagnetics, and their application to the simulation of in-
dustrial processes. More precisely, we deal with both eddy current and magnetostatic problems,
sometimes coupling the distributed formulation (that is, in terms of partial differential equa-
tions) with a lumped one (i.e., in terms of ordinary differential equations) modelling electrical
circuits. Our study is motivated by the need of characterizing, through mathematical modelling
and numerical simulation, the electromagnetic phenomena that take place in several industrial
processes, such as the magnetization and demagnetization of ferromagnetic pieces, induction
heating or the operation of electrical machines, in order to be able to perform a subsequent
optimization and optimal control.

This memoir is divided into two differentiated parts. In the first one, contributions are made to
the study and numerical solution of eddy current models in three-dimensional and axisymmet-
ric domains, considering both linear and nonlinear magnetic materials. In the second part, we
approach the modelling and optimization of electrical machines in two-dimensional domains
from multiple perspectives. In both cases we will face challenges related to the development of
new models and algorithms, together with the mathematical and numerical analysis of partial
differential equation problems that provide theoretical support to numerical techniques already
present in the literature. We deal with these challenges after performing a review on the state
of art of the models, which are detailed in each chapter separately. In what follows, we briefly
describe the problems we will study in both parts, together with the organization of the memoir.

PART I

The eddy current model is obtained from the full Maxwell’s system of equations by neglecting
the displacement currents in Ampere’s law. This problem arises very often in the numerical
simulation of industrial processes: induction heating, non-destructive testing, electromagnetic
forming, magnetic levitation ...just to name a few. As a consequence, it has been subjected to
thorough study during the last decades, mostly in the linear case (see, for example, [7, 102]).
However, there have also been important advances in the mathematical and numerical analysis of
transient nonlinear models, some of them even incorporating hysteresis effects (see, for instance,
[107] and references therein).

In linear magnetic media, where the magnetic flux and the magnetic intensity fields are pro-

xiii
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portional to each other, problems can be studied in the harmonic regime when the sources are
sinusoidal. This is because, in this case, Maxwell’s equations preserve this dependence with
respect to time for all electromagnetic fields. In spite of being apparently simple, this linear
model has given rise to a wide range of different formulations in the three-dimensional case
(see, for instance, [7] for a quite comprehensive review). A particular case that has drawn the
attention of the scientific community in the last years, and on which we will focus, is the one
having conductors that are not strictly contained in the geometric domain, being often referred
to as eddy current problem with electric ports. In particular, this model brings the possibility
of coupling the distributed eddy current formulation with a lumped one modelling an electrical
circuit managing the current supply.

The different strategies to formulate the harmonic eddy current problem arise from the desire of
solving the problem in the most general topological setting at the lowest computational cost in
terms of degrees of freedom. In this context, we will study the so-called T', » — ¢ formulation,
which combines a vector potential T', defined only in the conducting domain, with a scalar
potential ¢ supported in the whole domain. Moreover, the numerical discretization will be based
on the finite element method; in particular, we will use edge elements for variable T" and standard
Lagrange elements for ¢. This kind of formulation has been widely used by electrical engineers
and is one of the most used in commercial software for the solution of three-dimensional eddy
current problems. However, the existing literature related to its mathematical analysis in both
the continuous and discrete cases is comparatively limited, and therefore it offers challenges
from the mathematical and numerical analysis point of view.

Therefore, in Chapter 1, we will provide a theoretical support for the harmonic 7', ¢ — ¢ formu-
lation in bounded domains with electric ports. The sources will be given in terms of currents or
voltage drops. Moreover, we will analyze two versions of this formulation, depending on the
consideration or not of a gauge condition on the vector potential 7'

The results for the ungauged version of the 7', ¢ — ¢ formulation have been published in

[26] A. Bermudez, M. Pifieiro, R. Rodriguez, and P. Salgado. Analysis of an ungauged 7,
¢—¢ formulation of the eddy current problem with currents and voltage excitations.
ESAIM: Math. Model. Numer. Anal., 51(6):2487-2509, 2017.

On the other hand, the occurrence either of sources that are not harmonic functions of time or of
materials having a nonlinear magnetic behaviour, require the use of genuinely transient models.
Additionally, the inclusion in the model of hysteresis effects turns out to be unavoidable for
some industrial applications, such as the demagnetization of pieces. This fact leads to an extra
difficulty, since under these circumstances the magnetic flux in the ferromagnetic pieces not only
depends nonlinearly on the present magnetic intensity in it, but it depends also on its magnetic
history.

There exist several methods to model the hysteresis phenomenon, such as the Stoner-Wohlfarth,
the Jiles-Atherton, the Globus and the Preisach models (see, for instance, [68]). All of these
models are halfway between simplifying the relation between the magnetic flux density and the
magnetic field intensity to an univaluate function, and the micromagnetic methods, that consider
the process at a microscopic level. In particular, it is usual to assume that processes are rate-
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independent, which means that the magnetic flux does not depend on the speed of change of the
magnetic field intensity with time.

Chapter 2 deals with the modelling and simulation of magnetization and demagnetization pro-
cesses. The research on this topic was initiated in the master’s thesis and was motivated by an
INNTERCONNECTA research project developed for the company CIE-Galfor. In the frame-
work of the PhD thesis, the main focus is to develop a numerical tool to compute the magnetic
fields distribution during a non-destructive test called magnetic particle inspection (MPI), whose
purpose is to detect near-surface cracks in ferromagnetic pieces. In this framework, a software
simulating the whole process in the case of cylindrical pieces was created, including also the final
demagnetization step. For this purpose, we will use the classical scalar Preisach model, which
was first described in [84]. Moreover, we will restrict ourselves to the scalar case, in which both
the magnetic flux and the magnetic field intensity have only one non-null component.

The main results appearing in this chapter have been published in

[20] A. Bermudez, D. Gomez, M. Pineiro, P. Salgado, and P. Venegas. Numerical simula-
tion of magnetization and demagnetization processes. /[EEE Trans. Magn., 53(12):1-6,
2017.

PART 11

In the last decades, in parallel with the fast development of computing capabilities, great efforts
have been made to obtain realistic numerical models for several industrial processes. The solu-
tion to these models give very useful insights on the physical phenomena involved in the asso-
ciated applications, leading to a better understanding and, most of the times, to an improvement
of such processes. In particular, recent advances have resulted in efficient numerical solutions
for electrical machines (for example, see [94, 97]), beyond the scope of the classical analytical
methods, which are limited to homogeneous, linear and steady-state frameworks due to its mag-
netic circuit approach. In this way, numerical simulation plays an important role to optimize the
design and operating conditions of electrical machines, preventing the building of unnecessary
prototypes and allowing savings both in their construction and operation.

In the second part of the memoir, dedicated to the study of alternating current (AC) electrical
motors, we focus on radial flux machines, which are characterized by the current density being
parallel to the rotation axis, and thus having magnetic vector fields that live in the planes or-
thogonal to this direction. These machines can be classified in several ways, one of the most
common being the consideration of two categories: synchronous and induction motors. The
first group contains those devices whose rotation speed is related to the angular frequency of the
input source in terms of its number of poles, and we focus on the subgroup having permanent
magnets in either rotor or stator. In opposition, in induction machines, the magnetic field in
rotor or stator is induced by the one in the other part, which contains the coils through which
the current is externally supplied. This kind of motors have a rotation rate that is lower than
the synchronous speed, the so-called s/ip being the quantity that defines the difference between
them (see [35, 55]).

In synchronous machines, due to the fact that the imposed source current goes through stranded

XV
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conductors parallel to the rotation axis and that the ferromagnetic cores are laminated orthog-
onally to this direction, it is reasonable to assume that the electromagnetic fields can be ap-
proximated with a two-dimensional model defined in a cross-section transversal to the device.
Moreover, the sources of the problem are the remanent flux density in permanent magnets, de-
fined by vectors that lie in these cross-sections, and either the current or the voltage drop in
conductors. Therefore, to model these machines, we will use a distributed transient magnetic
formulation for the active zone, coupled with circuit equations relating currents and voltage
drops in conductors.

In this way, in Chapter 3, we give a first step towards the analysis of the genuine physical
problem, as we do not consider the motion of the machine, what would lead to a much more
difficult problem. Furthermore, we will restrict ourselves to the case in which the sources in
conductors are only given in terms of the potential drops along them. Thus, we will perform
the mathematical and numerical analysis of an integro-differential problem coupling an elliptic
partial differential equation with a circuit equation linking currents and voltage drops. Thus,
the problem is as a nonlinear system of implicit ordinary differential equations in terms of the
currents traversing the coils as unknowns. For the discretization, a backward-Euler scheme has
been combined with a finite element method for the distributed part.

The results appearing in this chapter have been sent for publication

[27] A. Bermudez, M. Pifieiro, and P. Salgado. Mathematical and Numerical Analysis of a
Transient Magnetic Model with Voltage Drop Excitations. (Submitted).

Optimization and optimal control of electromagnetic industrial processes has been an active sub-
ject of study in the last few years, and, in particular, for electrical machines (see, for instance,
[50, 90] and references therein). Indeed, this field offers great opportunities in the design of in-
dustrial processes, as it automatically retrieves the best option in terms of the chosen objectives
and under the given restrictions. Therefore, it has been implemented for a wide range of appli-
cations within the electrical machine framework, such as the optimization design, minimization
of losses, control of circuit variables for performance improvement, optimal speed control, ...

In Chapter 4, we study an optimal control problem defined on a permanent magnet machine.
In this occasion, we will take into account the rotation of the machine, but sources in the stator
will be given in terms of the currents through the stranded conductors. As a consequence, we
will not have circuit equations coupled to the distributed model, and we will have a transient
magnetic model with time appearing as a parameter. The functional cost to minimize is the to-
tal power loss in the stator coils and two kind of restrictions are imposed: box-type constraints
on the amplitudes on the stator currents and an inequality state constraint in order to guarantee
that the resulting machine generates a large enough torque. Due to the low computational cost
required for the optimization process to be viable, we have decided to approximate the consti-
tutive magnetic law in the ferromagnetic cores by a linear one. The resulting control problem is
studied from the mathematical and numerical analysis point of view, and some numerical results
are shown for a toy model.

This problem was developed in collaboration with Professor Fredi Troltzsch, during two re-
search stays at Technische Universitdt Berlin. Moreover, a publication containing the main
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results in this chapter is being prepared.

On the other hand, in the case of induction machines, we will focus on the ones having squirrel
cage rotors. In this type of motors, the input source is given in the stator, and the rotor contains
a set of embedded bars that are connected to each other on the end-rings at both sides of the
machine. Therefore, in opposition to the synchronous case, now we are obliged to consider the
eddy currents in the rotor to be able to model the device appropriately. However, if we consider
amore involved circuit characterizing the whole squirrel-cage, in the distributed part we can still
consider a two-dimensional model defined in a cross-section transversal to the device. Accord-
ingly, the numerical simulation of these machines by using finite element methods involves the
solution of a nonlinear system of partial differential equations coupled with circuit equations.
This solution generally requires supplying initial conditions that, if chosen far from the physical
ones, a very long CPU time is needed to reach the steady-state solution, which is the main goal
in most cases.

Thus, in Chapter 5 we will present a novel and efficient methodology to reduce the transient
part in finite element simulations, so that the steady-state regime is reached in the shortest time
possible. For this purpose, we will develop a method that seeks good approximations for suitable
initial currents in the rotor bars of a squirrel cage induction motor with sources in the stator given
in terms of periodic currents. These initial currents are the result of solving an overdetermined
problem with two unknowns in the least-square sense. The numerical results show important
computational savings to reach the steady-state, in comparison with starting with null initial
conditions, what validates the efficiency of the procedure.

The results appearing in this chapter have been sent for publication

[18] A.Bermudez, D. Gémez, M. Pifeiro, and P. Salgado. Numerical Method for Acceler-
ating the Steady State in an Induction Machine. (Submitted).

Additionally, we have applied for a Spanish patent

[19] A. Bermudez, D. Gémez, M. Pifieiro, and P. Salgado. Procedimiento y producto de
programa informatico para acelerar el calculo del estado estacionario de un motor de
induccion de jaula de ardilla, Spanish Patent (request number P201830228).

Xvil






Part 1

Eddy Current Problems Analysis






Introduction

The modern theory that describes electromagnetic phenomena in the free space can be reduced
to a set of four equations, known as Maxwells system of equations, which reads

OFE
—Mogog + curl B = pyJ, (Ampere’s Law)
0B
r +curl E =0, (Faraday’s Law)
div B =0, (Gauss’ Magnetic Law)
godiv E = p, (Gauss’ Electric Law)

where we have used standard notation in electromagnetism: E is the electric intensity field, B
is the magnetic flux density, p is the volume electric charge density, J is the current density, and
o, €0 are the magnetic permeability and the electric permittivity of the vacuum, respectively
(see [53]). These equations are valid in the whole space R? and for all time ¢ > 0. The SI
coherent units of the above fields, along with the values of constants 1o and ¢, are given in
Table I.1.

Furthermore, the so-called continuity equation, relating p and J, can be deduced from the above
system, reading

dp ..
a—i—dle—O.

In material regions, the development of physical processes essentially depends on their prop-
erties. In the framework of electromagnetic field theory, matter is considered as a continuum
medium whose properties are described in terms of formal qualities such as the electric permit-
tivity, the magnetic permeability and electrical conductivity, which are described below. Firstly,
we detail Maxwell's system of equations in material regions, which reads

oD
—E—FcurlH:J, (Il)
B
%t +curl E =0, (I1.2)
div B = 0, (1.3)
divD = p, (I1.4)

where D is the electric displacement and H is the magnetic intensity field. Again, the SI co-
herent units of the involved fields are given in Table I.1.

Maxwell’s system of equations has to be completed with some complementary equations relating
fundamental with auxiliary fields, that is, 2 and B with D and H, respectively. Generally, the
equations describing these relations are called constitutive laws, and read, in the most simple
case (that is, for homogeneous, linear, isotropic media),

D =c:E, (L5)
B = uH, (L6)
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Symbol Units Value

E N/C
D C/m?
B T

H A/m
) C/m?
J A/m?
Lo H/m 47 x 1077

€0 C?/(N-m?) | 1/(367 x 10%)

Table I.1: Electromagnetic units.

where ¢ and p are constants called electric permittivity and magnetic permeability, respectively,
having the same units as the corresponding constants in free space.

There are situations in which the hypothesis of materials being homogeneous, linear and isotropic
is not valid, and therefore constitutive laws are not given by (I.5)—(1.6). Throughout the docu-
ment, we will assume that the electric permittivity is given by a constant in each material region,
but this will not be the case for the relation between B and H. In general, concerning the mag-
netic constitutive relation, materials can be described as:

* Inhomogeneous. In opposition to homogeneous materials, the magnetic permeability p
depends on the space variable.

* Anisotropic. In opposition to isotropic materials, H and B are not parallel to each other,
and therefore the magnetic permeability is represented by a second-order symmetric ten-
sor. This happens when the medium presents different electromagnetic properties in each
space direction.

* Nonlinear. In opposition to linear materials, B and H are related to each other by a
magnetic constitutive law of the form B = B(H'), where B is, in general, a nonlinear
vector law. This case comprises ferromagnetic materials, which show the hysteresis phe-
nomenon, due to which the magnetic flux density B does not only depend on the magnetic
intensity field at present time, but also on its past values. Moreover, the magnetic consti-
tutive law for anhysteretic materials (that is, materials not presenting hysteresis) can be
usually written as B = u(|H|)H, with the magnetic permeability p depending nonlin-
early on the modulus of the magnetic intensity field.

Another relation is frequently added to Maxwell’s equation, at the same level of the constitutive
relations, linking the current density and the electric intensity field, which is known as Ohm s
law. In the case of static media, this law reads

J=0F,
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with o the electrical conductivity, which is null in dielectrics and, in general, a nonlinear ten-
sor depending on temperature, frequency, etc., in conductors. However, we will consider the
conductivity to be a positive scalar field in conductors.

We finally notice that, since matter consists of atoms and molecules, the physical electromag-
netic fields change very quickly in both space and time, due to the discrete nature of matter and
to thermal oscillations. Therefore, Maxwell’s equations and electromagnetic properties have to
be understood as macroscopic averages of the physical ones.

In many applications, the involved physical phenomena do no require to solve the full Max-
well’s system of equations, allowing us to introduce different simplified models. For instance,
this happens in the case of slowly time-varying electromagnetic fields, where the displacement
currents term, 0D /0t, can be neglected from Ampére’s law (see [7]). The obtained model is
known as eddy current or magneto-quasistatic approximation, and reads as follows:

curl H = J, (I.7)

B
887 +curl £ =0, (1.8)
div B = 0. (1.9)

We notice that, since we are not going to be interested in computing the electric field E in
conductors, we have not considered equation (1.4).

It can be seen that this is a good approximation when the electromagnetic fields propagate almost
instantaneously, that is, when the transmission-time is very slow with respect to the inverse of
the angular frequency. Thus, these equations can be then used to model problems where the
frequency is relatively low and any radiation effects can be neglected. Some authors have proved
the validity of this approximation both in the hole space R? and in bounded domains; see, for
instance, [8] and Section 2.3 from [7]. This model is essential for the modelling and numerical
simulation of several industrial processes, which include magnetization and demagnetization
of ferromagnetic pieces, induction heating, electromagnetic forming, magnetic levitation, the
operation of electrical machines,...

From equations (I.7) and (1.9), we can deduce the following interface conditions:

[H xnlg=Js and [B-n|s =0,

respectively, where |- ]s denotes the jump across any surface S and J s is the surface current
density that flows on S. Moreover, since J = 0 in dielectrics and, from (1.7), divJ = 0, we
deduce that J - n = 0 on the interface between conducting and dielectric domains.

Additionally, many industrial applications involve time-periodic sources (for instance, when this
source is an alternating current). In this situation, if we denote the source frequency by f # 0,
and in the presence of linear isotropic materials, we could seek for time-harmonic solutions of
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system (1.7)—(1.9), of the form:
J(@,t) = T (x) cos(wt + ¢) = R |J ()],
H(x,t) = H(x) cos(wt + ¢) = R [f]{(:c)ei“’t} :
E(xz,t) = E(x)cos(wt+¢) =R [S(m)em} ,

withw = 27 fand J(x) := T (x)e, E(x) := E(x)e'® and H(x) := H(x)e' complex-valued
fields solution to the following time-independent system of equations:

div(pud) =0,
twpud + curl € = 0,
curl H = J.

We notice that the above system is usually called time-harmonic eddy currents model and that
d, € and JH are often known as phasors corresponding to the current density, electric intensity
and magnetic intensity fields, respectively.

In this first part of the memoir, we will deal with both a time-harmonic eddy current formula-
tion and a transient one. Firstly, in Chapter 1, we will focus on the mathematical and numerical
analysis of a formulation for the time-harmonic eddy current problem in 3D bounded domains,
combining a vector potential in conductors with a scalar one in the whole domain. We will re-
strict ourselves to the case with electric ports, in which sources are given on the domain bound-
ary, either in terms of currents or voltage drops prescribed by external power generators. Then,
in Chapter 2, we will address a nonlinear transient eddy current problem, including hystere-
sis effects, in order to perform the numerical simulation of magnetization and demagnetization
processes. In this case, geometries will present cylindrical symmetry, and two main situations
will be distinguished, depending on the current density living in, or being perpendicular to, the
meridional section of the conducting domain. In the first case, it is usual to solve a problem
defined only in the conducting part and written in terms of the magnetic field, while in the sec-
ond one it is more common to use the so-called magnetic vector potential as it leads to a scalar
problem (see [17, 21]).



Chapter 1

Analysis of a T',0—¢ Formulation of the
Eddy Current Problem with Currents and
Voltage Excitations

1.1 Introduction

This chapter deals with the mathematical analysis of the so-called T', ¢ — ¢ formulation for
solving time-harmonic eddy current problems defined in three-dimensional bounded domains
containing both conducting and dielectric materials. This kind of problem often arises in elec-
trical engineering in the numerical simulation of varied devices, such as electrical machines,
metallurgical furnaces, non-destructive testing tools, etc., (see [7]). We will focus on the case in
which some of the conducting subdomains are not strictly contained in the computational one,
with sources given either in terms of the current intensities crossing their intersections with the
outer boundary or in terms of the potential drops between them. This particular case is referred
in the literature in different ways, such as the eddy current problem with electric ports, with
non-local boundary conditions or coupled with electrical circuits. Thanks to its widespread ap-
plicability, this problem has been subjected to thorough study during the last decades, by using
different unknowns and formulations. We refer the reader to Chapter 8 of [7], where we can
find a quite comprehensive review of the most relevant formulations, along with the main re-
sults from a mathematical and numerical point of view. Additionally, we can cite [4, 23], more
recent publications that analyse other relevant formulations of the eddy current problem with
electric ports.

In this chapter we will focus on the well-known T,  — ¢ formulation, which combines a vector
potential 7', defined only in the conducting domain and discretised using edge elements, with a
scalar potential ¢ supported in the whole domain and discretised by nodal elements. One great
advantage of this methodology is the low computational effort needed for its solution because
the only vector unknown, 7', has to be computed only in conductors, where there are generally
far fewer degrees of freedom. Therefore, this kind of formulation is one of the most used in

7
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commercial software for the solution of three-dimensional eddy current problems (e.g., Altair
Flux® or ANSYS Maxwell®).

While the T', ¢ — ¢ formulation has been widely used by electrical engineers (see, for instance,
[32, 34, 74, 108]), the existing literature related to its mathematical analysis in both the contin-
uous and discrete cases is comparatively limited. In particular, the theoretical analysis usually
covers a formulation with a gauge condition for the electrical vector potential and uses a nodal
finite element for its approximation. In this framework, we refer the reader to Section 8.1.3
of [7], where a continuous formulation is studied, and to the papers [41, 60], which perform
the analysis in the transient case. Also, a nodal ungauged transient formulation involving only
volumic sources instead of boundary ones is analysed in [71] at a discrete level. However, the
formulation implemented in commercial software is usually based on edge finite elements and,
to the best of the authors’ knowledge, a rigorous analysis for this case with electric ports has
not yet been performed. To attain this goal, we will rest upon the uniqueness of the magnetic
field, even though its decomposition in vector and scalar potentials may not be unique. In this
way, we will first establish an equivalence between an ungauged 7', ¢ — ¢ formulation of the
problem and a slight variation of the magnetic field formulation analysed in [22]. This equiv-
alence, proved at both continuous and discrete levels, will be the key to obtain the uniqueness
of the magnetic field reconstructed from the scalar and vector potentials, and to obtain the con-
vergence result for the discrete scheme. We notice that, from a computational point of view,
the ungauged T', ¢ — ¢ formulation leads to an undetermined problem that requires an iterative
method for finding a particular solution to it. On the other hand, we have also extended the
theory to cover a gauged version of the problem, whose analysis cannot also be found in the
present literature. The solution of this version of the formulation will be unique, and thus, if the
problem is not too large it is possible to use a direct solver for its resolution. The techniques
used to perform the mathematical and numerical analysis in this second stage will be the same
as for the ungauged case.

Concerning the discretization of the problems, edge finite elements will be employed for the
approximation of the vector potential and standard Lagrange finite elements for that of the scalar
potential. A drawback of this formulation is that it requires the computation of a source field
in the dielectric domain, the so-called impressed vector potential, which is not trivial if the
dielectric domain is not simply connected. Based on the ideas introduced by Bir6 and Preis in
[34], we will compute this field by using the Biot-Savart law, what eliminates the necessity of
using multivalued scalar potentials, even in the case of homologically non-trivial topologies.
From the point of view of the mathematical analysis, this approach guarantees the convergence
of the numerical method when sources are provided in terms of the currents crossing some parts
of the boundary, but this is not the case if the potential drops are given. To overcome this
theoretical difficulty, we also include a brief explanation of the procedure introduced in [5] for
constructing the impressed vector potential by computing the so-called loop fields, which would
be suitable to prove the convergence in all cases; see [6], where this idea is also exploited in the
implementation of a magnetic field/scalar potential formulation.

The outline of this chapter is as follows: in Section 1.2 we present the eddy current model and
recall a formulation to solve it presented in [22]; in Section 1.3, we derive the strong T, ¢ — ¢
formulation for the eddy current problem; in Sections 1.4 and 1.5, we perform the mathematical
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and numerical analysis of this formulations, without imposing a gauge condition in the first case
and with a Coulomb’s gauge in the second, through its equivalence with the one studied in [22];
in Section 1.6, we introduce a numerical procedure to compute the impressed vector potential
and, with this end, we derive an expression to evaluate the Biot-Savart field corresponding to
a polygonal filament carrying a unit current intensity; finally, in Section 1.7, some numerical
results are reported.

1.2 Eddy Current Model with Sources as Boundary Data

Eddy currents in linear, homogeneous and isotropic media are usually modeled by the low-
frequency harmonic Maxwell’s equations,

curl H = J, (1.1)
twpH +curl E = 0, (1.2)
div(uH) = 0, (1.3)
along with Ohm’s law
J=0FE, (1.4)

where we recall that E2, H and J are the phasors corresponding to the electric field, the magnetic
field and the current density, respectively, w # 0 is the angular frequency (with w = 27 f, f
being the current frequency), 1« the magnetic permeability and o the electrical conductivity. Note
that the latter is non-null only in conducting media.

Dielectric (€2 p)

Conductor (QQ¢)

Figure 1.1: Sketch of the domain (V. = 2, M = 3).

Although equations (1.1)—(1.4) concern the whole space, for computational purposes we restrict
them to a simply connected three-dimensional bounded domain €2 with a connected boundary.
This domain €2 consists of two parts, (2, and €2, occupied by conductors and dielectrics, respec-
tively (see Figure 1.1), and we assume that (2 | is connected. Domains €2, 2, and {2 are assumed

9
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to have Lipschitz-continuous boundaries. We denote by I, I, and I, the open Lipschitz sur-
faces such that T, := 9Q,N I is the outer boundary of the conductors, I, := 92N I that of
the dielectrics and T, := 99, N 9L, the interface between both domains. We also denote by n
the outward unit normal vector to 02, as well as other unit vectors normal to particular surfaces
that will be deduced from the context.

The connected components of the conducting domain 27, n = 1,..., M, are supposed to be
simply connected with connected boundaries. The first NV connected components of the con-
ducting domain, the so-called inductors, are assumed to intersect the boundary of €2 in such a
way that the outer boundary of each of them, 9Q7 N 0€), has two disjoint connected compo-
nents, both being the closure of non-zero measure open surfaces: the current entrances f}n and
the current exits fg, where the conductor is connected to an alternating electric source. We de-
note I, :=T!U---UIN, T}, :=T!U---UT'Y and T = 0Q"NIQ,, n = 1,..., N. Furthermore,
we assumethatf}n ﬂme =0 andf;I ﬂf: =0,1<m,n<N,m#n,and,NT, = (). The
remaining connected components 7, n-= N + 1,..., M, are assumed to have their closure
included in €2, and will be referred to as workpieces.

As illustrated in Figure 1.1, we assume that for each inductor QZ, n=1,...,N, there exists a

connected cutting surface ¥, C € such that 9%, ¢ 99, and Q= Q_\ UV, %, is pseudo-
Lipschitz and simply connected (see, for instance, [9]). We also assume that ¥, N %,, = () for
n # m and that the boundary of each current entrance surface, 7, := 8FJ”, is a simple closed
curve. We denote the two faces of each X, by 3 and X" and fix a unit normal n,, on ¥, as the
outer normal to 2\ ¥, along X;. We choose an orientation for each -, by taking its initial and
end points on X and X7, respectively. We denote by 7, the unit vector tangent to ~,, according
with this orientation. Moreover, let us emphasise that the cutting surfaces >,,, n = 1,..., N,
will be only a theoretical tool to prove some of the following results. However, there is no need
to construct such surfaces to apply the T', ¢ — ¢ formulation of the eddy current problem that
we will introduce and analyse in this paper.

We assume that there exist constants y, 71, ¢ and @ such that

O<p<pulx)<n ae xecfl
0<og<o(x)<o ae xeQ.ando=0in,.
To solve equations (1.1)—(1.4) in a bounded domain, it is necessary to add suitable boundary

conditions. We consider the following which will appear as natural boundary conditions of the
weak formulation of the problem:

Exn=0 onl UL, (1.5)
pH -n =20 on 0f). (1.6)

The former means that the electric current is normal to the entrance and exit surfaces, whereas
the latter means that the magnetic field is tangential to the boundary. These boundary conditions
have been proposed in [37]; we refer to [22] for further discussion about them.

Boundary condition (1.6) implies that the tangential component of the electric field E is a surface
gradient. Indeed, after integrating iwpH - n on any surface S contained in 02, by using (1.2)

10
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and Stokes’ theorem we obtain

O:/iwuH~n:—/curlE-n:— E-r=—| nx(Exn)-T,
S S a5 oS

T being a unit vector tangent to S. Therefore, since 0f) is simply connected, there exists a
sufficiently smooth function V' defined on 0€2 up to a constant, such that V' is a surface potential
of the tangential component of E; thatis, n x E xn = — grad,_ V on 0f2, where grad.. denotes
the surface gradient. On the other hand, equation (1.5) implies that V' must be constant on each
connected component of I, and I';. Let V" and V™ be complex numbers such that V' = V" on
[MTandV = V"onIT, n =1,...,N. The difference AV, = V' — V" is the potential drop
along conductor {27

Multiplying Faraday’s law (1.2) by H, integrating over 2 and then applying a Green’s formula
along with equation (1.1), we obtain

/iwu|H|2+/ E-j:/ (Exn)-H.
Q Qg o9
Using that n x E x n = —grad,_V on 02, we write

/(Exn)-H:—/ (gradTVxn)-—I-Tz—/ curl, V- H
20 0

N Vewl, H = — Veurl H -n, (1.7)
o0 o0N

where curl, and curl,. denote the surface vector and scalar curls, respectively.
Now, since curl H = Jand J = 0in (),
N

Veurl H -n = Z (VE”/ curlﬁ-n+VJ”/ curlﬁ-n)
Iz e

n=1

o9
N [—
3 —ZAVH/ curl H -n, (1.8)
n=1 }L

the last equality because, for each inductor,

-,

Then, from the above equations we derive the energy conservation law:

div(curl H) :/

Curlﬁ-n:/ curl H - n + curl H - n.
898

n n n
C I‘E I‘J

N
/mmH\M/ E.-J=YT,AV,
Q QC n=1

with I, := [pnJ - m = Jp.curl H - n being the current intensity through conductor €27,
J J
n=1,...,N.

In order to consider sources provided by external circuits we have two possibilities: either the
current intensity or the potential drop must be given for each inductor 7, n = 1,..., N. We

11
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assume that forn = 1,..., N; (0 < N; < N) the current intensity /,, crossing I'" is given, in
which case the boundary condition reads

/ curlH -n=1,, n=1,...,Nj, (1.9
I‘n

J
and, forn = Ny +1,..., N, the potential drop AV, between [ and I'" is given, in which case
the boundary condition reads

nx Exn=—grad V ond, WithV|1"£—V’F]n:Avn, n=Nr+1,...,N.
(1.10)

The system composed by equations (1.1)—(1.4) subjected to boundary conditions (1.5), (1.6),
(1.9) and (1.10) is frequently known as the eddy current problem with non-local boundary con-
ditions.

1.3 T, ¢ — ¢ Formulation of the Eddy Current Problem

Our first goal is to introduce some auxiliary unknowns that will be used to solve the previous
set of equations. First of all, note that given a complex vector of currents (7,,))_, € CV, there
exists Ty € H(curl, §2) such that

/curlTo-n:In forn=1,... N,
I
J
curlTo =0 in QU (UL, Q")

Such Ty is usually called an impressed vector potential. An example is given by To(x) =
SN Lo (), with tg,, € H(curl, ) satisfying

/ curlty, - n =1, (1.11)
I‘n
J

curlty, =0 inQ\Qr, (1.12)

forn = 1,...,N. We will refer to these vector fields ¢,,, n = 1,..., N, as normalised

impressed vector potentials. They can be defined in different ways (see, e.g., [32]).

From equations (1.1) and (1.4) we have that divJ = 0in 2, and J - n = 0 on I',. Therefore,

div(J —curlTy) =0 inQ
(J —curlTy) - n=0 onl,,

/ (J —curlTy) - n=0 forn=1,..., N.
I'n
J
Hence, it can be proved that for each connected component of the conducting domain 27, n =
1,..., M, there exists a vector field T" supported in 27 such that

curlT" = J —curlTy inQ},

T'"'xn=0 onFI"

12
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(see, for example, Theorem 2 1 in [48]). Let T" be the extension by zero to Q2 of T", n =
1,...,M. LetT := Z T and T := T|Q Then, T satisfies curl T' = J — curl T, in 2,
and T xn=0onl]. Such a T is called a current vector potential.

Now, from (1.1), curl H = J = curl T + curl Ty, so that, since €2 is simply connected,

H=T+T,—grad¢ (1.13)

for some ¢ € H'(Q); ¢ is usually called a magnetic scalar potential. Notice that such an H
satisfies automatically the constraint curl H = 0 in (2, which follows from (1.1) and (1.4).

Taking the previous decomposition into account, the time-harmonic eddy current problem (1.1)—
(1.6) leads to:

iwp (T 4+ Ty — grad ¢) + curl (i curl(T + T0)> =0 inQ, (1.14)
div ((T + T — grad ¢)) =0 inQ, (1.15)

(%curl(T—i—To)) xn=0 onl,UT,, (1.16)
,u(T—l—To—gradgb)-n:O on 0f2. (1.17)

The above equations correspond to the strong T, » — ¢ formulation of problem (1.1)—(1.4) sub-
jected to boundary conditions (1.5), (1.6), (1.9) and (1.10) (see [34]). We will see in the next
section that decomposition (1.13) is not unique, and therefore this is not a well-posed problem.
Nevertheless, it is possible to add some requirements to the problem in order to guarantee that it
will have only one solution (the usually called gauge conditions). One of these sets of conditions
is the so-called Coulomb s gauge, which in this case reads:

divI'=0 in {2 (1.18)
T -n=0 onl UTI. (1.19)

We will dedicate the next two sections to perform the mathematical and numerical analysis of the
weak versions of both the ungagued and gauged T', ¢ — ¢ formulations, that is, of (1.14)—(1.17)
and (1.14)—(1.19), respectively.

1.4 Mathematical and Numerical Analysis of the Ungauged
T, » — ¢ Formulation

Our next goal is to introduce a weak formulation of problem (1.14)—(1.17). If we test (1.14) with
a function S € H(curl, ) such that S x n = 0 on I, using a Green’s formula and (1.16), we

13
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obtain

_ 1 _
/ iwn (T + Ty —grad ¢) - S + / —curl(T + T)) - curl S
Q Q. O

C

1 — 1 —
:—/ —curl(T+T0)xn-S:—/ —curl(T+Ty) xn-S
) I,

Qy O ur, o

1 _
+ | —curl(T+T))-Sxn=0.
r o

Hence, using that T'y = Zf:/:l I,to,, we write
. — 1 _
/ iwpu(T — grad ¢) - S + —curlT - curl S
Q 0. O

| ]

On the other hand, multiplying (1.15) by iwy with 1 € H! (), using a Green’s formula and
taking (1.17) into account, we obtain

_ 1 _
iwpity , - S + /Q p curlt,, - curl S) =0. (1.20)
C

C

/ W (T + T, — grad gb) -grad ) = 0.
Q

Then, for all ¢» € H'(Q)) we have that

N
/sz (T - grad ) - grad ¥ + > I /Q iwiity - grad = 0. (1.21)
n=1

When all the sources are given in terms of the current intensities crossing the conducting sub-
domains, the problem to solve is (1.20)—(1.21). However, when there are conductors for which
the potential drops are given, we need to derive some other equations to determine the corre-
sponding current intensities. To this end, we multiply equation (1.2) by the conjugate of ¢,
and integrate over €2 form = Ny + 1,..., N, to obtain

/ iwpH - g, +/ curlE - ¢, = 0.
Q Q
Now, using a Green’s formula and the fact that curl#,,, = 0 out of Q?, we have
/ curl E -, = / E -curlty,, — / (E xn)-tyn.
Q om o0

Proceeding as in (1.7)—(1.8) with the test function % ,,, instead of H,, it is easy to check that

/ (E x 1) fom = AVjp.

o0
Then, from the last three equations, (1.1) and (1.4) we obtain

_ 1 _
/ wwpH -t + —curl H - curlt,, = AV,,.
Q

am o

14
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Thus, using again that H = T + Ty —grad¢ and Ty = nyzl I, we write for m =
Nr+1,....N

~ _ 1 _
/ iwu(T — grad ¢) - Lo, + / —curlT - curlt,,
Q om o

n=1

N
) |
+3 In/ iwiiton - Tom + ]m/ 2 eurlton|? = AV,. (1.22)
Q Q’g g

We define the following closed subspace of H(curl, 2):
Y ={SeH(curl,Q): Sxn=0onl}.
Collecting equations (1.20)—(1.22), we derive the following formulation:

Problem 1.1. Let ty,, € H(curl,Q), n = 1,..., N, satisfying (1.11)—(1.12). Given I,, € C,
n=1,...,N,and AV, e CC,n=N;+1,....N, find T €Y, ¢ € H(Q) and I,, € C for
n=Nr+1,...,N such that

—4 1 _ N _
/ iwp(T — grad ¢) - S + / —curlT - curl S + Z I, (/ wpty, - S
Q Q.0 Q

C n:N]+1 C

1 _ & : —
+ —curlty, - curl S) = — Z I, (/ wpty, - S
n=1 Q

ar o .

1 _
44 —curlty, - curl S) vSely, (1.23)

Q’éO’

N
— / iwpd - grad 1) + / iwpgrad¢-grady — > In/ iwpto , - grad
0 Q Q

C TL:NI+1

Ny
/ an/ﬂmutom cgradd Vo e HY(Q), (1.24)
n=1

(1

_ _ 1 _
wwpd - oy — /Qz'wp grad ¢ - to ,,, + /Qm o curlT - curlt,,,+
C

C

N
_ 1 _ .
S, / iwpito - Foom + I / 2| curl t07m|2) K, = AV, K,
Q ng o

n=Nr+1

Ny
— (an/iwut07n~t0,m) Fm \V/Kmec, m:N[—l—l,...,N. (125)
n=1 Q

This is the ungauged version of the well-known T', ¢ — ¢ formulation of problem (1.1)—(1.4)
subjected to boundary conditions (1.5), (1.6), (1.9) and (1.10). Let us notice that this problem
is not well-posed; indeed, we will show in the following subsection that it has infinitely many
solutions. Still, we will also show that any of these solutions allows us to solve our original
problem.
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1.4.1 Mathematical Analysis

Now, we recall the magnetic field formulation considered in [22] of the same eddy current prob-
lem that will be used to analyse the T, ¢ — ¢ formulation. To this end, we define

X :={G € H(curl,Q) : curlG=0in )}

and, given K € CM1,

V(K)::{GEX: curlG-n:Kn,n:L...,Nl},

I'n
J
which is a closed linear manifold of X.
Remark 1.2. Forall G € X, curlG - n € HY2(0Q) and curlG - n = 0 on T,. Then,
Jpn curl G - nv is well defined. Indeed, let 6 be any smooth function defined in 0, such that
J
0 =1onlVandd =0onlyandon ", m =1,...,N, m # n. Then [p. curlG -n :=
J

(curl G - 1, §)yy-1/2(90) x11/2(00) 1 well defined and its value does not depend on the particular
choice of 6.

The following magnetic field formulation is derived by using the same arguments from [22],
where a similar problem but only with current intensity source terms has been considered.

Problem 1.3. GivenI,, € C,n=1,...,N,and AV,, € C,n= N;+1,...,N, find H € V(I)
such that

N
/iwuH-éJr/ L cur . o750 AVn/ curlG-n VG e V(0). (1.26)
Q Q. O n

n:NI—l-l

We have the following results:

Theorem 1.4. Problem 1.3 has a unique solution.

Proof. The result follows immediately from the fact that V(I') # () (see Lemma 2 in [22] or

Section 3.2 in [24]), the X -ellipticity of the continuous sesquilinear form in the left hand side

of (1.26) and the continuity of the linear functional G — 0"y 1 AV, [ curlG-n. O
J

Theorem 1.5. GivenI,, e C,n=1,..., N, and AV,, € C,n=N;+1,...,N,let H € V(I)
be the solution to Problem 1.3. Let J := curl H and E := (%J) |QC. Then, the following
equations hold true:

wpH +curlE =0 in (1.27)
div(pH) =0 in(Q, (1.28)
J=0 inQ, (1.29)
/ curl H-n=1, n=1,... . N, (1.30)

F’!’L

J
pH -n=0 ondf, (1.31)
Exn=—gradV, xn inHy/*(T, UT,)?, (1.32)
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for some V, € HY(Q) constant on each connected component of T, UT, and satisfying V. |1"£ -
V. rn = AV,,n= N;+1,...,N. Hence, in particular,

Exn=0 onl,UIL,.

Proof. The proof is quite similar to that of Theorem 3.8 in [24]. For the sake of completeness,
we include it here.
Given § € D(Q2), grad § € V(0). Then, (1.26) yields

/ iwpnH - grad § = 0.
Q

Consequently, (1.28) holds true.
Now, let G € D(Q2)? be such that supp G C Q.. Then, G € V(0) too, and (1.26) yields

- 1 _
/ wuH - G + —curl H - curl G = 0.
Q

c Qg 0

Hence, E := (i curl H) |0, satisfies (1.27).

Equation (1.29) follows from the definition of J and the fact that H € X', whereas equation
(1.30) follows from the fact that H € V(I).

To prove (1.31), notice that nH € H(div, Q) because of (1.28). Then, unH - n € H~/?(9Q)
and, given 6 € H'(Q)), we have that

(WH -m,0) o0 = /Qdiv(uH)g—l— /Q,uH -grad§ = 0,

the last equality because of (1.28) and (1.26), since gradd € V(0). Then uH -n = 0 in
H~1/2(982) and thus (1.31) holds true.

Finally, notice that E € H(curl, Q) because of (1.27), and consequently Exn € H=Y/2(99)%.
Hence, to prove (1.32), it is enough to show that there exists V. € H'(Q.) constant on each con-
nected component of I', U I',, satisfying V;|p£ - ‘/*|1"Jn = AV,,n = N;+1,...,N and such
that (E X n, v)ao = —(grad V. x n,v)aq,_ for every v € Hy)?(T, UT, )3,

Given one such v, there exits G € H'(Q2)* vanishing in (2, and such that G|y = v. Clearly,
G € X. In what follows we prove that (curl G - n, 1>p? =0,n =1,..., N;. With this aim,
let ¢, be a smooth function defined in €2 such that (n\me = Oy T = 1,...,N,and g‘n\pE = 0.
Then, using a Green’s formula and the fact that G vanishes in €2, we obtain

(curlG - n, 1>I‘Jn = (curlG - n,(,)90 = / curl G - grad ¢,,.
QC
Moreover, since Go, € H'(Q.)? and grad Calo,, € H(curl, ), using a Green’s formula,
/ curl G - grad ¢, = / grad(, xn-G = / grad(, xn-G =0,
Q 09, rn
the last equality because (, is constant on I'". Therefore, G € V(0) and we can use it to test

(1.26).
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Since G is null outside €2, and E = % curl H in Q_, using a Green’s formula and (1.27) we
obtain

N —
> AVy(curl G - n, 1)rn :/

n:NI+1 Q

iwuH~é+/ E . curlG
QC

C

= <E X n,G)agc = <E X ’I’L,’U>3QC.

On the other hand, forn = N; +1,..., N, let ¢, € H'(Q) be such that ¢, vanishes in 2\ 7,
(o =1lonI"and ¢, = 0on I, If we define V, := Y00y ) (—AV,) (,la, € H'(Q,), taking
into account that G is null in €2, and applying Green’s formulas, we obtain

N N
> AV, <curl§ ‘n, 1>FJH = <curlG n, y AVn(n>
00

n:N]+1 TL=NI+1

= —/Q curl G - grad V, = — (grad V, x n,v)agc.

C

Thus, from the last two equations, we derive (1.32). 0

Remark 1.6. Let us notice that the current intensities through I'", n = Ny +1,..., N, can be
computed from H as follows:

In:/ curl H - n, n=N;y+1,...,N.
FTL
J

Our next goal is to prove that Problems 1.1 and 1.3 are equivalent, for what the following lemma
will be the main tool. Here and thereafter, for any S € Y, S will denote the extension of .S by
zero to (). Notice that § € X.

Lemma 1.7. Let ty,, € H(curl,Q), n = 1,..., N, satisfying (1.11)—(1.12). Given K,, € C,
n=1,....N;, G € V(K) if and only if there exist S € Y, v» € H'(Q) and K,, € C,
n = N;r+1,...,N, such that G = S + 27]:[:1 K, to,, — grad . Moreover; in such a case,
Kn:frjncurlG~n,n:NI—i—l,...,N.

Proof. Given G € V(K), let K,, := [rncurlG-n,n = Ny +1,..., N, and G = G —
J
N K,to,,. We have that G € H(curl, 2) and it satisfies
div(curlG) =0 in €,
curl G -n =0 onl],
/ curlG -n =0 forn=1,...,N.
I'n
J

The equations above allow us to use again Theorem 2.1 from [48] as in the derivation of the
T, ¢ — ¢ formulation to obtain S € Y which satisfies

curl S = curlG in Qg

Sxn=0 onl.

18



Chapter 1 . Analysis of a T',¢p—¢ Formulation of the Eddy Current Problem

Then, curl(G S) = 01n (2, so that, since {2 is simply connected, there exists ¢) € H'(€2) such
that G = S — grad . Thus, G = G+Z Kt0n—5+2n 1 Koty — grad ¢ in €.
Conversely, let G = S + YN | K,to,, — gradv, with § € Y, ¢ € HY(Q) and K,, € C,
n=N;+1,...,N. Clearly G € H(curl, Q) and curlG =01in ), so that G € X.
Moreover, forn =1, ..., N;, we have that

n

N
/curlG~n:/ curlS-n—i—ZKm/ curlto,m-n:/ curlS - n + K,,.
J J

m=1 J

Let § € C*°(Q) be as in Remark 1.2. Then, using a Green’s formula, the divergence theorem
and Proposition 3.3 from [47], we have that

/ curl S - n = <curlS’ . n,(5>H71/2(8Q)XH1/2(3Q)
J

= /chrl,g’ .gradd = —(S x n,grad, O)H-1/2(00)% x H1/2(902)3
—<S X n, gradT 5>H—1/2(FD)3><H1/2(FD)3

— (8§ xmn,grad, 5>H—1/2(PEUFJ)3xH1/2(FEurJ)3 =0,

where for the last equality we have used that § = 0 in Q_ and § is constant on each connected
component of I, U T, (see Remark 1.2). Hence, K, = [fncurlG -n,n =1,..., N, so that,
J

in particular, G € V(K). O

Taking the previous decomposition into account, we have that solving Problem 1.1 is equivalent
to solving Problem 1.3. In fact, we have the following result:

Theorem 1.8. Let t,,, € H(curl, Q), n , N, satisfying (1.11)—(1.12). Let I,, € C, n =
1,....,N,and AV, € C,n = N;+1,. N Anysolutlon (T, ¢, In,+1,-..,1n) to Problem 1.1
leads to the unique magnetic field H =T + YN T nton — grad ¢ that solves Problem 1.3.
Conversely, the solution H to Problem 1.3 can be wrmen as H=T + SN Lo, — grad ¢,
with (T, ¢, In,+1, - .., In) being a solution to Problem 1.1.

Proof. Let (T, ¢, In,+1,-..,In) be a solution to Problem 1.1 and H := T + >N Lty —
grad ¢. Accordlng to Lemma 1.7, H € V(I). Let G € V(0). We use Lemma 1.7 to write
G=S+yN Ny 41 Knton — grad ¢ with S € Y and v € H'(Q). Hence, (1.26) follows by
adding equalities (1.23), (1.24) and (1.25). Then, H is the solution to Problem 1.3.

Conversely, let H be the unique solution to Problem 1.3. According to Lemma 1.7, we write
H=T+YN Ity,—gradgpwith T €Y, ¢ c H(Q) and I, € C,n = N;+1,...,N.
Then, by substituting this expression in (1.26) and taking separately test functions G = S for
S €Y, G =grady foryy € HY(Q) and G = ty,,, n = N;+1,..., N, we check that
(T, ¢,In,+1,--.,1y) is a solution to Problem 1.1. O]

Remark 1.9. The decomposition H = T + Zflvzl I.ty, — grad ¢ used in the above re-
sults is not unique. Therefore, Problem 1.1 is not well-posed since it has multiple solutions
(T, ¢, In,+1,--.,IN); however, H = T + SN Lito, — grad ¢ is uniquely determined for
all of them. Furthermore, from the computational point of view, it could be interesting to obtain
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one particular solution to this underdetermined problem because, to do this, the more expensive
vector unknown has to be computed only in conductors. Moreover, another advantage of the
T, o— ¢ formulation with respect to an H , ¢ formulation is that it does not involve a multivalued
potential, what would require the construction of cutting surfaces.

1.4.2 Finite Element Discretisation

In this section we will introduce a discretisation of Problem 1.1 and proceed as in the previ-
ous subsection for its analysis. In this subsection, we assume that €2, 2, and €2 are Lipschitz
polyhedra and consider regular tetrahedral meshes 7;, of €2 such that each element 7" € 7Ty, is
contained either in €, or in ), (h stands as usual for the corresponding mesh-size). Therefore,
Tn(82,) = {T €eT,:TcC QD} and 7,(Q,) := {T eT:TCcC ﬁc} are meshes of {2 and (2,
respectively.

We employ edge finite elements to approximate the current vector potential T, more precisely,
lowest-order Nédélec finite elements:

Nw(Q) = {G), € H(eurl, Q) : G|y € N(T) VT € Tr(2)},
where, for each tetrahedron 7,
N(T) = {Gy e P}(T): Gp(x) =ax z+b, a,beC’ 2T}
For the magnetic potential ¢ we use standard finite elements:
La(Q) = {¢n € HY(Q) : tulp €PY(T) VT € Tr},
We introduce the discrete subspace of Y,

Vi ={GreNL(Q.) : Guxn=0o0nT,},

We also introduce discrete normalised impressed vector potentials ¢} , € N',(Q),n =1,..., N,
satisfying
/ curlt -n=1, (1.33)
rr ’
J
curltf, =0 inQ\ Q" (1.34)

and a discrete impressed vector potential T := SV | Lit},, € N(Q). We describe in next

section how such ¢ . n =1,..., N, can be computed in practice.

Then, the discretisation of Problem 1.1 reads as follows:

Problem 1.10. Let tg,n € Nw(Q), n =1,...,N, satisfying (1.33)—(1.34). Given I, € C,
n=1,...,N,and AV, € C,n=N;+1,...,N, find Ty, € Yy, ¢, € L1,(Q) and I"" € C for
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n=Nr+1,...,N such that

_ 1 _ N _
/ iwu(Ty, — grad ¢y) - Sy, +/ —curlT), - curl S}, + Z I" (/ iw,utgn - Sy,
Q Q.0 Q ’

- n=Nr+1 c
1 < ol g
—1—/ curltgn-curlSh> =—> I, </ iwpty, - Sh
QC g ’ n=1 QC 7

1 _
—i—/ curltgn-cur15h> VSy €Y (1.35)
Q.0 ’

N
— / iwpTy, - grad ¥, + / iwpgrad ¢y, - grad ¢, — > [T}L’/ iwpty,, - grad ¥,
Qq Q n=Nr+1 &

Ny
= I [ it - graddy, Vi € L(), (136)
n=1

- A 1 -
</ wopdy, - tgm — / wwp grad ¢y, - tgm +/ —curlT), - curltgm
Q ’ Q ’ Qifnc ’

C

n=Nr+1

N
. —h 1 — —
o [l B I 2] curltg’m|2> K = AV K,
C

Ny
— (Z In/ iwut’(}’nig’m) K, VK,e€C, m=N;+1,....N. (137
n=1 Q2

As in the continuous case, Problem 1.10 has infinitely many solutions, but any of them will be
useful for our purpose.

Again, we will perform the mathematical analysis of the above problem by proving its equiva-
lence with a discrete version of Problem 1.3. To this end, let us consider the following discrete
subspaces:

X, ={G, e N}(Q) : curlG, =0inQ, } C X,

Vi(K) := {GhEXh :/F curlGh-n:Kn,nzl,...,NI}CV(K).

Then, Problem 1.3 is discretised as follows:

Problem 1.11. Given I,, € C, n = 1,...,N;, and AV,, € C, n = N;+1,...,N, find
H,, € V,(I) such that

_ 1 _ N _
/ iwuHh-Gh—l—/ —curl Hy, - curl G}, = Z AVn/ curlG, -n VG, € V,(0).
Q Qe 0 n=N;+1 3

(1.38)
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We have the following result.

Theorem 1.12. Problem 1.11 has a unique solution H . Moreover, if the solution to Problem 1.3
satisfies H o € H'(curl, Q) and H|o_ € H(S2,)* withr € (%, 1}, then the following error
estimate holds

1H — Hallyewrry < CF |1 H e eurna) + IH i ys] -

where C'is a strictly positive constant independent of h and H.

Proof. Since the sesquilinear form in the left hand side of (1.38) is continuous and X';, —elliptic,
the only thing to prove in order to obtain the well-posedness of Problem 1.11 is that V;,(I) # 0.
This proof is very similar to the one appearing in Sectlon 4 of [24], but we include it here for the
sake of completeness. Indeed, forn = 1,..., Ny, let H, n € X, be such that faFJ H, BT = 0jn

forj=1,...,N. In Remark 5.3 from [24] a basis of X';, under our geometrlcal assumptions
is given, from which such H, ;, are easy to construct. Then we define

— Ny —~n
H, =Y I.H,.

n=1

Hence,

Ny
,\ A —n
/churth«n: [(Eneri=3 L H, =1
J

J J n=1
Thus, H, € V(I).

On the other hand, concerning the error estimate, it follows from the ellipticity of the sesquilinear
form, Céa’s lemma and standard error estimates for edge elements. [

To the best of the authors’ knowledge, the regularity of H assumed in the second part of Theo-
rem 1.12 has not been proved. Indeed, as shown in Theorem 1.5, the solution H to Problem 1.3
satisfies div(uH) = 0in Q and pH - n = 0 on 0S2. Therefore, when 1 is constant in the whole
domain €, according to [9, Proposition 3.7], H € H"(2)3 for some r > 1/2. However, even in
this case, it is not known whether curl H € H" ().

The following characterization is the discrete analogue to Lemma 1.7.

Lemma 1.13. Let tjj, € N,(Q), n = 1,..., N, satisfying (1.33)(1.34). Given K,, € C,
n=1,..., Ny, adiscretefield G), € V,(K )zfandonly ifthere exist Sy, € Yy, ¥, € L,(Q2) and
K'"e Cn=N;+1,...,N,suchthat G, = S+ K b0+ NN 1 Kt —grad iy,
Moreover, KI'" = fF}l curl G, - nn=N;+1,...,N.

Proof. Given G, € Vi,(K), let K" := [;, curlG},-n,n= N;+1,..., N, and G, =G —
J

SN Kty ~ N KIth . Then, G, € N3(Q), curl G, = 0inQ, and Jpy curl Gyn =
0,n=1,...,N.
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Let us recall that we denote QD = Q. \ UX_, %, the simply connected domain obtained by re-
moving the cut surfaces ,,,n = 1,..., N, from (2 . We assume that surfaces X, are polyhedral
and the meshes are compatible with them in the sense that each ¥;, is a union of faces of tetra-
hedra T' € Ty,. Therefore, T;,(2,,) can also be seen as a mesh of Q2. Each function ¢ € H'(€2,)
has, in general, different traces on each side of >J,, and we denote by

[¢]s, =Vls; — ¥lsyt
the jump of ¢ through %, along n,. Moreover, the gradient of Yin D' (€2,) can be extended to

L2(Q,)? and will be denoted by grad 0.
Let us introduce the space:

La(Q,) = {n € H(Q) : dhuly € PU(T) VT € T(Q,)},

and the subspace

{whéﬁh( b) Wh]] —Constant,nzl,...,N}.

Since éhy o, € N1,(9,,) is such that curl Gh|g = 0, according to Lemma 5.5 from [29], there

exists ¢h € 0y, such that Gh| o, = — grad ¢h Moreover, by using Stokes’ theorem,
O:/ curlG, -n= | G- -7, = g;;dﬂh-Tn:[[@Zh]]zn,
which implies that th does not have jumps across the cut interfaces >, n = 1,..., N, and

hence 1, € L,(2,) and /G\h’QD = —grad o, Let ), € L, () be any extension of ¢, to
Qand Sy, == Gilo, + grad¥ula, € Nu(Q). Since Gj, = —grad ), in Q,, we have that
@h x n = —grad 1y, x n onl,. Therefore,

thn:ahxn—kgradqphxnzo onl.

Then, G, = S+ Y07, Knt&ﬁzﬁ N1 KIth —grad iy, with Sj, € V), and ¢y, € L£,,(9).
Conversely, let G, = S, + Y0, K tgn + SN v Ktk — grad ¢y, with S), € Yy, ¥y €
Ly,(Q)and K,, € C,n = N; + 1 ,N. Clearly, G}, € X'},. Moreover, since S, € Y, by
Stokes’ theorem

/ curl S, -n = Sy-t,=0, n=1,...,N.
7 ™
Therefore,
Ny N
/ curlG, -n = Kn/ curlt&n-n—f— > K:j/ curlt&n-n:Km,
Jm n=1 FJm n=Nr+1 F}n

mzl,...,N[,

N; N
/ curlGj, - n = ZKn/ curlth -n+ > Kfj/ curlt) -n=K",
5 Iy 7 o ’

n=1 J n=Nr+1

m:NI—i—l,...,N.
Consequently, G, € V,(K) and we finish the proof. O
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Taking the previous decomposition into account, we conclude that solving Problem 1.10 is
equivalent to solving Problem 1.11.

Theorem 1.14. Let t(}in € Nuw(Q), n = 1,...,N, satisfying (1.33)—(1.34). Let I, € C,
n=1...,N, and AV, € C n = N;+1,...,N. If(Th,¢h,[]f(,I+1,...,I]@) is a solu-
tion to Problem 1.10, then H) = T, + >, Int&n + ZT]LNIH I,fftg}n — grad ¢y, solves
Problem 1.11. Conversely, if H), is the solution to Problem 1.11, then it can be written as
Hy =Ty, + X0 Lty + XN It — grad ¢y, with (Th, én, 1% .1, ..., I%) being a
solution to Problem 1.10.

Proof. Let (T, ¢, I}y 4. .., I}) be a solution to Problem 1.10 and

B Ny N
Hy:=T,+> Lty,+ Y I, —gradg,.

n=1 n=N;+1

According to Lemma 1.13, H;, € V;(I). Let G;, € V;,(0). Using again Lemma 1.13, we
have that there exist S, € Yy, ¥ € Lx(Q) and K" € C,n = Ny +1,..., N such that
G, = Sy + XN, 41 KI'th,, — grad ;.. Then, by testing equations (1.35), (1.36) and (1.37)
with Sy, ¥, and K J}(,I i1s- .-, K}, respectively, and adding the resulting equations, it is easy to
check (1.38). Thus, H}, is the solution to Problem 1.11.
Conversely, let H; be the solution to Problem 1.11. According to Lemma 1.13, there exist
Ty € Yu. é € Lpn(Q) and I" € C,n = Ny + 1,..., N, such that H}, = T, + 307, Tth +
"Ny e1 It — grad ¢,. Moreover, I! = Jrpcurl Hy-m,n = N;+1,..., N. Substituting

H ;, by this expression in (1.38) and testing the resulting equation successively with G}, = Sh
for S), € Y, G, = grad y, for ¥y, € L,(Q)) and G, = t&m, m = N;r+1,..., N, we obtain

equations (1.35), (1.36) and (1.37), respectively. Thus (T, épn, In,+1,- .-, In) is a solution to
Problem 1.10. O

Remark 1.15. The decomposition of the solution to Problem 1.11, H) = T, + ZnNil Intgyn +

N N1 10t — grad ¢, is not unique and, therefore, Problem 1.10 is not well posed. Actu-
ally, Problem 1.10 has infinitely many solutions, all of them leading to the same approximated
magnetic field H,. In order to obtain a particular solution to this problem one could use an
iterative method like biconjugate gradient, which is the one that we have used in our numerical
tests.

1.5 Mathematical Analysis and Numerical of the Gauged T', ¢—
¢ Formulation

Now, we will deal with the T', ¢ — ¢ formulation incorporating gauge conditions (1.18)—(1.19).
Similarly to the ungauged case, we introduce first the weak formulation of problem (1.14)—
(1.19). For equations (1.14)—(1.17), we use the same arguments as in the previous section. On
the other hand, if we test equation (1.18) with a function ¢ € H'(Q2.) such that { = 0 on T,
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using a Green’s formula and (1.19) we obtain:

/ T -grad( = 0.
QC

Thus, defining

Z:={CeH () (=0onT}},

equations (1.14)—(1.17), along with the gauge conditions (1.18)—(1.19), lead us to the following
problem:

Problem 1.16. Let t,,, € H(curl,Q), n = 1,..., N, satisfying (1.11)—(1.12). Given I,, € C,
n=1,....N,and AV, € C,n=Nr+1,....N, findT €Y, ¢ € H(Q)/C, £ € Z and

I, € Cforn=N;+1,...,N such that

_ 1 _ N _
/ iwp(T — grad ¢) - S + / —curlT - curl § + Z I, (/ witon - S
Q Q.0 Q

C n=Nr+1 C

1 _ _ als _
+ [ = curlty,, - curls> +/ gradé - S=-5 1, (/ iwpito, - S
QC n=1 QC

QgO

1 _
+ —curliy,, - curl S) vSel, (1.39

QgO’

N
> In/ iwpty . - grad
0

n=Nj;+1

— / iwuT - grad ) + / iwpgrad ¢ - grad ) —
Q Q

Ny
RN /Q iwpto, -grad® Yo € HY(Q)/C, (1.40)
=2,

/ T gradC=0 Y(e Z, (1.41)
QC

(1

_ _ 1 _
twpd - oy — /inu grad ¢ - tg ,, + /Qm . curlT - curlt ,,+
C

C

N
_ 1 . .
S0, / iwpiton - Foum + I / 2| curl t07m|2> K, = AV, K.,
Q Qg o

n:N]+1

Ny
— (Zln/iwutom-to,m) K, VK,€C, m=N;+1,...,N. (142)
n=1 Q

We notice that, in comparison with the ungauged T',¢p—¢ formulation, the presence of the new
equation (1.41) leads to the inclusion of a term in equation (t-phi:vfgauge) involving a Lagrange
multiplier £. In this way, the system of equations associated to this problem is also symmetric,
what is convenient from the computational point of view.
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1.5.1 Mathematical Analysis

Now, we are going to state two results similar to Lemma 1.7 and Theorem 1.8 but for the gauged
version of the T',¢p—¢ formulation. Let

Y := {8 € H(curl, Q) N H(div, Q) : div.S = 0in €,
Sxn=0onl,andS-n=00onI, UT,}.

I

We have the following result:

Lemma 1.17. Let ty,, € H(curl, ), n = 1,..., N, satisfying (1.11)—(1.12). Given K,, € C,
n=1,...,Ny, and G € V(K), there exist unique S € Y, ¢ € H(Q)/C and K,, € C,
n=Nr+1,...,N, such that G = S + Zﬁf:l K,ty,, — grad.

Proof. The proof is very similar to that of Theorem 1.7. Indeed, given G € V(K), let K, :=
JpncurlG-n,n = N;+1,...,N,and G := G-, Kty . We have that G € H(curl, Q)
J
and it satisfies
div(curlG) =0 in Q.
curl G -n =0 onl,

/ curlG -n =0 forn=1,...,N.
Fn
J

Using again Theorem 2.1 from [48], we deduce that there exists a unique S € 1.2(€,)? that
satisfies

curl S = curl G in 12

divS =0 in €2,
Sxn=0 onl},
S n=0 onl, UT,.

Moreover, curl(a -8 ) =0in (2, S0 that,Nsince Q) is simply connecteﬁ, there exists 1 € Hl(NQ),
unique up to a constant, such that G = S — grad . Thus, G = G + XN | K.y, = S +
>N K, ty, —grad in €. =

Taking the previous decomposition into account, solving Problem 1.16 is equivalent to solving
Problem 1.3. In fact, we have the following result:

Theorem 1.18. Let ty,, € H(curl,Q), n = 1,... N, satisfying (1.11)—(1.12). Let I,, € C,
n=1...,N,and AV, € C,n = N;y+ 1,...,N. Any solution (T,$,&,In,+1,-..,IN)
to Problem 1.16 leads to the unique magnetic field H := T + SN Lo, — grad ¢ that
solves Problem 1.3. Conversely, the solution H to Problem 1.3 can be uniquely written as
H = T—i—ZnN:l Lty —grad ¢, with (T, ¢,0, Iy, 11, - .., In) being a solution to Problem 1.16.
In particular, Problem 1.16 has a unique solution (T, ¢, &, In, 41, ..., In), with & null in Q...
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Proof. Let ty,, € H(curl,Q), n = 1,..., N, satisfying (1.11)~(1.12). Let [, € C, n =
1,...,Npand AV, e C,n=N;+1,...,N.

On the one hand, let H be the unique solution to Problem 1.3. According to Lemma 1.17, we
write H = T+ N | Ity,—grad g with T € Y, ¢ € H(Q)and I,, € C,n = N;+1,... N.
Notice that, in particular, T' € Y. Then, by substituting this expression in (1.26) and taking
separately test functions G = S for § € Y, G = grad< for ¢ € H'(Q) and G = tg,.,
n= N;+1,...,N,wecheck that (T, ¢,0, In, 1, ..., Iy) satisfies equations (1.39), (1.40) and
(1.42). Finally, since

divl' =0 in Qg and T-n=0on UL,

we deduce that T satisfies equation (1.41). Therefore, (T, ¢, 0, In,+1, ..., y) is a solution to
Problem 1.16.

On the other hand, let (T, ¢,&, In,+1,...,In) be a solution to Problem 1.16. First, we will
prove that £ = 0 in (2. Indeed, since  is zero on I, it is enough to show that grad { = 0 in
(.. Since grad £ € Y, we can take S = grad £ in (1.39), obtaining

N
/ iwp(T — grad ¢) - grad{ + ) In/ iwpto,, - grad &
Q

C n=Njy+1 QC
Nip
-I-/ lgrad &> = — > ]n/ iwpto ,, - grad .
QC n=1 QC

On the other hand, we can also take 1) = 5 in (1.40), E € HY(Q) being the extension by zero of
¢ to €2, and adding it to the above equation we obtain:

/ lgrad ¢|° = 0,
QC

and therefore grad £ = 0 in L*(Q,). Then, (T, ¢, In,+1, - - -5 In) is a solution to Problem 1.1.
Let H := T + ZnN:1 Ity,, — grad ¢; according to Theorem 1.8, H is the solution to Prob-
lem 1.3. Moreover, taking ¢ € D(f2.) in (1.41) and using a Green’s formula we deduce that
divT = 01in 2. Furthermore, let ¢ € Héé2(FE UT,), 7 its extension by zero to 02, and ( € Z

such that ¢ |agc = 1. If we take such a test function in (1.41) and use a Green’s formula, we

conclude that T'- n = 0 in Héé2(FE UT,). Therefore, T € Y, and following Lemma 1.17, we

conclude that (T", ¢, 0, In,+1, ..., Iy) is the only solution to Problem 1.16. O

1.5.2 Finite Element Discretisation

In this section we will introduce a discretisation of Problem 1.16 and proceed as in the previous
subsection for its analysis. Similarly to the ungauged case, we assume in this subsection that 2,
1. and 2 are Lipschitz polyhedra and consider regular tetrahedral meshes 7;, of €2 such that
each element T € Tj, is contained either in () or in €.

Again, we employ lowest-order Nédélec finite finite elements to approximate the current vector
potential T', and standard finite elements for both the magnetic potential ¢ and the Lagrange

27



MARTA PINEIRO PEON

multiplier function £. We introduce the discrete subspace of Z,

Zh—{ChE»Ch( ) Qh—OonF}

Therefore, the discretisation of Problem 1.16 reads as follows:

Problem 1.19. Let t;,, € N(Q), n = 1,...,N, satisfying (1.33)~(1.34). Given I,, € C,
n = 1,...,N[, and AV, € C, n = N1+1,...,N,ﬁndTh €Y (bh € Eh(Q)/C, éh € Z,
and I" € C forn = Ny +1,..., N such that

/zw,u(Th—gradth) Sh+/ —curlTh curl S), + Z 1" </ iwptl - S
Q 0 :

[¢] n=Nr+1 C

1 — — _
—|—/ curlt8n~curlSh>—|—/ grad§h~Sh:—ZIn </ iwpty, - Sh
Q.0 ’ Q = Q ’

C

1
+ —Curlt()n curlSh> VS,eY, (143)

Q. 0

—/ iwpuT), - grad ¥, +/ iwp grad ¢, - grad ¥, — Z [h/ iwptl - gradi,
o Q :

n=Nr+1

Ny
=> In/ﬂz'wut&n -grad i, Y, € L,(Q)/C, (1.44)
n=1

/QTh-gradazo VG, € Zn, (1.45)
C

- , 1 4
(/ wwpIy, - tgm - / wp grad ¢y, - tgm —I—/ —curl T}, - curl tgm
Q ’ Q ’ 0 ’

C

+ Z Ih/ zwutgjn-fgvmjtffn/g «|curlt0m\2> = AV, K,,

ne N]+l m O'

- (Z In/ wtg,n.t’g,m) K, VK,€C, m=N;+1,...,N. (146)
n=1 Q

We will show this problem has a unique solution. Let
?h::{GhGJ\/’h / G, -grad(, =0V, € 2, thn—OonF}

We have the following result:

Lemma 1.20. Let t(;, € N'w(Q), n = 1,..., N, satisfying (1.33)—(1. 34) Given K,, € C, n =

1,...,Ny, and a discretefeld G, € Vi (K), there exist unique S}, € YV, U € Li,(Q)/C and
K!e C n=Nr+1,...,N, suchthat G, = S+ >0ty Koty + SN Ki'th  —grad .
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Proof. Given G, € V,(K), let K" := fF}Z curlG, -n,n=N;+1,...,N,and G, =G —
s Koth ,—> 00y 1 K .. Then, G e Nw(Q),curl G, = 0inQ_ and [, curl G,-n =
O.n=1,...,N. '

Following the same arguments as in Lemma 1.13, (in particular, using [29, Lemma 5.5]), there
exists P € L£,(9,), unique up to an additive constant, such that §h|QD = —grad . Let
V< € L,(Q,) be the only solution to the problem:

1

Find V§ € L,(Q) such that § = P on T, and
/Q grad ¢ - grad @, = /Q Gy - grad®, VYo, € Z;. (1.47)
C C

Let us define S;, := @h\gc + grad ¢ € N,(Q). Since G, = —grad ¢ in Q_, we have
that G;, x n = — grad )P x m on I’ . Therefore, since ¥ = ¢P on T,

thn:ahxn—i—gradw,fxnzo onl;.

Then, G), = S), + ZnNél Knt’(}’n + Z,]X:NIH Kﬁt&n — grad vy, with S}, € /)7;1 and ¢y, € L,()
such that

w R 1/}}? il’l Qc:
T WP inQ,

Notice that from the above construction we deduce that i ff, n= N;+1,..., N, and the degrees
of freedom of S}, and ¢/, are unique. ]

Taking the previous decomposition into account, solving Problem 1.19 is equivalent to solving
Problem 1.11. In fact, we have the following result:

Theorem 1.21. Let t);, € N,w(Q), n = 1,..., N, satisfying (1.33)~(1.34). Let I,, € C, n =
1,....,N, and AV, € C n = N;+1,...,N. If(Th,ngh,I]’{,ﬁl,...,]k,) is a solution to
Problem 1.19, then H), := T, + Y21, Int&n < ZnN:N]—I—l I,’ftg,n —grad ¢y, solves Problem 1.11.
Conversely, if H}, is the solution to Problem 1.11, then it can be uniquely written as H;, =
T,+> N, Lty >0y, It —grad ¢y, with (T, ¢,,0,1% . ..., 1}) being a solution
to Problem 1.19. In particular, Problem 1.19 has a unique solution (T'y,, ¢p,, &, IJ}{,IH, oI,
with &, null in ).

Proof. Lett), € N(Q),n =1,..., N, satisfying (1.33)~(1.34). Let [, e C,n = 1,..., Ny,
and AV, e C,n=N;+1,...,N.

On the one hand, let H;, be the unique solution to Problem 1.11. According to Lemma 1.20, we
write

N N
H,=T,+Y Lt,+ > It} —gradg,
n=1 n=Nr+1

with T, € 37\;1, ¢n € L(Q) and I" € C,n = N;+1,...,N. Notice that, in particular,
T € Y. Then, by substituting this expression in (1.38) and taking separately test functions
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G, = S) for S}, € Y, G), = grad vy, for ¢, € £,,(Q) and G, = t},,n = Ny +1,...,N,
we check that (T, ¢5,, 0,13 .4, ..., I}) verifies equations (1.43), (1.44) and (1.46). Finally,
we know from the construction of 7', in the above lemma that it verifies equation (1.45), and
therefore we deduce that (T, ¢5, 0, In, 11, - .., Iy) is a solution to Problem 1.19.

On the other hand, let (T's, ¢p, &, I3, 11, - - -, Iy) be a solution to Problem 1.19. Similarly to
the continuous case, we can deduce that the Lagrange multiplier is such that &, = 0 in Q.
Therefore, (T, dn, I3, 11, - - -, I}) is a solution to Problem 1.10. Let

B Ny N
Hy,:=T,+) ]ntgyn + > If;tg’n — grad ép;

n=1 n=N;+1

according to Theorem 1.14, H ), is the solution to Problem 1.11. Using again equation (1.45),
we deduce that T, € Y;,, and from the uniqueness of the decomposition in Lemma 1.20 we
deduce that (T'y, ¢n, 0, I} 1, ..., I}y is the only solution to Problem 1.19. O

The following result is an straightforward consequence of Theorem 1.14

Theorem 1.22. Let (T, $,&, Iny 41 -, In) and (T, én,En, I, 11, - - -, IN) be solutions to Prob-
lems 1.16 and 1.19, respectively. Let H = T + Zflv:l I.ty, — grad ¢ and H), := ’Th +
Sl Ltl, + S0y 1 1Mt — grad ¢, If H|qo € H'(curl, Q) and H|o_ € H"(Q,)* with
r e (%, 1}, then

1H — Hallycurgy < CF [ H llrournog + 1 H lm@yyo]

where C' is a strictly positive constant independent of h and H.

1.6 Computation of the Normalised Impressed Vector Poten-
tials

The aim of this section is to introduce some numerical procedures to compute the discrete nor-
malised impressed vector potential t&n that do not make use of cutting surfaces.

1.6.1 Using Biot-Savart Law

First, by following the ideas in [34], we propose a numerical method based on the Biot-Savart
law. Foreachn = 1,..., N, let L,, be a polygonal filament (namely, a closed simple polygonal
curve) going across ()7 as shown in Figure 1.2. We assume that L,, N 27 is made of edges of
thetrahedra (as in Figure 1.2, again). Let H' be the Biot-Savart field in €2 corresponding to L,
and carrying a unit current intensity:

1 _ /
H" () : / T X ‘w“’ dz’ (1.48)

T an e x—a
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Figure 1.2: Current filaments for the domain in Figure 1.1.

where 7, is the unit vector tangent to L,. It is easy to check that H} has no singularities
outside inductor QZ, since the current filament ,, does not intersect €2 \ Qg. In fact, since the
integrand is infinitely smooth outside of L,, it is immediate to check by differentiating under
the integral sign that H € C*(Q\ Qg)‘?' Then, we can take as discrete normalised impressed
vector potential ¢{, . the field in N, (2) with its degrees of freedom defined for each edge ¢ of
the mesh 7}, as follows:

H" -7y iftcCO\Qp
[ thmei= oy, - T, IEC QN (1.49)
¢ 0, if ¢ ¢ Q\ Q,

where 7 is the unit vector tangent to the edge /. Therefore, ¢! |Q\W is the Nédélec interpolant
’ c

of HQS’Q\QE' Thus, since curl H. = 0 in Q \ 97, we have that curl ¢}, = 0in Q\ Q7, too.

On the other hand, since f% Hgs -1, = 1, we also have that f% t&n T =/, Hgs e, = 1.
Thus, t;,, € N, () satisfies (1.33)~(1.34).

In order to compute (1.48) for € Q2 \ 27, we add the contribution of each edge ¢ lying on the
current filament L,, (note that this includes tehtrahedra edges as well as the segments out of €2
added to close the curve L,,; see Figure 1.2). Thus, we write

bs(@) = Y Hyg()

LC Ly,

with

1 r—x Ly, X (£ — 210 — SV
H%’é(m)::—/gTLnxida:':/o e x ( L Sé)ds

4 x — /| |z — 210 — svg3
vy X (¢ — 1 1
-t (&~ 210) / ds,
4 0 |&— a1, — sv?

with x, 4, 2 ¢ the end-points of the edge ¢ and vy := x2, — 1. If we denote by L, the straight
line in R? containing the edge ¢, we notice that the integrand in the above expression is ill defined
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if 2 € ¢ and that H';5(x) = 0 for every & € Ly \ . Let us define
a, =x— Ty and as ‘=T — Tay.
Then, it can be shown that the integral in the previous expression reduces to:

(a,1 — G,Q) X ap as - (a1 — a,g) |a,1| —aj - (a1 — CLQ) |CL2|

ife ¢ L
H(x) = 4m la1| |as| |a; x as|” 7 ’

0, ife e Lg\e
(1.50)

Remark 1.23. The above formula was developed following the ideas proposed by Urankar in
[106], where he establishes an expression for the Biot-Savart field created by a straight current
filament oriented in the e, direction. Other alternatives can be found, for example, in [56] and
the references therein.

Even though (1.50) are analytical expressions to evaluate the integrals in (1.48), we compute
numerically the integrals on the right hand side of (1.49) by means of the mid-point quadrature
rule. In the next theorem we prove that the errors that arise from this numerical quadrature do
not spoil the rate of convergence of the method in the case where all sources are given in terms
of the current intensities.

~h . . N B . . .
Let ¢, be the approximate discrete normalised impressed vector potential, obtained by using

the mid-point rule for computing the integrals in (1.49); namely, f& . € NL(Q) and

(1.51)

/t (H;S@,Z) ) 0], ifec QN
On 0, ife ¢ Q\Qr,

where |¢| denotes the length of the edge ¢ and x; is its middle point. When f(i ,, are used instead
of tg,n in Problem 1.10, we obtain an approximate discrete solution (f’h, $h) instead of (T'y,, ¢p,),

from which we compute the approximate discrete magnetic field H), =T, + SN ]nf(i n—
grad ggh.

The following result shows that using the computed values H , instead of the exact ones H,
does not deteriorate the order of convergence.

Theorem 1.24. Let H;, and H n be as defined above. Then, there exists a constant C' > 0 such
that

HHh—HhH < Ch.

H(curl,2)

Proof. As shown in Theorem 1.14, H, satisfies

_ 1 _
/ wuHy - Gy + —curl H,, -curlG, =0 VG € V,(0). (1.52)
Q Q.0
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Notice that f(i . € N(Q) satisfy (1.34) but, in general,
~h
/ curlt,, -n # 1.
rn ’
J

As a consequence, H,, is not a solution to Problem 1.11 because, in general, H, ¢ Vi(I).
However, the same arguments used in the proof of Theorem 1.14 allow us to show that H,
satisfies the same equation:

— _ 1 —~ _
/ iwuHy, - Gp+ | —curlHy -curlGy =0 Y Gy € Vi(0). (1.53)
Q Q.0
Let Fj, == Ty — gradéy, € Vu(0) and F, .= Ty, — grad, € V,(0). Then, H) =

F,+3N Int&n and H, = F), + ST nféf - Substituting these expressions into (1.52) and
(1.53) and subtracting we obtain

_ 1 _
/ wWwpAFy, - G, + —curl AF;, - curl G,
Q Q.0

C

NI o 1 o

+3 1, </ iwpAth G, +/  curl At - curl Gh> —0 VG, e Vi0), (154)
n=1 QC 7 QC o 7

where AF), := F), — F), and At&n - tgyn -3 f&n. Since a(F},, G),) = [qiwuFy, - G, +

fQC % curl Fj, - curl G}, is a continuous and elliptic bilinear form in X, x X, (see [22]), by

taking G, = AF'},, we obtain

Ny
IAF | [feurra) < C a(AF,, AF) < C Y | L] ||AF|Jaeuro) 1AL, | i(curLo);
e’
and, then,
— NI
HHh — HhHH(curl Q) S ||AFh||H(curl,Q) + Z |In| ||At}ol,n‘|H(curl7Q)
’ n=1

Ny
<C Z ‘ITL’ HAt(})L,nHH(curl,Q)-

n=1

Let ¢, be the basis function of the lowest-order Nédélec finite element space A, (Q) corre-
sponding to the edge ¢. Then,

t&n: Z (/EHQS-TZ)@

£co\Qy
and
~h n
to, = > (Hp(@) - Tll) b,
Zan\or
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n =1,..., N. Consequently, using the classical error formula for the mid-point rule leads to
18l € 30 | (o= Hyl@a)) - o] [l
0\,
|| Hoyg - 7l lwe.oo )| £
< Y T e
(CNQy,

and, analogously,

[ Hyg - 7ol lwe.os (0] )
24

| | curl At87n| |L2(Q)3 S Z
ECQ\Q%

|| curl ¢Z||L2 0)3,
(

Now, scaling arguments (see, for instance, [77]) and the regularity of the meshes lead to

C C
||¢£||L2(Q)3 S m and ||Curl¢£||L2(Q)3 S W
Therefore,
||At87n||L2(Q)3 < Ch? and || curl Atg’nHL2(Q)3 < Ch,
where (' is a strictly positive constant independent of 4. Then,
HHh N HhHH(curl,Q) = (O

]

Similarly, the conclusion of the above theorem can be extended to the case of Problem 1.19.
However, for problems in which the potential drop is given as source data instead of the current
intensity, the proof above is no longer valid. Nevertheless, we have numerically checked that
this procedure for approximating the discrete normalised impressed vector potentials does not
spoil the convergence rate.

1.6.2 Using Loop Fields

Alternatively to the strategy presented in the previous subsection, the procedure introduced in
[5] to compute the so-called loop fields, (that is, the irrotational fields that cannot be expressed
as gradients of single-valued scalar fields), allows constructing normalised impressed vector
potentials that exactly meet conditions (1.33)—(1.34). This algorithm, like the previous one,
does not make use of cutting surfaces, but is slightly more involved as it requires the use of some
graph theory concepts. For completeness, we include here a brief description of the construction
of a normalised impressed vector potential based on the one appearing in [5] and refer to this
paper for further details.

First of all, we are going to introduce some definitions associated with graphs in the following
remark.
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Remark 1.25 (Graph theory concepts). A graph & is an object consisting of two sets of elements:
the so-called vertices, V(®), and the edges, E(®), along with a relation between them that

associates each edge with two vertices, called its ends. Equivalently, one may think of the graph
& as the pair (V(8), E(®)) with

E(®) CV(6) x V(8).
A graph $) is said to be a subgraph of graph & if V($)) C V(&) and E($)) C E(®), each edge

of ) having the same ends as an element of $ or &. A subgraph $) of & is said to be a spanning
subgraph if V ($)) = V(&). See Figure 1.3 for an example on these concepts.

10

Figure 1.3: Example of a graph & with vertices V(&) = {vy,...,v10} and edges E(®) =
{e1,...,e12} (left). A subgraph of & (center). A spanning subgraph of & (right).

A walk or path on a graph is an alternating sequence of vertices and edges, that contains at least
one edge, no edge is used more than once and in which each edge is preceded and followed by
its own end vertices. A cycle is a walk that starts and ends at the same vertex. A graph is
connected if, for every two vertices, there is at least one walk between them,; otherwise, we say
that it is disconnected. See Figure 1.4 for an example on these concepts. In particular, all graphs
contained in Figures 1.3 and 1.4 are connected.

= =

Figure 1.4: The subgraph in green is the walk {vs, €9, v3, €5, V4, €7, Vg, €9, U7, €12, V19 } ON graph
& from Figure 1.3 (left). The subgraph in blue is the cycle {vy, ey, vo, €4, vg, €6, Vs, €3, v1 } (right)
on graph & from Figure 1.3.

A graph with no cycles is called a forest, and a tree is a connected forest. Trees have the special
property that every pair of its vertices is connected by a unique walk. A spanning tree of a graph
is a spanning subgraph that is a tree, and therefore every two vertices are connected by exactly
one walk. Sometimes it is convenient to label one vertex of a tree as special, being then called
the root of the tree. Moreover, the tree with a fixed root is a rooted tree. In Figure 1.5 we show
a spanning tree of graph & appearing in Figure 1.3.
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Figure 1.5: The subgraph in red is a spanning tree of graph & from Figure 1.3.

If the edges of the graph & are provided with an orientation, in such a way that for each of
the edges we label one of its vertices as the initial and the other as the terminal, we call & a
directed graph or digraph (see Figure 1.6—left). In a digraph, a directed walk is a walk in which
an additional condition is imposed: the previous and following vertices of an edge have to be
its start and end vertex, respectively (see Figure 1.6—right). Similarly, we can also extend the
remaining above concepts to directed graphs, and we will sometimes drop the word “directed”
from their name for the sake of simplicity.

Figure 1.6: Example of a directed graph (left) and a directed walk defined on it (right).

Finally, we can assign each edge of a graph or directed graph & a certain positive weight, ob-
taining a weighted (directed) graph. In this way, we call a minimum spanning tree to a spanning
tree in which the sum of the edges of the tree is minimal.

In order to compute the loop field associated to an inductor ()", we will consider the graph

associated to the mesh of 1\ %, considering the vertices and edges of this mesh as the corre-
sponding ones of the graph. Moreover, we will assign each edge an orientation and a weight,
in order to obtain a weighted directed graph. The orientation of the edges will be the one in-
duced by the ordering of the mesh vertices, and their weight will be defined as the lengths of the
corresponding mesh edges.

Let us denote by V' and E the set of vertices and edges of the mesh
T\ Q) ={TeT: TcQ\Q},

respectively. Moreover, let S, = (V, L) be a minimum spanning tree of the directed graph
(V, E) and let v, be its root. Then, given a vertex v € V, there exists a unique walk C,, that
connects v; to v. Furthermore, given a walk C,, let us denote by —C, the walk that connects v
to v;. Finally, given an edge e € F, with initial and terminal vertices v ; and v, o, respectively,
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we define D, := C,,, + e — C,,, (see Figure 1.8). The Néd¢lec degrees of freedom of the
normalised impressed vector potential can be computed as follows:

, Ik(Dy, L), iftcQ\Qr,
/tOn Ty = X _ - ¢
P 0, if g O\,

where 1k(Dy, L, ) is the so-called linking number of the oriented curves Dy and L,,.

Remark 1.26. According to [91], the linking number of two disjoint oriented curves v and 7
can be defined in up to eight different ways, all of them up-to-sign-equivalent. One of these
definitions is the following: 1k(,7) is the number of times that v winds around 7 in the same
direction (see Figure 1.7).

Figure 1.7: Examples of two oriented curves 7, in black, and 7, in blue. The linking numbers
are lk(y,7) = 2 (left) and 1k(~,7) = 0 (right).

As shown in [5], the field t&n|g\gg € Ny(Q\ Q") computed in this way is a loop field in

Tr(2\ ©22), and therefore it satisfies (1.33). Indeed, according to [5], the loop fields in a domain
D are the solutions Z;, € N, (D) to the problem:

curlZ, =0 inD, (1.55)
/ Z, =N . .. (1.56)
Z, =0 VGGLD, (157)

where Lp is the set of edges of a spanning tree of the graph associated to a tetrahedral mesh
of D, hy is the first Betti number of D, {[o,,]}!'L, is a basis of the first homology group of D,
and K, € R,n = 1,..., hy, not all of them null. We notice that, when introducing the current
filaments in Section 1.6.1, we are implicitly assuming that {[L,,] } is a basis of the first homology
group of R*\ Q2 \ Q7 (the first Betti number of R?\ Q2 \ Q7 is equal to one). Moreover, it is easy
to see that t’(}’n also verifies (1.34) since the current filaments verify Ik(0I", L,,) = 1.

In order to compute this linking number we have used the algorithm described in [10]. We
remark that calculating the linking number can be very costly even though we only have to do
it for the edges e not belonging to Sy, (since otherwise C,, | + e = C,_, and D, degenerates).

We refer to [5] for a more efficient algorithm to perform this computations.
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i R “‘V.
Y
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Figure 1.8: Current filament L, (blue), edge e (pink), walk C,_, (red) and walk —C,,_, (green)
with Q) = O\ Q! a hollow cylinder.

1.7 Numerical Results

In this section we report some numerical results obtained with a MATLAB code which implements
the numerical methods described above. In particular, since the linear system matrix arising
from Problem 1.10 is complex non-Hermitian, we have used the command bicg to solve it,
with a tolerance threshold of 1078, Let us remark that when this command is applied to an
underdetermined linear system with a singular square matrix, it yields one particular solution.
(Let us recall that obtaining one particular solution is enough, since any solution of this problem
leads to the same magnetic field.) On the other hand, to solve Problem 1.19, we have used the
backslash function.

First, we will study the convergence of the method by using an example with known analytical
solution and only one connected component in the conducting part. Next, we will report the

results for two examples having a domain with several connected components in the conducting
domain.

1.7.1 Test with Analytical Solution

In this section we report the numerical results obtained for an academic test that confirm the
results stated in the previous sections and the convergence of the proposed methodology.

We take as conducting domain a section of height L = 0.5 m of an infinite cylinder with radius
R = 0.5 m, as shown in Figure 1.9 (left). This cylinder is composed by a conducting material
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Conductor (Q)¢) Dielectric ({2 p) 10°
R
| 5
o 210
—©— Relative error. | data
—A— Relative error. V data
o - - -0(h) convergence

10 10* 10° 10°
Number of d.o.f.

Figure 1.9: Infinite cylinder carrying an alternating current (left). Convergence order in
H(curl, Q) (right).

with electrical conductivity ¢ = 151565.8 (Qm) ! and magnetic permeability u = pg = 47 x
107" Hm™!, and it carries an alternating current I(¢) = I cos(wt), where Iy = 10* A and
w = 2n f, with f = 50 Hz, surrounded by dielectric material having an outer radius R,, = 1 m.
We can obtain the analytical solution to the associated eddy current problem, which is (see [7],

Section 8.1.5):
I0vZ, (v/iwpop)

ifp<R
o RL, (ViwpoR) P =Y
H(z) =
Iy .
——ey, if p > R,
2mp
where 7, is the modified Bessel function of the first kind and order 1, and p = /22 + 23
and ey := (—x2,21,0)/p are the radial coordinate and the angular unit vector in cylindrical

coordinates, respectively. Notice that the solution to the problem does not depend on the values
of L or R, because the magnetic field H is independent of the z-coordinate and it exactly
satisfies the boundary condition (1.6).

When comparing the numerical solution obtained from Problem 1.10 with the exact one, we
obtain the error curves in Figure 1.9 (right), which show that an order of convergence O(h)
is clearly attained in this case, in agreement with the theoretical results. This test has been
separately performed with current and potential drop as source data; the solutions showed the
expected order of convergence with very similar relative errors with respect to the analytical
solution, as it is deduced from the overlapping of the error curves in Figure 1.9 (right). In par-
ticular, for the case in which the potential drop is given, we have used the analytical expression
(see again [7], Section 8.1.5):

AV — Viwpo L1y Zo(v/iwpo R) b LI, (ROO>

000 (@
2noR Iy (\/iwpo R) W SR

where 7 is the modified Bessel function of the first kind and order 0. The conclusions are exactly
the same for the fields obtained when solving Problem 1.19, and they are a particular solution
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to the undetermined system arising from Problem 1.10. Moreover, the norm of the Lagrange
multiplier function £ is of order 1016 with either current or potential drop as source data. Finally,
we can compare the size of the linear system associated to the gauged and ungauged versions of
the problem. In the case of the finer mesh, the first one has a total of 90609 degrees of freedom,
while there are 82976 in the second case. Even though in this case the difference between the
degrees of freedom is only of an 8%, situations with a greater time frequency require a much finer
mesh in conductors in order to capture the so-called skin effect, leading to a greater difference
between the two values.

1.7.2 Examples with Several Connected Components in the Conductor

In this section we report the results of two numerical tests with a topological setting closer to that
appearing in applications, where the conducting domain usually comprises several connected
components.

In the first example, 7est 1, the proposed geometry consists of two cylindrical inductors, Qé
and Qi, with radius R, = 0.05 m and height A, = 0.5 m, and a parallelepipedic workpiece,
Qi, with dimensions A, = 0.2 m, l,, = 0.2 m and w,, = 0.05 m (see Figure 1.10). The
distance between each inductor and the workpiece is 0.05 m. Both inductors have electrical
conductivity o = 100 (2m)~! and vacuum magnetic permeability 19, while the workpiece has
electrical conductivity ¢ = 10 (2m)~! and vacuum magnetic permeability 1iy. The inductors
are connected to an external current source and surrounded by a box of dielectric material of
dimensions wp = 2.2 m and [p = 2 m (and with the same height as the inductors). The main
goal is to compute the current density induced within the workpiece. The currents entering the
inductors are I; = I, = 103 A, the frequency of the problem being f = 50 Hz.

Figure 1.10: Geometrical setting for the conducting domain (left) and for the whole computa-
tional domain (right). Test 1.

In Figure 1.11 we show the complex modulus of the current density in the workpiece. Notice
that the mesh was generated taking into account the skin effect, which usually appears in this
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Problem 1.10 Flux Relative Error
Active Power (W) | Q] 3.2105€5 3.1924e5 0.5666%
/ @ 123 Qi 3.2105ed5 W 3.1955e5 W 0.4691%
o 2077 T 0.0685 W 0.0632 W 6.6718%

C

AVy | 642.1028 4+ 0.15747 | 636.6797 + 0.1528: 0.5666%
AV, | 642.1005 + 0.15727 | 636.6760 + 0.1526¢ 0.4691%

Potential Drop (V)

Table 1.1: Active power and potential drop comparison. Test 1.

kind of problems, making the current density in the workpiece to be highly concentrated near
its boundary. This can be clearly seen in Figure 1.11.

Current Density Modulus (A/m2)
1.921e+04

II'”

-14452

m

9693.6
4935

1.763e+02

w

. . . 2 . . 3
Figure 1.11: Current density modulus (A/m*) in the workpiece (2. Test 1.

In order to validate the method in this topological setting, we have compared the magnetic
field obtained from the solution to Problem 1.10 and the solution to the same problem obtained
with the commercial software Altair Flux®, which makes use of another variant of the T',¢—
¢ with second order elements. This comparison is presented in terms of the active power in
each connected component of the conducting domain and the potential drop in the inductors
(see Tab. 1.1). Moreover, in Figure 1.12, we compare the value of the current density modulus
along straight lines in the workpiece Qi passing through the center of the piece in the z- and
y-directions.

As it can be seen in Figure 1.12, the current density presents an important rate of change both
along the 2- and the y-directions in the workpiece. Anyway, the agreement between the values
of the density computed with both methods can be clearly seen from this figure. Let us remark
that this agreement is even better in the inductors, as is suggested by Table 1.1.
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Figure 1.12: Current density modulus (A/m?) comparison in the workpiece Q‘z along different
directions. Test 1.

On the other hand, we have considered a second example, Test 2, having a more involved ge-
ometry for the inductor, inspired in the configuration of an induction furnace (see [69]). As it
can be seen in Figure 1.13, the conducting domain consists of a helical coil wounding around
a cylindrical workpiece; the dielectric domain is just a parallelepipedic box of air surrounding
the conductors. The workpiece is a cylinder of diameter 0.0035 m and it is 0.024 m high; the
helical coil has a circular section of diameter 0.004 m, and it has a diameter of 0.016 m and a
height of 0.026 m; the box measures 0.054 x 0.054 x 0.070 m. All materials have the magnetic
permeability of the vacuum, s, while the electrical conductivity is equal to 58 x 10° (Qm)~*
for the helical conductor and 10* (Qm)~! for the cylindrical one. The current that enters the
inductor has an amplitude of 4 x 10* A, and the frequency of the problem is f = 50 Hz.

Figure 1.13: Geometrical setting for the conducting domain (blue) and dielectric domain (box).
Test 2.

In Figure 1.14 we show the distribution of the normalised imposed vector potential ¢, corre-

sponding to the helical inductor, which is a real field. Moreover, Figure 1.15 shows the modulus
of the magnetic field in the workpiece obtained from the solution to Problem 1.19.
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Figure 1.14: Normalised impressed vector potential ¢,. Test 2.
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Figure 1.15: Complex modulus of the magnetic field (A/m) in the workpiece. Test 2.
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Chapter 2

Numerical Simulation of Magnetization
and Demagnetization Processes

2.1 Introduction

Magnetic particle inspection (MPI) is a non—destructive testing (NDT) method that uses magne-
tization to detect surface breakings or near-surface defects in ferromagnetic pieces. Generally,
the NDT methods use non-invasive techniques to determine the physical integrity of materials
or structures. The physical basis of the MPI is as follows: when a ferromagnetic material is sub-
jected to a magnetic field, the magnetic flux density accumulates in the interior of the specimen.
Then, if a crack is present, the sudden change in the magnetic permeability of the medium results
in an adjustment of the flux distribution to avoid the inhomogeneity. Therefore, the magnetic
flux density increases in the surroundings of the breaking. As a consequence, if the magnetized
piece is sprayed with fluorescent magnetic particles, these would concentrate at the defect re-
gion, which would become easily identified under ultraviolet light (see Figure 2.1). For more
information on magnetic particle inspection, see [70] and references therein.

Since the objective of MPI is to reveal defects having any possible direction, and taking into
account that the breakings are more easily detected when they are oriented perpendicularly to
the magnetic field in the specimen, two kinds of magnetic field are usually established within
the material: with circular and longitudinal orientation (see Figure 2.2).

On the other hand, magnetic moments of ferromagnetic materials have a strong tendency to
align with external magnetic fields. Thus, these materials exhibit strong magnetic properties,
whose effect remains even after the disappearance of the external field. Therefore, in most cases,
pieces have to be demagnetized after the inspection, as residual magnetism could interfere with
subsequent processing. While magnetic hysteresis could be neglected in the simulation of both
magnetization steps (since the material is saturated to a great extent, see [66] and [110]), for the
modeling of the demagnetization process, incorporating a hysteresis law is unavoidable. Gen-
erally, the existing literature on this topic focuses on the analysis of the magnetic field in terms
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Figure 2.1: Surface breaking observed using MPIL. From Wikimedia Commons under license
CC-BY-SA-3.0.

of the contour and dimension of the defects and on the interplay between this magnetic field
and the magnetic particles. In particular, the demagnetization stage that usually follows these
processes is not considered, and hysteresis is not taken into account. To the authors’ knowledge,
the only exception to this practice can be found in [65]; in this publication, the author simulates a
circular magnetization process, performed with a DC current and taking hysteresis into account
in order to study the interaction between the remanent magnetic field and the magnetic particles
close to the cracks.

Computer simulation has been proved to be very helpful in the study of all kinds of physical
phenomena. In the particular case of MPI, the analysis of the numerical results when applying
different current waveforms in various geometric configurations can lead to a better understand-
ing of the technique and to an improvement of the inspection and demagnetization processes.

Figure 2.2: Field lines in circular magnetization (left) and longitudinal magnetization (right).
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We refer the reader to [11] for a review on the finite element method applied to electromagnetic
NDT.

The main contribution of this chapter is the simulation of the complete magnetization and de-
magnetization process involved in a MPI test by including the magnetic hysteresis. The outline
of this chapter is as follows: in Section 2.2 we present the mathematical formulations used to
simulate the different stages of the magnetic particle inspection process; Section 2.2.1 contains
an explanation of the formulation for the circular magnetization and demagnetization steps, and
in Section 2.2.2 the same description is performed for the longitudinal case; furthermore, Sec-
tion 2.2.3 describes the model employed to simulate the magnetic hysteresis. Moreover, in
Section 2.3 some comments are made on the numerical implementation of the models presented
in Section 2.2. Finally, in Section 2.4 we present and analyze several numerical results, for the
circular case in Section 2.4.1 and for the longitudinal one in Section 2.4.2.

2.2 Mathematical Models of Magnetization and Demagneti-
zation

The electromagnetic models for both magnetization and demagnetization processes will be based
on the eddy current model. More precisely, we will start from equations (1.7)—(1.9), completed
with Ohm’s law J = o F in conductors (¢ > 0 being the electrical conductivity), J = 0
in dielectrics and a suitable isotropic relation between H and B, which will be detailed in
Section 2.2.3.

The usual procedure followed in industry to perform a MPI test can be divided into three steps.
First, the ferromagnetic piece is successively subjected to longitudinal and circular magnetiza-
tion. Then, the demagnetization process takes place, which can be carried out inducing either a
circular or a longitudinal field. Nevertheless, we will study the case in which the magnetization
steps could be performed in any order.

From the physical point of view, if a circularly magnetized piece is subjected to a longitudi-
nal magnetic field, the latter will erase the existing magnetization (as long as its amplitude is
large enough) due to the change in the field direction (see [40]). Naturally, this would also
happen if one subjects a longitudinally magnetized specimen to a circular magnetic field. Con-
sequently, circular and longitudinal magnetizations/demagnetizations are considered to be in-
dependent processes and they will be modeled separately. We will only couple magnetization
and demagnetization when the induced fields have the same direction.

2.2.1 Circular Model

The circular magnetization and demagnetization are performed by clamping the piece between
two electrical contacts while the current is passed directly through the specimen, going from
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one contact to the other (see Figure 2.2—left). To model it, we will consider that the conducting
ferromagnetic pieces have cylindrical symmetry and that all fields are f—independent. We will
also assume that the current density traverses the piece along its axial direction and has the form
J(xz,t) = J.(p,z,t)e,. As a consequence, from (I.8), Ohm’s law and the isotropic property,
we deduce that H (x,t) = Hy(p, z,t)eg. We will denote by (e,, eg, e.) the orthonormal basis
of the cylindrical coordinate system.

We highlight that, since we are only interested in the magnetic fields in the ferromagnetic piece,
we will restrict ourselves to a problem defined in this domain. This is possible because, in this
particular case, thanks to certain assumptions on the current density that are specified below, we
are able to define suitable boundary conditions for [y in terms of the problem data, which will
be the current /(t) entering the piece through the contacts.

Taking (1.7), (I.8) and Ohm’s law into account, we deduce the following equation in the con-
ducting domain

0B 1
a—teeg + curl (a curl(ngg)) =0. (2.1)

On the other hand, we will assume that the current density enters perpendicularly to the contacts,
that is, J x m = 0 on these parts of the boundary, and that it is tangential to the rest of the
boundary, i.e., J - n = 0. Therefore, the cutrrent crossing the domain can be defined as

I(t) = / J(x,t) - n(2),

&

where S, is any cross-section transversal to the axial direction. Taking (I.7) and Stokes’ theorem
into account, it follows that

10 = [ H.t) r@) = | " Hy(Rs(2),2.1) Rs(2) do.

where Rs(z) is the radius of cross-section S, and 7 is the unit vector tangent to 9S, (see Fig-
ure 2.3). Then,

I(t)

Hy(Rs(z),2,t) = 21 Rs(z)

(2.2)

for every S..

Taking (2.1) and (2.2) into account and using the notation in Figure 2.4, the problem to solve is
defined only in the meridional section §2 of the piece to inspect and reads

Problem 2.1. Given current 1(t) and an initial magnetic intensity field Hy, find Hy in Q x (ty, T
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Figure 2.3: Cross-section S, with unit tangent vector 7.

Figure 2.4: Computational domain. Circular magnetization.

such that
%69 + curl (% curl(ngg)> 0 inQx (to,T], (2.3)
Hp(0,2,8) =0 on (0,L) x (o, T], (2.4)
HolBs(),2.0) = 5 g on (0.) % (. ] 2.5)
aaH" (p, 2 t) 0 on (T3 UTy) x (to, T), (2.6)

In the above problem, where L is the piece length in the axial direction, B is the scalar hysteresis
operator that defines the magnetic flux density in terms of the magnetic intensity field and &
describes the initial magnetization state (see Section 2.2.3). We notice that Hy has to be null
on the symmetry axis in order to prevent nonphysical singularities, and that boundary condition
(2.6) follows from the current density being entering perpendicularly to the contacts.
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Figure 2.5: Geometric domain 3D (left) and meridional section (right). Longitudinal magneti-
zation.

2.2.2 Longitudinal Model

In the longitudinal magnetization and demagnetization stages, the piece to be examined is lo-
cated inside a conducting coil carrying an alternating current in the azimuthal direction (see
Figure 2.2 —right). Thus, in order to consider pieces having cylindrical symmetry, it may seem
convenient to replace the coil by several toroidal rings and to develop an axisymmetric model
written in terms of the azimuthal component of the magnetic vector potential. However, in such
a case the magnetic intensity and magnetic induction fields would be vectors, and then the in-
clusion of a vector hysteresis law would be unavoidable. Therefore, as a first step, we propose
a simplified model for the analysis of the longitudinal case, which will be defined in a one di-
mensional domain and use a scalar hysteresis law. The key point for this simplification consists
in assuming that the pieces are cylindrical and unbounded in the z-direction. Moreover, we ap-
proximate the coil by an infinitely thin conducting surface ['s carrying a surface current density
Js(x,t) = Js(p,t)eq (see Figure 2.5).

We will denote by €. the piece to be inspected, with radius R, composed by a conducting ferro-
magnetic material with hysteresis effects, and by (2, the air surrounding it. The air is artificially
bounded in the p-direction, R, being its outer radius. Finally, we call Rg the distance from the
conducting surface to the symmetry axis.

The geometric considerations, along with the source direction, suggest that the fields are inde-
pendent of the (6, z) coordinates. Then, taking (I.7) and the source form into account, we deduce
that H (x,t) = H,(p,t)e,. Moreover, we assume that the material has an isotropic magnetic
behavior which implies that B(x,t) = B.(p, t)e..

Gauss’ magnetic law (1.9) leads to the existence of a magnetic vector potential A such that
B = curl A. This vector field is defined up to the gradient of a scalar field; in order to ensure
uniqueness of the solution to the problem, we can impose a gauge condition such as div A = 0.
Furthermore, in the considered case, it can be proved that A(x,t) = Ag(p,t)eq. Then, taking
(I.7)~(1.8) and Ohm’s law into account, and since domain §2. contains the symmetry axis, we
can rewrite the problem as follows:
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Problem 2.2. Given the surface current density Js(t) and an initial condition Ay in (0, R..), find
Ay in (0, Re) X (to, T such that

0A 0 10
e D (B—l (pap (o) 5)) — 0 in(0.R) % (t0.T). 28)
;fp (;;{fp (pAg)) — 0 in[(Re Rs) U (Rs, Roo)] % (t0.T),  (2.9)
Ljoi(fp@fxe)]pﬂs —Js(t) o (s} x (o T, 2.10)
Ag=0 on {0} x (to, T, @.11)
S A =0 on (R X (0, T), 2.12)
A9 = AO in (0, Rc) X {to} (213)

In the above problem, where | - | =g, denotes the jump across the surface p = Rg and y is the
vacuum’s magnetic permeability. Notice that the source is imposed by (2.10), i.e., by the jump
of H x n at p = Rg, which is equal to the surface current density Jg. An important advantage
of this approximated model is that R, can be taken as close to Rg as desired because, from
Amperes law (1.7) in the air, the magnetic field H has to be null beyond the conducting surface,
and thus the Neumann boundary condition (2.12) holds for any p > Rgs. Moreover, and similarly
to the circular case, we have required Ay to be null on the symmetry axis in order to avoid the
appearance of nonphysical singularities in the solution.

2.2.3 Magnetic Hysteresis

The behavior of hysteretic materials is characterized by the dependance of the magnetic induc-
tion B at each point  not only on the value of the magnetic intensity H at present time but also
on the so—called magnetic history. The latter, at a point @, is simply the set of all past values of
the magnetic intensity H at x.

In both the circular and the longitudinal formulations, the magnetic intensity and induction fields
only have one non—null component, in the e, direction in the longitudinal case and in the ey
direction in the circular one. This allows us to use a scalar constitutive law for the nonlinear
material. In order to simulate the magnetic hysteresis, we have chosen the well-known classical
Preisach model (see [73]). This model characterizes soft ferromagnetic materials by means
of a finite set of operators, called hysteresis operators, each one represented by a relay R,z
depending on parameters o and 3 such that o < [ (see Figure 2.6 for a particular example).
Mathematically, a relay is defined in the following way:

Rag : C([to, T R) x {=1,1} — L=([to, T; R)

<
(1, &) — Rap(u, E)(1) = +1 if u(t) >

51



MARTA PINEIRO PEON
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Figure 2.6: Relay operator R3.

where

1 f b=ty = —1,

-1 if t>ty, £=—1, u(s) € (a, B) Vs € [to, 1],

) =1 if Fg>to/ulg) = a,u(s) € (—oo,B) Vs € [q,t],
5(u|[t0,t]>€) - 1 if t=ty, £=1,

1 if t>ty, £=1, u(s) € (a, B) Vs € [to, ],

1 if Jg>ty/ulq) =5 u(s) € (o,00) Vs € [g, t].

Thus, for every point « in the ferromagnetic domain, the hysteresis operator is defined in the
following way:

Blu.&)(@.t) = [[  Reglu(a.t).€(@)) e, B) dads,

where p1 is a weight function of compact support that identifies the ferromagnetic material (called
Preisach function) and ¢ is a function that takes values in the set {—1, 1} and contains the in-
formation about the initial state of magnetization of every point of the ferromagnetic domain.

Preisach function p is unique for every material but it can be approximated in different ways, for
example, from experimental data or through analytical functions depending on different material
parameters. For more information, see Chapter 5 i [107].

Thus, we will have that B, = B(H., ) for longitudinal magnetization and By = B(Hjy,§) for
circular magnetization.

2.3 Implementation Issues

For numerical approximation, we propose a backward-Euler scheme for time-discretization.
Due to the inclusion of hysteresis, the problems to be solved at each time step are nonlinear;
therefore, we propose here to use the so-called Bermtidez-Moreno algorithm, a fixed point
method introduced in [25] in an abstract framework. This procedure makes use of a multi-
plier that is updated in each iteration and is defined in terms of B and B! for the circular and
longitudinal models, respectively. To use this algorithm, and following the same arguments as
in Chapter 5 from [107], we define, for each point & in the ferromagnetic domain and each time
step t,,, a local magnetic constitutive law relating the magnetic flux B(x, t,,,) and the magnetic
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intensity H (x,,,) in terms of the hysteresis operator B (or its inverse, B!, depending on the
formulation) and the values of H at points {(x, ), k = 1,...,m — 1}. Moreover, as it will
be detailed later, an important advantage of this approach is that, although the multiplier is de-
fined in terms of B~ for the longitudinal model, the effective computation of the inverse of the
hysteresis operator is not required.

Finally, we notice that we have only detailed here the semidiscretization in time for the sake
of readability. However, we have used a finite element method for the space-discretization,
and thus Hy and A, were approximated by piecewise linear finite elements in the circular and
longitudinal magnetization models, respectively.

2.3.1 Circular Model

Firstly, we take a uniform partition of the time interval [ty, T'] with step size At := (T' —to) /M,
{tm = to+mAt,m =0,...,M}. Inorder to solve the problem for the circular magnetization,
(2.3)+2.7), we propose the following implicit scheme:

m = 0 : We define H := H, and B° the nonlinear operator relating HJ and By,
By(p,2) = B" (HY) (p,2) = B, ., (Hy(p,2)) . (p,2) € 2,

with BY, ) : R — R, BY, ,,(s) := B(s,§), forall s € R.

P

m > 1: We define By* ! := B™ '(H,""') and approximate Hy(p, z,t,,) ~ H'(p,z) in
terms of the approximation at the previous time step /""" as the solution to:

1 1 1
L B"(H")ey + curl <~ curl(Hg”eg)> — Bl e, inQ,

At o At
Hg*(0,2) =0 on(0,L),
m _ I(@w)
Hy'(Rs(2), 2) = o Rs(z) " (0, L),
OH

92 (p,Z):O on (F1UF2),

where B represent the nonlinear operators relating H;" and B,

By'(p,z) = B"™ (Hy") (p, 2) = B, (Hg"(p,2)), (p,2) € Q,m=1,..., M,

with B ) R — R, B} ) (s) := B(um, §), with u,, the piecewise linear function
such that u,,(t;) .= Hy(p,2), k =0,...,m — 1,and u(t,,) = s, forall s € R.

On the other hand, as we have already mentioned, we will used the Bermtidez-Moreno algorithm
to solve the nonlinearity. This approach requires the assumption that operators BE’;’Z), m =
0,..., M, can be extended to maximal monotone operators, that is, they can be extended to
unbounded operators g?;z) :R— R, m=0,..., M, such that

(gz';z)(s), s)>0VseR and idg+ lg?;,z) is onto.
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These properties can be deduced, for instance, if B?;Z), (p,2) € Qym =0,..., M, are strictly

monotone operators in a bounded domain and constant elsewhere, the latter being a consequence
of 1 having compact support (see [107]).

In order to describe the algorithm to solve the nonlinearity, we will first introduce some defi-

nitions. For any operator G : R — R and any 3 > 0, we define the associated operator G*
such that G?(s) = G(s) — fs. Moreover, following [38], under the previous assumption, we

can define 7} {BZZ,Z)] for A € (0,1/5), (p,z) € Qand m =0,..., M,
8 . g\t
7 (By) = (ide + 2 (B1)")

the so-called resolvent operator of (BZZVZ))B. It is easy to see that

j/\ﬁ [ Ez,z)] (3) — ‘710,%5 [ Z;Z):| (1—S>\B> , S& R.

Moreover, we can also define (sz,z))f for A € (0,1/5), (p,z) € Qandm =0,..., M,

1/, m
(B(mp,z))f — % (zdR — jAB [B(Pyz)}) ’

the so-called Yosida regularization of (B’(q;"z))ﬁ.

Therefore, for the circular model, we introduce a multiplier p2*(p, z),m = 1,..., M, (p, z) € Q,
such that

p?(ﬂv Z) = BEZ,Z)(Hén(p? Z)) . ﬁc(pa Z)Hén(/)a Z)7

for any given (.(p, z) > 0. It can be proved that (see [25]), for every \. € (0,1/8.(p, 2)),

pr(p,2) = (B™M5 (Hy(p,2) + A (p, 2)) - (2.14)

This equality, combined with the described time discretization, is the base of the fixed point
iterations. Therefore, we propose the following algorithm to solve problem (2.3)—~(2.7):

m = 0 : We define Hj := H, and B° the nonlinear operator relating Hj and By,

By(p,2) = B" (Hy) (p,2) = B, (H(p,2)), (p,2) € 2,

with BY, ) : R — R, B], ,(s) := B(s,¢), forall s € R.

p:z)

m =1: We define B := B°(H}), p}* = 0 and approximate Hy(p, z,t1) ~ Hj(p, z) per-
forming the following iterations on s > 1 until convergence:
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1) H ; * is the solution to the linear problem

ﬁcHg ey —|—curl( curl(H,’ 69))

Loy .
Ath Q—Atpi 1 in Q,
Hy®(0,2) =0 on (0, L),
I(t1)
Hy* = L
0 (R5(2>7z) 27TR3(Z) 01’1(0, )7

OH,*
0z

(p,2)=0 on (I'HUTy).

i) pi* = (BY)3 (Hy* + Acpl*~t) in Q.

m > 2: We define Bj" ' := B™L(H,* 1), p™® = p~! and approximate Hy(p, z,t,,) ~
H}"(p, z) performing the following 1terat10ns on s > 1 until convergence:

i) H,"" is the solution to the linear problem

1 1
—B.Hy"”® 1( — curl(H,"*
Atﬁ g ep+cur (Ucur( 9 69))
1 1
. Bm 1 - m,s—1 : Q
Hy"?(0,z) =0 on(0,L),
I(tm)
HT = _tm) L
0 (RS(Z)’Z) QWRS(Z) OH(O, )a

8Hm8
ai (p, ) 0 on (Fl U Fg) .

i) e = (B™)X (Hy"™* + Aepi=1) in Q.
In order to compute p*(p, z), we solve the nonlinear system

u= T BE. | (Hi (p,2) + APl (p, 2))
=J%. [Bo.)] (Hgns( )+>\ P 1(P7Z)>

1=AcBe ch
" Hm’8<p, )JrA P (p, 2)

<:>u+ u € R.

C/BC

For this, we approximate BE’;’Z) by a continuous piecewise linear operator and solve the resulting
piecewise linear system of equations.

The convergence of the proposed iterative method has been proved in [25] for A.8. < 3, and
its performance depends on the choice of these parameters. For the implementation, we have
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chosen the parameters in the following way:

where {h;,i = 1,...,ny,} is a given discretization of the interval [0, H,] C R, Hgyyy de-
pending on the magnetic properties of the ferromagnetic material, and b;(p, z) = B?p7z)(hi),

i =1,...,np,. Also, we have defined \.(p, z) := 1/(26.(p, z)). We reference Section 6.3 in
[16] for other ways of choosing these parameters.

Finally, we notice that, for the spatial discretization of p*, m = 1, ..., M, we have used standard
first order Lagrange finite elements.

2.3.2 Longitudinal Model

In a similar way, for the longitudinal magnetization problem, (2.8)—(2.13), we propose:

m =0: We define A) := A, in (0, R.) and, similarly to the circular case, (B°) " the non-
linear operator relating B? := (1/p) (9 (pAY) /(9p)) and HY,

1p) = (BY) (BY)(p) = (BY) " (Bp)). pe(0R.),
with B) : R — R, B)(s) := B(s,£), forall s € R.

m > 1: We define

— il 8 Am_l
HP () = (B (5i19))

p - Op

and approximate Ay(p, t,,) ~ Aj'(p) in terms of the approximation at the previous
time step A7~ " in (0, R,) as the solution to:

L9 (1d, 1o

pp
8‘1 <:O;§p @Agﬂ)) — 0 in (R, Ruo) \ {Bs},
11
a0, =t
Ay = on p =0,
S A7) =0 onp= R,
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where (B™) " represent the nonlinear operators relating B7* and H™",

(o) = (B") ™ (B7) (o) = (B7) (m(’”‘m) ,

p (9p)
€(0,R.), m=1,..., M,

with B' : R — R, B'(s) = (um,f) with u,, the piecewise linear function
such that U (1)) = Hk( ), k=0,...,m—1,and u(t,,) = s forall s € R.

On the other hand, for the longitudinal case, the multiplier is defined as:

(o) = (B2 (B.(p) — 5:B.(p),

for any given 3, > 0, p € (0,R.), m = 1,..., M. Again, we assume that operators 3",

p € (0,R.), m = 1,..., M, can be extended to maximal monotone operators. We notice
-1
that, following [89], this assumption guarantees that the same is true for operators (B,T) ,
€ (0,R.), m =0,..., M. Then, similarly to the circular case, it can be proved that
m m —1\ e m
pr (o) = ((87) ). Bal) + A (0)
¥4

Moreover, following [89],

(), w0 - g (),

1-8

( B.(p) )_ b

1 — BeAe
4 @Mjl by { } ( Ag ) a b

Therefore, since B, = (1/p) 0(pAq)/0p,

pe(p) = 7 _15WJ1 o By (Ataa(pAg(p)) +pf(p)>
Be 10
T 1-Ben <pap(ﬂAe( ) + )\Pe(P)) . (2.15)

for every A\, € (0,1/5,). In particular, by using this equality, p,(p) is updated using operators

-1
B instead of (B)T) . Thus, combining (2.15) with the time discretization, we propose the
following fixed-point-type algorithm to solve problem (2.8)—(2.13):

m = 0: We define A := Ay in (0, R.) and (B°)"" the nonlinear operator relating B° and
H?,

H(p) = (BY) " (BY) (p) = (BY) " (BXp), pe(0,R.),
with B) : R — R, B)(s) := B(s,§), forall s € R.
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: We define pé’o := 0 and approximate Aq(p,t1) =~ Aj(p) performing the following

iterations on s > 1 until convergence:

1) Ag is the solution to the linear problem

AltAa op (ﬁg (pap (e )>>

0
_ AO 1,5—1 .
U—At + —app in (0, R,),
0 (110 1 .
— | —=—=—(pA,~° =0 R, R Rs},
ap(ﬂopap(pe)) in (Re, o) \ {Fis}
110 15]
———(pAy = Js(t1),
[uopap( ") pmFs ()
Ay*=0 onp=0,
10 s
;a*p(PAé 7)=0 onp=R..
1) We update the multiplier with expression (2.15)
15 1 1 1 0 1,s 1,s—1
b 1 A b
Py 1 _6£>\€j ff*l [B:| ()\e a (p ) Dby
6@ (1 0 1,s 1,s— 1> .
— pAy”) + A in (0, R.).
1 — Bede pap( SRy 0, &

: We define pT’O := p"~* and approximate Ay(p, t,,) =~ A7 performing the following

iterations on s > 1 until convergence:

i) Ay"® is the solution to the linear problem

T
0
ap "

—JEAW Y —pT in(0,R,),

o (110
—_— | ——— Am,s =0 in RcaRoo R )
dp (uopap(p ’ )> ( S

110
XY e
) =kl
Ay =0 onp=0,
10
pAy"*) =0 onp= R..
o)
1) We update the multiplier with expression (2.15)
1 1 0 1
m,s __ B™ - Am,s m,s
p€ 1_5[)\[‘71 ff’\e[ ]<AE a (p 6 )+p€ >
6@ <1 0 m,s— 1) .
— A7)+ A in (0, R,.).
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In order to compute p;"*, we solve the nonlinear system

_ 70 m Lg m,s m,s—1
u= Jl—ffw By (Am ap(pA" (P) + " (p)

1-— 6@)\@ 1 0 m,s—1

m - Am7s R
N B (u) Awap(pe (p) +p" " (p), we

As for the circular case, we approximate 5" by a continuous piecewise linear operator and solve
the resulting piecewise linear system of equations.

S U+

Moreover, in the step m = 0, we approximate Bg by a continuous piecewise linear operator.
Additionally, and similarly to the circular case, we have chosen

Nph

231 bi(p)

Bilp) == S,
> hi
i=1
where {h;,i = 1,...,ny,} isa given discretization of the interval [0, H,y] C R, H,,; depending
on the magnetic properties of the ferromagnetic material, and b;(p) := Bg(hi), i=1,...,np.

Also, we have defined \;(p) := 1/(26.(p))-

Finally, we notice that, for the spatial discretization of p;*,m = 1, ..., M, we have used standard
zero-order Lagrange finite elements.

2.4 Numerical Results

As we mentioned in Section 2.2, we have simulated various processes corresponding to a mag-
netic particle inspection procedure, considering separately the cases in which the electromag-
netic field has circular and longitudinal direction. Thus, we have successively solved a circu-
lar magnetization and demagnetization for different demagnetizing waveforms, and also several
longitudinal magnetization and demagnetization processes. In order to numerically illustrate the
results presented in the previous sections, we have considered a ferromagnetic material charac-
terized by the major hysteresis loop (and initial magnetization curve) depicted in Figure 2.7.
This curves where obtained using an artificial weight function y (see Section 2.2.3); in particu-
lar, they do not correspond to any real material, although the qualitative behavior is the same.

Concerning the magnetization stages, all of them have been performed with a pure sinusoidal
current waveform. Conversely, demagnetization is generally accomplished by subjecting the
pieces to a magnetic field, initially equal to or greater than the one used for magnetization, and
having a sinusoidal dependance on time, modulated by a decreasing function fading to zero (see
[70]). To achieve this waveform for H, a source with a similar behavior was used, obeying the
general expression

T —t R
J3(Rs,t) = Jso ———= SN2 faemag 1), T € [0, T],
T—1
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Figure 2.7: Initial magnetization curve (red). Major hysteresis loop (blue).

in the longitudinal case, and a similar one for /(¢) in the circular case. However, in Section 2.4.2
we will show that the magnetic field waveform is distorted as it penetrates into the piece (in the
particular case of a longitudinal demagnetization), what causes the demagnetization process to
be rather intricate. In Figure 2.8 an example of the aforementioned source signals used for
the demagnetization stage are shown for to = 0.04's, Jso = 2 % 105 A/m, faemag = 1 Hz but
different final time 7" € {12.04, 36.04, 72.04, 144.04} s. For each of these final times, we define
the number of cycles N := (T — 1?0) fdemag required for the input signal to vanish.

Finally, we notice that all numerical simulations have been performed with an initially demag-
netized piece, and therefore the initial fields, /, 3 for the circular case and Ag for the longitudinal
one, were chosen to be identically null.

2.4.1 Circular Model

Concerning the simulation of circular magnetization stages, we have employed the same signal
for all of them. In Figure 2.9—top we can see the #—component of the remanent flux density
after these processes. It can be seen that the field is almost constant until it reaches the boundary,
where a strong variation occurs. This variation is due to the skin effect, being stronger as the
boundary approaches the symmetry axis of the piece. Moreover, in Figure 2.9-bottom, the
value of this field on the three lines marked in Figure 2.9-top is plotted as a function of the
p—coordinate.

Regarding circular demagnetization, in Figure 2.10 we show the #—component of the rema-

nent flux density in the piece sketched in Figure 2.4 at z = 0.2 m after different processes
of magnetization—demagnetization, with the demagnetizing source having a frequency of 1 Hz
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Figure 2.8: Demagnetizing source.

and for a different number of cycles (see Figure 2.8). Moreover, in Figure 2.11 we show the
f—component of the remanent flux density in the same piece, at z = 0.2 m, with the demagne-
tizing source having two different frequencies: 1 Hz and 6 Hz. We observe that when we apply
two demagnetizing signals having the same number of cycles, both of them achieve similar re-
manent flux densities at the surface of the piece, but with the one at 1 Hz the specimen is more
efficiently demagnetized.

2.4.2 Longitudinal Model

Regarding the longitudinal simulations, in Figure 2.12 we show the magnetic field dependance
on time at some points along the piece during the demagnetization stage. We observe that,
although for values of p close to R, the magnetic field mimics the source waveform, this property
is lost as we get closer to the center of the specimen.

Furthermore, in Figure 2.14 and 2.15 we show the z—component of the remanent flux density
in a cylindrical piece after different magnetization—demagnetization processes. Similar to the
circular case, the magnetization stages were the same for all of them (see Figure 2.13 for the
remanent flux density after this step), while the demagnetization part was performed with a
different number of cycles or changing the frequency (see Figure 2.14 and 2.15, respectively).

Figure 2.14 shows that if we apply different sources at the same frequency, a greater number
of source cycles results in a better demagnetization. On the other hand, in Figure 2.15 we can
compare the remanent flux density when considering a 1 Hz source and a 6 Hz one. We observe
that, even though the 1 Hz current achieves a better demagnetization in the interior of the piece,
the remanent flux density on the surface is notably closer to zero with the 6 Hz source. Still,
with the 6 Hz source complete demagnetization is not achieved in the interior of the piece.

The numerical results shown in this section 2.4 help us to become familiar with the inspection
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Figure 2.9: Remanent flux density (f—component) after circular magnetization at z = 0.1 m,

0.1 0.176 0.2 0.28

Remanent Magnetization (1)
-2.50 -1.6 -0.63 0.? 1.24

o .

= 7=0.2
2. 7=0.1

w7=0.175

0 0.01

002 003 004 005 00565 007 008 0.09
Radius (m)

z=0.17omand z = 0.2 m.

62



Chapter 2 . Numerical Simulation of Magnetization and Demagnetization Processes

006—12 cycles
-36 cycles
-72 cycles
-144 cycles

-0.12

Remanent magnetization (1)

-0.184 ——
0 0.01 0.02 0.03 0.04 0.05
Radius (m)

Figure 2.10: Remanent flux density (/—component) vs. radius in the cylindrical piece at z = 0.2
m. Circular demagnetization. Number of cycles comparison.
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Figure 2.11: Remanent flux density (/—component) vs. radius in the cylindrical piece at z = 0.2
m. Circular demagnetization. Frequency comparison.
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Figure 2.12: Magnetic field intensity H, for different points along the piece during the longitu-
dinal demagnetization process.
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Figure 2.13: Remanent flux density (z—component) after longitudinal magnetization.
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Figure 2.14: Remanent flux density (z—component) vs. radius in the cylindrical piece. Longi-
tudinal demagnetization. Number of cycles comparison.
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procedure as they give useful information on which are the most important source parameters
for a successful demagnetization.

In Figure 2.13 and 2.9 we can see the remanent flux density after the longitudinal and circular
magnetization processes, respectively. We observe that greater values are obtained in the circular
case, in which the skin effect is also more noticeable.

Concerning the demagnetization step, as a general conclusion we can say that the results suggest
that circular demagnetization should be used to obtain better results. Comparing Figure 2.10
with Figure 2.14, we can see that in the circular case, and except for the case of 12 cycles, there
is not such a big dependance of the remanent flux density on the number of cycles as in the
longitudinal case. Furthermore, lower values of the remanent flux density are achieved with
circular demagnetization, even though in this case greater values result from the magnetization
process.
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Introduction

The generic term electrical machine makes reference to any device that converts electrical into
mechanical energy or vice versa. Most electrical machines can carry out both tasks, even though
each of them is designed to efficiently perform a particular one, as they are usually subjected
to different operating requirements. When a machine is intended to generate mechanical from
electrical power it is called motor, and the name generator is used if it converts mechanical
energy into electrical one. Electrical transformers, which are used to change the voltage of
an alternating current, are sometimes included into the category of electrical machine, but we
are not going to consider them here. Moreover, we are only going to refer to electrical motors,
keeping in mind that the main operating principles, characteristics and many other considerations
apply to generators as well in a symmetrical fashion.

ShafE_______...-- ~—~__ Stator

o

\ | Permanent
g~ magnet

\/{ O3
_— Rotor

Air-gap

Figure II.1: PMS motor (left) and cross-section draft (right). From Wikimedia Commons under
license CC-BY-SA-3.0.

Most electric motors operate by means of the interaction between the magnetic field created by
an external source and the internal electromagnetic field. Besides, in order to produce mechan-
ical energy, all motors have a moving part, which usually either oscillates linearly or rotates
around a given axis. We are going to focus on the latter, which generally have cylindrical shape
with two main parts separated by an air-gap: a stator, which remains still, and a rotor, which ro-
tates about the so-called shaft, transmitting the mechanical energy to the load (see Figure I1.1).
Moreover, and independently of their moving direction, electrical machines can be classified
into AC and DC, depending on wether they are fed by means of an alternating or a direct cur-
rent, respectively. We are going to concentrate on radial-flux AC machines, characterized by
the magnetic flux within the air-gap flowing in the radial direction with respect to the shaft, in
opposition to axial or transversal-flux machines. On the other hand, concerning AC machines in
general, there are two major classes, synchronous and induction machines. There are two main
differences between them

* the nature of the source of the magnetic field in the rotor, and

* the relation between the rotation speed and the magnetic frequency of the currents in the
stator.

Concerning the former aspect, most synchronous motors have active sources in both stator and
rotor (except, for instance, reluctance motors), while the magnetic field in the rotor of induction
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machines is induced from the one in the stator, either in a supplementary rotor winding or in a
squirrel cage (see Figure I1.2). Regarding the rotation angular speed, in synchronous machines
it is equal to the so-called synchronous speed, which is defined in terms of the frequency of
the stator sources and the number of poles of the machine, while induction motors rotate at a
lower rate. In this part of the memoir, we will consider two types of electric motors: permanent
magnet synchronous (PMS) and induction motors with squirrel-cage rotors.

Figure I1.2: Wound induction machine (left) and squirrel-cage induction machine (right). From
Wikimedia Commons under license CC-BY-SA-3.0.

On the one hand, PMS motors are synchronous because they have active sources in both sta-
tor and rotor, coils in the first case and permanent magnets in the other (see Figure II.1). A
permanent magnet is an object made of a ferromagnetic material that is magnetized, that is,
that produces its own magnetic field. This property makes them suitable to replace windings in
electrical machines under certain circumstances. Among the different ferromagnetic materials
(such as iron, nickel, rare-earth metals,...), those suitable for permanent magnets are the so-
called hard, which tend to stay magnetized as they have wide hysteresis-loops (see Figure I1.3).
For electromagnetic modelling purposes, permanent magnets are often characterised by the lin-
ear constitutive law

B = /’LUM’I‘H o\ BT?

where the scalar value p, is the relative magnetic permeability, and B" is called the magnet
remanent flux density. Depending on the geometrical arrangement of the permanent magnets in
the rotor, PMS machines can be classified in several ways, among which we can find surface
magnet, interior magnet or flux concentrating machines. For more information on permanent
magnet motors we refer to [63].

Finally, in the last chapter we will deal with a squirrel cage induction motor, characterized by a
rotor consisting in conducting bars inserted through the stack of insulated laminations, electri-
cally shortened at each extremity by the end-rings, producing a cage-like structure. In this kind
of machines, the speed difference between the physical rotor and the stator magnetic field causes
the current induction in the conducting rotor bars; if the rotor moves at synchronous speed, ro-
tor bars would be static with respect to the stator magnetic field, and thus no current would be
induced.

Numerical simulation is an essential tool in the design of electrical machines, as it prevents the
building of unnecessary prototypes and significantly reduces both cost and time to obtain new
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Figure II.3: Hysteresis loop of hard material.
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configurations. In particular, the numerical simulation of electrical machines by using finite
element methods generally requires the solution of a nonlinear system of partial differential
equations derived from Maxwell’s equations, eventually coupled with thermal and/or electrical
circuit equations (see [92, 94, 116] and references therein). In the following chapters, we will
focus on the electromagnetic aspect.

Figure I1.4: Lamination detail. Derivative of E-Twow Electric Motor by Kaspars Dambis under
license CC-BY-2.0.

The electromagnetic model of electrical machines is often based on describing the active zone
of the motor as a 2D distributed nonlinear transient magnetic or eddy current problem. Indeed,
in order to reduce electromagnetic losses, the magnetic cores of electrical machines are usually
laminated media consisting of a large number of stacked steel sheets, which are orthogonal to
the direction of the currents traversing the stator coil sides (see Figures 1.4 and I1.5). Consid-
ering the high number of sheets and their small thickness (usually less than one millimetre),
solving a three-dimensional model would require considering a very fine mesh, leading to very
high computational costs. As a consequence, the usual simulation model consists in an electro-
magnetic problem defined on a cross-section of the machine, while the end regions of the stator

73



MARTA PINEIRO PEON

windings and some other elements (for instance, the squirrel cage end-rings of induction mo-
tors) are modeled by circuit elements; in this way, the distributed 2D model will be coupled with
a lumped one (see, for instance, [93]). On the other hand, the interplay between the magnetic
fields in stator and rotor gives rise to a force that causes the latter to rotate around the machine
axis. Therefore, the result is a transient problem defined in a moving geometry with prescribed
speed.

Figure II.5: Permanent magnet synchronous motor active zone (left) and lamination detail
(right).

In the remainder of the thesis, we will study several problems related to electrical machines. First
of all, we will state a 2D transient magnetic problem that arises in the mathematical modeling of
laminated magnetic media and, in particular, of electrical machines. After this, we will briefly
describe the problems addressed in this part of the thesis.

A Two-Dimensional Transient Magnetic Model

Let us start recalling that eddy currents are usually modelled by the low-frequency Maxwell’s
system of equations:

curl H = J,

0B
W + CuI'lE = 0,
div B =0,

along with Ohm’s law in stationary conductors
J=0F,

where H is the magnetic field, B is the magnetic flux density, E is the electric field, J is
the current density (which is null in dielectrics) and ¢ > 0 is the electrical conductivity in
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conductors. This model will be completed later with the corresponding constitutive laws relating
H and B.

Let us assume that the current density J has non-null component only in the 2z space direction
and that this component does not depend on z, i.e., J = J,e,, with J, = J,(x,y,t). We also
assume that the geometry and the magnetic field H are invariant along the z—direction, and
that all materials are magnetically isotropic. In this case, under an appropriate decay of fields
at infinity (see [102]), the magnetic field H, and then the magnetic induction B, have only
components on the zy—plane and both are independent of z, namely,

H = H,(z,y,t)e, + Hy(x,y,t)e,, B = B,(z,y,t)e, + By(z,y,t)e,.

Since we are interested in using a finite element method for the numerical solution, we will
restrict ourselves to a bounded domain. Thus, let us consider a 2D convex bounded domain €2,
with Lipschitz continuous boundary, containing a cross-section transversal to the device. Thus,
let us assume that €2 is composed of the following open subsets

» a magnetically linear subdomain €2,
* non-magnetic connected conductors €2,,, n =1,..., N,
* a permanent magnet region {2, and

* anonlinear ferromagnetic core ).

We notice that, for the moment, we will not take motion into account. Moreover, we further
assume that the boundaries of the conductors, 0€2,, n = 1,..., N, are mutually disjoint and
do not touch the boundary of €2, and also that the same is true for the boundaries of the con-
nected components of the permanent magnet region. We notice that all parts of the domain are
non-conducting except for the non-magnetic conductors, which support the current density J.
Moreover, we will use the notation Q. := Y, Q..

In this framework, vector fields H and B are linked by the constitutive relations:

H = l/oB in QO @) QC,
H =v,,B — v, B" in{,,,
H=5(B))B inQ.,

where 1 is the vacuum magnetic reluctivity, B" is the remanent flux density in the permanent
magnets and vy, : Q,m — RT is the magnetic reluctivity in the permanent magnets. In
principle, both the magnetically linear subdomain and the nonlinear core subdomain may have
several parts with different magnetic reluctivities. However, for the sake of simplicity, we have
assumed there is only one for each of these two subdomains and that the magnetic reluctivity
of the linear one is that of the vacuum, 1. We assume that B" has only components on the
ry—plane and both are independent of the z—coordinate and that v/, € L>°(2,,,,,). Furhtermore,
we define the global magnetic reluctivity function v : Q x R — R* as

140 ifx e Qg U QC,
v(x;s) =1 vpm(x) ifx e Qpn,
v(s) ifx e Q.
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Let us make the following assumptions on the nonlinear reluctivity 7 : Rf — R™,

Ju, e >0: v <0(s) <y ae inRy, (I1L.1)
IM; >0 : |v(p)p—v(q)q] < Mzlp—q| Vp,qeRy, (11.2)
Jag; >0 : (F(p)p—(q)q)(p—q) > azlp—q|* Vp.q € RY. (I1.3)

Therefore, we seek H € H(curl, (2), B € H(div,2) and E € H(curl, €2_) such that

curlH =J in(), (11.4)

B
8815 +curlE=0 in(}, (IL5)
divB =0 1in{, (IL.6)
H=v(,|B|)B in(, (I1.7)
J=0FE in(, (I1.8)
B-n=0 onodf, (1I1.9)

where the boundary condition means there is no magnetic flux through the boundary. We notice
that, since we are not interested in obtaining the electric field E in dielectrics, Faraday’s and
Ohm’s law, (I1.5) and (I1.8), respectively, have only been considered in the conducting domain
2, where o > 0.

In order to solve the described two-dimensional model, it is convenient to introduce a magnetic
vector potential because it leads to solving a scalar problem instead of a vector one. Since B
is divergence-free, there exists a so-called magnetic vector potential A such that B = curl A.
Under the assumptions above, we can choose a magnetic vector potential that does not depend
on z and does not have either = or y components, i.e., A = A.(z,y,t)e, (see, for instance,

[36]).

Concerning the sources, we will suppose that all conductors are stranded, which makes it pos-
sible to assume that the current density is uniform and given by

Ln(t)

meas(,)’

Jon(t) = =1,..., N,

where I,,(t) denotes the total current across 2,, at time ¢. Actually, for each conductor, we will
see later that these sources can be given in terms of either the current or the potential drop per
unit length in the z-direction.

Thus, in terms of A = A, if the currents were known for all conductors, the transient magnetic
model (I1.4)—(I1.8) reads:

—div(rpgrad A) =0 in §y,

In(t)
meas(2,,)

— div(vpm grad A) = — div (Vpm (B")")  in Qpu,
—div(v(|grad A|)grad A) =0 in {2y,

—div(ypgrad A) = inQ,n=1,..., N,
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Vpm (BT)L n, if I' C 0Qpm,

[v(;|grad A|) grad A - n]. = { 0, otherwise,

where [ -] denotes the jump across any interface I, (B")" = —Bje, + Bye, and n is a unit

normal vector to interface I'. Moreover, on the boundary OS2, we will consider the homogeneous
Dirichlet boundary condition A = 0, which guarantees (I1.9).

Remark I1.1. Notice that the jump discontinuity in the above problem follows from the trans-
mission condition [H X n]F = 0, which, at the same time, follows directly from the regularity
of H, as long as there are no surface currents on I'.

Next, we will see how to include some sources in terms of the potential drops per unit length
in our formulation. Therefore, let us assume that we have Ny conductors with potential drop
per unit length as source data, and N; = N, — Ny conductors in which we impose the current.
For the sake of simplicity, we will assume that the electrical conductivity o is constant for all
conductors, but otherwise the development below can be applied with no significant change (see
[16]). Taking into account Faraday’s law in the conducting domain (II.5), we deduce that there

exist N, scalar potentials V,,, n = 1,..., N, unique up to a constant, such that
0A .
E—i—Ez—graan inQ, n=1,...,N.

Taking into account the assumptions on J and Ohm’s law (I1.8), we deduce that E in conductors
has non-null component only in the z space direction which is, furthermore, spatially constant

ineach ),,,n=1,..., N.. Moreover, since A = Ae., we have —grad V,, = —a—”ez in each
z
Q.,n=1,..., N.. As aconsequence, the above equation reduces to
0A >
E—i‘EZ = —Cn(t) m Qn7 n = 17~--7Nc; (IIIO)

where C,,(t) := (0V,,/0z)(t) is the potential drop per unit length along direction z in conductor
Q,,n=1,..., N.. Multiplying (II.10) by the electrical conductivity, integrating on each §2,,,
n=1,..., Ny, and taking Ohm’s law into account we deduce

d
g7 cA(z,y,t)dxdy + I,,(t) = —C,(t)o meas(Q2,), n=1,..., Ny. (IL.11)
Qpn

Thus, if currents and voltage drops are given in conductors, the strong formulation for the tran-
sient magnetic model is the following:

Problem IL2. Given (Cy(t),...,Cny, (t)Y, (Uny11(t), ..., Iny4n, (1), B'(z,y) and a vec-
tor of initial currents Iy € RV, find A(x,y;t) and (I,(t),...,In,(t))" for every t € [0,T]
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satisfying (I(0), . .., In, (0)T = I,

—div(rygrad A) =0 in o, (I1.12)
I,(t
—div(rygrad A) = ) inQu,n=1,...,Ny+ N;, (IL.13)
meas(£2,,)
— div(vpm grad A) = — div (Vpm (B")") i1 Qpu, (I1.14)
—div(v(|grad A|)grad A) =0 in Qy, (IL.15)
. _ _ ) Vom (BT) n, if I' COQm,
[v(-; |grad A|) grad A - n|,. = { 0 otherwise. (I.16)
A=0 ondf, (IL.17)
and, for every t € (0,T),

d

pr oA(z,y,t) + L,(t) = —C,(t)o meas(Q,), n=1,..., Ny. (I1.18)
Q'n,

In the next three chapters, we will start from this formulation to consider several problems from
different perspectives. Firstly, in Chapter 3, we will study this problem with sources given in
terms of the remanent fluxes in permanent magnets and the potential drop per unit length in each
conductor, (that is, in the case N; = 0). In particular, we will focus on showing that the contin-
uous problem is well-posed and obtaining an error estimate for a finite element discretization.
Then, in Chapter 4, we will define and study an optimal control problem related to Problem II.2,
in the case Ny = 0, in which we will minimise the losses in a permanent magnet synchronous
motor (PMSM), while we guarantee the generation of a certain minimum torque. In opposition
to the other chapters in this part, we will restrict ourselves to the linear case, and we will study
the problem from a mathematical and numerical analysis point of view. Finally, in Chapter 5,
we will couple Problem II.2, (without permanent magnets), with some circuit equations and in-
corporate motion to be able to model an induction motor. We will use this model as the starting
point for developing a methodology that seeks good approximations for the initial currents in
the rotor bars of a squirrel-cage induction motor, allowing us to reach the steady-state of the
machine in the shortest possible simulation time, avoiding the otherwise long transient state.
For this purpose, we will make some simplifications to the improved formulation, in order to
define a minimization problem that will provide us with the sought initial currents.
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Chapter 3

Mathematical and Numerical Analysis of a
Circuit Coupling Problem

3.1 Introduction

The objective of this chapter is the mathematical and numerical analysis of a nonlinear tran-
sient magnetic model defined in a two-dimensional domain, with sources given in terms of
the potential drops in conductors and the remanent fluxes of permanent magnets. This model
arises, for instance, in the simulation of electrical machines and, in particular, of permanent
magnet synchronous motors (PMSM). In this kind of devices, the magnetic core is usually lam-
inated orthogonally to the direction of the currents traversing the coils. Moreover, eddy current
losses are often neglected in permanent magnets, so that these regions are modelled as non-
conducting; eventually, a posteriori formulas could be used to estimate such losses (see, for
instance, [105, 117]).

As we have mentioned in the introduction to this part of the thesis, both of the above simpli-
fications allow us to build a 2D transient magnetic model in a cross section of the device, the
stator coils being the only conducting part. These coils are generally composed by stranded
wires carrying a uniformly distributed current density. The mathematical model used to simu-
late these conductors strongly depends on the kind of the imposed source. Indeed, as it can be
seen in Problem I1.2, if the source data are given in terms of the current traversing the wires, the
problem reduces to solving a nonlinear magnetostatic problem at each time step, and thus time
appears as a parameter. However, in the case where the potential drops are given, the distributed
magnetostatic model has to be coupled with a circuit equation, equation (3.7), linking currents
and voltage drops. In this chapter, we focus on this last case because the model offers challenges
from a mathematical and numerical point of view, as detailed below.

Here, we give a first step towards the analysis of the genuine physical problem, as we do not

consider the motion of the machine, what would lead to a much more difficult problem; see,
for instance, [39] for a case incorporating also induction effects. Our mathematical model will
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be obtained from the low-frequency approximation of Maxwell’s equations, without taking any
eddy current effects into consideration. Therefore, we will deal with an integro-differential
problem coupling an elliptic partial differential equation, written in terms of the magnetic vector
potential, with the circuit equations relating currents and voltage drops in stranded conductors.
The partial differential equations are nonlinear due to the presence of ferromagnetic materials
in the cores which usually have a strongly nonlinear magnetic behavior.

In the literature, we can find several references dealing with the analysis of low-frequency elec-
tromagnetic models coupled with circuit equations. For example, in [95], the authors study
the well-posedness of a three-dimensional field/circuit nonlinear problem in the presence of
eddy currents and provide error estimates for time discretization. In [80], the authors deal with
a 3D field/circuit linear model, focusing only on the continuous formulation. Alternatively,
field/circuit models also fit in the framework of differential algebraic systems of equations
(DAE), usually when using finite integration techniques for the spatial discretization; see, for
instance, [13, 15]. Finally, we also highlight the results presented in [72], where we can find a
study of some classes of differential algebraic systems of equations in an abstract framework,
in particular covering the case of systems of DAE coupled with partial differential equations
(PDE). However, the absence of eddy currents in our problem leads to a system of elliptic par-
tial differential equations coupled with a vector ordinary differential equation in terms of time,
what suggests the use of different techniques to perform the mathematical and numerical anal-
ysis.

As discussed above, we focus on a model that does not consider eddy current effects. In the
introduction of this part of the document, we obtained an integro-differential problem arising
from the coupling of the Maxwell’s system of equations with the circuit equations relating cur-
rents and voltage drops in stranded conductors. To perform its mathematical analysis, it will be
written as a nonlinear system of implicit ordinary differential equations in terms of the currents
traversing the coils, which are functions of time. The operator defining this system expresses
the so-called flux linkages per unit length in the coils, in terms of the currents traversing them,
via the resolution of some 2D magnetostatic problems. The properties of this operator are de-
duced directly from results already existing in the literature (specifically, those appearing in
[59, 82]). To perform the numerical approximation of the continuous problem we propose an
Euler-implicit scheme for the ODE, combined with a finite element method for the approxima-
tion of the involved distributed operator. Some convergence results are obtained for this nu-
merical scheme. However, for the numerical implementation, we use the alternative approach
proposed in [16] which consists in eliminating the unknown currents from the system by means
of the circuit equations. This idea is also exploited in the theoretical analysis of the eddy current
model performed in [80]. As a consequence, we need to prove an equivalence result between
the implemented scheme and the discrete problem theoretically analysed.

The chapter is organized as follows. In Section 3.2 we obtain the weak formulation associated
to Problem I1.2, with N; = 0, and express the problem as a system of implicit ODE; moreover,
we perform its mathematical analysis in the continuous case. In Section 3.3 we introduce the
finite element discretization of the magnetostatics problem involved in the definition of the ODE
operator. In Section 3.4 we propose an implicit Euler scheme for the discretization of the system
of ODE and prove an error estimate for its solution. In Section 3.5 we prove the equivalence
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between the analysed problem and the implemented one. Finally, in Section 3.6, we show some
numerical examples to illustrate the obtained convergence results.

3.2 Mathematical Analysis of the Continuous Problem

As we have mentioned in the introduction, in this chapter we are going to study Problem 11.2,
from the point of view of the mathematical and numerical analysis, in the case in which the
source data in conductors are given in terms of the potential drops per unit length. Therefore, in
this section, we will have N; = 0 and N. = Ny, and thus Problem II.2 reduces to:

Problem 3.1. Given C(t)" € C([0, T]))e, Iy € RN and B" € L2 (Q,)°, find A(t) € HA()
forevery t € [0,T) and I(t) € C*([0, T))Ne satisfying I(0) = I,

—div(rygrad A) =0 in Qo, (3.1)
: @)

— A Q =1,...,N 2
le(VO grad ) meas(Qn) niin, N ) y 4Vey (3 )
— div(vpm grad A) = — div (vpm (BY))  in Qpu, (3.3)
—div(v(|grad A|) grad A) =0 in Qy, (3.4)

. o v (BY) T n, T C O,
[v(-;|grad A|) grad A - n], = { 0 otherwise, (3.5)
A=0 onodf, (3.6)

and, for every t € (0,T),
d

%/Q cA(z,y,t) + I,{) = —C,(t)omeas(Qy), n=1,...,N.. (3.7)

3.2.1 Weak Formulation for the Transient Magnetic Problem

Firstly, we will obtain the weak formulation corresponding to (3.1)—(3.6). To this aim, we mul-
tiply (3.1)—(3.4) by a sufficiently smooth test function W such that W = 0 on 0f2, obtaining,
after suitable integrations,

. / div(vpgrad A)W = 0, (3.8)
Qo

_/Q div(yogradA)W:/ L(t)

—_— =1,...,N, 3.
Qn meaS(Qn)V[/, n Y ’ (&3] ( 9)

- / div(vpmgrad )W = — [ div (v (B7)) W, (3.10)
me

Q pm

—/ div(7(|grad A|)grad A)W = 0. (3.11)
in
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Using integration by parts on the left-hand sides of (3.8)—(3.11) we obtain
- / div(v(x; |grad A|)grad A)W = / v(x; |grad A|)grad A - grad W
u u
- / v(x; |grad A|)grad A - n W,
ou

with ¢ the subdomains of €2, that is, 2y, {2, {2, and €2,,;. On the other hand, concerning the
right-hand side of (3.10),

[ a mB“W:/ (Bt grad W — (B nw
o v (Vp (B") ) meyp (B")” - gra . Vpm (B")" -

Thus, summing up equations (3.8)-(3.11) and taking the interface and boundary conditions into
account,

/QV(CE; lgrad A(zx,t)|)grad A(x, t) - grad W (x)

— nZ:l /n EI;S((%—”)W(:I:) + /me Vom () (BT’)L () - grad W(x).

Then, the variational formulation associated to the eddy currents problem in terms of the z—com-
ponent of the magnetic vector potential is:

Problem 3.2. Given C(t)" € C([0, T))e, Iy € RN and B" € L2 (Qp)°, find A(t) € HA()
for every t € [0,T) and I(t) € CO*([0, T])Ne satisfying 1(0) = I,

/Qu(az; lgrad A(x, t)|)grad Az, t) - grad W (x)
[ W) [ @) (B () grad W (),
Jor every W € H{(Q) and t € [0,T), and
d

pr cA(t) + I,(t) = —C,(t)o meas(,), mn=1,...,N. in(0,T].
Qn

In the next section, we will write Problem 3.2 as a nonlinear implicit system of ordinary differ-
ential equations in order to prove that it is well-posed.

3.2.2 Transient Magnetic Problem as a System of ODE

Let F : RYe —s R be the nonlinear operator defined as

]?([j) = (/QIJA,...,/QNCUA>T€RNC>

with A the solution of the nonlinear magnetostatic problem:
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Problem 3.3. Given I € RNe and B" € L2 (Q,,)°, find A € H)(2) such that
/ v(z;|grad A(xz)|) grad A(x) - grad W (x)
Q

3 V@ [ @) (B () grad W(a),

pm

for every W € H ().

Let us notice that the integrals characterising the components of F are related to the so-called
flux linkages per unit length since the latter are defined, for conductor €2,,,n =1,..., N,, as

1
- A.
o meas(£,) /n 7

Theorem 3.4. Problem 3.3 has a unique solution.

Proof. The proof of this theorem follows directly from the results presented in [59, 82].

Indeed, let b : H{(Q2) x HA(Q) — R be the function given by

p(A,W) = /Q v(-;|grad A|) grad A - grad WV,
with the associated operator P : H} (Q) — H~'(Q) defined by

(P(A), W) = /Qu(-; lgrad A|) grad A - grad W

for every W € H}(€). Under conditions (II.1)—(IL.3), operator P is strongly monotone and
Lipschitz continuous, with constants o = a5 and M = 30, respectively (see [82]).

Concerning the right-hand side, since functions (,,/ meas(£2,,)) xq, belong to L?(Q2) for n =
1,..., N, (xx being the indicator function of set K), and B" € L? (me)g, then the operator
associated to the right-hand side is in H1(). O

From this theorem, we deduce that operator F is well defined, and therefore we can rewrite
Problem 3.2 as

Problem 3.5. Given C(t) € C([0, 7)) and I, € R, find I(t) € C*([0,T))N such that
1(0) = Iy and

C‘;tf (T(1)) + I(t) = = (Ca(t)o meas(S), . .., Cy, (t)o meas(Qw,))T  in (0, .

Remark 3.6. We notice that, due to the definition of operator f, it is obvious that Problems 3.2
and 3.5 are equivalent.
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Theorem 3.7. Operator Fis strongly monotone and globally Lipschitz continuous in R with
respective constants Csyy and C', to be defined below.

Proof. Let I',I? € RMe be given and A, A, € H{(€2) be the associated solutions to Prob-
lem 3.3, respectively. Then, F,, (ﬁ) = fq, 0Ajforj=1,2andn=1,...,N..

Let us consider the inner product in R™e defined as follows

Ne 172
RlaR?=y tola
“= omeas(,)

with || - || the associated norm.

First, we will prove that Fis strongly monotone:

(P(A1) = P(As), Ay = Ag) = (P(A1), Ay — Ag) — (P(A2), Ay — Ay)
= / ;|grad A1|)grad Ap-grad (A;—Ag)— / v(x; |grad As|)grad Ay-grad (A; — Ay)
Q
Nc I = |2

B Z/Q meas(2 A —A2) = nz::l Un:eas(g;n) /Qn (A= As)
=(I=P)=(Z (1) -7 (7).

Since P is strongly monotone with constant «,

of|[ A1 = As|[fu ) < (P(Ar) = P(Ag), A1 = Ay) = (I = I?) % (F (I') - F (7)),
(3.12)

and then, in particular, Fis strictly monotone, that is,

(F(1") = F(12) (I = 1?) >0 WD P2 e R ' £ 72

Now, taking TV € H} () such that

/Q oW=I'~1n=1..N, ad [ Wlho<C|'-17 (13

for some C' > 0 independent of I'*, 2, we get

(P(A1) = P(A2), W) = (P(A1), W) — (P(A2), W)
= / v(x;|grad A,|)grad A, - grad W — / v(x;|grad Ay|)grad A, - grad W
Q Q

w—mgﬁzﬁ* w1t 1
N Z /Q,L meas( N Z () /Qn o= H B

<1 0 meas *
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Thus, taking into account that P is Lipschitz continuous,

S =o)2
HIl _ [2H* = (P(A1) — P(A2), W) < ||P(A1) — P(A2)||m-1 0| [W|[11.(0)
< M| A1 — As|li oWy < MO Ay — As|awey [T — 12

*

Let us define Clsy := a/M>C?. Replacing in (3.12) we get
= 112 = N R S o
Cou [T = 2| < allAr = As|ffuq) < (I = 12) + (F (') = F (1?)),
and then F is a strongly monotone operator globally in RVe.

We notice that we can take W € H}(Q) verifying (3.13). Indeed, let Q=0 \ Q, ¢, =
(I' —1%)/ meas(Q,),n = 1,..., Nsand g, € H/2(0Q,,) with g, (x) = ¢, for every x € 99,

n=1,...,N.. Then,
/a%zg—@
Q

Moreover, let us consider the following Dirichlet problem:

Given g, € HY2(9Q,,),n = 1,..., N,, find W € H}(Q) such that
—AW =0 in,
Wzgn ondQ,, n=1,...,N..
This problem is well-defined and

LRl NG
HL(9)

)
*

with C independent of I, I2. We can define IV € H}(€2) by

o w in Q,
W'_{cn inQ,n=1,...,N,.

Now, we will show that Fis Lipschitz continuous. Indeed,

= (% (7 (1) = 7 (f2))2)1/2

IF () - #()

o meas(£,)
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Since

2
(/ O'(Al — AQ)) S O'2HA1 — AQH%l(Qn) S 0'2 meas(Qn)HAl — AQH%Q(Qn)z

< 0% meas(2,)||A; — A2||%1(Qn)

then, foreveryn =1,..., N,

*:H(/ﬂla(Al—Ag),...,/chU(Al—AQ)>T

N, 1/2
S (Z U||A1 — A2||12{1(Qn)> S Ol||A1 — A2||H1(Q)

n=1

|7 (1) -7 ()

*

Finally, since

S|+

A1 = Aoy < = (I = 1?) « (F (') = F (I?))
( (

<Lr-r sl
e o

[T =2 1141 = Al o,

*

we conclude that
|7 () - 7 (2] = Gl T = P2,

with C}, := C2/«, and therefore F is Lipschitz continuous globally in R™e. ]

From the last theorem, applying a result by E. H. Zarantonello (see [114], Theorem 25.B), we
deduce that

Corollary 3.8. F is invertible and its inverse F 1 is Lipschitz continuous with Lipschitz con-
stant equal to 1/Cgypy.

This result allows us to rewrite Problem 3.5 in the following way:

Problem 3.9. Given C(t) € C([0,T]) and I € R, find I(t) € COL([0,T))N such that
1(0) = Iy and

CZE(t) +F (L) = = (Ci(H)omeas(), ..., O, (t)omeas(Q, )T in (0,7,

with L(t) = F (f(t))for everyt € [0,T].

Remark 3.10. Problems 3.5 and 3.9 can be defined with lower regularity assumptions on the
source data C(t). For instance, if C'(t) is Lebesgue-measurable in [0, T] and ‘6 (t)‘ is bounded
by a Lebesgue integrable function, both problems have a unique absolutely continuous solution,
I(t) € AC([0,T))™, fulfilling the differential equation almost everywhere in [0,T). Further-
more, most of the results presented in this paper can also be proved under these assumptions.
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Theorem 3.11. Problem 3.5 has a unique solution I(t) € C*([0, T])Ne such that

Hf(t>H HIOH + CZM (H]oH +U max {meas HC’ Lo OT)) el/Csm

77777

Sorevery t € [0,T].

Proof. Since Flis globally Lipschitz continuous in R"¢, from Theorem 2.15 in [12] we con-
clude that Problem 3.9 has a unique solution I = F ! (L), with L € C([0, T])™e. Therefore,
Problem 3.5 has a unique solution I € C%([0, T)Ne

Moreover, integrating the equation appearing in Problem 3.9 in (0, t),

£ - L0)=- | (F 1 (E()) + (Ca(s)ormeas(R), .., O, (s)o meas(,))7) ds

for every t € [0, 7. Thus,

|20~ Zo)] < [ |77 (F6) | s

Lcortbigd @

§/0tH]?_1 E(S) _ F! (E )H ds-i—T(a max, {meas(2 HC

.....

o * 1)
L2(0,T) + HI_E)‘D '

Then, taking Gronwall’s inequality into account (see, for instance, [85], Lemma 1.4.1),

fH eT/CS]VI.
12(0,T) T H 0

</ —HL H ds+T<0 max {meas HC’

,,,,,

HE(t) — E(O)H <T (a max. {meas }HC’

.....

0 - 5] < [ £ - |7 (E0) - 2 ()] < o o - o)
T ~ T T/Csm
< — (o max {meas Q.)} HC’ o HIOH) eT/Csm

]

.....

The next theorem shows that the solution of the weak problem is also the solution of the strong
one.

Theorem 3.12. Let A(t) € H(Q) and I(t) € RNe, t € [0, T, be the solution to Problem 3.2.
Let B := curl(Ae,) and

[T Vpom(B — B") in Qpm,
' v(-,|B|)B otherwise.
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The following equations hold true:

CurlH:I"i(t)ez inQ, x[0,T),n=1,..., N, (3.14)
meas(£2,)

curlH =0 in (U Qpm UQy) x [0,7], (3.15)

divB =0 inQx[0,T], (3.16)

B-n=0 ondQx|[0,T]. (3.17)

Proof. Conditions (3.16) and (3.17) follow from the definition of B and the fact that €2 is simply
connected.

Taking W € D(Q) C HL(Q) forany ¢ € [0, 7],

/QV(-; lgrad A(t)|) grad A(t) - grad W
—/ ;| curl(A(t)e,)|) curl(A(t)e.) - curl(We,)

Ln(t) .
~ Ja, meas(€,,) W+/ Vo (B)7 grad IV
Ln(t)

A5 ol [ vonB - curl(We.).
Q, meas(§2,) i Qpm P curl(Ve:)

Therefore, from the definition of H:

/QH -curl(We,) :/ 10

«,, meas(€2,)

for every t € [0,T]. Then, since (I,,(t)/ meas(2,))xq, € L*(Q),n =1,...,N. t € [0,T],
H € H(curl,Q),and (3.14), (3.15) hold in L*(Q,,)*, n = 1,..., N, and L?(Qo U Qp, Uy )3,
respectively, for every t € [0, T. O

3.3 Discretization of the ODE Operator

In this section we define an operator F;, that will be constructed as an approximation of the ODE
operator F. This new operator F;, will be used in the next sections to introduce a numerical
scheme.

To this end, in the sequel we will assume that €2 along with all its subdomains €2, €2, 2,
and €),,, are Lipschitz polygons and consider regular triangular meshes 7}, of ) such that each
element 7' € T, is contained in the closure of one of its subdomains (h stands, as usual, for the
corresponding mesh-size). Therefore, 7, (U) = {T cT,: TcUu } are meshes of I/, for any
U subdomain of (2.
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Moreover, let £,(£2) be the space of standard piecewise linear finite elements on 7j,:
La(Q) = {¢n € HY(Q) : tnlp € P(T) VT € Ti},
and L9 (Q) the subespace

£0(9) = {Un € La() : talyg = 0}

Let us define the nonlinear operator Fy, : R¥e —s RNe given by

ﬁh(f)::</ﬂlm4h,...,/9 aAh>T€RNC,

with Ay, being the solution of the discrete nonlinear magnetostatic problem:

Problem 3.13. Given I € RN and B" € 1.2 (Q,,,)°, find Ay € L9(Q) such that
/ v(xz; |grad A;|) grad A4, - grad W,
Q

— Z/ meas(® Wh—i—/ Vpm BT) -grad Wy,

p m

for every W, € L(Q).

Remark 3.14. Since L3 (Q) C H}(R2) for every h > 0, Problem 3.13 has a unique solution and
then operator Fo is well- defined in RNe.

Theorem 3.15. Operator Fi is strongly monotone and Lipschitz continuous globally in RN
and uniformly for h > 0. Then, Fy, is invertible and its inverse F, ' is Lipschitz continuous
globally in RN< for every h > 0, with Lipschitz constant independent of h.

Proof. Let I', 12 € R be given and AL, A2 € £9() be the associated solutions to Prob-
lem 3.13, respectively. Then, F, , (f]) = Jo, oA} forj=12andn = 1,..., N. In order to

prove the desired properties of F», the same steps as in Theorem 3.7 can be followed, replacing
fields Ay, Ay € H{(Q) with A}, A2 € L) (). Moreover, it can be shown that we can take
W, € L9(Q) such that

Y
*

/ O'Wh:ITll—IZ,n:L...,NC, and HWhHHl(Q)S CHfl—[_?

n

IQ)/meas(Q ), n =

with C' > 0 independent of h. Indeed, let Q := Q\ Q., ¢, := (I} —
=1,...,N,.. Then,

1,...,N. and g, € HY2(0%,), gu(x) = c, for every € 0Q,, n

_ 7l 2
/Qnacn—ln—ln.

Furthermore, let us consider the following weak problem:
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Given g, € Hl/E@Qn), n=1,...,N, find W, € Eh(ﬁ) such that Wh]agn = Gn,
n = 17"'7N0’Wh|89 = (0 and

/N grad W - gradV}, =0
Q

for every Vj, € L)(9).

This problem is well-defined and

)
*

HWhHm(ﬁ) =C Hfl -1

with C independent of I'*, 72 and h > 0. We can define W, € £9() by

L Wh il’lﬁ7
Wh'_{cn mQ,, n=1,...,N,.

By applying Zarantonello’s theorem cited above, we deduce from last theorem that Fy, is in-
vertible and that its inverse F, * is Lipschitz continuous with Lipschitz constant independent of
h > 0. O

Then, we can define the semidiscrete versions of Problems 3.5 and 3.9 in the following way:

Problem 3.16. Given C(t) € C([0,T))" and Iy € R™", find I,(t) € C% ([0, T])N* such that
Ih(O) = Io and
d

%ﬁh (In(®)) + I(t) = — (Ci(t)o meas(Q); .. ., Cy. (t)o meas(Qy, )" in (0, 7).

Problem 3.17. Given C(t) € C([0,T])N and Iy € R™", find I,(t) € C*'([0, T])N such that
I,(0) = Iy and

jtl_:h(t) + F! (Eh(t)> — — (Cy(t)o meas(), ..., Cn,(t)o meas(Qy, )" in (0,T),

with Ly, (t) = Fy (fh(t))for everyt € [0,T].

Theorem 3.18. Let A(t) € HY(Q) and An(t) € LY(Q) be the solutions to Problems 3.3 and
3.13, respectively, with data I(t). If I and I}, are the solutions to Problems 3.5 and 3.16, then,

I

<C <||A - Ah||L2(0,T;L2(Ug§19n)) + T'||A(0) — Ah(0)||L2(Ugilﬂn>> . (3.18)

L2(0,T)

Proof. Subtracting Problems 3.5 and 3.16 we obtain

& (F (1) = ) + (I~ Ln) =0,

l

(£(0) = u(0)) = 0.
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Now, integrating in time in (0, t)

t

(F (1) = 7o (50)) + | (18) = 1)) ds = F () = Fa (L)

-

for t € (0,7, and multiplying by (I (t) — fh(t)), we deduce

(F(I) = Fa (Lu(w)) , 1(1) = Tu(e)) + </Ot (T(s) = Ti(s) ds, T0) ~ Tu(1))

for every t € [0, T]. We notice that the second term in the left-hand side of (3.19) satisfies

- = 1d o 2

([ (1) = ) ds. T~ 1)) = 55| [ (7ts) = Tats) as]

Hence, if we add and subtract the term ), (f (t)) in the first term of the left-hand side of (3.19),
we get

/Ot (ﬁ(s) — fh(s)> ds
= (7 ([0) = £.({) . [ = T)
. !

1d
2dt

for every t € [0, 7.

Integrating (3.20) in [0, 77,

Moreover, since F is a strongly monotone operator globally in R™e (and uniformly in [0, 77),

C/OT |Tt) - IZ(t)H? dt < /OT (Fu (1) = Fu (In(1)) , I(£) = Lu(t)) dt
o <€ [ (B (1) - 7 (L) To) ~ L) .

- |-
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Thus, from (3.21) we get

7= 5}, = © [ [(F (T0) = 7 (T00)  Fie) = Te))] a
e [T [(F (8) - 7 (). 10 - L) a
<o [ (i) - 7 (fw)] |70 - 7o) &
co [ 17 ) -7 ()] i - o]
<7 El gy (1)~ 5 Py + T (B) - A ()] @2

Then, taking into account the definitions of F and fh, we have
|7 (1) = 7 ()| < € 1AW®) = 4O a0 0, (3.23)

with C' > 0 independent of / > 0, and finally,

17~ B, = © (14 = Ao, ngh = TIAO) = 5O )

O

Remark 3.19. We notice that the error estimate obtained in Theorem 3.18 means that the con-
vergence order of the solution to Problem 3.16 towards to the one of Problem 3.5 in 1*(0,T)
is going to be determined by the spatial error made when approximating Problem 3.3 by Prob-
lem 3.13 in the 1.2 (Uﬁ;lQn)-norm. In Section 3.6, we will see that the numerical results seem
to suggest that the optimal convergence order is O(h*). However, to the authors’ knowledge,
this can only be theoretically obtained under quite strong regularity assumptions (see [1, 111]).
Therefore, we have chosen to work with a more reasonable set of hypotheses, leading to a sub-
In particular, we will bound the expressions in (3.23)

optimal error estimate for HI — I 201y

with the H* (Uf:/;lQO -norm of the difference between the continuous and the discrete magnetic
vector potentials.

Consequently, we are going to give a set of sufficient conditions that will allow us to express
the error estimate in terms of the problem data.

Assumptions 3.20. Let A(t) € H{(Q) and Ay (t) € LY (Q) be the solutions to Problems 3.3 and
3.13, respectively, with data I(t). Let us assume

(HI) the boundaries of Q,, n =1,..., N,, are piecewise of class C?,
(H2) the interfaces between all subdomains of ) are Lipschitz-continuous,
(H3) there exists ¢ € (0, 1] such that A(t)|q, € H*(Q,), n=1,...,N,, and
[A®) im0 < C ([ T@)]| + 1B I2@pm?) -
where C' > 0 depends only on 2,, n =1,... N,
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Corollary 3.21. Under Assumptions (HI) to (H3), if I and I, are the solutions to Problems 3.5
and 3.16, then,

-

< Ch* (HB'“HLQ(QW)g +|%] +||¢ (3.24)

L2(0,7) — LQ(O,T)) ’

with C' > 0 independent of h.

Proof. Notice that, under conditions (H/)—(H3), following [59] and [115], we have
1A(E) = An(®)[lnr . < CA[A®)|[11+(0,),

n=1,...,N, with A(t) € H}(Q) and A,(t) € L)(Q) being the solutions to Problems 3.3

—

and 3.13, with data (t), respectively, and C' a constant independent of h. Therefore, taking into
account Theorem 3.11, we have the following approximation result:

I|A(t) — Ah(t)Ile(UTILV;IQn) < C||A(t) = Ah@)“ﬁl(uf;%)

< OB ([ 1) + 1Bl ,pe) < ChE (Hfo

+ 1B |2y + |C

L2(0,T)> ’

pm

with C' > 0 independent of & > 0. Thus, using Theorem 3.18, we conclude

I

w o+ [+ |

Qpm

< OK <||B"||L2(

L2(0,7) — LQ(O,T)) '

3.4 Numerical Analysis of a Fully Discrete Problem

In this section we propose a numerical scheme to approximate the solution to Problem 3.5.

Let us consider a uniform partition {t,, := mAt,m =0, ..., M} of [0, T] with step size At :=
T/M. Then, the fully-discrete version of Problem 3.5 reads as follows:

Problem 3.22. Given C(t) € C([0, )" and Iy € R™-, find I; € RNe, m = 0, ..., M, such
that I = Iy and

(i) s a0t - 7 ()
— At (Cy(tm)omeas(§2y), ..., Oy (tym)omeas(Qy,)) ", m =1,..., M, (3.25)

being Fy, the nonlinear operator defined in Section 3.3.
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3.4.1 Well-Posedness of the Fully Discrete Problem

In order to prove the following theorem we will make use again of Zarantonello’s theorem.

Theorem 3.23. Problem 3.22 has a unique solution.

Proof. Let us define the nonlinear operators Jh Ap RNe — RNe,
Grat (K) = Fu (K) + ALK, h At >0,

Since F, is strongly monotone and Lipschitz continuous globally in R with constants C'gy,
and (', respectively, we deduce that QH;% At are strongly monotone and Lipschitz continuous
globally in R™e with constants (Csy; + At) and (C, + At), respectively. Therefore, proceeding
by induction over m, and using again the theorem by Zarantonello cited in Section 3.2, we
conclude the proof. [

3.4.2 Error Estimate

For any function f € C([0,T])™e, let us define fAt the piecewise constant approximation of f

f (0) fort =0,
fAt Y

ftm) fort € (tm—1,tm], m =1,..., M.
Remark 3.24. If f € C%'([0, T)) with Lipschitz constant L then

2

— — M tm =~ 2
|7 = Pt oo -2 /tm (1) = Flt)|| dt
< f: " L2(t—t )2dt=L2~§: [(t_tm)Tm
_m:1 tm—1 ! " fm:l 3 tr—1
Lr ok o BT 0y

We have the following result:

Theorem 3.25. Under Assumptions (HI) to (H3), if C(t) € C*1([0, T))N< then the solutions to
Problems 3.5 and 3.22, I and { ;" }M_, respectively, satisfy

1/2

(> ae o) - )

<0 (at (Lr+ Lo + 1 (5] + 1B a0 + |1,

o T))) . (3.26)

with Ly and L the Lipschitz constants of mappings Tand C, respectively, and C' > ( is inde-
pendent of At.
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Proof. Let us denote § : [0, 7] — R™e, the mapping
G(t) := — (Cy(t)omeas(Qy), ..., C. (t)o meas(Qy, )"

Firstly, integrating the equation appearing in Problem 3.5 between 0 and ¢, we obtain
RN RN ty ty
F(It) - F (L) + / T(t)dt = / g(t) dt. (3.27)
0 0
On the other hand, summing up equations (3.25) form =1,... k,
. . k . . . k . . e
Fu(LF) + At 3 L = Fo (o) + At Y Gltm) = Fi (1) + /0 ga(t)dt.  (3.28)
m=1 m=1

Subtracting equations (3.27) and (3.28) and adding and subtracting the term [ * I A¢(t) dt,

# (Tl) - 54 (1) + 80 - (Tle) - )

= E (1) - 7 (B) + Ot"fm dt+/tk ) — Gadt) dt.

- — — —

Multiplying the above expression by ( (ty) — 1 }f“) and adding and subtracting the term F, ( (tk)>
we get

k
(Fo (T1t)) = Fo (IF) , T() =) + O <Z Tty) = T (1) — fhk>
— — (7 (T1w)) - Fa (T)) T = T8) + (F (&) = 71 (8) . Fow) - )
+ </Otk Ina(t) = I(t) dt, I(tx) — fhk> n </0tk G(t) — gai(t) dt, I(ty,) — f}fc>

Now, taking the strong monotonicity of F ; into account, we have
Conr |[I(te) — || + At <Z I(tm) — I I(ty) — f,f>

< = (F (1t) = A (I(tw)  Tte) = 1)+ (F (o) = Fu (Do) (1) = i)
([ Tst) = Ty Tw) = 1)+ ([ 300) = Gty Te) ~ I )

Multiplying the above expression by At and summing up for k = 1,..., ¢, we get
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forevery ¢ =1,..., M.

Now, we are going to discuss every term in (3.29) separately. Firstly, concerning the second
term on the left-hand side, taking into account that 2(u, u — v) = ||u||? + ||u — v||* — ||v||* and
writing

. (3.30)

On the other hand, concerning the first term on the right-hand side of (3.29), and using Young’s
inequality foreach k£ =1, ..., ¢, we obtain

Z_:<J? (I(te)) = Fo (I(tx)) , I(ta) = L)

—

si INEYEIS

)< ()] 3 o - |7 - 7

)

for every £; > 0. Following the same argument as in Section 3.3, from Assumptions (H1) to
(H3) we conclude that

At z (F (I(t) = F (T(t))  I(1) — IF)
< Ch*eAt (HIOH B2 0mys + 11I520.7) )
. Z A [[Ttw) ~ T
< oner (H[OH B Ragye + 13 o)

+ 2?1 k;m |7 — 2. 330
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Similarly, for the second term on the right-hand side of (3.29) we have

A0S (F () - B (1) Fes) — 1)
- (7 ()~ (B) o0 X (o - 7))
Ll s S (- 1)

2

() — I¥)| . (3.32)

< 2 (| 18 ) + 3032

Moreover, regarding the third term on the right-hand side of (3.29), writing again

Faw) I = S (M) <17 < 32 (Tt) — 1)

and using summation by parts, we obtain

—

At ST [ Fut) ~ T at. T) = )
< /O” Int) — I(t) dt, At i (1) —f,f)>

k=1

m=1

=1/ teer L k -
_ Z</t Ln(t) = I(t) dt, At Y (I(tn, fhm)> (3.33)
k=1 \7tk
Using Young’s inequality in the first term of (3.33), we deduce

</Otefm() thtZ( (1) —f)>

2
& 1 fao) - T L ae s (7 - 7
<5 /0 Ta(t) (t)dt +2&_3 Atkz::l( (ts) Ih)|
est 2 ¢ ?
3 || 7 7 —’ "
< 7 HIN -1 L2(0,t£) 253 Z:: ([ tk )
2

2
L2(0, T)

AtZ( ~Iy)

83T ’

‘IAt
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for every €3 > 0. Concerning the second term in (3.33), we have

-1

z</:“f<> 0 thtZ( _f,;n)>

k=1

1 -t o

k

D BUCHER

At

L2(tgtps1)

-2 — 1
At —
L2(tg k1) o k;l 201

k=1 2 m=1
51 = 2 /-1 1 k B . 2
e L - kz::l o m;( (tw) — M) || (334

for every 31 > 0.

Finally, we can bound analogously the fourth term on the right-hand side of (3.29), obtaining

f: </tk G(t) — Gae(t) dt, I(ty) — fhk>

eI + Ik
< <4262> g = gAtHL2 (0,T) + HAt Z ( )

2

2

k
+ At Z 262 Z (I(tm) — I7)|| » (339)

for every 4, 53 > 0.

Using (3.30)—(3.35) in (3.29) we conclude

P 2
Conr Y At | I(t) = I} H + = HAt 2( —IF)
k=1
esT + [ 2 el +ag
< =g =T % 15— GadllPzqor)

2

+<21€2+21 284)‘&2( Iy)

g 2 80 ) = o (LT (4 15 )

k 2

At Y (Ltn) = 1)

m=1

Coe T 1 =l
0e C2g1d | 12
+ 0= 2o, + At <5+2@2>Z

k=1

Y
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for every 1,69, 63,64, 01,82 > 0and ¢ =1, ..., M, and then,

1 EA - sz
(CSM—%)’; tH[(tk)— hH

2

2 2
LQ(O’T) 9 g — 9At||L2(0,T)

N (C@Z%> (1] +12180,.)

1 1 /-1
7 + At ( + )
19120,y 261 2B kgl

Thus, taking €1 > 1/2Csp > 0,69 =3 =4 = 31/((1 — Cspr)er +1) > 0and 51 = [y =
261/(2051\461 — 1) > 0,

koo 2

A UCHES Y

m=1

CQSlT

+ h*

2

<C (HIN

4

mem—gmw 'Y 16 -

2 - o2
L2(0,7) + 15— gAtHL2(0,T))

-1 2

+ O (B4 1B o + 18]y ) + 803 | &

=1

k -

D UCEN

m=1

Now, using the discrete Gronwall inequality (see Lemma 1.4.2 in [85]), we conclude

2

M . B M -
> o [7ta) - 7" < 3 s &Wﬂmz( 1)

<C ()]At

12(0.7) + 11§ — §At||L2(o,T)

2 (|G + 187 e + 15 20m ) )

3.5 An Equivalence Result between Two Fully Discrete Schemes

In the last section we have analysed the numerical convergence for Problem 3.22. However,
following [16], we have implemented a different numerical scheme for the same problem. In
this section, we will prove the equivalence between the two discretizations.

Thus, let us consider the following discrete problem, which is the one used for the implementa-
tion:
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Problem 3.26. Given C(t) € C([0,T])™, Iy € RN and B" € 12 (Qp,)°, find A7 € L£I(Q),
m=1,..., M, such that

I
meas(€,)

(o) oy W 3 o

+/ Vpm B”) -grad W,
Qpm

/Q (+;|grad A}'|) grad A} - grad W), + — Z/ (/ aAhm) Wi,

1 Nc

Jor every Wy, € L(Q), with AS € L9(Q) the solution to the weak formulation

/ v(-;|grad A}|) grad A} - grad W,
Q

Lo
= Z/ S Wh+/ Vom (BT)* - grad W,
Qp meaS

Sor every W, € L)(Q).

Theorem 3.27. Let _fhm € RN, m = 0,..., M, be the solution to Problem 3.22 and AP €
LY), m = 1,..., M, defined as the solution to Problem 3.13. Then, A" € L9(Q), m =
1,..., M, are a solution to Problem 3.26.

Proof. Since Problem 3.13 has a unique solution, we deduce that
Fon (I :/ AT 1 AN, <A W
h7 ( h ) 0 g h n m
Furthermore, since fhm, m =0,..., M, is the solution to Problem 3.22,
1 .
+ —Fhn (I,:n_l) — Cy(ty,)o meas(€2,,)

At
—Alt /Q gAT 4 é /Q G AT O (1) meas()

forn=1,...,N.,m=1,..., M. Replacing these expressions in Problem 3.13 we conclude

I =~ P (I17)

. - 1 Nc " 1
/Q”(ﬁ!gradAh!)gradA grad Wi+ 7 /n (/naA >meaS(Q)Wh

- & NC/ﬂ(/naAm 1)meas( Wh_z/ 7Cn

+/ Vpm Br) -grad W,

p m

for every W, € L£9(Q), with A9 € £9(Q) the solution to

/ v(-; |grad A}|) grad A) - grad W),
0

Je IOn
Z</Q h +/ me T : gradW}“

n—1 meas

for every Wj, € L9(Q). Thus, A" € L9(Q), m - M, are a solution to Problem 3.26. [
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Theorem 3.28. Let AT € L(Q2), m = 1,..., M, be a solution to Problem 3.26. Let us define
IV :=Ilyand ;" € RN, m =1,..., M, such that

m . i m i m—1 _
I == /Q AT+ /Q oAl Oty omeas(Q), n=1,....N.. (3.36)

Then, _fhm, m =0,..., M, are the solution to Problem 3.22.

Proof. Let fl’,f € L), m = 0,..., M, be the solution to Problem 3.13 with the currents
defined in (3.36). In particular, A = A?. Furthermore, taking the definitions of I;”, m =
0,..., M, into account, fields Ezl € L)), m = 1,..., M, are also the solutions to the fol-
lowing problems:

Am Am 1 ik m 1

/QV (’, grad Ah D grad Ah -grad W), + E n;l/n (/Qn UAh) meas(Qn) Wi,
1 X . 1 e
At ;::1/” </Q 74 ) meas(Qn)Wh nzzl Qn 0 Cn () W'

+/ Vpm (B7)" - grad W,

P

for every W), € L9(Q). By subtracting to the above equalities those in Problem 3.26, we deduce

INge

for every W, € L9(Q), m = 1,..., M. Since L (2) C H}(©2), we can rewrite the last equality
in the following way:

grad ﬁ,VZ”D grad A7 — v(-;|grad A"|) grad A;”) -grad W, =0

(P (A) = P(AT), W) = 0

forevery W), € £L9(Q),m = 1,..., M. In particular, taking 1), = A" — A", and since operator
‘P is strongly monotone, we obtain

0= (P (A7) = P(A), Ay — Ay) > M || Ay — Ay|

2
HI(Q)

and therefore fl? = A form = 1,..., M. Finally, taking the definition of F» into account,
we have,

Fhon (],Z”) :/Qnaflhm:/ﬂna/lhm, n=1...,N,m=1,.... M,
and then
Fi (L") + AL = Fiy (1Y) = (Ca(tm)o meas(), . .., Ci, (tm)o meas(Qw,)) ",
m=1,..., M. Hence fhm are the solution to Problem 3.22. O
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Remark 3.29. In Theorems 3.27 and 3.28, we have seen that given a solution to Problem 3.26
we can compute the corresponding solution to Problem 3.22, and vice versa. Moreover, from
the proof of the last theorem it can be deduced that Problem 3.26 has a unique solution. Indeed,
given two solutions A" AT € £9(Q), m = 1,..., M, to Problem 3.26, let ;™" [["™* € RN,
m = 0,..., M, be the corresponding solutions to Problem 3.22, built as indicated in Theo-
rem 3.28. Moreover, let AT A7 € £9(Q), m = 1,..., M, be the solutions to Problem 3.13
corresponding to these currents. In the above proof, we have seen that Azﬂ = Ahm’l and
A™2 — A™2 Therefore, since Problem 3.22 is well-posed, I™" = I'™* m = 1,..., M.
Consequently, A7 = A% and thus A} = A7 m =1,..., M.

3.6 Numerical Results

In this section we report some numerical results obtained from a Fortran code that solves Prob-
lem 3.26. At each time step, the nonlinearity is solved by means of the fixed-point algorithm
proposed in [16]. Since we have proved in the previous section that Problem 3.26 is equiv-
alent to the original one, this code will allow us to confirm the convergence result stated in
Theorem 3.25. To this end, we have solved an academic problem built from the analytical test
presented in [30] for a linear case. In our setting, we consider sources given in terms of time-
dependent voltage drops per unit length and replace the linear material with a permanent magnet
and a nonlinear core. Moreover, we have also solved a test inspired in another one appearing in
[33].

3.6.1 Academic Test

In Figure 3.1 we show the problem domain () that includes the cross sections of two coaxial
copper wires, {2; and €),, separated by a permanent magnet, €2,,,,, and a ferromagnetic core, §2,,.
We assume that the core and the magnet are non-conducting, and that the copper domains carry
a uniformly distributed current density, i.e., they are stranded conductors.

Let us consider a cylindrical coordinate system (p, 6, z), with e,, ey and e, the corresponding
local orthonormal basis. We assume that the 2z axis is orthogonal to the domain at point O.
To apply the 2D transient magnetic model analysed in this paper, we suppose that the current
density of the sources is uniform in each of them and orthogonal to the computational domain.
More precisely,

I(t) :
rf{%ez mn (07 Rl) X [07T]7
J=J.(p,t)e, = 0 in (Ry, R3) x [0,T7,
I(t) :
_mez in (R3, Ry) x [0,T7.
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Source
Conductors

l Ferromagnetic
Core Qpm

Permanent
Magnet

Zo
Y

Figure 3.1: Sketch of domain (2.

In this case, if the magnetic constitutive law in the permanent magnet is of the form H =
Vpm B — Vp, B” with a remanent flux B" = B"ey, B" € R, then all fields are independent of
the azimuthal variable and the solution to the magnetostatic problem

curlH =J in(),
divB =0 in{),
B -n=0 onof,

1S

I(t .
SW(RZGQ in (0, Ry) x [0,7],
1

I(t) .

H = Hy(p,t)ey = %60 in (Ry, R3) x [0, 77,
1 (73— p?) :

I(t - Rs, R 0,7].

( ) (27Tp 27T(R421 _ R%)p €9 ln( 39 4) X [ ) ]

In the ferromagnetic core, we will consider the nonlinear constitutive magnetic law given by

(g — 1) po| Hy|
2J '

2Js
By = uoHy + iatan ( (3.37)
m

The positive part of the corresponding nonlinear B H curve is shown in Figure 3.2, for the values
of the parameters used in the numerical simulations. We notice that, from Corollary 2.2 in [82],
it can be seen that the corresponding nonlinear reluctivity function satisfies (II.1)—(I1.3).
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1.5¢

Magnetic induction [T]

0 5000 10000 15000
Magnetic field [A m'l]

Figure 3.2: BH curve of the ferromagnetic core.

Following the same arguments as in [16], and using the notation
(:ur » 1)”0
4J, ©

the expression of the solution to the magnetostatic problem (3.1)—(3.6) can be obtained integrat-
ing (3.37) in space:

- 2Js {Rgatan (7;(75)) — patan (7[@))
m 2 P

A0 ()

I(t) 1 140 R3 Rz (R4>
A(p,t) = — —1 1 B"(R3 — p).
(p:1) 27TV0{ 2+’/pmn<p +RZ_R§D Rs B (B =)
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In (R3, Ry) x [0, 7],
It) [ p*— R} R Ry
Alp,t) = 271 {Q(Ri — R3) * R? — R21 p )

We notice that, in particular, A(Ry,t) = 0 for every ¢ € [0, T]. This property allows us to have
a conductor, €25, that touches the boundary of the whole domain. Indeed, if we had considered a
domain 2, representing the air surrounding the device, the solution A would be identically zero
there.

Finally, thanks to equation (3.7) the potential drops per unit length in €2; and €2, corresponding
to these vector potential and currents can be analytically computed as

Coft) = —— L (% /Q cA(l) + (—1)”[(1&)) =12

o meas(€,)

After some straightforward computations we get

') I'(t) (RZ) <R3> R? <R4)
= — 1 «1 In
A0 =5 " 20 MR T B R F o g,

_IAI(@) N\ VIO + Ry I()
7r v2I(t)? + R? onRY’

I'(t) R3R? (R4> R — R} I(t)
Cs(t) = In — )
2(1) 7(R? — R%)?vy { 2 R3 8 i om(R? — R3)

For the numerical computations, we have used the geometrical data R; = 0.5 m, Ry = 0.75
m, R3 = 1 mand R, = 1.25 m. Moreover, the copper coils electrical conductivity o is equal
to 5.7 x 107 (Ohm m)~! and the magnetic reluctivity of the vacuum, vy = = x 10" H™! m;
the material of the permanent magnet is characterised by v, = 0.951, and the remanent flux
density B" = B"ey by B" = 1.3 T. Moreover, we have considered 1y = %, 1 = 5000 and
Js = 1.75 T in the nonlinear material law of the ferromagnetic core. The considered source in
the coils is the potential drop per unit length obtained for a current /(¢) = 3000 cos(27 ft) A
with a frequency f = 50 Hz (see Figure 3.3). Finally, the initial currents in the conductors are
Iy, = 3000 A and Iy » = —3000 A, respectively. These initial conditions allow us to obtain the

steady state current /(¢) from the beginning of the simulation.

We solve the problem in a source cycle (that is, in the time interval [0, 7] = [0, 0.02] seconds)
with several successively refined meshes and time steps, starting from the mesh shown in Fig-
ure 3.4 and a step size At = %. We have computed the errors by comparing the numerical

solutions with the analytical one given by I(t) = (I (t),—1(t) )T. Specifically, we have com-
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Figure 3.3: Potential drops vs. time in €2; (left) and {2, (right).

Figure 3.4: Coarsest mesh.

-

M
puted the relative error for currents { ,Z”} , in the L2(0, T)-norm, that is,
m=

o o o2\ 1/2
(Zm:1 At ‘I(tm) - I}:”‘ )
Ept =
h 1/2

(st e [Te])

Table 3.1 shows these relative errors at different levels of discretization. We notice that, when we
take a time step small enough, an O(h?) error decay can be observed (see last row in Table 3.1).
On the other hand, considering a mesh size small enough allows us to show the expected con-
vergence order in time O(At) (see highlighted values in the last column in Table 3.1). We notice
that the continuous solution is such that A(t)|o, € H*(Q2,),n = 1,2, forevery ¢t € [0, T)]. Thus,
the corresponding part of the convergence order proved in Theorem 3.25 is O(h), which is less
than the one numerically obtained. The improvement of this order is due to the fact that the norm
used in (3.23)is || - ||;n (UNe Q) while the L2 (UnNngn)-norm could have been used. In the
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h h h h 1
2 4 8 16
At |10.1138] 0.0806  0.0774  0.0772  0.0771
At
5 0.0895  0.0438  0.0390  0.0388  0.0388
At
T 0.0831 0.0279| 0.0199  0.0195 0.0195
At
= 0.0815  0.0222  0.0105  0.0098 0.0098
At
6 0.0812  0.0206 [0.0062| 0.0050 0.0049
At
Eo) 0.0811  0.0201  0.0045  0.0027  0.0025
At
1 0.0811  0.0200  0.0040 [0.0016] 0.0012
At
128 0.0811  0.0200 0.0039  0.0012  0.0006
At
256 0.0811  0.0200  0.0038 ~ 0.0011 |0.0004
At
=15 0.0811 ~ 0.0200  0.0038  0.0011  0.0003

Table 3.1: Relative errors EA°.

L2 (UnNngn) -norm, the magnetostatic problem converges with order O(h?) for this particular
example.

Once the convergence order is checked, we illustrate in one single figure the simultaneous de-
pendence on h and At of the error for current I in the L%(0, T)-norm by choosing initial coarse
values for both discretization step-sizes and, for each successively refined mesh, we take the
value of At proportional to h? (see the framed values in Table 3.1). Figure 3.5 shows a log-log
plot of the corresponding relative errors £~ versus the number of degrees of freedom (d.o.f)).
The slope of the curve shows again the convergence order O(h? + At).

3.6.2 Conductor within a Ferromagnetic Core

We have also solved a more realistic problem having the same geometry as one presented in [33],
considering separately a sinusoidal and a PWM voltage drop, and using nonlinear materials.

Thus, we consider a two-dimensional problem inspired by the one introduced in [33]. In Fig-
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Figure 3.5: £/~ versus d.o.f. (log-log scale); At = Ch?.
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Figure 3.6: Dimensions of the 2D domain cross section (mm).
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2 — H((Am™) B(T)
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Figure 3.7: BH curve of the ferromagnetic core.

ure 3.6, taken from [33], we show the main part of the problem’s domain, composed by a copper
coil and a ferromagnetic core, which is placed inside a bounding rectangular box. In order to
be able to neglect the eddy currents, in opposition to the problem solved in [33], we assume
the core to be non-conducting and the copper domain to be the section of a stranded coil. The
copper coil material has an electrical conductivity o equal to 5.7 x 107 (Ohm m)~! and the
magnetic permeability of the vacuum, 1o = 47 x 10" H m~!; the nonlinear BH curve of the
ferromagnetic core is shown in Figure 3.7.

In the first part of the test, the source in the coil is given by the potential drop per unit length
in the z—direction C'(¢) = 1.4sin(1007¢) V- m~*, the initial current being Iy = 477.45 A. This
initial condition allows us to obtain a current /(¢) very close to the steady-state one from the
beginning of the simulation, and was computed using the methodology described in [16].

We solved the problem in a source cycle (that is, in the time interval [0, 7] = [0, 0.02] seconds)
with several successively refined meshes and time steps. Since this problem does not have an
analytical solution, we computed the errors by comparing the numerical solutions with a refer-
ence one [ (t) obtained using a very fine discretization step both in space and time. Specifically,
we computed the relative error for the current {I;"}2_ in the L?(0, T')-norm.

Table 3.1 shows these relative errors at the different levels of discretization. We notice that, when
we take a time step small enough, the O(h) error decay proved theoretically can be observed
(see the last column in Table 3.1). We notice that this spatial error reduction is one order smaller
than the one observed in the previous example. On the other hand, considering a mesh size small
enough allows us to show the expected convergence order in time O(At) (see the last row in
Table 3.1).

We also illustrate in one single figure the simultaneous dependence on h and At for the current /
in the L?(0, T')-norm by choosing initial coarse values for both discretization steps and, for each
successively refined mesh, we take the value of At proportional to h (see the framed values in
Table 3.2). Figure 3.8 shows a log-log plot of the corresponding relative errors £~ versus the

number of degrees of freedom (d.o.f.). The slope of the curve exemplifies again the convergence
order O(h + At).
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110

At =T At At At
20 2 4 8

ho|[9.482¢107| 7.883¢107*  7.455¢107*  7.355¢107*

bl 7271e107  |4.968¢10°*| 4.234¢107*  4.044e10~

bl 63720107 3.499¢107*  [2.322¢107]  1.943¢10~*

h

8

6.144¢107*  3.055e107%  1.562¢107* [0.894e10~*

Table 3.2: Sinusoidal test. Relative errors £4*. Reference solution:
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Figure 3.8: Sinusoidal test. £/ versus d.o.f. (log-log scale); At = Ch.
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Figure 3.9: PWM test. Voltage drop per unit length over time (left); current over time for the
reference solution (right).

On the other hand, we consider the geometry of the previous test supplied with a pulse-width
modulation (PWM) voltage drop, a kind of source often used to feed electrical machines. It is a
discontinuous function with a great number of discontinuities in each period (see, for instance,
[58]). Thus, let us consider the voltage drop per unit length C'(¢) depicted in Figure 3.9-left,
whose period is equal to 0.02 seconds and oscillates between —188.46 Vm~! and 188.46 V m~1.
All material properties are the same as the ones used in the previous case. We solved the problem
in a source cycle, and the initial value taken for the current is equal to I, = 0 A. In Figure 3.9-
right we show the current corresponding to the solution of this test.

We notice that, in this particular case, C(t) ¢ C([0,7]), and the theory developed for the error
estimate is not applicable. However, the PWM potential drop verifies the regularity conditions in
Remark 3.10 and, therefore, Problem 3.5 has a unique solution I(¢) € AC([0,T7]). In particular,
as it can be deduced from Figure 3.9-right, current [ is not everywhere differentiable (but it is
almost everywhere).
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Chapter 4

An Optimal Control Problem for a
Permanent Magnet Synchronous Motor

4.1 Introduction

Several advances have been made during the last decades in optimization and optimal control of
electrical machines (see, for instance, [46, 67]). This has had a great impact on the development
of new design methodologies due to the fact that most specifications are contradictory, requiring
a systematic approach to reach a compromise between all constraints. Among the typical de-
sired properties we can find high efficiency, low construction and operating costs (with special
concern over permanent magnets materials), high torque capacity, low maintenance, etc.

The global design requirements on these devices generally involve different disciplines because
they are subject to several physical phenomena: electromagnetics, structural mechanics, manu-
facturing, vibroacoustics, heat transfer ... Therefore, it is interesting to address their study from
a multiphysics perspective (see, for instance, [90] and references therein). However, this ap-
proach requires the use of modelling methodologies of low computational cost, such as thermal
or magnetic networks, usually sacrificing accuracy. For instance, a popular technique for opti-
mization and optimal control consists in evaluating the objectives and constraints by means of
analytical models.

In contrast, it is sometimes more adequate to separately study each aspect of the machine design,
in order to be able to use more precise but computationally demanding numerical techniques.
For this purpose, a very important aspect is the electromagnetic design of the electrical machine
(see [31, 112]). In this framework, the finite element method (FEM) is widely used for the
study of electrical machines due to its high accuracy, but its associated computational cost may
represent a drawback. This is sometimes solved by means of surrogate models, which predict
the relation between some design parameters and the desired characteristics with only a few
FEM evaluations (see, for instance, [45, 49, 113]).
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In this work, we will deal with an optimal control problem related to the electromagnetic design
of a permanent magnet synchronous motor (PMSM). Rather than trying to solve an ambitious
problem from the engineering perspective, our target is to provide theoretical support, from
the mathematical and numerical analysis point of view, to a particular problem appearing in the
electric motor field. More precisely, our goal is to minimize the power losses in the machine coils
while generating at least a minimum desired torque. This problem is similar to the one presented
in [76], but we use finite element techniques to evaluate the torque constraint. Moreover, we
refer to [50] for a rigourous theoretical analysis on a PMSM but from the point of view of shape
optimization.

From the theoretical perspective, we are going to deal with an optimal control problem hav-
ing a finite-dimensional control space, that is, a semi-infinite optimal control problem. Finite-
dimensional controls appear in many real-life applications because it is sometimes difficult to
practically implement control functions that can vary arbitrarily in space (see, for instance,
[44, 104]). Besides, this property allows us to simplify some of the mathematical arguments
needed in the theoretical results. However, we will work with a state constraint given in terms
of the integral of the trace of the derivative of the state on an interior surface, what leads to an
adjoint state having a jump discontinuity on this interface.

The outline of this chapter is the following. In Section 4.2 we develop the mathematical model
for the PMS motor, that will be the state formulation for the optimal control problem, defined
and analyzed in Section 4.3. Then, in Section 4.4 we present the spatial discretization of the
model and perform its numerical analysis. Moreover, in Section 4.5 we give some details on the
implementation strategy adopted for solving the optimal control problem. Finally, in Section 4.6
we report some numerical results obtained for an academic permanent magnet synchronous
motor, which allows us to illustrate the theoretical results.

4.2 Mathematical Model

As mentioned in the introduction, this chapter performs the mathematical and numerical analysis
of an optimal control problem defined on the cross-section of a permanent magnet synchronous
motor (see Figure 4.1). Similarly to the previous chapter, we are going to start from Problem I1.2
to write the model for the motor. In opposition to the preceding chapter, we are going to assume
that the data in conductors are given in terms of the currents through them, and thus we will
have Ny, = 0 and N. = Ny.. Moreover, in order to reduce the computational cost, as a first step
we are going to consider the ferromagnetic core to be a linear material.

In line with the typical structure of a PM synchronous motor, we are going to consider that its
cross-section €2 is composed by

* A rotor domain, that rotates at constant speed around the machine axis, and that can be
divided in the following parts
— a permanent magnet region €27 (t), (eventually having several connected compo-
nents),
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[ Magnetic Cores
3 Conductors

B Permanent Magnets
3 Air

Figure 4.1: Transversal section of a PM synchronous motor.

— a ferromagnetic non-conducting laminated core 2] (%), and

— the machine shaft.
Notice that we have taken the rotor motion into account by explicitly writing the subdo-
main’s dependence on time.

* A stator domain, that remains still during normal operation, and that can be divided in the
following parts

— several stranded conductors representing the cross sections of the coils €2, n =
1,..., N,

— a ferromagnetic non-conducting laminated core €2?

mc?

* An air-gap between rotor and stator.

We notice that, in this chapter, the machine cores will be denoted by 27 . and Q7 (¢); we have
changed the notation with respect to the other chapters because, here, we assume that the cores
are magnetically linear.

We will assume that we can define an artificial interface between rotor and stator, which will
be denoted by I', being a circle in the air-gap of radius R that does not touch the ferromagnetic
cores and does not depend on time (see dashed red line in Figure 4.1). This artificial boundary
divides the air-gap into two parts, one adjacent to the rotor core, €2;(¢), and another one touching
the stator core, {2). Moreover, we notice that the shaft is usually modeled as a non-conducting,
magnetically linear domain, whose material has the vacuum reluctivity, 14, and thus it will be
considered as if it was air, and therefore contained in Qf(¢). Similarly, should the motor be
surrounded by an artificial air-box for computational purposes, it will be considered as belonging
to (2. Accordingly, we will denote the rotor and stator domains by

() = () U, () UTL(1) Q= (A5 U (UN, ) U D,

115



MARTA PINEIRO PEON

respectively. Besides, the global magnetic reluctivity function, v : Q x [0, 7] — R, is defined
as

2 ifx e QU Qt),

Vo fxe n=1,..., N,
vom  ifx € Q) (1),

Ve ife e QU (1).

Furthermore, we call 7, the rotation operator whose angular velocity is the one of the rotor, at
time ¢, and r_, its inverse. Then, €25(t) = r,$25(0), Q7 () = r,27,,(0) and Q7 (t) = 7, ().
Notice that the geometric set 2" (¢) = Q" is always the same, a circle, but the physical parameters
at each point change with time as they are not invariant with respect to rotation ;. Besides, the
remanent flux in the permanent magnets, B" = B} ((,y);t)e, + B} ((z,y); t)e,, depends on
time because the orientation of the permanent magnets changes with the motion of the machine;
more precisely, we have that B ((x, y);t) = r,B" (r_,(z,y);0) (see Figure 4.2).

Figure 4.2: Orientation of the PM’s remanent magnetization B"((x,y);0) (left) and
B'((z,y);t) (right).

Since the stator coils are considered to be stranded conductors, the current density in them is
assumed to be uniformly distributed, that is,

in()

J((z,y);t) = Joa(t)e, = meas($21)

e., V(z,y)e,

in(t) being the total intensity across 25, n =1,..., N..

Under the above conditions, Problem I1.2 reads:
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Problem 4.1. Given (iy(t), ... iy (t))T and B", find A(x,y;t) for every t € [0, T] satisfying

—div(rggrad A) =0 in Q5 U Q(1), 4.1)
. in(t s

—div (rpgrad A) = meas((glfl) in€y, n=1...,N, 4.2)
— div (vpm grad A) = — div (vpm (B")")  in O, (¢), (4.3)
—div (Ve grad A) =0 in Q5 UQ (1), (4.4)

o v (BT n, i S C O, (1),
lvgrad A-n|y = { 0 otherwise, 4.5)
A=0 ono. (4.6)

At each time ¢, Problem 4.1 is a linear magnetostatic problem; thus, ¢ only plays the role of a
parameter in the PDE problem. By formal integration of (4.1)—(4.6), and considering the time
discretization

{tmGR : tm:mAt,m:(),...,M—l},
with At := T'/M, we obtain the variational formulation:

Problem 4.2. Giveni,(t) € C'[0,T], n = 1,...,N,, and B"(-;t) € L* (Q;m(t))gfor every
t €[0,T), find A(t,,) € HY(Q) for every m =0, ..., M — 1 such that

/( )ygradA( -grad W = Z/ +/ ( )ypm(BT)i_gradW
Q(tm ) T (Em

meas( QS
for every W € H}(Q).

Remark 4.3. Additionally, from Problem 4.2 we define problems (SP)pgr and (SP);, the first
one with sources given only in terms of the remanent flux in permanent magnets (and thus i,,(t) =
0, n =1,...,N,.), and the second problem with sources only in the stator conductors (and
therefore the permanent magnet region is replaced with a magnetically linear material with
permeability vy, ). These auxiliary problems will be used for the mathematical analysis of the
optimal control problem.

The proof of the next result follows directly from Lax-Milgram’s theorem:

Theorem 4.4. Problem 4.2 has a unique solution A(t,,) € H{(Q) for everym =0,..., M — 1.
Moreover, there exist a constant C' > 0, not depending on the data, such that

1Al ><C(len )+ -l1BT0 >"L2<a;m<o>>3>
foreverym =0,...,M — 1.
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Remark 4.5. [f the magnetic reluctivity was more regular (for example, v € C%1(Q)), we would
have solutions with higher regularity, A(t,,) € H?(Q) for everym = 0,..., M — 1 (see The-
orems 2.2.2.3 and 3.1.3.1 in [54]). However, since we are assuming that v is only piecewise
constant, A(t,,) are generally not globally in H*(S2). Nevertheless, we are still allowed to say
that the magnetic vector potential A is regular in open subsets strictly contained in the subdo-
mains. More precisely, it follows from [62] that

||A( )HH2 ) <C (Z |Zn ’ + 7||BT( )||L2(ng(0))3>

foranym = 1,..., M, Zbeing any open subset of Q(t,,) := (Qg(tm) U (tm) U Qfm(tm)) U
(Qg U (Uﬁ;f;lﬂ,i) u anc> with C? boundary.

4.3 Optimal Control Problem

Now, we are going to formulate an optimal control problem having the state formulation that
we have just introduced. For this purpose, we assume that o is constant in each (2;, and that the
currents through them are given by sinusoidal functions of the same frequency w, with ampli-
tudes I,, and phases «,,; that is, 4,,(t) = I,, cos(wt + «v,), n = 1,..., N.. Then, if the final time
T is equal to the currents period, the power dissipated in the coils by Joule effect, P, is:

7l X s

On the other hand, let 7(¢) be the instantaneous torque on 2" at time ¢, which can be computed
as

[y _ar
= 2meas(Q)o

meas( QS

T(t) = /Tr x div M(t) = /F'r x M (t)n

where M is the limit value of the magnetic part of the classical Maxwell’s stress tensor,
M=B® H — %B - HT, coming from outside of (2" (see [28]). Formal calculations lead us
to the following expression for the magnetic torque on 2":

0A 0A 0A 0A
T =1 /F(gradA ‘) (grad A x n) = (I/O/F (&cny — 8;an> (89{:% + ay@)) e..

We can formulate an optimal control problem in the following way: we seek amplitudes /,, such
that the dissipated power P is minimum, with the restriction that the approximated mean torque
on 2" along the axial axis of the machine during one current period is above a certain value
74 > 0. For this purpose, we notice that if we use the composed trapezoidal rule to approximate
the mean torque, we obtain the expression

1 ML At 1 M-l
= [ 72 5 (7ln) £ 7)) s = 7 3 it e
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since A(0) = A(T) and thus, in particular, 7(0) = 7(7').

Let us denote by Uag := [~ Lnaws Imaz)e C RY< the set of admissible controls, with 1,,,,, > 0.
Thus, we can formulate an optimal control problem in the following way:

Problem 4.6.
N, 2
¢ I
I I=> ——"—— 4.7
Ié%?asj< ) ;2meas(ﬂfl)a’ @D
where

Us s = {I €Uy : G(I) < o},

G being integral operator

1 M—1

G(I) e M Z—O VO/F <gj§(tm)ny o %;(tM)nx> (gﬁ(tm)rx + %;l(tm)ry> )

with A(t,,) the solutions to Problem 4.2, m = 0,..., M — 1.

Remark 4.7. Let us notice that, since A(t,,) € H*(E) for everym = 0,..., M — 1, = being a
C? domain strictly contained in the air-gap and such that ' C =, and since r = Rn on T, the
integrals involved in the torque s expression are well-defined because the following applications
are continuous

H?(
H?(

[1]

) —HYA(D)  u s ya(gradu) = (grad u- n)|r,

[1]

) — HY2(T)?  ws v (gradu) == (gradu x n)|p
(see Chapter Il of [52]). In particular,
(grad A(t,,) x n) - e,, grad A(t,,) - € H/*(I') ¢ L3(T).

Moreover, as we mentioned in Remark 4.5,

Nc
1At w2 < € (Z [ (tm) |+ 0 1B (O)] @)3) |
n=1 e

Let S;,, : RY — H}(Q) be the control-to-state operators, with m = 0,..., M — 1, which
are affine functions. Indeed, since Problem 4.2 is linear, thanks to the superposition principle,
its solutions at time ¢,,, € [0, 7] can be written as S, (K) = Ly, (K) + Apr(t,), with L, the
linear control-to-state operators for Problem (SP); and Ap- the solutions to Problem (SP)p-
(see Remark 4.3). Since L,,, are linear and bounded, L, are continuous, and the same is true
for the control-to-state operators S .

In the following theorem we state the existence of at least one solution to Problem 4.6:

Theorem 4.8. [fUj..s is nonempty, Problem 4.6 has at least one optimal control I.
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Proof. Since G is continuous, the set of feasible controls,
Z/{feas = [_Imax7 Ima:v]Nc N {K S RNC : G(K) < 0}

is a closed and bounded subset of R™, and therefore a compact. Then, since the operator 7 :
RYe — R defined by

Nc ]2
n

JI) =3

“= 2meas(3)o

1s continuous, we can deduce the result from Weierstrass’ theorem. O]

4.3.1 Including Lagrange Multipliers

The Lagrangian function associated to Problem 4.6 is

L:RYxR—R, LI\ :=J)+\GI).

Let I be a local solution to Problem 4.6. Then, any A* > 0 such that

AG(
Dy L(T; M) —

I)=0, (4.8)
1) >0, VIcEUy (4.9)

is called a Lagrange multiplier associated with I. We will assume the following constraint
qualification for I:

(CQ) IfG(I) = 0, there exists I’ € RMe such that DG(I)I° < 0, with

I <0 if 7n A Imaan
"1 >0 if I = =L

We have the following result:

Theorem 4.9. Let I be a local solution to the optimal control problem 4.6 satisfying (CQ).
Then, there exists a Lagrange multiplier \* associated with 1. Moreover, the set of Lagrange
multipliers associated with I is bounded.

Proof. Firstly, let us notice that 7 is a continuously differentiable operator. Moreover, func-
tional G is also a continuously differentiable operator in an open neighbourhood of I. Indeed,
we know that to proof that G is differentiable it is sufficient to show that all its partial derivatives
exist. But since

1 M-1

B dS;,, B dS;,, dS;,, Sy,
GK) =1y Mﬂ;{) VO/F< 5 (K)n, 9 (K)nz> < 5 (K)r, + o (K)Ty>,
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and taking into account that S, (K) = L; (K) + Apr(t,,), with L, linear, it is easy to see
that, forn=1,..., N,
oG .1

M—1
— _i Z 1/0/ 8Stm aLt”’ (en)nyry — 285?3’" <K)a§;n (€en)nyry

05, 0L, OL.. .S, B
(T 10025 o)+ 2 ) B 80 ) g, = )

L z_:o VO/ (grad L, (e,) - r)(grad S;,, (K) x n) - e,
+ (grad S;,,(K) - r)(grad L, (e,) x ) - e,

with {e,, }2, the canonical basis of R™. Since L,,, are linear and continuous, G is differentiable
with

1]V[1

DG(K)h = —— Z " / (grad L, (h) - r)(grad S;, (K) x n) - e,
+ (grad 5;,,(K) - r)(grad L;,, (h) x n) - e..

Besides, the derivatives of G are continuous because, since S;,, are affine, we have that

1 M Yl 8Ltm oL,
(DG(I) — DG = |7 57 2 [ 2550 (K = Ka) e
oL, A 0Ly, 0Ly, _ JLy4,,

oL, . L.
R U o) [

— 0 as ’Kl—K2| — 0.

Following Theorem 6.3 from [103], we can conclude the proof by showing that I satisfies the
Zowe-Kurcyusz constraint qualification, that is, that for every z € R there exist o, 3, k > 0 and
I € U,, such that

aDG(I)I —1I)+ B(k+G)) =
We will study the case in which G(I) = 0 in the first place. In this case we have assumed that
there exists I € R™e such that DG (I)I° < 0, with

I <0 if Tn = Imaxa
M1 >0 i T, = L

If 2 <0,let I :=cI’+ T, withe > 0 small enough to ensure that I € U,4. Then,

DG(I)(I — 1) =eDGI)I° < 0.
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Letalso §:=0,k:=0 € K and

Then,
aDGI)(I - 1)+ B(k+G(I)) =
On the other hand, if z > 0, we cantake o := 0, I := 0 € Uy, f:=1land k := z.
Finally, let us study the case in which G(I) < 0. Taking I := I € U,q4, any o > 0 and
. k:zOEK,ﬁ::G'(ZI)z()ifzgo,

e Bi=1Lk:==2—-GI)eKifz>0,

we obtain that

aDGI)(I —I)+ Bk +G()) = 2.

4.3.2 Adjoint State

In this section we are going to define the adjoint problem associated to the state constraint, which
will allow us to evaluate the derivative of its Lagrangian function in a more straightforward
manner. First, let us notice that the operator D.J : R — R is defined in the following way:

J(Kh =y Kol = A

nel meas

DIEE NI -T)= 3 oo

n=1
M—1

]\14 Z VO/ grad L, (I —I)-7)(grad S;, (I) xn) e,

+ (grad S, (I)-r)(grad L;, (I — I) x n) - e..

To simplify the second term in the expression of D;L, let us introduce the adjoint problem:
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Problem 4.10. Given A(t,,) € H)(Q) such that A(t,,)|= € H*(Z) for everym =0,..., M — 1
and \ € R, find P(t,,) for every m =0, ..., M — 1 such that

—div(vgrad P(t,,)) =0 inQ°UQ" (t,),
[(vgrad P(t,,)) - n] = —Ayy(curlp((grad A(t,,) - r)e.)
—div ((grad A(t,,) xn) - e,r)) onT,
[(vgrad P(t,,)) -m| =0 on 0Q(t,,),
P(t,) =0 on 0.

In the above problem, we recall that
tm) = (U (tm) U QL () U Qo)) U (25U (U245 UDS,) -
We can obtain the weak formulation of the above problem in a similar way to the derivation of

the weak formulation for the state equation. Concerning the integral of the jump across I' (see
Section 3.4 in [77]):

/ —div((grad A x n) - e, r) W = /(gradW -r)(grad A X n) - e,
r r

/Fcurlp ((grad A-r)e,) W = /F(curlp W.e,)(grad A - r)
= /F(gradA -r)(gradrWW xn)-e, = /F(gradA -r)(grad W xn)-e,.
Notice that the surface operators involved in the above expressions are well-defined since A|= €
H?(Z) and W € H'(Q), and then, in particular,
(grad A-r)|r € LZ(T) and W/ € L*(T)
(see [3], Theorem 4.12). This leads us to:

Problem 4.11. Given A(t,,) € H}(2) such that A(t,,)|z € H*(Z) for everym =0,..., M —1
and \ € R, find P(t,,) € H)(Q) for everym =0, ..., M — 1 such that

/ vgrad P(t,,) - grad W
Qtm)

= -\ /F(gradW -r)(grad A(t,,) x n) - e, + (grad A(t,,,) - r)(grad W x n) - e,

for every W € HL(Q).

We have the following result:
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Lemma 4.12. Problem 4.10 has a unique solution P(t,,) € H}(Q) foreverym = 0,..., M —1,
which verifies:

1P ()| [11) < € (Z lin(tm)| + 10 [|B"(0 )||Lz(n;m(o))3> :

n=1

Proof. The result follows immediately from Lax-Milgram’s theorem. Indeed, the left hand
side defines a continuous and H'()-elliptic bilinear function and, if we denote by f,,, m =
0,..., M — 1, the operators on the right hand side,

| fnlla-10) = Sup
WeH; ()W g1 q)

(s W)

<C sup
WEeHG ()W g1 ()

(grad W - r)(grad A(t,,) x n) - e,
T

+ (grad A(t,,) - r)(grad W x n) - e.| < C||A(tm)|u2(z)-

]

In the next lemma we show that the second term in the expression of D; L can be computed from
the solution to the adjoint problem that we have just defined:

Lemma 4.13. Let K, h € RYe, and AX(t,,), AB(t,n), m = 0,..., M — 1, the associated weak
solutions to Problem 4.2 with currents i,(t) = K, cos(wt + a,,), n = 1,...,N,, and (SP);
with currents i,(t) = h, cos(wt + ay), n = 1,..., N, respectively. Then, the solutions P(t,,)
to Problem 4.10 with data A¥(t,,) and X are such that:

15 oh, tm + Qi
722/ cos(w +Q)P(tm)
== e meas(22)
| M-1

- Z )\1/0/ (grad AP (t,,) - 7)(grad AX(t,,) x n) - e.

+ (grad A¥(t,,) - r)(grad A"(t,,,) x n) - e..

Proof. 1f we take P(t,,) € H}(Q) as test functions in problem (SP); with currents i, (t) =
hy cos(wt + o), n =1,..., N, we obtain:

hy, cos(wtp, + o)
d Ab(t dP(t / " p(t,).
/Q(tm) vera (tm) - gra Z s meas(§28) (tn)

Analogously, we can take A" (t,,) as test function in the adjoint equation with A¥(#,,) and X as
data and get:

/ vgrad P(t,,) - grad A"(t,,) =
Qtm)

— Ay /F(grad AR(t,,) - 7r)(grad A¥(t,,) x n) e,
+ (grad A¥(t,,) - r)(grad A*(t,,,) x n) - e..
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Subtracting the first equation to the second equation above, we deduce, after summing up for
m =0,...,M — 1, and dividing over M we obtain

ML N hy, cos(wty, + o)
= P
M mZ: RZ:/ meas({23) (tm)
1 M—1

= _—— Z /\1/0/ (grad A"(t,,) - r)(grad A¥(t,,) x n) - e,

+ (grad A¥(t,,) - r)(grad A"(t,,,) x n) - e..

]

In the next theorem we present the optimality system for the optimal control problem 4.6. Its
proof is a direct consequence of Theorem 4.9 and Lemma 4.13.

Theorem 4.14. Let I be a local solution to the optimal control problem 4.6 satisfying (CQ).
Let A(t,,) be the states associated to I. There exists \* > 0 associated with I satisfying the

following optimality system:

T, cos(wt + a,)
meas(€2)

+/g oy P (B grad W VIV € Ho(©),
T (tm

w

/( )ygradﬁ(t m) - grad W = Z/
Qt

/ vgrad P(t,,) - grad W
Q(tm)
= -\ </ (grad W - r)(grad A(t,,) X n) - e
r

+/F(gradﬁ(tm) -r)(grad W x n) - ez) VW e Hy(Q),

1= _
A (Td <7 uo/ grad A7) (grad A x n) - ez> =0,
M m=0
S (L — T e — 1)) cos(wtp, + ) —
eac(O8 )y P(t,,) >0,
Z:1 meas( mz: Z/ meas(€2) (bm) =

forevery I € Uyy.

4.4 Numerical Analysis

In this section we will present a space discretization of Problem 4.6 and perform its analysis.
We will use a conforming approximation for the problem based on the finite element method.
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We consider M families of triangulations 7", m = 0, ..., M — 1. With each element K € 7,™
we associate two parameters p(K) and o(K'), where p(K') denotes the diameter of the set K’
and a( ) is the diameter of the largest ball contained in K. We define the mesh size by h =
M-1MaXgeT,m p(K') and assume that the following conditions are satisfied:

.....

1. There exist two positive constants p and ¢ such that

p(K) h
oK) =T pE) =’

foral K € 7,"",m =0,...,M — 1,and h > 0.

2. Let us denote Q(t,,) := U ker,m K, and let Qp(t,,) and 0Q(t,,) denote its interior and

its boundary, respectively. We assume that €, (¢,,) is convex and that the vertices of 7,™
placed on the boundary 02, (t,,) are points of 052, for every m = 0, ..., M — 1. From [88],
estimate (5.2.19), we know that |Q \ ,(¢,,)| < Ch?. Similar assumptions are made for
each subdomain.

3. Since 2 does not change in time, for the sake of simplicity we will assume that the sets §2;,
and 02, do not either. Furthermore, we also assume that the vertices of 7, placed on the

boundary of Q) (¢,,) := U K are points of I'.
KeT,m,
KCQ" (tm)

4.4.1 Discretization of the State Problem

We introduce the following discrete spaces:
= {un € C°Q) : Pnly €PIK) VK €T b =0in Q\ Oy and v, = 0 on 0},
m=20,...,M —1.

Then, the discretization of Problem 4.2 reads as follows:

Problem 4.15. Given i,(t) = I, cos(wt + a,,) € C([0,T]), n = 1,...,N,, and B"(:;t) €
L2 (ng(t))gfor everyt € (0,7, find Ay(t,,) € X for everym = 0,..., M — 1 such that

/Q( )I/gradAh(t m) - grad W;" —Z/ —W"
h(tm

 meas( QS 5)

+ Vo (B")* - grad W;"

h pm(tm)
Sfor every W/ € X7

Remark 4.16. Additionally, from Problem 4.15 we define problems (SP)y, gr and (SP);, the
first one with sources given only in terms of the remanent flux in permanent magnets (and thus
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in(t) =0, n=1,...,N.), and the second problem with sources only in the stator coils (and
therefore the permanent magnet region is replaced with a magnetically linear material with
permeability vyy,). These auxiliar problems will be used for the numerical analysis of the optimal
control problem.

The following theorems can be proved:

Theorem 4.17. Problem 4.15 has a unique solution Ay(t,,) € X} foreverym = 0,..., M —1.
Moreover, there exist a constant C' > 0, not depending on the data or h, such that, for every
m=20,...,M—1,

Nec
Aa(tnlhon < € (35 i)l 2l B O]
n=1 h.pm

Theorem 4.18. Let A(t,,) € H{(Q) and An(t,) € X" be the solutions to Problems 4.2
and 4.15, respectively, form = 0,..., M — 1. Then,

[ A(m) = An ()1 @) < Ol DR[A(Em) |12 (),

where Zj,(t,,) 1= . L7J' K (see [42], Remark 3.2.2).
€T,

KCE

4.4.2 Discretization of the Optimal Control Problem

Let S;, 5 : RY — X7 be the discrete control-to-state operator for each m = 0,..., M —
1, which are affine mappings. In a similar way to the continuous case, since Problem 4.15
is linear, its solutions can be expressed as the linear combinations S;, ,(K) = L »(K) +
Ay pr(tm), with L, the linear discrete control-to-state operators for Problem (SP);; and
Ay, pr the solutions to Problem (S P);, g (see Remark 4.16). Since L, 5, are linear and bounded,
L,,. 1 are continuous, and the same is true for the control-to-state operators S;,, .

Let GG}, be the discrete integral operator

1 M-1

Gn(I) =714 — i > VO/(grad Ap(ty) - 7) (grad Ap(t,) X n) - e,
m=0 r
with Ay, (t,,) the solution to Problem 4.15 attime ¢,,, € [0, 7], m =0, ..., M — 1, with currents
in(t) = I, cos(wt + ), n = 1,..., N.. Then, the discrete optimal control problem reads:
Problem 4.19.

Loon,

min j(Ih) = Zm,

Iheufeas,h n=1

where

Ugeas,h = {Ih € Unq : Gu(I) < 0}-
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Remark 4.20. The space X} is a subspace of

H2(Q, T,") o= {tn € LX(Q) : |, € HY(K) VYK € T,"},
form = 0,..., M — 1 (see Section 4.4 in [88]). Consequently, G}, is well-defined for every
K € R,

In a similar way to the continuous case, we can proof by the Weierstrass theorem that:

Theorem 4.21. If Uy, is nonempty, Problem 4.19 has at least one optimal control I,.

In order to perform the numerical analysis of the optimal control problem, first we will proof
the convergence of the operator associated to the discrete state restriction to the continuous one.

Lemma 4.22. Given K € R, G,,(K) = G(K) as h — 0.

Proof. Given K € R, let A(t,,) and Ay (t,,), m =0, ..., M — 1, be the associated solutions
to Problems 4.2 and 4.15, respectively.

M-1
Gh(K) — G(K)| = ij\; 3 / (grad A(t,) - ) (grad A(t,) X 1) - e,
m=0 T
— (grad A, (t,,) - r) (grad Ay (t,) X n) - e,
M-
Z > NAE) 2o | A(Em) = An(tm)llm )
m=0 KeT,™,
KmF;é@
+ A 2 ) [ A(Em) = A (Em) [0 (x0)
M-1
< Ch Y At 2@ |A(n) [l2z) = 0 ash — 0,
m=0
foreverym =0,..., M — 1. 0

Theorem 4.23. Let us assume that there exists a solution I to the optimal control problem 4.6
satisfying (CQ). Let {I},},~0 be a sequence of optimal controls of Problem 4.19. There exists
a subsequence of {I},}n~o converging in RN towards an optimal control of Problem 4.6 as

h — 0. Every convergent subsequence of { I, },~o converges in RN towards an optimal control
of Problem 4.6 as h — 0.

Proof. Given {I,},~0 sequence of optimal controls of Problem 4.19, I}, € Uy, for every
h > 0, and thus {1} },~¢ is bounded. Then, {1}~ has a convergent subsequence (which will
also be denoted by {I}n~0), In — I as h — 0. Since |1, 4| < e and Gi(I,) < 0 for
every h > 0, taking Lemma 4.22 and the fact that G is continuous into account, we conclude
that I € Uyeqs.
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« IfG(I) < 0, since G,(I) — G(I)as h — 0, there exists an iy > 0 such that G;,(I) < 0

for every h € (0, hg). Then, I € Uy, for every h € (0, hy), and then J (I,) < J(I)
for every h € (0, hy). Thus,

J(I) = lim T (In) < T (I).

« IfG(I) =0, let I, := I + s(h)I,, with s(h) > 0 to be defined later. Then,
Gr(Iy) = Gu(I) + DGy(I)s(h) Iy + o(h) = Gr(I) — G(I) + s(h) DG, (I Iy + o(h).

Let us denote A(h) := G(I) — G(I)+o(h), §(h) := DG, (I)I, and take, for any given
h >0,

n { 0 if A(h) <0,
s(h) = .
—SH ifAR) >0,
Then, N B
— Lete < Osuch that DG(I)Iy < 2¢ < 0, there exists hg > 0 such that DG, (I)I, <

e < 0 for every h € (0, hg). Therefore,

= — e S

‘1) 1 ) 1 1
o(h) DG, ~ ¢

for every h € (0, hg). Taking Lemma 4.22 into account, it is clear that A(h) — 0

as h — 0, and then s(h) — 0 as h — 0.

— Taking the definition of I into account, there exists hy > 0 such that I n € Uyq for
every h € (0, hy).

— From the definition of s(h), we have that G, (I,) = A(h) + s(h)d(h) < 0 for every

h>0. _ - ~
Consequently, I, — I as h — 0 and I, € Ufeqsy for every b € (0, hg) (and then

J(I,) < J(I}) for every h € (0, hy)). Thus,
J(I) = lim J(I4) < lim 7 (I,) = T (D).

Therefore, in both cases I is an optimal control of Problem 4.6. O]

The Lagrangian function associated to Problem 4.19 is

Ly :RY xR — R, Ly(In; M) :=T(I1) + M- Gu(I).

In the following theorem we state the conditions for the existence of a discrete Lagrange multi-
plier associated to the solutions to Problem 4.19 converging to a continuous solution that satisfies
the Slater condition. Since the constraint qualification is preserved under perturbation, its proof
is analogous to that of the continuous case.
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Theorem 4.24. Let {I,} be a sequence of local solutions to the optimal control problem 4.19,
{I,} — I ash — 0, I satisfying (CQ). Then, for h sufficiently small, there exists a Lagrange
multiplier \;, associated with I,. Moreover; the set of Lagrange multipliers associated with I,
is bounded.

Let us recall that D7 : RNe — R,

Nc Knhn
DIK)h =Y

“— meas(Q3)o

Then,
- - XTI, - 1,)
D I NN =1 = _nvn N4
eI AT ) n;l meas(€2)o

M—-1

_ )\*M mz::O Yo /F(grad Ly, n(I — I) r)(grad Stm,h(T) Xn)-e,

+ (grad S;, #(I)-r)(grad L;, (I —I) x n) - e..

To simplify the second term in D; L, let us introduce the discrete adjoint problem:

Problem 4.25. Given Ay(t,,) € X} foreverym =0,...,M —1and \ € R, find P,(t,,) € X}/
foreverym =0,..., M — 1 such that

/ vgrad Py(t,,) - grad W}
Qn (tm)

M-1
= —Aj\lf > VO/(grad Wy, - r)(grad Au(t,,) X n) - e,
m=0 r

+ (grad Ay (t,,) - r)(grad W), x n) - e,

for every W/ € X

Using the usual finite element method techniques, the following result can be proved:

Lemma 4.26. Problem 4.25 has a unique solution Py(t,,) € X", m = 0,..., M — 1, which
satisfies

tn [1P(t) — Py (1) i oy = 0
foreverym =0, ..., M —1. Moreover, if P(t,,) € H* (), n=1,...,N,m=0,...,M—1,
1P () = Pa(tm)lln o) < ChIP(Em)|120p)-

In the following lemma, whose proof is similar to the corresponding one in the continuous case,
we state that the second term in D; L}, can be expressed in terms of the adjoint state.
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Lemma 4.27. Let K, h € R, and AK(t,,), AR(t,,), m = 0,..., M — 1, the associated weak
solutions to Problem 4.15 with currents i, (t) = K, cos(wt + a,), n=1,..., N,, and (SP);
with currents i, (t) = h, cos(wt+ ), n = 1,..., N, respectively. Then, the solutions Py,(t,),
m=0,...,M — 1, to Problem 4.25 with data AX(t,,) and \ are such that:

Ne hy, cos(wt,, + ay,
Z/s )Ph(tm)

meas(§23)

1 M-—1
7m 0n=1
1 M—-1
= —)\— Z / (grad AP(t,,) - 7)(grad A¥(t,,) x n) - e,
+ (grad AX(t,,) - r)(grad AP (t,,) x n) - e..

Remark 4.28. As we will show in Section 4.6, we have numerically checked that the discrete
controls converge with order I to the continuous one. Although we have not obtained this result
theoretically, it seems that under appropriate assumptions on the continuous locally optimal
control I, the approximation order of the state and the adjoint state should transfer to the ap-
proximated currents {I},} 1.

4.5 Implementation Issues

In order to solve the optimality system, we have implemented a MATLAB code that solves the
control problem by means of an Augmented Lagrangian Technique (also known as Multiplier
Penalty Method) similar to the one described in Section 5.4.2 in [51] (see also Section 17.3 in
[81]). Firstly, we have replaced the inequality state constraint with an equality constraint in the
following way:

Problem 4.29.

min J(I) subjectto Gu(I)+s* =0, I €U, s€R.

Consequently, the Multiplier-Penalty-function associated to this problem is:
_ 2
Lo(I s, X 0) = () + A (Ga(I) + %) + % (Gu(I) + %)

If the minimization with respect to variable s is carried out exactly, we finally obtain the fol-
lowing function:

LI X 0):=J)+ ;a (max {0, A + aGy(1)}? = N?). (4.10)

Therefore, we are going to solve a series of box-constrained problems with objective function
Ly, each of them having v and A fixed. In order to do this, a conjugate gradient method was
used, with search direction v, computed with the Hestenes-Stiefel formula (see Remark 4.30)
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and a step length 7, computed as described in [78]; in particular, the step length fulfills the strong
Wolfe-Powell conditions. Therefore, v/, is computed as

&y, = —grad 1Ly(Ix, \e; k) + Bithy_1,
grad 1Ly (Ii, M o) T (grad 1 £5(I, i o) — grad 1L,(Li1, M; ) )

with 5, = 3
B ||grad Ly (1), Ai; ag)||?

)

and 7, 1s such that

Eh(Ik + rk@ka )\k; Oék) S Eh(Ik, )\k; Oék) + Clrkgrad IEh(Ik’) )\k; Oék)T@k,
ngad Iﬁh(Ik + Tkak, /\k; Oék>T$kH S 02 ngad IEh(Iky /\k; Oék>T@k

Y

for some constants C'y, Cy € (0,1). The implementation of the algorithm in [78] was retrieved
from www.cs.umd.edu/users/oleary/software/. We notice that, concerning the search
direction 1), if the current iterant I is at the boundary of the box-constrained admissible set,
the corresponding search direction component is set to zero if it points outwards. Moreover, as
initial conditions we have considered 3, = 0 and

grad IEh(Ik—la Ai—150) " Py_y
grad 1Ly, (Ii, Me; ) "y

o = Tk—1

After each minimization, the parameter « is increased if there is not a sufficient decrease in
the state constraint violation. The corresponding minimization algorithm is described in Algo-
rithm 1, where {e;, i = 1,..., N}, is the canonical basis of R".

Remark 4.30. In order to choose the method to perform the minimization of Eh(I L \; ) with
respect to I, we decided to follow a line-search strategy. The main idea under this family of
methods is to choose, at each inner iteration k, a direction p, and search along this direction
from the current iterate I, for a new iterate with a lower value of the function to minimize. The
distance sy, to move along p,., known as step-length, can be found by solving the one-dimensional
problem

min Li(I), + spy, A @)

either exactly or approximately; we recall that both \ and « are fixed at each outer iteration of
the Augmented Lagrangian algorithm. Therefore, to specify a particular line-search method we
need to set the procedure to select directions p,, and step-lengths s.

For the search direction, we compared some of the common choices appearing in the related
literature, in order to asses which one was more suitable for our particular problem. Specifi-
cally, we studied the performance of the steepest descent method, the nonlinear conjugate gra-
dient direction computed with Hestenes-Stiefel formula and the quasi-newton direction p, =
—Hpgrad Ifh, with Hy computed with a BFGS modified method that ensures that these ma-
trices are positive definite (see [83]). In Table 4.1 we compare the performance in terms of
iterations and computation time of these three algorithms in a simple case with only two con-
trols, for which the conjugate gradient techniques performs better.
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Algorithm 1: Optimization Algorithm

Data: Iy € RV, Ao, Iiue € R, a9 > 0, c € (0,1)
Result: Ik—i—la )‘k-‘rl

1 while isOptimal (Iy, Ak, [1n4:) == false do

2 I,y <— minimizeMultiplierPenaltyFunction (Iy, \g, vk, Lnax);

3 )\k+1 — max{(), Ak + akGh(Ik+1)};

4 if enoughConstraintDecrease (Ij 1, Ik, Apy1, Ak, ax, ¢) == false then
5 | o1 = 100y;

6 end

7 end

Function isOptimal(Iy,\¢, Lnaz)

Data: I, N\, 1,4
Result: flag
if ‘)\kGh(Ik)‘ > (O then
‘ flag «— false;
else if \;, < O then
‘ flag <— false;
else if isStationary (L, Ik, Ak, Ijnae) == false then
‘ flag <— false;
else
‘ flag «— true;
end

o e NN N N AW N =
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Function isStationary(F’, I, \x, Lnaz)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Data: F, Ika >\k, Imax
Result: flag
if Ik - (—Imax,[max)NC A |VIF(Ik, /\k:)| > () then

‘ flag <— false;
else if 1), € O[— I ,nazs Iinaz) ™ then
flag <— true;
for: =1to N.do
if (Ik(l) = Imaac) VAN (VIF(Ik, /\k>61 > 0) then
flag +— false;
break;
else if (I,(i) = —Imaz) N (VF(Ig, A\i)e; < 0) then
flag «— false;
break;
elseif |V (I, \;)e;| > O then
flag +— false;
break;
end
else
‘ flag <— true;
end

Function enoughConstraintDecrease(Z 1, Ir, A\gi1, Ak, Ok, €)

N S N A W N -

Data: Ik+1: Ik, )‘k—i-l: )\k, g, C
Result: flag
hk < max {Gh(Ik), —/\k/ak};
Py1 — max {Gh(Ti11), =M1/}
if |hgt1| > c|hy| then
‘ flag <— false;
else
‘ flag «— true;
end
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Steepest Descent Modified BFGS Conjugate Gradient
Outer Iterations 6 ) 6
Inner Iterations (sum) 83 49 31
CPU Time (s) 1473 1129 614

Table 4.1: Performance of different line-search methods.

Function minimizeMultiplierPenaltyFunction(Z, Ax, k., Inaz)
Data: Ik, >\k9 O Imam
Result: I,

1 Iy I

2 Py +— =V iLy(To, Ms o);

3 Eo — VIEh(IO; )\k;ak);

4 while isStationary (EAh, I, \i, 1) == false do

5 for: =1to N, do

6 if 1;(i) = Linax A t0;(i) > 0 then

7 | ;i) +— 0 P

8 else if I;(i) = — Iy A 0;(d) <0 then
9 | ;i) «— 0

10 end

1 sjy1 <— lineSearch(I;, \p, g, ¥y);

12 I <—1;+ sj+1ﬂj;

13 Ui — ViLn(L1, Ak on);

| B (0 G = 0)) Gl

15 | U4 — —ViLa(j1, A o) + Biaty;
16 end

4.6 Numerical Results

In this section we report the numerical results obtained for an academic permanent magnet syn-
chronous motor (see Figure 4.3).

The stator consists of V. = 6 rectangular coils and a linear magnetic core with relative magnetic
permeability i, = 100. Each coil supports a uniformly distributed current 4,,(t) = I,, cos(wt +
a,) A,n =1,..., 6, has the magnetic permeability of the vacuum, p = po = 47 x 1077 H/m,
and an electrical conductivity equal to 5.96 x 107 (£2-m)~!. On the other hand, the rotor consists
of two permanent magnets with relative magnetic permeability p,, = 1.096 and remanent fluxes
with modulus | B"| = 1.26 T and oriented parallel to —e,, at time ¢ = 0 seconds. Moreover, the
material of the rotor’s magnetic core is the same as that of the stator. Finally, the shaft of the
machine, the air-gap between rotor and stator, and the air surrounding the machine will have a
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magnetic permeability 1 = 1. Moreover, the angular frequency of the current is w = 27 f with
f = 50 H z, and therefore the rotor speed is 3000 rpm.

Figure 4.3: Geometrical setting for the numerical results.

We will impose the torque on the rotor to be above a certain threshold 7,:

GI):=14— % 2_:0 2 /F(grad A(ty,) - r) (grad A(t,,) x n),

with A(t,,) the solutions to Problem 4.2 (see Remark 4.7).

To the authors’ knowledge, the presented problem has no analytical solution. Therefore, the
solution computed in a mesh with a very high number of degrees of freedom has been used as
an approximate exact solution to show the convergence orders. In Figure 4.4 — left we show the
O(h?) convergence rate for the solution to the state problem at time ¢ = 0 seconds in =, which is
one order above the O(h) rate proved in the theoretical results. Moreover, in Figure 4.4 — right
we show that an order O(h) is attained in this particular example for the state constraint (that is,
a mean average of the magnetic torque over the rotor).

Finally, in Figure 4.5 we show that the optimal control I, and the associated lagrange multiplier
A, converge with order O(h).
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Chapter 5

A Numerical Method for Accelerating the
Computation of the Steady-State in
Induction Machines

5.1 Introduction

This chapter deals with the finite element approximation of the steady-state behaviour of squirrel
cage induction machines by using a fast numerical procedure. For this purpose, a numerical
method to compute periodic solutions by determining suitable initial currents in the rotor bars
is developed, shortening the transient part of the solution considerably, so that the steady-state
is reached in a reduced number of cycles.

Generally, the numerical simulation of induction electrical machines by using finite element
methods requires solving a nonlinear system of partial differential equations derived from Max-
well equations, coupled with electrical circuits and mechanical equations; see, for instance, [86,
93] and references therein. The resulting mathematical model is a transient problem that needs
to be provided with initial conditions which are neither known a priori, nor easy to obtain..
When unappropriate values are prescribed for these conditions (for instance, when they are set
to zero), a very long CPU time is needed to reach the steady-state solution. Considering that,
in most cases, the transient part of the solution is not meaningful, techniques allowing us to
compute the steady solution in the shortest possible time are in high demand, and, in particular,
those determining suitable initial conditions.

In the literature, we can find different approaches to the problem of reducing the computational
cost to reach the steady-state in the numerical simulation of induction motors. The worst case
scenario would be what is known as brute-force method, which consists in starting with zero
initial conditions and letting the simulation advance in time until the steady-state is reached. In
this case, several days of simulation may be needed, even with the performance of modern com-
puters. In recent years, different approaches have been developed to address the problem we
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are considering. For example, the so-called 7ime Periodic Finite Element Methods (TPFEM)
are based on writing the discretized problem in a time-interval in which its solution is peri-
odic, and solving all time steps at the simultaneously (see [57, 79]). Even though this technique
avoids the step-by-step simulation, it requires solving nonlinear systems with very large non-
symmetric matrices. Therefore, parallelization techniques, which can be applied in space or
time (see [98, 99]). Alternatively, in the 7ime Periodic - Explicit Error Correction Methods
(TP-EEC), (see [61, 101]), and the Time Differential Correction (TDC), (see [75, 100]), conver-
gence of the transient model is accelerated by incorporating error correction techniques already
present in more general iterative methods, along with some properties of TPFEM. Finally, we
highlight the methodology consisting in prescribing as initial conditions the ones obtained as the
solution to a nonlinear eddy current problem in the frequency domain. The harmonic approxi-
mation is based on the hypothesis that the time variation of the fields can be written in terms of a
complex exponential function, the nonlinear effects are taken into account by means of an effec-
tive magnetization curve and the rotor motion with an adjustment in the electrical conductivity
of the rotor bars (see [96]).

A common obstacle for TPFEM, TP-EEC and TDC methods is choosing a suitable time interval
in which the solution is assumed to be periodic. This is due to the fact that the magnetic fields
in rotor and stator oscillate at different frequencies, and the common time at which both are
periodic (the so-called effective period) is generally quite large. However, at the same time,
the periodicity condition has to be defined in a small enough time interval for the method to
be useful. In TPFEM methods, there are several strategies to deal with this restriction, most of
them based on the spatio-temporal symmetries of the problem (see again [98, 99]). On the other
hand, TP-EEC and TDC methods handle it by accelerating the convergence in both domains
separately, or even only in one of them (see again [61]). In this regard, our methodology has
the advantage of making use of the periodicity condition only in the rotor bars, so this limitation
does not apply to our case. Moreover, the computational cost of our approach does not depend
on the size of this period, and the number of unknowns is very small in comparison with the
mentioned methods.

Thus, the main objective of this chapter will be to reduce the simulation time, so that the steady
regime is reached in the shortest time possible by pre-computing suitable initial conditions.
For this purpose, we will restrict ourselves to the case of an induction machine with squirrel
cage rotor. The proposed methodology is inspired in the techniques introduced in [16] for a
2D transient magnetic model with sources given in terms of currents and voltage drops. In
the present paper, we will extend some of the ideas proposed there to a case including motion
of some parts of the domain and conductors in which neither currents nor voltage drops are
known. Moreover, initial currents are sought in these conductors, what represents an additional
difficulty.

This chapter is organized as follows. In Section 5.2 we state the problem to be solved, that con-
sists of a transient 2D nonlinear distributed model coupled with a lumped one for the electrical
circuit of the squirrel cage. Then, in Section 5.3 we will formally rewrite the problem as an
implicit system of ODE in terms of the current in the rotor bars of the squirrel cage. Section 5.4
is devoted to the approximation of the initial condition corresponding to a periodic steady so-
lution. For this purpose, we perform twice a time-integration of the reduced problem, neglect
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some terms and approximate the currents in the rotor bars by their respective main harmonics. In
Section 5.5 we validate the method with some numerical results that illustrate its performance.
Moreover, in Section 5.6 we generalize the methodology to cover the multiharmonic case. Fi-
nally, in Appendix A we detail the computation of a Jacobian matrix that is useful for applying
the presented methodology.

5.2 Mathematical Modeling

Let us consider the 2D bounded domain €2, corresponding to the cross-section of a squirrel cage
induction motor configuration at initial time (see Figures 5.1 and 5.2). Hence, domain €2 consists
of N, connected conductors (stator coil sides and rotor bars), the ferromagnetic core (in rotor
and stator), the air between rotor and stator (air-gap), and the rotor shaft. We notice that the
shaft is usually modeled as a non-conducting, magnetically linear domain, whose material has
the vacuum reluctivity, vy, and thus it will be considered as if it was air. Moreover, we notice
that we have considered that the domain boundary is the outer boundary of the stator, but the
same methodology applies with no change to the case in which the motor is surrounded by an
artificial box filled with air. Thus, we have

* ()y: domain occupied by air (white color in Figure 5.2).

« Q,,n =1,...,N.: linear conductors representing the cross-sections of the rotor bars
(n=1,..., Ny; grey color in Figure 5.2) and of the stator coil sides (n = N, +1,..., N,;
blue, yellow and red colors in Figure 5.2).

 (),;: non-conducting nonlinear magnetic cores (brown color in Figure 5.2).

In the methodology developed in this chapter, we will make a simplification based on assuming
that the bars are stranded conductors, that is, conductors where the induced currents are dis-
tributed in an uniform way. In a similar way, we will also treat the stator coil sides as stranded

Coil side

Shafi

End-ring Rotor bar

Figure 5.1: Main parts integrating an induction motor. From Wikimedia Commons by
Mtodorov 69 under license CC-BY-SA-3.0.
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Conductors

Magnetic

Figure 5.2: A quarter of the geometric domain at time ¢ = 0 (left)and ¢ > 0 (right). Modification
of a picture provided by Robert Bosch GmbH.

conductors. These assumptions make it possible to say that the current density is uniformly
distributed in all conducting subdomains §2,, and given by

n (T
L(L, nzl,...,Nb,
Joo() = meas(2,,)
zZmn - ]—n (t)
n=Ny,+1,...,N,
meaS(Qn)’ » + 1, y4Ve

where we have denoted y,,(t), n = 1,..., Ny, the currents through the cross-section of each
rotor bar at time ¢, and [,,(t), n = N, + 1, ..., IV, the currents through the cross-section of each
stator coil side at time ¢. Moreover, we consider a balanced three-phase electrical supply for the
induction machine. Thus, currents /,,(t), n = N, + 1,..., N, can be computed a priori from

the currents in the three phases A, B and C.

We notice that, in the simulation of induction machines, the bars of the squirrel cage are usually
modeled as solid conductors, where, in opposition to stranded conductors, the induced currents
are not uniformly distributed (see, for instance, the classical model presented in [93]). Never-
theless, we advance that assuming the rotor bars as stranded conductors will not constitute a
limitation to the applicability of the methodology (see Remark 5.10 in Section 5.5).

Therefore, we start by considering the formulation in Problem II.2, modelling the laminated
core as a homogeneous non-conducting medium and neglecting the effects of eddy currents in
the 2 space direction except along the rotor bars (since the ferromagnetic core is laminated in
this direction). However, we have to extend the formulation to take into account the motion of
the machine. Then, for numerical purposes, we split {2, and €2, into two parts using a circle
I" strictly contained in the air-gap: Q, = Q&' U Q5% Qp = QF°' U O, where Q55" U QF°"
corresponds to the rotor and Q5% U Q5" to the stator. Let us notice that circle I" also divides

the whole domain € into two parts to be called 2" and Q%**, which correspond to the initial
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position of the rotor and to the stator, respectively. More precisely,

- Nb o - o - N, o o o
Qret = (ngt U (U Qn) U Qfgt) , = (Qgﬁa U ( U Qn) U fola) :
n=1 n=Np+1

In the case of moving bodies, Ohm’s law (I1.8) changes accordingly to the movement law (see
[64] for a short presentation). However, we consider a reference frame moving with the rotor,
and thus Q" is fixed and °** is moving. As a consequence, equations (II.11) remain valid. We
notice that, in the framework of induction machines, a usual solution is working with Lagrangian
coordinates in both rotor and stator (see, for instance, [39, 93]). However, in our case, it is
enough to consider a unique reference system moving with the rotor as the conductors present
in the stator are stranded conductors where the currents are known. Therefore, in the stator, nor
Ohm’s law (I1.8) neither Faraday’s law (I1.5) are needed to state the problem.

If we call r, the rotation whose angular velocity is the opposite to the one of the rotor, at time
t > 0, the stator has a different configuration with respect to the initial time, given by

re (Qgta)u< L (Qn)) e ().

n=Nb+1

It is important to notice that both the rotor and stator geometric sets, 2 and 2°**, are always
the same, but the physical parameters at each point may change along the time as they are not
invariant with respect to rotation r;.

Finally, we notice that neither the currents nor the voltage drops are known in the rotor bars, and
thus we will need to add new equations to be able to compute them in terms of the problem data.

5.2.1 The Transient Magnetic Model

The 2D problem that we have described up to now has known sources only in the stator coil sides,
which are given in terms of the current through them. Therefore, in this case, the formulation in
Problem II.2 with moving geometry reduces to

—div(vpgrad A) =0 in Q" Ur, (), (5.1)
. n(t :
—div(ypgrad A) = meyas((g)ln) nQ,, n=1,..., Ny, (5.2)
—div(y, radA)—Ini(t) inr(Q,), n=N,+1 N, (5.3)
Vilo 8 - meaS(Qn) t n) — 4Vp sy dVey .
—div(v(-, |grad A|)grad A) =0 in QS Ur, (Qfﬁa) , (5.4)
A=0 onodf. (5.5)

However, the current in the squirrel cage is induced by the one in the stator, and therefore currents
yn(t),m = 1,..., N, are not known in advance. To be able to compute them, we have to take

143



MARTA PINEIRO PEON

-10 0 -110 0 0 0
4 ; 0 =10 1 0-10 0 0
° @ 2 ° 0 0-10-110 00
1 00 00 0-10 1
3 01 00 00 110
e ® 0010000 1 —1

Figure 5.3: Example of graph topology and associated incidence matrix

into account that all bars are connected to each other through the end-rings (see Figure 5.1).
Considering that we cannot include these end-rings in the 2D model of cross-section of the
motor, we will write a lumped model for the squirrel cage electrical circuit, and couple it with
the distributed one. The topology of this circuit is modeled as a directed graph. Let us recall
that the incidence matrix of a directed graph is a nod x edg (nodes by edges) matrix A = (a;;)
defined by
-1 ifi =m(1,7),
Q5 = 1 lf’L:m(2,]),
0 otherwise,

fori € {1,...,nod}, j € {1,...,edg}, and m(1, j), m(2, 7) denote the first and second nodes
of the j-th edge, respectively. A simple example is shown in Figure 5.3 where the number of
nodes is nod = 2N, = 6 and the number of edges edg = 3NV, = 9.

By using the incidence matrix, the first Kirchhoff’s law, which states that the charge is conserved
at the nodes of the circuit, can be written as follows:

Ag(t) =0, (5.6)

where ¢/(t) € R°¥ denotes the vector of currents along the edges of the graph. Moreover, let
us introduce the vector of nodal electric potentials at time ¢, denoted by /() € R", and the
resistance of the n-th bar per unit length in the z-direction, denoted by «,, := (0 meas(£2,,)) ",
n =1,..., N,. Then, the constitutive equations for the circuit elements can be written as

Dy(t) + AY5(t) = 0, (5.7)
where D denotes the diagonal operator given by (Dy(t)), = D, (y,(t)), with

d
Rndt/gn GA() + Ruyn(t)  n=1,...,N,
Royn(t) n=~N,+1,..., edg,

Dn (yn(t)) =

R,,n = N,+1,...,edg, being the resistance of the n-th edge of the graph, and R,, = ¢, v,
n =1,..., N,, the resistance of the n-th rotor bar, with /,, its length. We notice that expressions
of D, (y,(t)) forn = 1,..., N, are obtained similarly to (Il.11).

Thus, the problem to be solved is the following:

Problem 5.1. Given the currents along the coil sides I,,(t), n = N, + 1,..., N,, and initial
currents along the bars yg, n=1,..., N, find, for every t € [0,T], a field A(x,y;t), currents
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yn(t), n =1,..., edg, along the edges of the graph and voltages v, (t), n = 1, ... ,nod, at the
nodes of the graph such that y,,(0) =y, n=1,..., N;, and

—div(vograd A) =0 in Q" Ur, (), (5.8)
. n (1 :

—div(ypgrad A) = mgas((gln) inQy,,n=1,... N, (5.9
—div(y radA)—]ni(t) n (), n =N, + 1 N, (5.10)

Vilp 8 —meas<Qn) 1 ACYZ D = 1Vp A .
—div(v(-,|grad A])grad A) =0 in Q" Ur, (Qfﬁa) ) (5.11)
A=0 ono, (5.12)
Dy(t) + AT (t) = 0, (5.13)
Aij(t) =0. (5.14)

5.3 A Reduced Problem

The goal of this section is to obtain an equivalent formulation to Problem 5.1 having the currents
along the rotor bars as the only unknowns. For this purpose, let us first introduce some notations
that will allow us to write Problem 5.1 in a more compact form. Let F : [0, 7] x RN — RN
be the nonlinear operator defined as

iy
F(t,w) := (/Q cA(z,y,t) drdy, .. .,/Q gA(z,y,t) dxdy) eRM, tc0,T],weRM,
1 N,

with A(z,y,t) the solution to the following nonlinear magnetostatic problem:

Problem 5.2. Given a fixedt € |0, T, currents along the coil sides I,,(t), n = N, +1,..., N,,
and @ € R™, find a field A(x,y,t) such that

— div(vograd A) =0 in Q" Ur, (), (5.15)
—div(ypgrad A) = me;:an) inQ,, n=1,..., Ny, (5.16)
—div(ypgrad A) = Ini(t) inry(Q,), n=Ny,+1,..., N, (5.17)

meas(2,)
—div(v(-,|grad A|)grad A) =0 in Q5 U, (Q;ﬁa) , (5.18)
A=0 ondQ. (5.19)

On the other hand, two blocks can be distinguished in equation (5.13), one corresponding to the
rotor bars and another one corresponding to the remaining edges of the squirrel cage, namely,
those of the end-rings. Let us denote the incidence matrices of their respective subgraphs by .4
and A". Thus, we have A = (.Ab | AT), and, accordingly, the vector of currents 7/ is decomposed

as )
-_ [ Y
Y <y—»r>
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Then, equation (5.13) can be rewritten as

—

d T
b —b b=b A
R F (t.7°1) + R (1) + (A) (1)
R () + (A7) ()
where R® and R" are the diagonal matrices defined by

(R"), = Ridyy. ij=1.... Ny,
(Rr)ij = Rz‘+Nb6ija Z,j = 1, NN ,€dg - Nb.

Il
=l

0]

with d;; the Kronecker delta, that is,
P 0 if i # 7,
Y1 ifi = j.

Thus, equations (5.8)—(5.14) can be rewritten in the more compact manner,

d - B}
RECF (1 70)) + R0 + (A) a(t) =0, (5.20)
R (t) + (A" 5(t) = 0, (5.21)

AL () + A (t) = 0 (5.22)

Moreover, since R" is a non-singular matrix, from (5.21) we get

7' (t) ==(R)THA) T(1):

Therefore, Problem 5.1 is equivalent to the following one,

Problem 5.3. Given the currents along the coil sides I,,(t), n = Ny + 1, ..., N, and the initial
currents along the bars y°, n = 1,..., Ny, find, for every t € [0,T], currents y,(t), n =
1,..., Ny, along the bars and voltages v, (t), n = 1,...,nod, at the nodes of the graph such
that y,(0) =y%, n=1,..., N, and

d = B
ROSF (L,5°(0) + RUF(1) + () &) = 0, (5.23)
A () — AT(R)H AN 6(t) = 0. (5.24)

where operator Fis defined in terms of 1,(t), n = N, + 1,..., N,, through the solution to
Problem 5.2.

Next, we show that ¢(¢) can be eliminated from system (5.23)—(5.24).

Lemma 5.4. [f the currents along the bars, y,(t), n = 1,..., N, are such that
A () =o
e
where e = (1,...,1)T € R™, there exist a matrix B~" and a scalar function \(t) such that

v(t) = BT A0 (1) + A(t) ( g > .
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Proof. Firstly, let us analyse the nullspace of matrix (.A’”)T. Since the subgraph obtained by
removing the bars has two connected components (the two end-rings), each of them having /N,
nodes, the rank of matrix A" is 2V, — 2 (see Theorem 7.2 in [43]). Therefore, we conclude that
the dimension of the nullspace of (.AT)T is two. If we number the nodes belonging to one of the
rings first and then the ones of the other ring, this nullspace is given by

N (AT :<< ),(g) >

Moreover, it is easy to prove that
N (A7 (R)™H(AD)T) = N ((A)T) |

L ™y

Indeed, it is obvious that N ((A”)T) CN (A” (R~ (AT’)T). Conversely, given
N (A (R)HANT),
we have,
AT (RT) AN Z-2=0= (R (A)' Z-(A)' 2

and, since the linear transformation associated to (R”) " is bijective, we conclude that Z also
belongs to N ((AT)T).

Now, we are going to see how we can obtain #(#) in terms of A%4°(¢). Let us denote by
1
& the matrix of order 2V, X (2N, — 2) whose columns span the space N ((.A’“)T) . Since

L
N ((A’“)T) = Im (A"), matrix € can be obtained from matrix .4" by eliminating two columns,
each corresponding to an edge of each end-ring.

Moreover, ETA"(R") ™ (A")" £ is an invertible matrix of order (2N, —2) x (2N, — 2). Indeed,
since R” is a non-singular diagonal matrix, E*A"(R")~ (A")" £ is invertible if and only if
ETA" (A" € is also invertible. Besides, since rank(P) = rank(PTP) for any matrix P, the
result follows from the definition of matrix £. This can be easily seen by rearranging the columns
in A" such that the first 2NV, — 2 columns are linearly independent.

Additionally, if

) and L (A) ( g) , (5.25)

L ™y

o ()"

then
Ti(t) = E(ETAT(R) (AN £)TLET A1)

is a solution to (5.24). Indeed, on the one hand, we have

ETA(R) ™ (AN ()
= ETA(R) (AT EETA(RY) (AN E)LETA G (1) = ETAYFE(L). (5.26)
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On the other hand, as the columns of € form a basis of N (A’” (R")! (.AT)T) l, then ¢/} (¢) belongs
to this subspace. Also, conditions (5.25) imply that .A%5°(¢) belongs to N (A“(Rr)_l (.A’“)T)l.
Then, since £ is one-to-one on Im (,47"(727")_1 (AT)T>, (5.26) implies

AT(R)THAT) T T (t) = AF0(1).

Hence, the general solution to (5.24) is

L @y
o] 3l

5(t) = E(ETA (R ()T ) ET A1) + (1) (

)oo(2)

for any choice of ¢(¢) and A(¢). Therefore, we can take
Bl =EETAT (R (AN &)ET.

Since the potential is defined up to a constant, we can arbitrarily choose either ¢(t) or A(t).
For instance, if we take ¢(t) = 0, A(¢) is an unknown of the problem that is determined by the
second condition in (5.25). [

Finally, the problem to be solved can be written in terms of 77°(¢) and \(¢) as follows:

Problem 5.5. Given the currents along the coil sides I,,(t), n = Ny + 1, ..., N, and the initial
currents along the bars yg, n = 1,..., Ny, find, for every t € [0,T], currents y,(t), n =
1,..., Ny, along the bars such that y,(0) =y, n=1,..., N, and

ijtf (t.7°() + (Rb +(A) B (A”)) 7o) + M) (A7) ( g) =0, (527)
APP(t) - ( g) =0, (528

where operator Fis defined in terms of 1,(t), n = Ny + 1,..., N,, through the solution to
Problem 5.2.

5.4 An Approximate Method to Compute Appropriate Initial
Currents

In this section, we propose a method to compute an approximation of the initial condition of
Problem 5.5 corresponding to a periodic steady solution. If the currents along the stator coil
sides are periodic functions of the same frequency f. (in Hz) and the rotor is moving at a constant
angular velocity n, (in rpm), the full problem has also a steady periodic solution to period 7,
the so-called effective period. If we denote by 7. the electrical period of stator coil sides (in s),
(i.e., T, = i) , and by 7,. the mechanical period of the rotor motion (in s), (i.e., T, = @> , then

Ny

T,=NT.=MT,,
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where M and N are integers such that

. M

7. N

and the greatest common divisor between M and N is equal to 1. Actually, the effective period
guarantees the periodicity of all the magnitudes involved in the induction machine problem,
because one can prove that 7, is an integer multiple of 7., T, and T}, the period of the current
in the bars (to be defined below).

In order to compute the steady periodic solution, we could take any initial conditions ¢!, . . . | y?v,, ,
(null, for instance), and integrate the algebraic-differential system of equations given above until
convergence. However, this procedure can be very costly from the computational point of view
if the initial currents are far from the ones corresponding to the periodic solution we are looking
for. The goal of this section is to propose a method to determine these initial currents, in such a
way that the periodic steady solution can be obtained by integrating the problem along a time-
interval as small as possible.

Let n, be the so-called synchronous speed (that is, the rotation rate of the magnetic field in
the stator), which is given by ny, = (60f.)/p (in rpm), p being the number of pole-pairs of
the machine. Furthermore, let s be the slip, that is, the difference between synchronous and
operating speed, relative to the synchronous speed, s = (ns — n,.) /n,. Then, one can prove that
the period of the current in the bars, 7}, (in s), is such that 7}, = 7. /s (see, for instance, [35]).

Firstly, let us successively integrate (5.27), first in [0, ¢] and then [0, 7}, obtaining

Tb — —
R / F(t,7°0) dt = T,F (0. 5>
(7 ea0) anZ o)
Ty i
+ (R + (B [ ( | 56) ds) dt
0 0
Lot b\T 0 =
+( </ A(s) ds) at) ()T (%) =10, 529
0 0
where we have used the notation 77*° := (y?, ey y?vb)T, from which it easily follows that

RY (/OTb F(t.9"(t)) dt — T,F (0, gjb’(]))

+ (RN (A)TBAY) [ - 050 at

+ ([ moa) (L) =0 6

Notice that we have changed the order of integration with respect to ¢ and s in the planar region
depicted in Figure 5.4 to obtain the identity

ATb </Ot?]b(5)ds) dt:/:b (/S.Tb dt) gb<3)d3:/[)Tb(Tb—t)gb(t) n
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dS L

dt T, T

Figure 5.4: Sketch of the domains of integration {(s,t),s € [0,¢],¢t € [0,T}]} (left) and
{(s,t),t € [s,Tp], s € [0,T}]} (right).

and a similar one for the term involving \.

Equations (5.28) and (5.30) are exact for any initial condition and time 7;. They allow us to
compute the initial currents 7/*° leading to a periodic solution from the initial time. This com-
putation can be done by using iterative methods which require solving problem (5.8)—(5.14) in
[0, T3] at each iteration, what would be very costly. In what follows we propose a much simpler
alternative method, which is obtained by approximating equation (5.30) in a way to be specified
below.

liresesyeeeeeesssieees
. 0---0---@-0,_:3;_:’,.....Q--Q--Q---0--t--t___:___;____-?”,,..q--& b T ) j
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Figure 5.5: Relative value of the different terms in equation (5.30) versus the bar number.

Thus, on the one hand, we conjecture that the first term on the left-hand side in (5.30), namely,

RY /OTb F(t.g")) dt

can be neglected because, in real situations, it seems to be much smaller than the other terms.
This can be seen for the particular example shown in Figure 5.5. From a physical point of view,
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Figure 5.6: Comparison between 3°(¢) and the approximation given in (5.32)

30 30.02 30.04

this assumption means that the flux linkages of the rotor bars have approximately zero mean over
one period of the fundamental frequency of currents in the rotor bars. Let us notice, however,
that the term involving the resistances, namely,

T
(R?+ (A5 1A") / Ty = OF(t) dt
0
cannot be neglected (see again Figure 5.5). Therefore, we should consider the equation
- Ty
~TRVF (0,570) 4 (RY + (A28 4%) / (Ty — O)F°(¢) dt
0
% mr [0 =
+ / (@~ A dt ) (AT () =0 (5.31)
0

On the other hand, we would also like to avoid the calculation of 7/°(¢) because it is very expen-
sive. Indeed, notice that at each iteration of any iterative algorithm solving (5.28)—(5.31), the
computation of 7°(¢) starting from 7/*° would involve the solution to the full model along the
interval [0, 7;]. In order to avoid such a drawback, we notice that the currents along the rotor
bars can be approximated by a harmonic function of frequency f, := 1/T}, (see Figure 5.6).
This is a key point in the proposed technique because it allows us to approximate the original
problem with a time-independent one. Moreover, for symmetry reasons, we will assume the
amplitudes of the approximations of the currents in the rotor bars to be the same in all of them,
which will be denoted by Y. Then, the idea is to approximate the vector of rotor bar currents,
7°(t), as follows:

—

Y (t) ~ l(Ab)T ( g)] Y cos(27 fit + ), (5.32)

where (3, is the phase-shift between phase A of the current source in the coil sides and the current
of the n-th bar. Accordingly, the initial currents are given by,

y' =Y [(Ab)T < g)] cos . (5.33)
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On the other hand, from periodicity arguments one can show that the phase angles are
Bn=01+n—=1)y, n=1,...,N,, (5.34)

with v = (27p)/N,, and then only two unknowns remain: Y and f3;. In order to compute them
we will construct a system of N, nonlinear equations that will be solved in the least-square sense.

Let us introduce the column vectors @ and , whose respective n-th components are

Uy = l(Ab)T < g)] cos 3, and w, = l(Ab)T ( g)] sin B3,

n=1,..., N, Then, 7" = Y. We also observe that

i ol
— and W= -——-. 5.35
5 95, (535)

U=

The approximate currents introduced in (5.32) trivially satisfy
Ty -
/ 7o (t) dt =~ 0.
0

Additionally, they also satisfy constraint (5.28), as we state in the following lemma:

Lemma 5.6. The approximate currents introduced in (5.32) satisfy constraint (5.28) for any
values of Y and (.

Proof. Taking into account that

o (8]

forn =1,..., N, depending on the orientation of the n-the edge, we have

7h(t) - (AT ( ‘i) ~ % [(Ab)T ( (;)r Y cos(2m fot + f3n)

€ n=1 n

=Y Z COS(Qﬂ'fbt + 571) = YRe (Z ei(zﬂ'fbt+51+(n1)'y))

n=1 n=1

et —1

. Ny . R eiNb'}’ _ 1
— YRe [ /@48 3 o1 | — yRe <ez(2ﬂfbt+al>>
n=1

] 27p 1
— YRe (ez(QTrfbH-ﬂl)e > =0, (536)

e —1

as long as 7y is not an integer multiple of 27 (which would mean that p is a multiple of N,),
because e*™ = 1 for all integer p. O
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Remark 5.7. We also notice that, from the calculation in the proof of the above lemma, we
deduce that

Nb Nb
Z cos B, =0 and Z sin 3, = 0.
n=1 n=1

T,

Now, let us compute the integrals / ' (T, — t)y° (t) dt by using the approximation introduced in
0

(5.32). We have

[ @ ok s [ (2 )] [0y cos (o5,
= - [(Ab)T ( gﬂnYQTi sin 3,

and hence,
T b Ty
/ (T, — )7 () dt ~ —Y =t (5.37)
0 2

Finally, using the notation ;1 = [;*(T, — s)\(s) ds, the problem to be solved reduces to:
Problem 5.8. Given periodic currents along the coil sides I,(t), n = N, + 1,..., N,, find

Y eR, p; €10,27) and v € R such that

) i}
—TyRYF (0,Y@) — ;F;y (R"+ (A") "B A) i + (A" ( g) = 0.

—
—

We notice that (51 appears in the previous system through # and «. Similarly, F (0,Y%) is
defined in terms of 7,,(0), n = N + 1, ..., N,, through the solution to Problem 5.2.

Moreover, in the above system, it is possible to eliminate unknown x in terms of Y and /3;
(through ), which is more convenient from the computational point of view. Indeed, it is easy
to see that

(RY+ (AT B! A”)_l TyRPF(0,Y @) - (AY)T ( @ )

(]

M:

o Ol
@ Ol

(Rb + (_Ab)T B-1 Ab)_l (_Ab)T (

By replacing this expression for ;. we get

- T2
— TyRYF(0,Y @) — Yﬁ (R + (A")"B7'A?) i

@ Ol

+ E [(Rb + (AT B! A”)_1 TyRVF(0,Y @) - (AT < g )] (ANT (

a

) =0, (5.38)

where . .
a:= (Rb + (AT B! Ab)il (AHT < g > (AN ( g) .
In this way, Problem 5.8 can also be written as
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Problem 5.9. Given periodic currents along the coil sides I,(t), n = N, + 1,..., N, find
Y € Rand 5, € [0,2m) such that

T, [i(Ab)T ( g) ® <(Rb+ (.Ab)T B! Ab)iT (.Ab>T < g)) __'Z:| Rbf(O,Yﬁ)

- Y;F;’T(Rb + (ANTB AW = 0. (5.39)

In the above expression, where Z denotes the identity matrix. This is an overdetermined system
that can be solved, for instance, in the least-square sense. With this aim, let us define

2
F 1y

f(Y,By) = —YQW (RP + (ANTB 1A w

o AL

+ T [i(Ab)T ( g) ® ((R” + (AT B Ab)fT A" (

Then,

)) —I] RVYF(0,Y). (5.40)

(Y, 1) = argmin{ Hf(Z, f)Hz s Yoin K Z < Y, 0<E< 2%} .
Z,§

This minimization can be performed with different algorithms, for which, in general, the Jaco-
bian matrix of function f with respect to (Y, ;) should be computed. This can be done using
(5.39), by means of the chain rule. Let us notice that the calculation of the Jacobian matrix of
mapping F (0, -) involves the solution to the magnetostatic problem (5.15)—(5.19) for time ¢ = 0.
In Appendix A we detail the computation of both matrices.

5.5 Numerical Results

In this section we present the numerical results obtained for a particular induction machine with
squirrel cage rotor, which allow us to validate the methodology proposed in this chapter. In
particular, we will use the numerical method proposed in last section to estimates suitable initial
currents in the bars of the induction motor, assuming that these currents are purely harmonic
functions of time. Next, we solve a transient eddy current formulation using the obtained cur-
rents as initial condition, and compare the time needed to reach the steady-state with the one
needed by taking null initial currents. We notice that, unlike the formulation used for the ap-
proximation of suitable initial currents, in this second step we use a more realistic transient
simulation, with rotor bars modelled as solid conductors. These numerical results allow us to
illustrate the reduction of the time needed to achieve the steady state with respect to the null
initial condition.

In what follows, we describe some of the characteristics of the machine and then we show the
numerical results for the described methodology. The characteristics of the machine have been
provided to us for this research by Robert Bosch GmbH, and the initial currents are computed
for different operating points.
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Figure 5.7: Geometric domain. Modification of a picture provided by Robert Bosch GmbH.
5.5.1 Description of the Machine

A cross-section of the induction machine is sketched in Figure 5.7. It is composed by N, = 36
slots in the rotor and N, — N, = 48 slots in the stator.

This induction motor is a three-phase machine having 2 pole pairs with 12 slots per pole. Fig-
ure 5.7 also shows the winding distribution in the stator: red, yellow and blue slots correspond
to phases A, B and C, respectively. These source currents are characterized by an electrical
frequency f. and a RMS current .. through each slot. The currents corresponding to each phase
of the stator are defined as

I4(t) = V21, cos (2n f.t),

2
Ip(t) = V21, cos <27cht + ;) ,

Ie(t) = V21, cos (27ch2€ - 2;) :

Finally, concerning the materials, the rings of the squirrel cage are characterized by a resistance
R and the stator coil sides are made of copper. Moreover, the laminated nonlinear material is
the electrical steel M330 35A (see [14]).

5.5.2 Initial Currents for Different Operating Points

We recall that if the currents along the rotor bars are approximated by harmonic functions of
frequency f;, the only unknowns to be determined for computing their initial values are Y and
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feMz) n, (tpm) I (Arms) T (s)
Op. Point 1 421 1000 675  0.114
Op. Point2  171.2 5000 314 0.221
Op. Point3  417.5 12000 675  0.057
Op. Point4  632.0 18000 531 0.031

Table 5.1: Characteristics of the different operating points.

Y (A) Bi(ad) |f(Y,5)]> YO @A) B (rad) NL solutions

Op. Point I  1073.25 3.20  8.12¢e—-09  900.00 1.50 14
Op. Point2  477.78 3.34  1.12¢e — 08  400.00 2.00 6
Op. Point3  1186.80 295 1.75e —09 1200.00 2.00 8
Op. Point4  942.20 2.87 3.80e — 10 1000.00 2.00 5

Table 5.2: Optimal values for the different operating points and computational effort.

B1. We have proposed to approximate these values by
— 2
(}/7 61) = argmin{ Hf(Zaf)H2 : Ymin S Z S Ymaza 0 S 5 < 27T} 9
Z,§

where function f is defined by (5.40). In order to validate this methodology, we have consid-
ered four operating points corresponding to different electrical sources in the stator and rotor
velocities; see Table 5.1. In particular, we notice that the period of the current in the rotor bars,
T,, one order of magnitude smaller in the second operating point 2 with respect to the first one.
However, as we have already mentioned, the methodology to compute the initial currents is
time-independent, and therefore its computational cost does not depend on these sizes.

For each operating point, we have found the minimum value of function H f (Y, 51) Hz by using
the Matlab function 1sqnonlin. Table 5.2 shows the optimal values obtained for Y and 3; and
the residual at each operating point. Moreover, in order to measure the computational effort of
the 1sqnonlin function, we have included the initial values, QY(O) and 6%0)), and the number
of nonlinear magnetostatic solutions (NL solutions). The initial values were selected by using a
multistart strategy.

Next, we will analyze the consequence of using these optimal values to define the initial currents
along the bars in the transient magnetic simulation.

5.5.2.1 Sensitivity Analysis of Steady-State in Terms of Initial Currents

In this section, we will show that the time needed to reach the steady-state in a transient simu-
lation strongly depends on the choice of the initial currents in the rotor bars of the machine. To
attain this goal, we will perform a transient simulation starting with initial currents defined from
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Op. Point 1 Op. Point2 Op. Point3 Op. Point 4

Bar 1 —1071.40 —468.41 —1165.10 —907.66
Bar 2 —985.38 —407.95  —1172.10 —939.37
Bar 3 —780.48 —298.29  —1037.80 —857.78
Bar 4 —481.45 —152.65 —778.26 —672.73
Bar 5 —124.35 11.40 —424.87 —406.53
Bar 6 247.75 174.08 —20.25 —91.31
Bar 7 589.97 315.76 386.83 234.94
Bar 8 861.03 419.35 747.24 532.84
Bar 9 1028.20 472.37 1017.50 766.48

Table 5.3: Initial currents (in A) defined from Y and 3, for the different operating points.

the values of Y and (3, found in the previous section, and we will compare the results with those
where the initial currents are equal to zero. The initial current intensities for the four operating
points are detailed in Table 5.3. Due to the machine periodicity, we only specify the values for
bars 1 to 9.

To analyze if the solution of the transient eddy current model has reached the steady-state, it is
usual to study the torque in the rotor and the currents in the bars of the squirrel cage. Therefore,
Figures 5.9 to 5.12 show the electromagnetic torque in rotor (left) and the current along the first
bar (right) versus time for the different operating points, where 7 denotes the electromagnetic
torque. In all of these figures, the red curve corresponds to null initial values for the current
along the bars, while the blue ones have been obtained by using the values provided by the
method introduced in this chapter.

Remark 5.10. We emphasize that one of the hypothesis of the methodology for computing suit-
able initial currents in the rotor bars consists in assuming that these currents are uniformly
distributed. This assumption has allowed us to write an electromagnetic model for the induc-
tion machine having time derivatives only in the equation linking currents and voltage drops,
and avoiding, in particular, having a parabolic equation in the bars. In opposition, the tran-
sient simulations presented in this section have been performed by considering the bars as solid
conductors (see Figure 5.8), and therefore solving a classical eddy current model coupled with
circuit equations, like the one presented, for instance, in [93].

Notice that, in all cases, when starting from the optimal values, the currents reach the steady-
state very quickly. However, the time to reach the steady-state in the electromagnetic torque can
be very large starting from null currents. In order to assess the potential computational saving
of the proposed methodology, we will introduce in the next section a mathematical criterion to
determine the steady-state, what allows us to specify the number of time steps needed to reach
that state.
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Figure 5.8: Current density distribution in a rotor bar.
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Figure 5.9: Op. Point 1. Torque vs. time (left). Current in bar 1 vs. time (right).
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Figure 5.10: Op. Point 2. Torque vs. time (left). Current in bar 1 vs. time (right).
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Figure 5.11: Op. Point 3. Torque vs. time (left). Current in bar 1 vs. time (right).
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Figure 5.12: Op. Point 4. Torque vs. time (left). Current in bar 1 vs. time (right).
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5.5.2.2 Analysis of the Computational Savings

Let us introduce 7teaqy as the time of the transient FEM simulation for which the steady-state is
reached. To define this value, let us recall some notation already introduced in Section 5.4. Let
n, be the constant angular velocity at which the rotor is moving (in rpm) and 7. the mechanical
period of the rotor motion (in s), that is, 7, = 60/n,..

For each revolution of the machine, D,, := [nT,, (n + 1)T,],n = 0,1,2,..., let us consider its
uniform time discretization with time step A¢, which is given by:

{nT, + jAt,j=1,...,N} C D,.

Then, the mean torque can be defined as:

1 N
Ty 1= — ZT (nT, + jAt),
N =
where 7 : R™ — R is a scalar function that expresses the electromagnetic torque as a function
of time.

Thus, Tyicaqy Will be defined as Tieqqy = (m +1)T5, with m the first natural number for which
the relative error between the mean torque in the m-th revolution and the five subsequent ones
is less than 2 %. In other words, m is the first natural number for which the following property
holds:
ITm —Tmssl 9y G195
|Tin|
The above criterion has been employed to compute time to the steady-state for the different op-
erating points under study, with the two different initial conditions. The results have been sum-
marised in Table 5.4, both in terms of Te,qy and the number of revolutions needed to achieve
convergence. Notice that the savings are described with respect to the machine revolutions and
they are quite remarkable, specially in operating point 4.

Figures 5.13 to 5.20 show the torque over time for the considered operating points. In each
case, the time needed to reach the steady-state has been indicated with vertical lines: in red
color for initial conditions 7°(0) = 0 and in blue color for initial conditions defined through the
methodology introduced in this chapter. We remark that, in comparison with the case of null
initial currents, starting with the initial currents computed with the proposed methodology leads
to a very important computational saving.
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7 (N.am)

Figure 5.13: Op. Point 1. Torque vs. time.

Number of

Initial condition  Tieady (S) Revolutions m Saving (%)
) "

Op. Point 1 7 (0)=0 01200 2 50
7°(0) =Yu 0.0600 1
) N

Op. Point2 ¥ (0) =0 0.0840 ’ 86
7°(0) =Ya 0.0120 1
—»b o ~

Op. Point3 (0) =0 0.2100 42 24
7°(0) = Yu 0.0550 11
—»b o I~

Op. Point4 ¥ (0) =0 0.3467 104 06
7°(0) =Ya 0.0133 4

Table 5.4: Time to reach the steady state for different operating points.
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Figure 5.14: Op. Point 1. Time to steady state comparison.
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Figure 5.16: Op. Point 2. Time to steady state comparison.
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Figure 5.17: Op. Point 3. Torque vs. time. 7/*(0) = 0 (left) and 77°(0) = Y@ (right)
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Figure 5.20: Op. Point 4. Time to steady state comparison.
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5.6 Generalization of the Method

One of the key points of the methodology proposed in Section 5.4 is approximating the currents
along the rotor bars by their fundamental harmonics. A generalization of this step, intended to
improve the approximation of these currents, (and thereby the associated initial conditions), can
be easily derived. Mainly, the difference with respect to the method appearing in the previous
sections consists in using a finite number of sinusoidal terms for the approximation of the rotor
bar currents instead of solely its main harmonic. At the end of this section, we will make a few
comments on how the additional frequencies could be chosen.

Firstly, for symmetry reasons, we are going to assume that all bars have the same behaviour in
the sense that currents y”(¢) are the same up to a phase shift. In particular, we will consider
that the same frequency components appear in all rotor bar currents with similar importance and
that the amplitude of each of these harmonic components is the same for all bars. Therefore, we
approximate the vector of rotor bar currents 7/* by a multiharmonic function with M terms:

yh (1) ~ l(.Ab)T ( g)} f: Yo cos(27 fint + Bin), (5.41)

n m=1

where f,,, are the frequencies we are taking into account and, similarly to the previous case, 3,,, ,,
are the phase-shifts between phase A of the current source in the stator and the m-th harmonic
of the current along the n-th bar. Accordingly, the initial currents are given by

b0 _ | (AT 0 <l
v = (AT S| D Yin oS B (5.42)

n m=1

Lemma 5.11. A4 sufficient condition for the approximated currents introduced in (5.41) to satisfy
constraint (5.28) for any values of Y, and f,,, m = 1,..., M, is that the phase-shifts 3, .
m=1,...,M,n=1,..., N, satisfy

Bmn = Bt + ;<n — 1)y, (5.43)

forany 3,1 € Rand z € Z.

Proof. The proof is very similar to that of Lemma 5.6. If we substitute expressions (5.41) for
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/® in (5.28) and take into account (5.43) we get

g»b(t) . (.Ab)T ( g) ’ l(Ab T < g)] Z Y, COS(27Tfme —I—ﬁm,n)

n m=1

Ny,
Z 1(27Tf'mt+ﬁm,n)
Y Re (e 27Tfmt+5m 1) Z ezp n— 1)7)

Q

I
iMiﬁMi ||M§ ||M§ M

n=1
Z =Npy _ 1
= Y Re e 27rfmt+6m1)7'
e —1
27z
= 3 Y,Re [eiCrmtrann €T 7 1) (5.44)
e —1

Since v = 27p/ N, is not an integer multiple of 27 (as it would mean that p is a multiple of V),
if z € Z, then (5.44) is null for any values of Y,,,, f,, and 3,1, m =1,..., M. ]

Therefore, we will assume in the sequel that phase-shifts 3, ,, satisfy (5.43). Notice that, in
Section 5.4, where M = 1 and f; = f,, we took z = p in (5.43).

Let us introduce the column vectors ™ and @™, m = 1,..., M, whose respective n-th com-

ponents are
— [(Ab)T ( g)] oS By and  w)' = [(Ab)T < g)] Sin B,

n=1,..., N, Then, 70 = M 'y, ™. Also, we observe that

ow™ ou™
U = and W™ =-— ) 5.45
“ 8Bm,l . a/Bm,l ( )

T

Now, let us compute the integrals / b (T, — t)y" (t) dt by using the approximation introduced in
0

(5.41). We have

/O P, = 0yt (1) di ~ [(A”)T ( g)] /0 ) fj Yy COS(27 fonl + B

m=1

= l(.Ab)T ( g, )] % R (€08 Bmn — €082 fr Ty + Binn) — 27 fr Ly sin B )

nm=1 471'2]?1

and hence,
T, M Y,
/0 (T, — )7°(t) dt =~ Z proyTy (1 = cos(2m f,,, Tp)) u™ + (sin(27 £, Tp) — 27 fr Tp) W™) .
(5.46)

Therefore, the problem to be solved is:
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Problem 5.12. Find Y,,, B, m=1,..., M, and uw™ such that,

~T,R'F (0 Z Y, *m> + Z i i ((1 = cos(2mfnTh)) (R”+ (A") "B AY) ™

(2 ) = 207, 3) (R + (4B ) (At () =

As for the case M = 1 and f,, = f, we can eliminate ;1" in the above system and then solve
for Y, and 3,1, m = 1,..., M, by using a nonlinear least-square method. We have

e

(RY+ (AN B! Ab)_l TyRYF (0,500, Yiuti™) - (AT ( @ )

o Oy
o Oy

n s () (7)

By replacing this expression we get

M
—T,R'F (o, 3 Ymﬁm> + Z Y f2 ((1 =cos(2mfinTh)) (R" + (A”)TB‘IA”) am

m=1

+(sin(2 fnTh) — 27 fiuTy) (RP 4+ (AY) "B A)

+ Clb [(Rb +(AHT B Ab)*1 T,R*F (0, 3 Ymﬁm> ( g )] < g ) =0,

m=1

which can also be written as

1 0 _T 0 . M
T, [G(Ab)T ( g) @ ((Rb AT B (AT ( g)) - J] ROF (o, 3 ymam>
+ Z 2f2 ( — cos(2m [, Ty)) (Rb e (Ab)TB_lAb) u™

+(sin(27 £, Tp) — 27 [ 1) (Rb + (Ab)TB_lAb> wm) =0. (5.47)
It is important to notice that one can add harmonic terms selectively according to their impor-
tance. One way to address this choice is to compute the so-called energy spectral density of the
steady-state current in the rotor bars, S;+(f), f € R, which describes the distribution of energy
into frequency components f of ij° (see, for instance, [87]). This provides possible frequencies

to include in the analysis.

Let us denote by °(f) the Fourier transform of the current in the n-th rotor bar, which is defined
in the following way:

B = [ e .
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Figure 5.21: Current y°(¢) (left) and Sy (f) (right).

Then, the energy spectral density of () is defined as S, (f) = ’gjfj (f) 2, f € R. For instance,
in Figure 5.21-right we show an approximation for the energy spectral density correspond-
ing to the steady-state current in the first bar for operating point 4 (see Section 5.5), shown in
Figure 5.21-left. To perform this approximation, we have used the discrete Fourier transform
instead of the continuous one as we only had access to the rotor currents sampled at discrete
times. Moreover, we notice that only positive frequencies are shown because, since the rotor
currents are real-valued functions of time, Szu(— f) = Szs(f).

Finally, we highlight that the above procedure needs the pre-computation of the current in the
rotor bars, which is not suitable for the purpose of our methodology. However, according to
the literature, there exist frequency components that tend to appear in the rotor bar currents,
which can be computed a priori, only in terms of the machine specifications. A particular
type of these harmonic components, of special interest in electrical engineering, are the so-
called spatial harmonics. These components of the rotor bar currents are induced by the spatial
periodicities present in the magnetic flux density at the machine air-gap, which are caused by the
unsymmetrical physical structure of both stator and rotor. According to [109], these frequencies
can be expressed in terms of the frequency of the current in the stator coil-sides, f., and the slip
of the machine, s, in the following way:

fo=f(1—-0+6v)(1—-s), veEZ. (5.48)

In what follows, we are going to illustrate the use of the generalized methodology in the case of
operating point 4 from Section 5.5, solving problem (5.47) considering the fundamental current
f» and some other spatial harmonics of the steady-state currents in the rotor bars. In Table 5.5
we specify the frequencies that we have used in the simulations. In particular, we notice that,
for M = b5, these frequencies are precisely the ones with higher energy spectral density in
Figure 5.21-right.

If we define the phase-shifts corresponding to a spatial harmonic of order v as:

Bn,uzﬁl,u+(1+6y)(n_1)’y: TZ:].,...7Nb7
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M=5 M=7 M=9
fv(Hz)  f, (Hz) [, (Hz)
0 32 32 32
1| —3568 —3568 —3568
—-1| 3632 3632 3632
2| —7168 7168  —T168
-2 | 7232 7232 7232

3 —10768 —10768
-3 10832 10832
4 —14368
—4 14432

Table 5.5: First spatial frequencies for Op. Point 4.

we can solve problem (5.47) in the least-square sense, obtaining approximations for Y, and 3, ,,.
More precisely, if we call f the expression appearing in the left-hand side of (5.47), we have

- 2
found the minimum value of H f(Y,,B1.) , by using the Matlab function 1sqnonlin.

In Table 5.6 we show, for the case M = 7, the optimal values obtained when solving the min-
imization problem with different starting points. For each of these optimal values, we have
specified the norm of the residual at the optimal point (that is, the norm of the function to mini-
mize). We notice that several local minima were found with similar residual, but in Figure 5.22
we observe that they lead to very different approximations of the exact initial currents.

500 I o
r:g{’}‘:;’
§ /:i':’_ é -0--Exact .
& =500 A AR *1.58x107 ¢
= " g K% /{ ;f,’::" e 9
” -.i__.gzgii-:i\:if"t,’f / ¥~ 114>< lU o
ST E Lt AN Y - -
10000 =3 N el
' \ i/ 1.85x10°
-10
*3.44x10
-1500} ol
. “4,05x10
0 2 4 6 8 10
Bar number
Figure 5.22: Comparative of initial currents y?, (0) with the exact value y,°(0), n = 1,...,9.
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v 0 1 -1 2 =2 3 =3 |If(Y, B2
y©® @)y | 7000 70 70 70 70 70 7.0
Y, (A)| 8209 509 339 345 323 490 489 | . o
3 (rad) 20 20 20 20 20 20 20
31, (rad) 29 12 15 18 12 3.0 3.0
Y@ ()| 7000 10.0 10.0 100 10.0 10.0 10.0
Y,(A)| 885 744 531 542 720 531 531 . oo
B (rad) 20 20 20 20 20 20 20
31, (rad) 28 14 17 18 12 31 31
Y@ (A) | 900.0 40.0 40.0 40.0 40.0 40.0 40.0
Y,(A)| 8414 352 164 153 372 512 516 .. o
3 (rad) 20 20 20 20 20 20 20
31, (rad) 29 32 17 35 29 27 27
Y (A) | 1000.0 70.0 70.0 70.0 ~70.0 70.0  70.0
Y, (A)| 6646 136.3 1062 1066 1366 100.6 1029 . | s
3 (rad) 20 20 20 20 20 20 20
81, (rad) 28 19 25 25 18 30 3.0
Y@ (A) | 1200.0 100.0 100.0 100.0 100.0 100.0 100.0
Y, (A)| 9033 1283 241 226 1038 180 225 ., .
3 (rad) 20 20 20 20 20 20 20
31, (rad) 29 42 31 35 20 32 32
Y(© (A) | 2000.0 300.0 300.0 300.0 300.0 300.0 300.0
Y, (A)| 7206 0.0 3000 3000 253.8 2411 2411 o0
B (rad) 20 20 20 20 20 20 20
31, (rad) 24 27 20 30 23 37 37

Table 5.6: Optimal values corresponding with different starting iteration (case M = 7).
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, M =5 M=7 M=9
Y, (A) fry(rad) Y, (A) Fi,(rad) Y, (A) S, (rad)
0| 942.73 2.87 903.31 2.85 904.30  2.90
16.90 2.72 128.33 4.21 29.69 3.67
—1] 82.02 482 24.11 3.12 180.00 4.88
2| 8266 4.90 22.62 3.53 6.52 2.40
—-2| 16.15 1.18 103.78 1.98 18.05 3.92
3 17.97 3.17 24.68 2.12
-3 22.50 3.17 24.55 2.12
4 32.60 3.80
—4 4.60 1.75

Table 5.7: Optimal points corresponding to different values of M.

Moreover, in Table 5.7 we show the optimal points obtained for different values of M and the
frequencies appearing in Table 5.5. For each case, we used a multistart strategy and, from the
obtained optimal points, we selected the best one in terms of the average of the relative error in

the initial current in the rotor bars with respect to the exact values 7°:

195(0) = 95,,,(0)]
|y7.(0)]

with

uh(0) = | (

ula(0) = |4 (

1
9

o Dy

0

—

(&

9 bo 1.9
Zg(yM,n> :gz

n=1 n=1

>- Y cos(B1 + (n—1)y),

4n

Inv=—(M-1)/2

M>1,

(M-1)/2
) > Y,co8(Bry + (L4 6v)(n—1)7),

M >1,

and Y, [, taken from Table 5.2. In Table 5.8 we compare the relative difference between the
numerical steady-state currents 7/° and the harmonic approximations %, at t = 0 computed
from the optimal values in Table 5.7. We deduce that adding more harmonic component does
not necessarily lead to a better approximation of the initial currents. Additionally, in Figure 5.23
we show the approximation of these initial currents for each bar and compare them with the exact

initial currents.

Finally, Figure 5.24 shows the torque over time in the eddy current simulation of the induction
motor taking as initial currents the ones computed from the values appearing in the last column
of Table 5.8, comparing it with the torque when these initial currents are computed using the
method explained in Section 5.4. We notice that, even though the error with respect to the exact
initial currents is much lower in the first case, 4.06 % for M = 9 versus 25.63 % for M = 1,
the transient part of the solution is greater in this case.
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EY) (%) E(FF) (%) E(7) (%) E(3y) (%)
Bar 1 9.45 11.00 5.09 5.79
Bar 2 9.67 6.89 18.27 1.15
Bar 3 0.58 6.46 1.55 2.11
Bar 4 41.05 14.36 52.76 6.41
Bar 5 6.24 10.39 16.79 5.18
Bar 6 72.53 34.17 48.82 9.86
Bar 7 47.42 22.41 27.31 2.23
Bar 8 6.83 10.66 14.48 0.00
Bar 9 36.89 5.05 21.31 3.82
Average 25.63 13.49 22.93 4.06

Table 5.8: Relative difference between 7°(0) and the harmonic/multi-harmonic approximation.
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5 Rl
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Figure 5.23: Comparative of initial currents y 7, (0) with the exact value y,/(0), n = 1,...,9.
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Figure 5.24: Torque vs time. Initial currents 77 (0) (blue) and 72(0) (red).
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Conclusions and Future Research

In this part of the memoir we present a brief description of the main contributions of this thesis
and we detail the related work to develop in the future.

Conclusions

This thesis deals with the study of several problems appearing in the context of low-frequency
electromagnetics, and it is divided into two parts. In the first part, we have considered two
eddy current problems, the first one from the point of view of the mathematical and numerical
analysis, and the second one for the purpose of developing a numerical tool that simulates mag-
netization and demagnetization processes of axisymmetric ferromagnetic pieces. In the second
part of the memoir, we have focused on the mathematical modeling and numerical simulation
of electrical machines. For this purpose, we have firstly presented a two-dimensional transient
magnetic model, written in terms of the magnetic vector potential, coupled with circuit equa-
tions that has allowed us to consider sources in conductors given in terms of voltage drops. Then,
starting from this formulation, we have proceeded to consider three different problems. In the
two first ones, we perform the mathematical and numerical analysis of the previous formulation,
with sources in conductors given in terms of voltage sources, and of an optimal control problem
with a state being the solution to a problem closely related to this formulation. Then, in the final
chapter, we have enhanced the mathematical model by taking more general circuit equations
and motion into account, in order to develop a novel methodology to reduce the transient-state
in the simulation of induction motors.

In the sequel, we detail the results obtained within each chapter of the memoir:

Chpt. 1. In this chapter we have studied the so-called T',¢p—¢ formulation for the harmonic
eddy current problem with electric ports, that is, with sources given in terms of cur-
rents and/or voltage drops through the boundary of some conductors. Moreover, we
have considered two possibilities, depending on wether we apply or not a gauge con-
dition to field 7" in order to get a unique decomposition of the magnetic field H. For
the ungauged problem, we have proved that it has a solution and that, even though it
is not unique, every solution leads to the same magnetic field. To derive the result, we
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Chpt. 2.

Chpt. 3.

Chpt. 4.
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have shown the equivalence, in terms of H, between the T',¢p—¢ formulation and an-
other formulation for the same problem, written in terms of H, whose well-posedness
is immediate from results appearing in the literature. Then, we have applied the same
technique to obtain existence and uniqueness of solution to the gauged problem. Ad-
ditionally, we have performed a finite element discretization for both formulations,
with first-order Nédélec elements for T' and first-order Lagrange elements for po-
tential ¢. Again, we have obtained analogous results concerning the well-posedness
of the discrete formulations, and we have shown an a-priori error estimate of order
O(h) under typical regularity assumptions. The obtained results provide theoretical
support to this well-known formulation, often implemented in commercial software.

The goal of this chapter is to describe a finite element method for the numerical sim-
ulation of magnetization and demagnetization processes in materials with hystere-
sis. It was motivated by a non-destructive test known as magnetic particle inspection
(MPI), intended to detect subsurface cracks in ferromagnetic pieces. In particular, we
have restricted ourselves to cylindrical specimens and we have considered processes
subjected to sources having different directions, known as circular and longitudinal
magnetization. In each case, we have detailed the mathematical model allowing us
to obtain the final remanent flux in the piece, and the numerical techniques exploited
for its discretization. The inclusion of hysteresis in the MPI simulation, along with
the inclusion of the demagnetization stage, are relevant contributions with respect to
the results found in the literature related to this topic.

This chapter deals with the mathematical and numerical analysis of a nonlinear 2D
transient magnetic model with sources given in terms of the voltage drop excitations
in conductors and remanent magnetic fluxes within permanent magnets. The formu-
lation consists of a distributed nonlinear magnetostatic model, with time playing the
role of a parameter, and a circuit equation linking currents and voltage drops. This
last equation has been used to write the problem as an implicit ODE system, whose
operator involves the resolution of the distributed model. The model was spatially
discretized using a finite element method and an implicit Euler scheme was employed
for time discretization. We have performed the mathematical analysis of the problem
at both the continuous and discrete levels, and we have obtained an O(h + At) error
estimate under suitable regularity assumptions. The proved results represent a first
contribution to the theoretical study of the genuine problem arising in the modeling
of permanent magnet electrical machines with voltage drop excitations.

In this chapter we have addressed the optimal control of a permanent magnet syn-
chronous motor, with the intention of giving rigourous mathematical support to a
particular problem concerning the electromagnetic behaviour of the machine. In par-
ticular, we sought to control the currents in the stator coils that minimize the power
losses in these conductors, subject to the restriction that the resulting motor gener-
ates a minimum torque, along with the typical box-constraints on the controls. In this
part of the thesis we have shown the existence of local optimal controls and the asso-
ciated lagrange multipliers, at both the continuous and discrete levels, and we have
derived an adjoint problem allowing us to simplify the computation of the derivatives
of the Lagrangian. The latter is very useful in the implementation, for which we have
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chosen an Augmented Lagrangian Technique. Moreover, under certain regularity
assumptions, we have proved that the discrete controls converge to the continuous
ones. The main contribution of this chapter is the rigourous theoretical analysis of
a particular optimal control problem, inspired in the ones appearing in the literature
for the electromagnetic behaviour of a permanent magnet synchronous motor.

In this chapter, we have presented a novel methodology to accelerate the computation
of the steady-state solution to a problem that models the electromagnetic behaviour
of induction motors with squirrel-cage rotor, when the source in the stator coil sides
is given in terms of the currents. Essentially, the procedure consists in computing
appropriate initial conditions for the currents in the rotor bars, allowing us to obtain
the steady-state fields by solving the transient magnetic model in just a few machine
revolutions. Firstly, we have enhanced the mathematical previous formulation in
order to get a more realistic model of the induction model. Specifically, we have
considered more general circuit equations to incorporate the squirrel-cage end-rings
into the model, and we have taken the motion of the machine into account. Then, we
have developed an approximation of this model that provides us with suitable initial
currents by computing the solution, in the least-square sense, to an overdetermined
problem with only two unknowns. One of the key points of the approximation con-
sists in simplify the current in the rotor bars to time-harmonic functions. Finally,
we have briefly introduced a possible generalization to the methodology, that con-
siders the current approximation as the sum of several harmonics. We highlight that
the proposed methodology has been applied to several realistic examples provided
by Robert Bosch GmbH, leading to important savings from a computational point of
view.

For most numerical methods appearing in the thesis, we implemented the corresponding source
codes (either in Fortran or Matlab), which have allowed us to asses their performance by means
of academic and realistic examples.

Future Research

Finally, we consider that there are still many open problems related to the ones discussed in the
thesis. We describe here some of the further work we would like to develop in the future:

Chpt. 1.

* We plan to perform the mathematical and numerical analysis of the transient
T, » — ¢ formulation in three-dimensional bounded domains with electric ports.
Similarly to the study performed in this chapter for the harmonic case, we will
try to establish an equivalence between the weak formulation of this problem
and the one appearing in [22], in terms of the magnetic field constructed from
its potentials, H = T+ T, — grad ¢. Moreover, we will try to extend the
transient formulation to the nonlinear case, in which the magnetic permeability
depends nonlinearly on the modulus of the magnetic field H.
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* As a second step, we will study coupling of the above problem with lumped

equations modelling electrical circuits, using equation (1.22) as the constitutive
law of the components of the circuit corresponding to conductors appearing in
the distributed model.

We have the intention of performing the mathematical and numerical analysis of
the problem describing the longitudinal magnetization appearing in this chap-
ter. This is a nonlinear one-dimensional problem characterised by a degenerate
parabolic partial differential equations, with a Dirac measure in the right-hand
side of its weak formulation. For this purpose, we will try to take advantage of
some results already present in the literature for problems with a similar PDE
structure (see [2]). Moreover, the nonlinearity involves a hysteresis operator,
which will be assumed to be causal, strongly continuous and piecewise mono-
tone for the mathematical analysis, in order to be able to adapt the techniques
appearing in [107] for an eddy current problem involving hysteresis.

On the other hand, we will try to change the longitudinal model in order to be
able to simulate magnetization and demagnetization processes with general ax-
isymmetrical pieces and without approximating the source in the coils with a
surface current density. For this purpose, we will write the mathematical model
in terms of the magnetic vector potential, obtaining an scalar formulation. How-
ever, under these settings, this scalar potential leads to a magnetic flux density
having components in the piece meridional section, requiring the use of a vector
hysteresis law.

We have the intention of exploring the possibility of incorporating motion to
the mathematical and numerical analysis of Problem I1.2. This would allow
us to approximate the genuine problem arising in the modeling of permanent
magnets machines.

Additionally, we would like to adapt the study developed for the problem ap-
pearing in this chapter, combining voltage with current sources in conductors;
that is, perform the mathematical and numerical analysis of Problem II.2. The
consideration of this new source type leads to a dependence in time of operator
F, what affects the analysis.

Firstly, we are currently working on the error estimate of the discrete controls
and lagrange multipliers to the continuous ones. Moreover, a publication de-
scribing the results obtained in this chapter, in which we will consider a more
general setting with several state constraints.

As a second step, we would like to extend the optimal control problem to a case
with voltage drop sources. In this way, we would exploit the analysis developed
in Chapter 3 for the state problem analysis.

On the other hand, we will try to analyze a similar control problem involving
a three-dimensional formulation written in terms of scalar magnetic potentials
(see, for instance, [30]). This would allow us to consider more general electrical
machines, such as axial or transversal flux motors.
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* We plan to exploit the methodology for other induction motor cases, such as

induction motors with squirrel-cage rotor in which the inductance of the end-
rings cannot be neglected, or induction motors with windings in the rotor (as
substitutes for the squirrel-cage).

Concerning the transient nonlinear eddy current model coupled with circuit
equations that describes the electromagnetic behaviour of the induction ma-
chine, we would like to perform its mathematical and numerical analysis. For
this purpose, we would start with the study performed in [39], in which the au-
thors consider a linear eddy current problem with moving geometries, adding
the nonlinearity of the cores and the circuit equations for the squirrel-cage.

Furthermore, we would like to consider the extension of the methodology de-
veloped in this chapter to fit under more general ODE problems with periodic
solution.
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Appendix A

In this appendix we detail the computation of the Jacobian matrix of f appearing in (5.40). Let
us denote by C the matrix

—

T St

and by Dg]-j (0, 7) the Jacobian matrix of mapping F with respect to ¢/ at point (0, Z). By using
(5.35) we get

8f r o\ = sz b b\T 12—1 4b) =
oy (Y2 51) = T,C DyF(0, Y )i — - (R"+ (A")'B~'A") 1w,
if(y B1) = =T, Y C Dz F (0, Vi) — YT—b2 (Rb + (A”)TB—lAb) i
8/81 Y 1 b Yy ) 27_(_ :

The computation of Dgf (0, 7) is detailed in the sequel, and it requires to solve NV, magnetostatic
linear problems.

Let us introduce the nonlinear operator ¥ : R — H}(Q) and the linear operator L -
HY(Q) — R, defined by,

U(u) := A(0),
(/j(A) = / cA, n=1,...,N,,
where A(0) is the solution to Problem 5.2 for ¢ = 0. It is clear that F (0, -) can be expressed as

composition of mappings ¥ and £ defined above: F (0, ) = (£ o W)(i). As a consequence, by
using the chain rule and the linearity of operator £, we deduce

DyF(0,7)87 = L (DW(7)(57)) Voy € R, (B.1)

where DU(7) : RN — H}(€Q) denotes the Fréchet-differential of mapping ¥ at point .
Therefore, computing D;F (0, @) amounts to compute DV (). In order to build this differen-
tial, we introduce a weak formulation of the magnetostatic problem defining F (0, %), namely,
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Giveny € R™ and I,,(0) e R,n = N, + 1,..., N, find A € H}(Q2) such that

/ v(-,|grad A|)grad A - grad W
Q

— H (Q), (B2
Z/ meas|({ W+n%:+1/nmeas nW VIV € Ho(©), (B2)

and operator P : H(Q2) — H'(2) defined by
(P(A), W) = / v(-;|grad A|)grad A - grad W
0

forevery W € H}(Q). Letus emphasize that 1,,(0), n = N,+1,. .., N,, are the initial intensities
along the stator coils, which are known.

Firstly, we try to compute the Gateaux derivative of P with respect to A in a direction Z:

o1
(DP(A)(2), W) = lim 5 ((P(A +hZ), W) — (P(A),W)) = /Q\in vograd Z - grad W
+ / (hm v(|grad A + hgrad Z|) (grad A + hgrad Z2)
—v(|grad A|) grad A)> -grad .

We notice that, even though the norm application is not differentiable at the null vector, the
application p’ € R? — v(|p|) p € R*is in C*(R?). Indeed, if p’'# 0

(7))

7]

lim = (7(15 + hal) (7+ h) = 20 7) = ApIT+ 2 (5 75

Moreover, if 7 = 0,
lim = (7(1hq') (1) — 7(0)0) = (0)q
Therefore, if we denote
Dy :={x € Qy : |grad A(z)| =0},
we have
(DP(A)(Z),W) = /Qy(-, lgrad A|) grad Z - grad W

ﬁ/(|g1ad41|) 1%
-+ / —2 Y (erad A - erad Z rad A - grad . B.3
\Do ‘ ] 4| (g g )(g g ) ( )

By applying the implicit function theorem, we can deduce that for any d7 € R, the field
dA := DV(y)(0y) is the solution to the following linear magnetostatic problem:
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Given §y € R™, find §A € H}(Q) such that

(DP(A)(5A), W) = ZI/Q mejg&mw VIV € HY(Q), (B.4)

with A the solution to (B.2).

Therefore, by using (B.1),

T
DF(0,7)07 = (/Q aéA,...,/Q 05A> ,
1 Ny

0 A being the solution to (B.4). Then, in order to obtain the order NV, x N, matrix Dg']_:: (0,7), it
is enough to solve (B.4) for 6y = €}, j = 1,..., N, where €] is the j-th vector of the canonical

basis in R™. Indeed, for this choice, vector E((SAj) is just the j-th column of the Jacobian
matrix DgF (0, 7).

Remark 5.13. According to the previous calculations, obtaining the partial derivatives of func-
tion at the n-th iteration of the minimization algorithm amounts to solve N, linear magneto-
statics problems with the same matrix. It is worth mentioning that the coefficient matrix of the
finite element approximation of problem (B.4) does not depend on index j, so it can be computed
and factorized only once per iteration. Summarizing, per search step of the minimization algo-
rithm we need to solve one nonlinear magnetostatic problem, and then N, linear magnetostatic
problems, with unit currents in one of the rotor bars.
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Resumo

O obxectivo central da tese doutoral ¢ o estudo e resolucion numérica de problemas que xorden
no ambito do electromagnetismo a baixa frecuencia e a sua aplicacion & simulacion de proce-
sos industriais. Mais concretamente, abordanse tanto modelos de correntes inducidas (tamén
chamados modelos de eddy currents) como de magnetostatica. Esta lifia de investigacion esta
motivada pola necesidade de conecer, mediante o uso de modelos matematicos e simulacion por
computador, os fendmenos que tefien lugar en distintos procesos industriais, como poden ser a
magnetizacion e desmagnetizacion de pezas forxadas, o quecemento de pezas por inducion ou
a utilizacion de distintos tipos de maquinas eléctricas, para proceder posteriormente 4 sia opti-
mizacion e control automatico.

A tese estrutirase en duas partes. Na primeira delas estidanse dous problemas de correntes
inducidas, un deles linear e proposto no dominio da frecuencia, e outro fortemente non linear, no
que ademais se inclue o fendmeno da histérese magnética. O primeiro destes problemas estudase
dende o punto de vista da andlise matematica e numérica, mentres que o segundo analizase dende
a perspectiva do desenvolvemento dunha ferramenta numeérica para a simulacion de procesos de
magnetizacion e desmagnetizacion de pezas ferromagnéticas. Doutra banda, na segunda parte
da tese realizanse diversas contribucions ao modelado de maquinas eléctricas, estudando proble-
mas magnéticos en réxime transitorio dende diferentes perspectivas. En particular, en primeiro
lugar preséntase un modelo bidimensional, escrito en termos do vector potencial magnético,
acoplado con ecuacions de circuitos que permiten considerar fontes eléctricas nos condutores
dadas tanto en termos de correntes como de caidas de potencial. A continuacion, partindo desta
formulacion, procédese a considerar tres problemas de diferente indole: dous eminentemente
tedricos e outro mais centrado na utilidade practica. Deste xeito, os dous primeiros capitulos
desta parte tratan sobre a analise matematica e numérica da formulacion previamente introducida
con fontes voltaxe e dun problema de control dptimo no que o sistema de estado esta fortemente
relacionado con esta formulacion. Finalmente, no ultimo capitulo ampliase o modelo para ter en
conta o caso en que unha parte do dominio estd en movemento, xunto con ecuacions de circuitos
mais xerais, para asi desenvolver unha nova metodoloxia que permite acelerar o calculo do
estado estacionario na simulacion electromagnética de motores de inducion.

PARTE I. Analise de problemas de correntes inducidas
O modelo de correntes inducidas ou eddy currents obtense a partir do sistema de ecuacions de

Maxwell ao desprezar o termo de correntes de desprazamento na lei de Ampeére. Este modelo
aparece con frecuencia na simulacion numérica de procesos industriais, co que foi obxecto de
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numerosos estudos dende o punto de vista matematico e numérico nas ultimas décadas, espe-
cialmente no caso linear. Asi mesmo, houbo tamén avances relevantes no estudo dos modelos
transitorios non lineares, algiins deles incorporando ademais o fenomeno da histérese magnética.

Os materiais magneticamente lineares caracterizanse porque a densidade de fluxo magnético e a
intensidade de campo magnético son colineares en todo punto, co que os problemas con fontes
sinusoidais podense estudar en réxime harmonico. En efecto, nestas condicions as ecuacions de
Maxwell preservan a dependencia temporal dos campos, e polo tanto todos eles seran funcions
do tempo de tipo sinusoidal. A pesar da sua aparente sinxeleza, o0 modelo harménico de eddy
currents en dominios tridimensionaies limitados deu lugar a numerosas formulaciéns. Un caso
particular, que atraeu a atencidon da comunidade cientifica nos Gltimos anos, ¢ aquel no que os
condutores non estan estritamente contidos no dominio computacional. Este modelo propor-
ciona a posibilidade de acoplar o modelo distribuido de correntes inducidas cun de parametros
concentrados que permita considerar o circuito eléctrico asociado a fonte de corrente, aproxi-
mandose asi mais fielmente & configuracion industrial.

Asi pois, dentro do estudo de problemas de correntes inducidas, no Capitulo 1 empézase co
estudo da formulacion T',¢p—¢ dende o punto de vista da analise matematica e numérica. Esta
formulacion esta caracterizada por descompofier a intensidade de campo magnético como suma
dun potencial vectorial 7", definido soamente en condutores, o gradiente dun potencial escalar ¢,
definido en todo o dominio, e o chamado potencial vectorial impreso 7'y, definido en todo o do-
minio e directamente relacionado coas fontes do problema. En particular, cinguimonos ao caso
harmonico con fontes dadas en termos da corrente ou a caida de potencial a través de superficies
situadas na fronteira do dominio tridimensional limitado. Ademais, estudamos dias versions
desta formulacion, nas que impofieremos ou non unha restricion adicional (ou condicion gauge)
sobre o vector potencial eléctrico T" para garantir a sia unicidade. Deste xeito, a version sen
gauge non proporciona unicidade de solucion, ainda que o campo magnético construido a partir
dos potenciais T" e ¢ ¢ unico. Ademais, en ambos os casos realizase unha discretizacion espa-
cial mediante o método de elementos finitos, con elementos finitos de Nédélec de primeira orde
para T' e elementos finitos de Lagrange, tamén de primeira orde, para o potencial ¢. Para desen-
volver o estudo de existencia e unicidade de solucion destes problemas, tanto a nivel continuo
como discreto, probase a equivalencia, en termos do campo magnético, entre as formulacions
presentadas e outra formulacion presente na literatura, cuxas boas propiedades son cofiecidas.
Finalmente, mostramos tres exemplos numéricos, un deles con solucion analitica cofiecida, a
cal nos permite ilustrar a orde de erro obtido na analise tedrica. Os resultados obtidos propor-
cionan soporte teorico a esta formulacion, comunmente implementada nos paquetes de software
comercial mais populares.

Os resultados da version sen gauge da formulacion T',¢—¢ foron publicados en:

[26] A. Bermudez, M. Pifieiro, R. Rodriguez, and P. Salgado. Analysis of an ungauged 7,
¢—¢ formulation of the eddy current problem with currents and voltage excitations.
ESAIM: Math. Model. Numer. Anal., 51(6):2487-2509, 2017.

Por outra banda, a presenza de fontes non harmoénicas ou materiais magneticamente non lineares
require o uso de modelos de eddy currents xenuinamente transitorios. Ademais, a inclusion de
efectos histeréticos resulta inevitable en certas aplicacions industriais, como a desmagnetizacion

190



Resumo

de pezas ferromagnéticas. Este feito engade unha dificultade adicional, debido a que nestas
condicions o fluxo magnético nestes materiais non s6 depende da intensidade de campo mag-
nético nun momento dado, senén tamén da historia magnética. Dentro dos métodos que modelan
a histérese magnética, escollemos o de Preisach, asumindo que os procesos son independentes
da taxa de cambio da intensidade de campo magnético con respecto ao tempo.

No Capitulo 2 tratamos o modelado e simulacion numérica de problemas de magnetizacion e/ou
desmagnetizacion. O estudo efectuado neste capitulo iniciouse durante o traballo fin de master e
foi motivado por un proxecto INTERCONNECTA desenvolvido para a empresa CIE-Galfor. No
marco da tese, a atencion céntrase na creacion dunha ferramenta de simulacion que nos permita
calcular os campos magnéticos durante o proceso de inspeccion por particulas magnéticas (MPI
polas suas siglas en inglés) para a deteccion de gretas en pezas ferromagnéticas. Neste contexto,
desenvolveuse e implementouse un modelo de correntes inducidas unidimensional con histérese
para o modelado da chamada magnetizacion lonxitudinal de pezas cilindricas, € pixose en mar-
cha un software para simular o proceso completo que se realiza durante este test non destrutivo,
que consta de tres etapas: magnetizacion circular, lonxitudinal e posterior desmagnetizacion.
Ademais de presentar os modelos matematicos e detallar diversos aspectos da implementacion
numérica, mostranse resultados relativos ao campo magnético remanente en pezas cilindricas
baixo diferentes condicions de operacion, de forma que se poida predicir en que situacions se
obtera unha desmagnetizacion efectiva.

Os principais resultados contidos neste capitulo foron publicados en:

[20] A. Bermudez, D. Gémez, M. Pifeiro, P. Salgado, and P. Venegas. Numerical simula-
tion of magnetization and demagnetization processes. /[EEE Trans. Magn., 53(12):1-6,
2017.

PARTE II. Contribucions ao modelado de maquinas eléctricas

Nas ultimas décadas, en paralelo co rapido desenvolvemento das capacidades computacionais,
realizaronse grandes esforzos para obter modelos numéricos realistas para numerosos procesos
industriais. A resolucion destes modelos proporciona informacion importante acerca dos feno-
menos fisicos involucrados nos devanditos procesos, o que leva & sua mellor comprension e
mesmo ao seu perfeccionamento. En particular, os avances mais recentes derivaron en algo-
ritmos numericamente eficientes para modelos que caracterizan o comportamento electromag-
nético de maquinas eléctricas, que van mais ald dos clasicos modelos analiticos. Cabe sinalar que
estes modelos analiticos estan en xeral limitados a materiais lineares e homoxéneos en réxime
estatico debido ao enfoque mediante circuitos magnéticos. Desta forma, a simulacion numérica
xoga un papel importante na optimizacion do desefio e as condicions de operacion das maquinas
eléctricas, evitando a construcion de prototipos innecesarios e reducindo significativamente os
custos e o0 tempo precisos para obter novos desenos.

Na segunda parte da memoria centramonos en maquinas de corrente alterna (AC polas suas siglas
en inglés) de fluxo radial, caracterizadas porque a densidade de corrente ten unha dependencia de
tipo sinusoidal con respecto ao tempo e ¢ espacialmente paralela 4 direccion do eixo de rotacion
da maquina. Este tipo de maquinas poden ser clasificadas de moi diversas formas, sendo unha
das mais comuns a consideracion de diias categorias: sincronas e de inducion. O primeiro grupo
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esta formado por aquelas maquinas cuxa velocidade de rotacion esta relacionada coa frecuencia
angular da corrente de entrada en termos do nimero de polos da maquina. En cambio, nos
motores de inducidon o campo magnético no rotor ¢ inducido polo do estator (ou viceversa), que
contén as bobinas a través das cales circula a corrente fornecida a través da rede eléctrica. Neste
tipo de maquinas a velocidade de rotacion € menor que a velocidade sincrona, e chamamos s/ip
a cantidade que define a diferenza entre as devanditas velocidades.

Na Parte II, realizamos en primeiro lugar a deducion dunha formulacion dun modelo magnético
transitorio non linear. Grazas a que neste tipo de dispositivos a corrente no estator discorre a
través de condutores multifilares dirixidos de forma paralela ao eixo de rotacion da maquina e
a que os nucleos tanto do rotor como do estator estan construidos con material laminado nesta
mesma direccion, ¢ razoable asumir que os campos electromagnéticos poden ser aproximados
mediante un modelo bidimensional definido nunha seccion transversal do dispositivo. Por outra
banda, as fontes do problema estan dadas en termos das correntes ou as caidas de potencial por
unidade de lonxitude nos condutores e a densidade de fluxo remanente nos iméans permanentes.
Asi, a formulacion consiste nun modelo distribuido de magnetostatica acoplado con ecuacions
de circuitos que vinculan os datos dados en termos de caidas de potencial coas correspondentes
correntes que discorren a través dos condutores. Esta formulacion constitie a base para os
modelos presentados nos tres capitulos restantes, coas modificacions e/ou restricions pertinentes
en cada caso.

Deste xeito, no Capitulo 3 estiidase, dende o punto de vista da analise matematica e numérica, a
formulacion magnética transitoria, no caso en que as fontes nos condutores son dadas soamente
en termos da caida de potencial por unidade de lonxitude. Para iso, a través das ecuacions
de circuitos, expresamos o problema como un sistema implicito de ecuacions diferenciais or-
dinarias, cuxo operador involucra a resolucion dun modelo distribuido de magnetostatica. O
modelo discretizase espacialmente usando un método de elementos finitos, Xxunto cun esquema
de tipo Euler implicito para a discretizacion temporal. Unha vez madis, realizase unha anélise
matematica deste problema, tanto a nivel continuo como discreto, obtendo unha estimacion de
erro para as correntes nos condutores que se ilustra con diversos resultados numéricos.

Os resultados que aparecen neste capitulo foron enviados para a sua publicacion

[27] A. Bermudez, M. Pifieiro, and P. Salgado. Mathematical and Numerical Analysis of a
Transient Magnetic Model with Voltage Drop Excitations. (Submitted).

A optimizacion e o control Optimo de procesos industriais que involucran fendmenos electro-
magnéticos foron estudados en numerosas publicacions durante os ultimos anos e, en particular,
para o desefio de maquinas eléctricas. En efecto, este campo de estudo ofrece grandes opor-
tunidades en canto ao desefio de procesos industriais, debido a que conduce automaticamente
a mellor opcidn en termos dos obxectivos escollidos e baixo as restricions dadas. Como con-
secuencia, desenvolvéronse estudos de optimizacion para unha ampla gama de aplicacions que
involucran maquinas eléctricas, con obxectivos tales como a optimizacion de custos, a minimi-
zacion de perdas, o control de variables de circuito para unha mellora do rendemento, o control
optimo da velocidade, etc.

Neste contexto, no Capitulo 4 estudase un problema de control 6ptimo dun motor sincrono de
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fluxo radial de imans permanentes, onde o funcional custo a minimizar € a potencia disipada por
efecto Joule nas bobinas do estator. Ademais, impofiense dous tipos de restricions: restricions de
cota sobre as amplitudes das compofientes do vector de correntes nas bobinas e unha restricion
de desigualdade para garantir que a maquina obtida xere un par superior a un determinado valor.
Debido ao alto custo computacional que supdn a realizacion de simulacions de maquinas con
materiais non lineares, aproximase a lei constitutiva magnética dos niicleos do motor mediante
unha relacion linear. Por tanto, partimos do modelo presentado ao comezo desta parte da tese, no
caso linear e con fonte nos condutores dada en termos da corrente que os atravesa. Suponse ade-
mais que a dependencia das correntes con respecto ao tempo ¢ harmodnica cun periodo comin
a todas elas, o que permite expresar a potencia disipada como funcidon cuadratica das ampli-
tudes das devanditas correntes. Por outra banda, utilizando o tensor de Maxwell para calcular o
momento de forza sobre o rotor, podese comprobar que baixo as hipdteses anteriormente men-
cionadas a media temporal do momento nun periodo da corrente ten unha tnica compofente
non nula, que se pode calcular realizando unha integral dos campos electromagnéticos sobre
calquera fronteira artificial situada no entreferro da méaquina.

En resumo, a nivel continuo atopamonos cun problema de control éptimo cun control nun espazo
vectorial finito-dimensional (con dimension igual ao namero de bobinas do estator), con fun-
cional custo cuadratico e conxunto de controis admisibles definido a partir dunha restricion non
linear sobre o estado e restricions de cota sobre o control. Os principais resultados obtidos para
este problema son a existencia tanto de controis Optimos como de multiplicadores de Lagrange
asociados a restricion sobre o estado, tanto a nivel continuo como discreto, asi como a converx-
encia sen orde dos controis discretos. Para a discretizacion espacial dptase por un método de
elementos finitos e para a resolucion do problema de optimizaciéon asociado ao problema de
control utilizase a técnica do Lagranxiano aumentado.

Este estudo foi desenvolvido en colaboracion co profesor Fredi Troltzsch ao longo de duas es-
tadias de investigacion realizadas na Technische Universitit Berlin.

Doutra banda, no caso das maquinas de inducion, cinguimonos ao caso en que estas tefien un
rotor de tipo gaiola de esquio. Neste tipo de motores, o rotor contén unha serie de barras condu-
toras inseridas no laminado, conectadas entre si nos extremos do motor mediante os chamados
aneis ¢ a fonte de corrente ¢ cofiecida no bobinado do estator. Nas barras condutoras xéranse
correntes inducidas, polo que para modelar o dispositivo ¢ necesario ter en conta o devandito
fendmeno, ao contrario que no caso dos motores sincronos. Isto realizase considerando un cir-
cuito mais complicado que tefia en conta a gaiola de esquio, de forma que as ecuacidons en
derivadas parciais poidan seguir considerandose nunha seccion transversal do motor. Deste
xeito, a simulacidon numérica involucra a resolucién dun sistema non linear de ecuacions en
derivadas parciais acopladas con ecuacions de circuitos. Esta resolucion require xeralmente im-
pofier certas condicions iniciais que, se non son escollidas de forma adecuada, obrigan a integrar
o0 sistema en tempo durante moitas revolucions ata alcanzar o estado estacionario.

Asi, no Capitulo 5 preséntase un método numérico para acelerar o célculo do estado estacionario
en maquinas de inducién con rotor de tipo gaiola de esquio. Fundamentalmente, o procedemento
consiste en calcular boas aproximacions da corrente inicial nas barras da gaiola de esquio que
nos permitan alcanzar o estado estacionario nunha simulacion transitoria de correntes inducidas
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do motor nunha cantidade reducida de ciclos. Para iso, partese do modelo de magnetostatica
transitorio presentado ao comezo da segunda parte da tese, con fontes dadas exclusivamente en
termos de correntes nos condutores. A este modelo engadeselle o movemento do rotor, xunto
con ecuacions de circuitos mais xerais que nos permiten modelar a gaiola de esquio. A partir
de devandito modelo realizanse unha serie de manipulacions e aproximacions que nos permiten
obter un problema sobredeterminado que, ao resolverse no sentido de minimos cadrados, pro-
porciona unha aproximacion das correntes iniciais buscadas. Ao aplicar o método para un motor
de inducion particular e baixo distintas condicions de operacion, vemos que a reducion no tempo
necesario para chegar ao estado estacionario reducese ata nun 96% en comparacion co caso no
que se impofien correntes iniciais nulas.

Os resultados deste capitulo foron enviados para a sta publicacion

[18] A. Bermudez, D. Gomez, M. Pifieiro, and P. Salgado. Numerical Method for Acceler-
ating the Steady State in an Induction Machine. (Submitted).

Ademais, realizouse unha solicitude para a obtencién dunha patente sobre o método

[19] A. Bermudez, D. Gémez, M. Pifeiro, and P. Salgado. Procedimiento y producto de
programa informatico para acelerar el calculo del estado estacionario de un motor de
induccion de jaula de ardilla, Spanish Patent (request number P201830228).
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