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Abstract We present the application of an accurate quantum treatment,
called two-dimensional non-separable (2D-NS), to the calculation of internal
rotation partition functions of molecules with two rotors. This methodology in-
volves full coupling in the kinetic and potential energies; the later is written as
a Fourier series type potential. The resulting Hamiltonian is introduced in the
Schrödinger equation and solved by the variational method. The method was
applied to the 2-propenol and to the 3-fluoro-2-propenol molecular systems.
The former molecule presents weak coupling between the torsion, whereas
the later is an example of strong coupling. The comparison of 2D-NS with
one-dimensional accurate models that involve separation of the two torsions,
indicate that a separable model is inadequate to study systems in the strong
coupling regime. The results indicate that for the case of strong coupling the
multi-conformer harmonic approximation gives better results than a separable
anharmonic model.

Keywords Internal rotations · Quantum partition function · Coupled
torsions

1 Introduction

The rotation-vibration of molecules with hindered internal rotors has a long
history [1, 2, 3]. General expressions using simple potentials were obtained by
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Pitzer and Gwinn [4] and by Pitzer [5] for rigid frames with attached symmet-
rical and unsymmetrical rotors (or tops), respectively. Later on, Kilpatrick and
Pitzer [6] considered even the most general case of rotating groups attached to
other rotating groups, instead of to a rigid frame. Their method incorporates
the coupling between different internal rotations to the kinetic energy, and
if the potential is available, it allows to calculate accurate classical partition
functions of the internal rotors. It is also possible to estimate the quantum
partition function for internal rotation by multiplying the classical partition
function by the coefficient resulting from the ratio between the quantum and
classical harmonic-oscillator partition functions.

However, the calculation of an accurate quantum partition function, even
for just two hindered rotors, is much more involved than that of its classical
counterpart, because the former needs the calculation of a large number of
energy levels, which are difficult to obtain. For the case of molecules with two
internal rotors, which is the case we are studying here, important progress
was made in the analysis of torsional spectra in molecules with certain sym-
metry (see for instance [7, 8, 9, 10, 11, 12]), in which the torsional potential is
expressed as a Fourier series. In this work, we follow partially this strategy, in
the sense that the potential is expanded in Fourier series, but the molecules
and/or the rotating groups may not have any symmetry, and the analysis is
not restricted to the first energy levels (as is the case in the analysis of spec-
tra), but extended to the calculation of a large number of levels to obtain a
converged quantum partition function for the two internal rotors.

In this context, the partition function that we outline in Sect. 2 ( see
Ref. [13] for a complete description) is called two-dimensional non-separable
(2D-NS); it allows the calculation of accurate quantum partition functions of
two tops including couplings in both the kinetic and potential energies. Sect. 3
describes an application of the 2D-NS method to two molecules, i.e., 2-propenol
(S1), and 3-fluoro-2-propenol (S2) (Figure 1) for temperatures in the range
between 100 and 2500 K. The former is a molecule with weak coupling between
the two torsions, whereas the later involves moderate coupling. In Sect. 3,
we also discuss the adequacy of using separable one-dimensional quantum
partition functions for both molecules.

2 Methodology

2.1 Classical partition functions

For systems with two hindered rotors, φ1 and φ2, the classical partition func-
tion [14] is given by:

Qcl,tor =
1

σtor

1

2πβ~2

∫ 2π

0

∫ 2π

0

dφ1dφ2|D(φ1, φ2)|1/2e−βV(φ1,φ2) (1)

where β = 1/kBT , kB is the Boltzmann constant and T is the temperature;
σtor is the symmetry number [15] for the two torsions; V (φ1, φ2) is the potential
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due to the two torsions; and |D(φ1, φ2)|1/2 is the square root of the determinant
of the reduced D matrix, which includes the coupling in the kinetic energy [6].
The reduced D matrix is given by:

D(φ1, φ2) =

(
I1(φ1, φ2) −Λ1,2(φ1, φ2)
−Λ1,2(φ1, φ2) I2(φ1, φ2)

)
(2)

being I1(φ1, φ2) and I2(φ1, φ2), the reduced moments of inertia calculated
using the relations given by Pitzer [5], which are exact for molecules with one
or more uncoupled internal rotors, and Λ12(φ1, φ2) is the coupling between the
two reduced moments of inertia.

If the coupling in the kinetic and potential energies is neglected, the re-
sulting classical partition function is separable, i.e.,

QNC
cl,tor =

1

σtor

(I1I2)1/2

2πβ~2

∫ 2π

0

dφ1e
−βV 1D

1 (φ1)

∫ 2π

0

dφ2e
−βV 1D

2 (φ2) (3)

where I1 and I2 are the reduced moments of inertia of the two tops at the
geometry of the absolute minimum; V 1D

1 (φ1) and V 1D
2 (φ2) are one-dimensional

potentials.

2.2 Quantum partition functions

The 2D-NS partition function The Hamiltonian for two torsions, φ1 and φ2,
that are coupled can be written as:

Htor

(
∂
∂φ1

, ∂
∂φ2

;φ1, φ2

)
= Ttor

(
∂
∂φ1

, ∂
∂φ2

)
+ Vtor(φ1, φ2) (4)

where the kinetic energy Ttor is given by Eq. 8 of Ref. [13]. The potential
energy Vtor(φ1, φ2) is split into three terms

Vtor(φ1, φ2) = V1(φ1) + V2(φ2) + V 2D(φ1, φ2), (5)

and each of them is fitted to Fourier series:

V1(φ1) = a0 +

Mmax∑
M=1

aM cos(Mφ1) +

M ′max∑
M ′=1

a′M ′ sin(M ′φ1), (6)

V2(φ2) = b0 +

Nmax∑
N=1

bN cos(Nφ2) +

N ′max∑
N ′=1

b′N ′ sin(N ′φ2), (7)
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and

Vtor(φ1, φ2) = V1(φ1) + V2(φ2)+

L1,max∑
L1=1

L2,max∑
L2=1

cL1L2
cos(L1φ1) cos(L2φ2)+

P1,max∑
P1=1

P2,max∑
P2=1

dP1P2
sin(P1φ1) sin(P2φ2)+

L′1,max∑
L′1=1

L′2,max∑
L′2=1

c′L′1L′2 cos(L′1φ1) sin(L′2φ2)+

P ′1,max∑
P ′1=1

P ′2,max∑
P ′2=1

d′P ′1P ′2 sin(P ′1φ1) cos(P ′2φ2)

(8)

where a0, b0, aM (M = 1, . . . ,Mmax), a′M ′(M
′ = 1, . . . ,M ′max), bN (N =

1, . . . , Nmax), and b′N ′(N
′ = 1, . . . , N ′max) are fitting parameters of the one-

dimensional potential. Also cL1L2 , L1 = 1, . . . , L1,max, L2 = 1, . . . , L2,max,
dP1P2

, P1 = 1, . . . , P1,max, P2 = 1, . . . , P2,max, c′L′1L′2
, d′L′1L′2

, L′1 = 1, . . . , L′1,max,

L′2 = 1, . . . , L′2,max, and d′P ′1P ′2
, P ′1 = 1, . . . , P ′1,max, P ′2 = 1, . . . , P ′2,max are fit-

ting parameters, and L1,max, L2,max, L′1,max, L′2,max, P1,max, P2,max, P ′1,max,
and P ′2,max indicate the largest number of each series. It should be noticed that

the potentials V 1D
1 (φ1) and V 1D

2 (φ2) are different from the potentials V1(φ1)
and V2(φ2), because the former potentials correspond to one-dimensional po-
tentials obtained by scanning one of the torsional angles while fixing the other,
whereas the later are simply fitting potentials that, together with the poten-
tial of Eq. 8, minimize the root mean square of residuals with respect to the
electronic structure calculations.

It is possible to solve the Schrödinger equation by the variational method
using the product of two wavefunctions, and each of them is a linear combina-
tions of the wavefunctions which are solution of the Schrödinger equation for
the particle in a ring, i. e.,

Φ(φ1, φ2) = Φ1(φ1)Φ2(φ2) (9)

being

Φ1(φ1) =
1√
2π

kmax∑
k=−kmax

c1,ke
ikφ1 , (10)

and

Φ2(φ2) =
1√
2π

nmax∑
n=−nmax

c2,ne
inφ2 (11)

The trial wavefunction of Eq. 9 is used together with the Hamiltonian of
Eq. 4 to obtain the eigenvalues. Thus, the 2D-NS quantum partition function
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obtained from the direct sum of the eigenvalues is given by

Q2D−NS
tor =

1

σtor

∑
j

e−βEtor,j (12)

where

σtor = σ1σ2 (13)

being σ1 and σ2 the symmetry numbers associated to the internal rotation
about φ1 and φ2, respectively, and Etor,j the j-th eigenvalue.

The separable torsional partition function In the case of two independent tor-
sions, the Hamiltonian of Eq. 4 is separable and reduces to

HSTES
tor =

−~2

2

2∑
τ=1

{
1

Iτ

d2

dφ2τ

}
+ V 1D

τ (φτ ) (14)

where STES stands for separable torsional eigenvalue summation [16]; Iτ , τ =
1, 2 are the reduced moments of inertia of the two torsions, and V 1D

τ (φτ ) are the
one-dimensional potentials generated by rotation about each of the two tops.
The two separable Schrödinger equations are obtained from the Hamiltonians
of Eq. 14 and can be solved by the variational method using as trial functions
Eqs. 10 and 11. The partition function of torsion τ is given by

qTES
τ =

1

στ

∑
j

e−βετ,j , (15)

being στ the symmetry number for the internal rotation and ετ,j the j-th
eigenvalue. The resulting STES partition function of the two internal rotations
is:

QSTES
tor =

2∑
τ=1

qTES
τ (16)

It should be noticed that Eq. 12 reduces to Eq. 1 and that Eq. 16 reduces
to Eq. 3 in the limit of high temperatures.

2.3 Computational details

All the electronic structure calculations were performed at the MPWB1K
method [17] with the augmented polarized double-ζ basis set, 6-31+G(d,p) [18].
The geometries of all the minima (with the exception of enantiomers) for the
two molecules are depicted in Fig. 1 and listed in the Supplementary Material.
All normal-mode frequencies were scaled by 0.964 [19]. The two-dimensional
torsional potential energy surfaces for the two systems were generated by opti-
mizing all the degrees of freedom but the two torsions, using a stepsize of 10◦.
The potential was fitted to Fourier series using the Gnulot [20] program with
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a root mean square of residuals smaller than 8 cm−1. The parameters of the
fit for the potential of Eqs 5 and 14 are listed in the Supplementary Material.

The classical partition functions were evaluated by numerical integration
using the trapezoidal rule with a stepsize of 1◦. This fine grid was obtained by
fitting the electronic structure calculations to a spline under tension [21].The
calculation of the eigenvectors was carried out with the help of the JADAMILU
software library [22]. The calculation of the Q2D−NS

tor and QSTES
tor partition func-

tions was carried out by the HR2D program [23].

3 Applications

The equilibrium conformations are depicted in Fig. 1 and the energetics of
those conformations together with the value of the two torsional angles is given
in Table 1. The torsional angles φ1 and φ2 are measured about atoms labeled
in Fig. 1 as 1, 2, 3, 4, and 1, 2, 5, 6, respectively. It should be noticed that S1
only has two distinguishable minima with Cs symmetry, which correspond to
two planar dispositions of the -OH group. The rotation of the methyl group
generates 3 indistinguishable minima, and therefore the internal rotation about
this group has a symmetry number σ2 = 3. For system S2 the symmetry of
the internal rotation about the partially substituted methyl group disappears
and all the conformers derived from the rotation of this group correspond
to distinguishable conformations. Structure S2-M1 belongs to the Cs point
group symmetry, but the other three structures do not have any symmetry and
therefore each of them has one enantiomer. As shown in Fig. 2 the presence
of the fluorine atom introduces coupling between the two torsions ([φ1, φ2])
because the most stable structure is located at [0, 0], as for system S1, but
structures with φ2 close to zero degrees are destabilized with respect to the
same structures in S1, whereas structure S2-M2 located at [199, 142] is much
more stable than [180, 120] in S1. The reason is that the fluorine atom forms
strong hydrogen bonds in structures S2-M1 and S2-M2 and, therefore, the
one-dimensional potential for φ1, which starts at 360 degrees (Fig. 2) and
moves to 199◦ and to 161◦ degrees, finishes in zero degrees. This is a clear
indication that the coupling between the internal rotations in S2 is strong,
because on the contrary of what occurs for S1, the variation of φ1 affects φ2
and vice-versa.

Table 2 lists the normal-mode frequencies, ωi,1, and ωi,2, obtained at the
MPWB1K/6-31+G(d,p) level and the torsional frequencies obtained from the
second derivatives of the torsional potential of Eq. 5. Specifically, these fre-
quencies, ωi,1, and ωi,2, are calculated from the the eigenvalues of the secular
determinant involving the D matrix and from the torsional force constants
matrix, [5] i.e.,

|K− ωτD| = 0 (17)

being

K =

(
∂2V
∂φ2

1

∂2V
∂φ1∂φ2

∂2V
∂φ1∂φ2

∂2V
∂φ2

2

)
(18)
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In general, the normal mode frequencies and the the torsional frequencies
are quite similar for the two systems, which indicates that the normal modes
associated to the torsions are almost pure motions and with little participation
by other vibrational degrees of freedom. It is also interesting to compare the
2D-NS partition function with the harmonic oscillator (HO) partition function.
However, the potential energy surfaces of Fig. 2 have more than one minima, so
it is more accurate to define multi-conformational harmonic oscillator (MC-
HO) partition functions for the both types of frequencies. For the case of
torsional frequencies the MC-HO partition function is given by

Q
MC−HO

tor =

nC∑
i=1

e−βUi
2∏

τ=1

qHO
i,τ (19)

where the sum runs over the number of distinguishable conformers, nC; Ui is
the difference in energy between conformers listed in Table 2; each of the two
individual HO partition functions qHO

i,τ of the i-th conformer is given by

qHO
i,τ =

e−β~ωi,τ/2

1− e−β~ωi,τ
, (20)

In a equivalent manner, the MC-HO partition function is

QMC−HO
tor =

nC∑
i=1

e−βUi
2∏

τ=1

qHO
i,τ (21)

being qHO
i,τ the individual partition function of torsion τ of the i-th conformer,

which is given by Eq. 21 but using normal-mode frequencies. Tables 3 and 4
show the ratio between the 2D-NS partition function and the two MC-HO
partition functions of Eqs. 19 and 21. The two ratios are quite similar and

follow the same tendency, although the Q
MC−HO

tor partition function is closer
in value to 2D-NS. Both ratios are larger than unity except at very high
temperatures that are smaller than unity; this is because at high temperatures
the density of states is larger for the HO because the space available to the
molecular system in the torsional potential is larger than that of parabolic
potentials. For system S1 the torsional potential (Fig. 2) has lower barriers
than system S2 and thus the temperature at which the ratio becomes smaller
than unity is lower for S1 than for S2. The major deviations from unity
occur at temperatures between 300 and 1000 K, but in general the MC-HO
approximation gives reasonable results.

The zero-point energies obtained by STES and 2D-NS are also quite simi-
lar, which may induce us to think that STES is a good approximation for both
systems. However, these results are deceiving because the ground state is just
the first of a large number of states that contribute to the partition function.
In fact, the STES approximation, which considers that the two torsions can
be treated as independent rotors, works well for S1, because the coupling is
weak, but it is very inaccurate for S2, which a system with strong coupling.
Thus, at T = 300 K the STES value is more than double the one obtained
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by the 2D-NS method. The one-dimensional potentials used to calculate the
STES partition function for S2 are depicted in Fig. 2; they are calculated
by following one of the torsional angles while fixing the other. Unfortunately,
these one-dimensional potentials cannot reproduce all the features of the two-
dimensional potential, and because they were obtained from the minimization
of the other torsional angle (following the energetically most favorable path),
the STES partition function greatly overestimates the accurate value. In fact,
the results indicate, that for the case of strong coupling, the MC-HO partition
function, in whichever of the two versions given above, gives better results
than the STES partition function.

The coupling in the kinetic energy has a weak effect in the partition func-
tions. It can be estimated by substituting the D matrix in Eq. 1 by the reduced
moments of inertia of the absolute minimum. We have found out that this ef-
fect is negligible for S1 and that oscillates between about 3% at T = 100 K and
6% at T = 2500 K for S2. Finally, it should be mentioned that the accurate
classical partition function reduces to the quantum partition function quite
above room temperature and therefore it is important to take into account
quantum effects till at least T = 500 K.
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22. Bollhöfer M, Notay Y (2007) Jadamilu: A software code for computing

selected eigenvalues of large sparse symmetric matrices. Comput Phys
Commun 177:951–964.

23. Fernández-Ramos A (2013) HR2D version 1.0, Universidade de Santiago
de Compostela, Santiago de Compostela.



10 Luis Simón-Carballido, Antonio Fernández-Ramos

Table 1 Some parameters of interest for the two internal rotations of the two systems,
i.e., total number of wells, the symmetry numbers for internal rotation, and the energy
difference between conformers Ui (in cm−1). It also indicates if a given structure has an
enantiomer and the two torsional angles φ1, φ2. For the other enantiomer φ1 → 360 − φ1
and φ2 → 360− φ2

System Wells σ1, σ2 Conformer Enantiomer? [φ1, φ2] Ui

S1 6 1, 3 S1-M1 No 0, 0 0
1, 3 S1-M2 No 180, 0 781

S2 7 1, 1 S2-M1 No 0, 0 0
S2-M2 Yes 199, 142 50
S2-M3 Yes 6, 242 439
S2-M4 Yes 156, 354 1273

Table 2 List of the normal-mode frequencies ωi,1 and ωi,2 and torsional frequencies ωi,1

and ωi,2 of all conformations. The torsional frequencies were calculated by Eq. 17. The
zero-point energies (ZPE) calculated by the STES and 2D-NS methods are also indicated.
All the frequencies and ZPEs are given in cm−1. The reduced moments of inertia are given
in amu·Å2

System ZPESTES ZPE2D−NS Conformer ωi,1, ωi,2 ωi,1, ωi,2 I1, I2

S1 298 293 S1-M1 424, 181 419, 180 0.743, 2.937
S1-M2 214, 169 233, 178 0.737, 2.930

S2 226 233 S2-M1 373, 108 368, 101 0.761, 10.87
S2-M2 425, 118 432, 119 0.777, 13.13
S2-M3 399, 91 390, 81 0.753, 13.18
S2-M4 217, 112 229, 103 0.740, 10.82

Table 3 Quantum 2D-NS partition function at different temperatures and different rations
between Q2D−NS and the partition functions of Eqs. 1, 3, 16, 21, and 19 for system S1

T (K) Q2D−NS Q2D−NS

Qcl,tor

Q2D−NS

QNC
cl,tor

Q2D−NS

QSTES
tor

Q2D−NS

QMC−HO
tor

Q2D−NS

Q
MC−HO
tor

100 0.0163 0.25 0.27 1.09 1.17 1.12
150 0.0776 0.51 0.54 1.06 1.14 1.11
200 0.188 0.68 0.71 1.04 1.14 1.12
250 0.348 0.78 0.81 1.03 1.14 1.12
300 0.563 0.85 0.86 1.02 1.15 1.13
400 1.18 0.92 0.92 1.00 1.14 1.15
500 2.07 0.95 0.94 0.99 1.14 1.16
700 4.79 0.98 0.96 0.98 1.12 1.15

1000 11.3 1.00 0.97 0.98 1.08 1.13
1500 27.3 1.00 0.97 0.97 0.97 1.02
2000 47.8 1.00 0.97 0.97 0.86 0.92
2500 71.4 1.00 0.98 0.98 0.77 0.83
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Table 4 Same as Table 3 but for system S2

T (K) Q2D−NS Q2D−NS

Qcl,tor

Q2D−NS

QNC
cl,tor

Q2D−NS

QSTES
tor

Q2D−NS

QMC−HO
tor

Q2D−NS

Q
MC−HO
tor

100 0.0767 0.33 0.19 0.43 1.20 1.13
150 0.352 0.58 0.29 0.43 1.17 1.12
200 0.871 0.73 0.34 0.43 1.17 1.13
250 1.67 0.82 0.38 0.44 1.18 1.13
300 2.77 0.87 0.41 0.45 1.19 1.15
400 6.04 0.93 0.45 0.47 1.22 1.17
500 10.9 0.96 0.48 0.50 1.24 1.19
700 26.0 0.98 0.55 0.55 1.27 1.21

1000 63.0 1.00 0.63 0.63 1.27 1.20
1500 155 1.00 0.72 0.72 1.17 1.10
2000 277 1.00 0.78 0.78 1.06 1.00
2500 418 1.00 0.83 0.83 0.95 0.90
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Fig. 1 Schematic depiction of the equilibrium conformers of S1 and S2. Dark gray, light
gray, red and cyan represent carbon, hydrogen, oxygen and fluorine atoms, respectively.
Torsional angles: φ1 about atoms with 1, 2, 3, 4 labels; φ2 about atoms with 1, 2, 5, 6
labels.
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Fig. 2 Contour plot of the potential energy for the rotation about torsional angles φ1 and
φ2. The location of the minima is also indicated. For structures with only one enantiomer
or for structures that are indistinguishable only one conformation is indicated. The dashed-
green and solid-red lines in S2 indicate the one-dimensional potentials about φ1 and φ2,
respectively.


