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Multidimensional Hamiltonian for tunneling with position-dependent mass
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A multidimensional Hamiltonian for tunneling is formulated, based on the mode with imaginary frequency
of the transition state as a reaction coordinate. To prepare it for diagonalization, it is transformed into a lower-
dimension Hamiltonian by incorporating modes that move faster than the tunneling into a coordinate-dependent
kinetic energy operator, for which a Hermitian form is chosen and tested for stability of the eigenvalues. After
transformation to a three-dimensional form, which includes two normal modes strongly coupled to the tunneling
mode, this Hamiltonian is diagonalized in terms of a basis set of harmonic oscillator functions centered at the
transition state. This involves a sparse matrix which is easily partially diagonalized to yield tunneling splittings
for the zero-point level and the two fundamental levels of the coupled modes. The method is tested on the
well-known benchmark molecule malonaldehyde and a deuterium isotopomer, for which these splittings have
been measured. Satisfactory agreement with experiment results is obtained.
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I. INTRODUCTION

If a molecule has two (or more) identical stable minima,
all vibrational levels are correspondingly double (or multiple)
valued. The level splitting is hidden in the usual Born-
Oppenheimer analysis of the equilibrium configurations, but
shows up in the analogous analysis of the transition state
between the minima as a vibrational degree of freedom with
an imaginary frequency. If the potential of this imaginary
mode is extended to the equilibrium regions, it takes the
form of a double-minimum potential, which gives rise to
the usual interpretation of the splitting as due to tunneling
through a potential-energy barrier whose maximum is the
transition state. In practice such tunneling splittings are usually
extremely small unless the tunneling involves light particles,
in particular, protons or hydrogen atoms, in which case these
splittings offer an important window on the mobility of these
particles in systems of chemical and biological interest.

Experimentally, the level splittings are observed as a
property of the equilibrium configuration, and early attempts
to calculate them were based on the vibrational potential of
the equilibrium structure, subjected to a perturbation due to
the presence of an identical structure nearby. A survey of
recent methods for tunneling in complex systems can be
found in Ref. [1]. However, it is more logical to start from
the vibrational potential of the transition state [2], since this
is the configuration of highest symmetry. In the vicinity of
the dividing plane passing through this point, the mode with
imaginary frequency, which acts as a reaction coordinate,
coincides with the instanton, i.e., the path with the highest
tunneling probability [3–5]. If we denote the imaginary mode
by x, a double-minimum potential V (x), which connects
the minima, is then a good zero-order approximation for
the multidimensional potential governing the tunneling. To
include the remaining normal modes yi , we start from the
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transition state x = 0 and include coupling terms xmyn
i to

describe these modes at other configurations. In practice the
exponents m,n can be restricted to the lowest value compatible
with the symmetry of the system, specifically, to n = 1.
This procedure leads to a multidimensional imaginary-mode
Hamiltonian (iMDH for short) whose accuracy peaks in the
tunneling region rather than in the equilibrium configuration.

We have obtained satisfactory results by generating the
iMDH from electronic-structure and force-field data of only
two configurations: the stable configuration (EQ) and the tran-
sition state (TS), and evaluating the splittings by quasiclassical
instanton techniques. Details and references to earlier work
can be found in our recent papers [1]. A complicating factor
in these calculations is that modes coupled to the tunneling
require different handling depending on whether they move
fast or slow compared to the tunneling mode, whose time
constant is governed by the imaginary frequency. To a first
approximation fast modes can be treated as “relaxed” and
slow modes as “frozen,” but some modes may fall into
an intermediate region and cause ambiguity. To deal with
this problem, we therefore propose here an alternative to
the instanton approach, namely, a quantum method based
on direct diagonalization of iMDH in a form with reduced
dimensionality.

The Hamiltonian to be used in these calculations is basically
the same as that used in the instanton calculations. The
tunneling potential V (x) and the couplings of the form xyi and
x2yi are derived as before [1,6]; in Sec. II we briefly review
the form and properties of the iMDH. To reduce the dimen-
sionality, a requirement to make the diagonalization tractable,
we treat fast modes in the adiabatic approximation [1,5]. This
makes the effective mass of the tunneling mode coordinate
dependent, which poses a problem since a variable mass m =
m(x) does not commute with the momentum operator p̂ =
−i�∂/∂x and the kinetic energy operator T [m(x)] is generally
non-Hermitian. The problem has been amply discussed in
the literature: Schrödinger equations with position-dependent
mass have been studied for semiconductors [7], helium clusters
[8], and superlattice band structures [9]. With respect to
tunneling in molecular systems, this approach was applied
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to the inversion problem of the ammonia molecule [10,11].
However, these approaches are limited to one-dimensional
(1D) systems. In Sec. III, we extend the position-dependent
mass approach to the iMDH and apply it to evaluate tunneling
splittings in real (multidimensional) systems where such
splittings are observed. It has been asserted by von Roos [12]
that the general Hermitian form of the kinetic energy operator
T [m(x)] is not unique and that consequently, the effective mass
approach is not suitable. However, it has been shown that there
is a unique form of this operator which is compatible with the
additional conditions of Galilean invariance and probabilistic
interpretation of the wave function [13–15], and this is the
form adopted in the present study.

In Sec. IV the approach is applied to the evaluation
of the tunneling splitting of the zero-point level and the
fundamentals of two symmetric modes in malonaldehyde and
its monodeuterio isotopomer, a molecule with 18 vibrational
degrees of freedom. The results are compared with those of
other calculations, including our own, and with experiment.
We briefly mention a second application, to the molecule
porphycene, for which tunneling splittings have been recently
measured and for which our calculations, to be reported in a
forthcoming paper, yield results of comparable quality.

II. THE IMAGINARY-MODE HAMILTONIAN

Formulated in terms of the (mass-weighted) normal modes
(x,{yi}) of the TS, taken as origin, and restricted to the lowest-
order coupling terms allowed by symmetry, the iMDH is of
the following general form:

H = −�
2

2

∂2

∂x2
− �

2

2

∑
i

∂2

∂y2
i

+ V (x,y);

V (x,y) = V (x) + 1

2

∑
i

ω2
i y

2
i

− x2
∑

s

Csys − x
∑

a

Caya, (1)

where V (x) is the double-minimum potential that connects
the two minima x = ±�x, and subscripts s and a indicate
modes that are symmetric and antisymmetric with respect to
reflection in the plane x = 0, i.e., modes that are displaced
between the stationary configurations, namely, the EQ and
TS configuration. The s and a modes are treated as harmonic
oscillators with constant frequency ωs,a , and since coupling
is linear in their coordinates, the coupling constants are
proportional to the displacements:

Cs = ω2
s �ys/�x2; Ca = ω2

a�ya/�x2. (2)

Undisplaced modes do not contribute to the Hamiltonian in
this approximation. At the TS the kinetic energy is diagonal
by definition; in our approach it is taken diagonal throughout,
which is strictly valid only for collinear transfer. V (x) is
generated with the modes yi frozen in their equilibrium
position (“crude-adiabatic” potential); its height V0 and half-
width �x are used as scaling parameters for the energy and the
coordinates. In practice we operate with the adiabatic potential
Vad(x) obtained from Eq. (1) as the relaxed potential

∂V (x,y)/∂y = 0. (3)

Although the Hamiltonian (1) does not explicitly contain
higher-order coupling terms proportional to xy2

i , x2y2
i , etc.,

we can partially include their effect by imposing the condition
that the adiabatic barrier height, which takes the form

Vad(0) = V0 − 1

2
�x4

∑
i

C2
i /ω

2
i , (4)

equals the value computed quantum chemically for the real
potential energy surface (PES). This leads to a rescaling of
the coupling parameters Ci in terms of the computed values
V0, Vad(0), �x, and ωi , as detailed in Ref. [1(a)]. To complete
the description, one needs a function that describes Vad(x) in
the region 0 < |x| < �x. This can be done by interpolating
between the EQ and TS, where the curvatures ∂2Vad/∂x2 are
known, or by using an adequate analytical function, e.g., a
simple quartic function of the type

Vad(x) = Vad(0)[1 − (x/�x)2]2, (5)

found satisfactory for proton transfer in hydrogen bonds
[1]. Formulated in terms of the adiabatic potential and with
rescaled parameters, the iMDH used here thus takes the final
form

H = −�
2

2

∂2

∂x2
− �

2

2

∑
i

∂2

∂y2
i

+ Vad(x)

+ 1

2

∑
s

ω2
s

(
ys − Csx

2/ω2
s

)2

+ 1

2

∑
a

ω2
a

(
ya − Cax/ω2

a

)2
. (6)

As an illustration, we derive in the Appendix the imaginary-
mode Hamiltonian [two-dimensional (2D) in this case] for the
collinear exchange AB + C→A + BC described by the well-
known model Hamiltonian of two coupled Morse oscillators
[16]. We solve numerically the 2D PES for the stationary
configurations EQ and TS, define the normal modes of the TS,
and generate all the relevant parameters. The result is a 2D
analog of Eq. (6), where an adiabatic potential of the quartic
type (5) is coupled to a single symmetric mode corresponding
to the relative motion of the donor and acceptor “atoms,” which
is in excellent agreement with the original 2D potential, as seen
from Fig. 1.

For a multidimensional (MD) system, the iMDH of the
general form of Eq. (6) is generated from numerical electronic-
structure and force-field data. The key point is that again
only two configurations are needed: the EQ and the TS. Note
also that it has a reduced dimensionality, since of the 3N-7
vibrational degrees of freedom yi of a nonlinear N-atomic
system, only those contribute that are displaced between the
stationary configurations.

III. TUNNELING OF A COORDINATE-DEPENDENT
MASS AND HERMITICITY

As shown in our earlier work [1], there are at least four
skeletal modes coupled to tunneling, even in the simple
molecules for which experimental data are available, so that
direct diagonalization would be unwieldy and the results would
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FIG. 1. (Color online) Contour energy plots comparing the 2D
Morse potential (a) with the imaginary-mode Hamiltonian potential
(b) for the collinear exchange reaction B + C→A + BC analyzed
in the Appendix. Panel (c) plots the minimum energy path for the
Morse potential (solid line) and for the imaginary-mode Hamiltonian
(dashed line).

be difficult to interpret. To make this a viable method, it
will be necessary to reduce the dimensionality by eliminating
certain modes and treating them in an approximate way by
rescaling parameters. This is possible under two conditions:
their coupling to the tunneling must be relatively weak and
they must be fast on the time scale of tunneling t∗ in Vad(x),
i.e., ζi � 1, where ζi = ωit

∗ (called zeta factors). In the next
section we show that such modes can indeed be found for
the systems considered, where normally the 1–2 strongest
coupled modes are on the same time scale as tunneling;
the remaining modes (marked by primes) are fast and their
coupling is weak. In the instanton formalism such modes are
treated in the adiabatic (or “slow flip”) approximation [4].
This is equivalent to letting the potential in Eqs. (1) and (6)
“relax” over such modes, leading to ya′ = [Ca′/ω2

a′ ]x; ẏa′ =
[Ca′/ω2

a′ ]ẋ and ys ′ = [Cs ′/ω2
s ′ ]x2; ẏs ′ = 2x[Cs ′/ω2

s ′ ]ẋ, which
thus “eliminates” them from the dynamics but introduces a
renormalized coordinate-dependent mass in the kinetic energy
operator in the form Tm = 1

2m(x) ẋ2:

m(x) = 1 + a + bx2; a =
∑
a′

C2
a′/ω

4
a′ ; b = 4

∑
s ′

C2
s ′/ω

4
s ′ .

(7)

This would appear to be an efficient way of reducing the
dimensionality of the iMDH, but the mass renormalization
poses a problem since the momentum operator p̂ = −i�∂/∂x

does not commute with m(x). It is therefore not immediately
clear how to quantize the quasiclassical kinetic energy, as, for
instance, the intuitive forms

Tm = 1

2m(x)
p̂2; Tm = p̂2 1

2m(x)
(8)

are altogether non-Hermitian, which in general may give rise
to unphysical results.

Although there is no unique way to define a Hermitian
Tm[m(x)], the following two-parameter family known from
the von Roos Hamiltonian [12] is often used as a general
form:

Tm = 1
4 (mαp̂ mβp̂ mγ + mγ p̂ mβp̂ mα); α + β + γ = −1,

(9)

where m ≡ m(x). If this operator yields results that vary
strongly for different combinations of the same parameters,
we have a clear indication that the approach is unsound. For a
given potential and coordinate-dependent mass, it will always
be necessary to test the stability of the results. Such tests,
carried out below, show that the quasiclassical kinetic energy
Tm = 1

2m(x) ẋ2 is compatible with Eq. (9), which yields stable
(and very similar) eigenvalues. The tests also show that among
all forms of the quantum kinetic energy operator (9), the lowest
eigenvalues are obtained with the symmetric form

Tm = p̂
1

2m(x)
p̂, (10)

which involves α = γ = 0 and β = −1.
It has been shown that this monomial form is the only

correct form of the kinetic energy operator with position-
dependent mass. The additional conditions that make a unique
choice possible are obtained from the general requirements
of the probabilistic interpretation of the wave function and
Galilean invariance [13–15]. Therefore in the applications of
Sec. IV we adopt this form of the operator, Tm[m(x)].

In systems of practical interest, the coupling to tunneling in
the Hamiltonians (1,6) is generally dominated by symmetric
modes, in particular, the stretching mode of the hydrogen
bridge in proton-transfer reactions [1]; the usually much
weaker coupling to antisymmetric modes can be handled by
minor rescaling of parameters. Therefore we focus here on
symmetric coupling. The Hamiltonian used in the diagonal-
ization thus takes the final form

H = p̂
1

2m(x)
p̂ − �

2

2

∑
s �=s ′

∂2

∂y2
s

+ Vad(x)

+1

2

∑
s �=s ′

ω2
s (ys − Csx

2/ω2)2. (11)

To our knowledge Eq. (11) represents the first multidimen-
sional Hamiltonian with position-dependent mass, developed
for the investigation of tunneling dynamics in molecular sys-
tems. One-dimensional tunneling with a coordinate-dependent
mass was applied to the inversion vibration of the ammonia
molecule [10,11], based on a kinetic energy operator in Eq. (8),
first form, in which case good agreement with experiment
was obtained. In our case, the problem is more complicated
since the tunneling mode couples strongly to several other
vibrations. To handle the large number of basis functions
required to achieve convergence of a kinetic energy operator
of the form (10), we adopt an algorithm based on the Jacobi-
Davidson method coded in the JADAMILU software [17], which
is suitable for the calculation of selected eigenvalues and
eigenvectors of large sparse matrices. As basis functions for
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TABLE I. Test of the JADAMILU algorithm for a 1D Hamiltonian
of the form of Eq. (12). Column 2 lists the harmonic oscillator
eigenvalues for unit mass and columns 3–5 those for a mass varying
as 1 + 0.1x2, calculated by different methods.

v E0
v Ev

a Ev
b Ev

c

0 0.500 000 00 0.468 896 51 0.468 896 51 0.468 896 51
1 1.500 000 00 1.433 485 55 1.433 485 55 1.433 485 55
2 2.500 000 00 2.356 549 08 2.356 549 08 2.356 549 08
3 3.500 000 00 3.245 98(255) 3.245 983 15 3.245 983 16
4 4.500 000 00 4.106 94(346) 4.106 945 98 4.106 946 51
5 5.500 000 00 4.943(379 09) 4.943 202 52 4.943 204 33

aReference [18].
bPresent study, HRQII algorithm [19].
cPresent study, JADAMILU algorithm [17].

the tunneling we use harmonic-oscillator functions centered at
x = 0 with a zero-point amplitude �x, which proved to be the
most satisfactory approach.

Before application to MD systems, we tested the approach
on 1D Hamiltonians with coordinate-dependent mass. As a
first test we consider the 1D Hamiltonian

H1 = p̂
1

2m(x)
p̂ + 1

2
x2; m(x) = 1 + 0.1x2, (12)

which is known from the literature [18]. We test JADAMILU

against the standard diagonalization routine [19] (hereafter
referred as HQRII), as well as against the method of Killenbeck
[18]. The results, summarized in Table I, show that the
JADAMILUalgorithm performs very well.

In the second test we study the adequacy of various forms of
the kinetic energy operator in Eq. (9) (including the symmetric
form (10), which is the correct one) in combination with a
double-minimum potential of the quartic form, represented by
Eq. (5):

H2 = Tm[m(x)] + V0[1 − (x/�x)2]2;

m(x) = 1 + �m(x/�x)2, (13)

for typical parameter values. The results in Table II for three
forms (all Hermitian) show stable eigenvalues and virtually
the same zero-point splittings, although the lowest eigenvalues
are obtained with the symmetric form (10). This stability of
the spectrum within the two-parameter family (9) justifies
the use of a quantized form of Tm[m(x)] for the reduction
of the dimensionality of the Hamiltonian calculation, so that
only modes that are strongly coupled and have time constants
similar to the tunneling mode need to be included in the
diagonalization. The resulting Hamiltonian with the correct
form (10) can then be used to calculate tunneling splittings,
which are the observables of interest here. As an application
of the Hamiltonian (11), we use this form of the generalized
kinetic energy operator in the example of the next section.

IV. APPLICATIONS

We now apply Hamiltonian (11) to calculate tunneling
splittings in malonaldehyde, for which accurate experimental
values have been reported for several vibrational levels
[20–22]. The PES we take from recent quantum-chemical

TABLE II. Test for the Hamiltonian of the form of Eq. (13) with
different forms of the Hermitian kinetic energy operator Tm[m(x)]
given by Eqs. (9) and (10). The parameters are chosen so that the
effect of mass renormalization is comparable with that in Table I: a
quartic potential with barrier height V0 = 4232.74 cm−1, half-width
0.430 Åamu1/2, and frequency at the minimum of 2484.86 cm−1.
Row 1 lists the first four eigenvalues for unit mass, interpreted as
split pairs E±

v . Row 2 lists the splittings �v; all values are scaled
by the frequency at the minimum. The same pattern is repeated for
succeeding pairs of rows corresponding to a same mass of the form
1 + 0.328x2 with the specified form of the kinetic energy operator
Tm. The results are obtained with the JADAMILU algorithm [17], which
agrees with those obtained by the HRQII routine [19].

0+ 0− 1+ 1−

E0
v 0.47934 0.48017 1.31196 1.35761

�v 0.00083 0.04565
Ev

a 0.41836 0.41883 1.18316 1.20631
�v 0.00048 0.02315
Ev

b 0.42083 0.42129 1.18777 1.21031
�v 0.00046 0.02254
Ev

c 0.41926 0.41972 1.18655 1.20901
�v 0.00046 0.02246

aTm as in Eq. (10) [same as Eq. (9), for α = γ = 0,β = −1].
bTm as in Eq. (9), α = γ = −0.5,β = 0.
cTm as in Eq. (9), α = −1,β = γ = 0.

results calculated at the EQ and the TS [1a]. The relevant
calculated parameters of the iMDH are listed in Table III.
From these data we calculate the parameters that enter the
Hamiltonian to be diagonalized, which are also listed.

Although so far we have discussed only symmetric modes,
we now include antisymmetric modes as well. Since they are
weakly coupled, this coupling can be treated approximately
and as independent from the symmetric coupling [23]. Namely,
we divide these modes into fast and slow, and treat modes with
ζi > 1 and ζi < 1 in the adiabatic (“slow flip”) and sudden
(“fast flip”) approximation, respectively [4,23]. Fast modes

TABLE III. Calculated parameters of the imaginary-mode Hamil-
tonian (6) for malonaldehyde-d0 and -d1, listed as (d0)/(d1), (d0)/—
(parameter just for malonaldehyde-d0) and —/(d1) (parameter just
for malonaldehyde-d1). All parameters are taken from Tables II and
III of Ref. [1(a)]. Frequencies ω are in cm−1, the other parameters
viz. coupling parameters γi and Bi and zeta factors ζi from Eq. (14)
are dimensionless. The barrier heights are 4.08 (adiabatic) and 14.44
(crude-adiabatic) kcal/mol, and the barrier half-width equals 0.430
Åamu1/2; the scaling frequency equals 	 = 960 cm−1.

i ωi γi Bi ζi

s = 1 627/627 0.64/0.85 0.48/0.47 1.2/1.6
s = 2 943/930 0.38/0.59 0.07/0.10 1.9/2.4
s 1361/1340 0.24/0.81 0.01/0.09 2.2/3.5
s 1896/– 1.01/– 0.13/– 3.7/–
s –/1387 –/0.46 –/0.03 –/3.6
s –/1635 –/0.24 –/0.01 –/4.3

a 1604/– 0.25/– 0.01/– 3.1/–
a –/568 –/0.09 –/0.01 –/1.5
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TABLE IV. Eigenvalues and tunneling splittings for malonaldehyde-d0 (top) and -d1 (bottom) calculated for the parameters listed in
Table III. A dash indicates that the experimental value is not available.

E+
0 E−

0 �0/�
obs
0 E+

1 E−
1 �1/�

obs,
1

c E+
2 E−

2 �2/�
obs,
2

c

1637.9 1663.3 25.4/21.58a 1923.5 2015.9 92.4/57 2540.9 2572.5 31.6/27
1449.8 1453.0 3.2/2.92b 1764.1 1788.4 24.3/– 2326.6 2333.5 6.9/–

aReference [20].
bReference [21].
cReference [22].

yield (minor) correction of the adiabatic barrier height and
constant (also minor) increase of the tunneling mass; slow
modes contribute a Franck-Condon factor to the calculated
splitting [23]. All these effects are negligible here [1a].

To deal with the coupled symmetric modes, we first single
out the two modes with the strongest coupling for direct
diagonalization, which also are the two modes with ζ ∼ 1.
While the limitation to two modes is made in part for practical
reasons, it turns out to be a logical choice for hydrogen-
bonded systems in which the coupling is always dominated by
the hydrogen-bond stretching mode. The coupled symmetric
modes not included in the direct diagonalization are all fast and
are treated collectively in the adiabatic approximation. They
contribute a term of the form b x2 to the mass renormalization.
It is convenient to use dimensionless parameters by expressing
energies in units V0, coordinates in units �x, and frequencies
and time in units of the scaling frequency 	, defined as
	2�x2 = V0 [1a]. This leads to a 3D Hamiltonian of the form

H3D = H1D(x) +
∑
s=1,2

Hs(ys);

H1D = −g2 ∂

∂x

1

m(x)

∂

∂x
+ (1 − B)(1 − x2)2;

Hs(ys) = −g2 ∂2

∂y2
s

+ 1

2
ω2

s

(
ys − γs

ω2
s

x2

)2

, (14)

where g2 = �
2/2V0�x2, γs = Cs/�x2, B = ∑

i Bi =∑
i γi/2ω2

i , and m(x) = 1 + �m x2 with �m = 4
∑

s ′ γ
2
s ′/ω

4
s ′ ,

the sum running over all but the first two modes directly
included in the above Hamiltonian. In these units the
characteristic time of motion in the adiabatic potential is
1/

√
1 − B, so that the parameters ζi used to classify the

modes are given by ζi = ωi/
√

1 − B.
To generate the matrix for diagonalization we use as a basis

set the combination

ψ(x,y1,y2) =
∑
m,n,k

Cm,n,kφm(x) φn(y1) φk(y2), (15)

where the functions φ are the eigenfunctions of the zero-order
Hamiltonians,

H0 = g2

(
− ∂2

∂x2
+ x2

)
; H0

s (ys) = −g2 ∂2

∂y2
s

+ 1

2
ω2

s y
2
s ,

(16)

respectively. While the matrix elements of the potential are
straightforward, those of the kinetic energy operator tend to
require a large number of functions φm before convergence
is achieved, since there are no clear selection rules. For

this particular case the order of the matrix is 200 × (15)2.
Nevertheless, the matrix generated over the basis (15) is rather
sparse and is therefore amenable to the JADAMILU algorithm
tested in the preceding section.

As a demonstration we apply the method to proton
tunneling in two isotopomers of malonaldehyde, O=CH-
CH=CH-OH and O=CH-CH=CH-OD. Of the 18 normal
modes at the TS, eight are symmetric and six antisymmetric;
the remaining four are neither and therefore do not contribute
to the iMDH in Eqs. (1) and (6). The input parameters are
listed in Table III; they are based on the same quantum-
chemical calculations as those used for the same purpose but
with the rainbow instanton approximation in Ref. [1(a)]. In
Table IV the calculated splittings are compared with the
available experimental data. Although they are somewhat
larger than the observed splittings [20–22], they account
well for the observed deuterium isotope effect and the effect
of vibrational excitation [21]. The zero-point splittings are
virtually indistinguishable from those previously calculated
with the rainbow instanton method [1a], which indicates that
their accuracy is limited by the calculated potential and not
by the dynamics used in either calculation. The splittings
calculated for the fundamentals agree well with the much more
elaborate calculations of Hammer and Manthe [24].

To illustrate the nature of the coupling effects, we also
carried out calculations with a 2D version of the Hamiltonian
in Eq. (14), where tunneling is coupled to the symmetric
stretching of the hydrogen bridge (mode y1). Figure 2 plots
the effect of coupling on the probability density of the
0+ state when x and y1 are uncoupled (solid line), which
corresponds to tunneling in the “partially adiabatic” potential
(1 − B ′)(1 − x2)2, B ′ = ∑

s ′ Bs ′ , with barrier height reduced
by the fast modes but no mass effect, plus the harmonic
oscillator. The dashed line represents this probability density
function when x and y1 are still uncoupled but the mass effect
of the fast modes is included; thus the solid and dashed lines
illustrate the effect of the fast modes. Finally, the dotted line
represents the combined effect, with coupling to y1 included.
The figure shows that slow and fast symmetric modes affect
the spread of the wave function and thus the magnitude of the
tunneling splitting in opposite directions.

Malonaldehyde is commonly used as a benchmark single-
proton transfer system to test new models that evaluate
tunneling splittings, but the method described in this paper
is robust enough to deal with multiple-proton transfer in
complex molecules. To probe this, we have investigated
the molecule porphycene, a molecule of biological interest
that presents a case of maximum complexity: a potential-
energy surface with nine stationary points, two tunneling
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FIG. 2. Illustration of the coupling effects described by a 2D
version of Hamiltonian (14) for malonaldehyde-d0, which describes
tunneling with renormalized mass coupled to the symmetric stretch-
ing of the hydrogen bridge (mode y1). Plot of the maximum
probability density |� (+)

0 (x,y1)|2 when y1 is varied versus the
tunneling coordinate x (dimensionless). See text for details.

coordinates, and antisymmetric as well as symmetric coupled
modes. The Hamiltonian to be diagonalized in this case is a
generalization to that in Eq. (14) and corresponds to tunneling
with coordinate-dependent mass coupled to one antisymmetric
mode and three symmetric modes. Detailed calculations, to be
reported in a forthcoming paper [25], yield results that compare
as well with recently measured tunneling splittings [26–28] as
those for malonaldehyde. A zero-point splitting of 4.1 cm−1

and a splitting of the fundamental of the hydrogen-bridge
mode of 10.3 cm−1 compared to observed values of 4.43 and
12 cm−1, respectively.

V. CONCLUSION

On the basis of these results, we conclude that the
imaginary-mode Hamiltonian presented here is a sound and
efficient approach to study tunneling dynamics in MD systems.
It is very economical, since the generation of the iMDH in
Eq. (6) requires standard electronic-structure data and the
Hessians of only two configurations: the stable configuration
and the transition state. The Hamiltonian with reduced di-
mensionality in Eq. (11), obtained by this iMDH, represents
tunneling with a coordinate-dependent mass, representing fast
modes, coupled to those degrees of freedom whose time scale
is similar to that of the tunneling motion. Test results show
that 1D Hamiltonians of this type have stable eigenvalues for
the chosen form of the Hermitian kinetic energy operator.
The strength of the coordinate dependence of the mass is
calculated from the displacements of the tunneling mode
and the fast modes between the equilibrium position and the
transition state. The matrix elements of the Hamiltonian, with
up to two strongly coupled modes in terms of a basis set of
harmonic oscillator functions centered at the transition state,
lead to a sparse matrix which can be handled by the JADAMILU

algorithm to yield values for the tunneling splitting of the
zero-point level and the fundamental levels of the coupled
modes. Application to two isotopomers of malonaldehyde,
a molecule that is frequently used as a benchmark for these

properties, confirms that even for the simplified potentials used
here, based on only two calculated configurations, the iMDH
can give a satisfactory account of these tunneling splittings
and their isotope effect.
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APPENDIX

Here we derive the imaginary-mode Hamiltonian of Eq. (6)
(i2DH in this case) for the collinear exchange AB + C→A +
BC, described by the well-known model Hamiltonian of two
coupled Morse oscillators [16]:

H2D = −�
2

2

[(
1

m
+ 1

M

)(
∂2

∂r2
AB

+ ∂2

∂r2
BC

)
− 2

m

∂

∂rAB

∂

∂rBC

]

+D[e−β(rAB−r0) − 1]2 + D[e−β(rBC−r0) − 1]2

+ 1

2
K(R − R0)2, (A1)

where M = mA = mC, m = mB, R ≡ rCA = rC − rA, and r0

and R0 denote the equilibrium values of the corresponding
bond lengths. Introducing X = rB − (rC + rA)/2 and exclud-
ing the center of mass, Eq. (A1) takes the form

H2D = − �
2

2μ0

∂2

∂X2
− �

2

2μ

∂2

∂R2

+D[e−β(R/2−X−r0) − 1]2 + D[e−β(R/2+X−r0) − 1]2

+1

2
K(R − R0)2, (A2)

where μ0 = 2Mm/(2M + m) and μ = M/2. The 2D potential
in Eq. (A2) is illustrated in Fig. 1 for a set of parameters chosen
so as to mimic the real parameters of proton transfer along the
hydrogen bridge O-H· · · O → O· · · H-O in malonaldehyde,
treated in Sec. IV, namely, M = 20 amu, m = 1 amu, β =
2.1 Å−1, R0 = 3.12 Å, r0 = 1 Å, D = 33 715 cm−1, and
K = 120 000 cm−1 Å−2. It describes tunneling in a symmetric
double-minimum potential, whose properties are modulated by
the heavy “atoms” serving as proton donor and acceptor.

To generate the i2DH in the form of Eq. (6), we need
the values X and R as well as V (X,R) at the stationary
configurations EQ and TS, used as subscripts, and the normal
modes at the TS. Rewriting V (x,y) in Eq. (6) as V (X,R),
we note that the crude-adiabatic potential equals V (X; REQ).
The conditions ∂V (X,R)/∂X = 0, ∂V (X,R)/∂R = 0 for
stationary configurations yield, when solved numerically,
the values of XEQ, REQ, XTS = 0, RTS, V (XEQ,REQ),
and V (0,RTS). Thus the adiabatic barrier half-width and
height are XEQ and Vad(0) = V (0,RTS) − V (XEQ,REQ), re-
spectively. This defines the barrier height V0 = V (0,REQ) −
V (XEQ,REQ), used in our approach, as the scaling parameter
for energy. The (mass-weighted) normal modes x,y at the
TS, found from [∂2V (X,R)/∂x∂y]TS = 0, are x = √

μ0X and
y = √

μ(R − RTS), with the corresponding squared frequen-
cies |ω∗|2 = [∂2V (X,R)/∂x2]TS and ω2 = ∂2V (X,R)/∂y2;
since these modes are taken to be zero at the TS, their
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displacements in the EQ assume the values �x = √
μ0XEQ

and �y = √
μ(REQ − RTS). The above parameters of the

original Hamiltonian (A1) yield the following values for the
parameters of the 2D imaginary-mode Hamiltonian: μ0 =
0.976 amu, μ = 10 amu, XEQ = 0.403 Å, REQ = 2.966 Å,
RTS = 2.833 Å, V (XEQ,REQ) = 26 269.6 cm−1, V (0,RTS) =
28 813.5 cm−1, Vad(0) = 1590.6 cm−1, V0 = 2543.9 cm−1,
ω∗ = 1193i cm−1, ω = 636 cm−1, �x = 0.398 Åamu1/2,
and �y = 0.399 Åamu1/2. These parameters define the cou-
pling constant [renormalized as in Eq. (4)]: C = 1 018 344.2
cm−2 Å−1 amu−1/2. The adiabatic (relaxed) potential Vad(x) is
obtained from the condition ∂V (X,R)/∂R = 0, which defines
Rad(x). Two conclusions follow from this numerical analysis:
first, that Vad(x) is very well approximated by the quartic

function defined in Eq. (5); and second, that Rad(x) is similarly
represented by the analytical expression Rad(x) = RTS +
(REQ − RTS)(x/�x)2. This immediately allows representation
of H2D − V (XEQ,REQ) as a 2D imaginary-mode Hamiltonian
in the form of Eq. (6), with a quartic potential coupled to a
single symmetric mode:

Hi2D = −�
2

2

∂2

∂x2
− �

2

2

∂2

∂y2
+ Vad(0)[1 − (x/�x)2]2

+1

2
ω2(y − Cx2/ω2)2. (A3)

The potentials of Hi2D and H2D are superimposed in Fig. 1 to
illustrate their similarity.
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