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(Received 17 December 2012; accepted 13 March 2013; published online 4 April 2013)

This work presents an accurate way for calculating partition functions of strongly coupled hindered
rotors in two dimensions. The two-dimensional torsional potential is generated from electronic struc-
ture calculations and fitted to Fourier series. The kinetic energy includes off-diagonal terms which
are allowed to vary with the torsional angles, and these terms were also fitted to Fourier series. The
resulting Hamiltonian leads to a coupled Schrödinger equation which was solved by the variational
method. Therefore, the final two-dimensional non-separable (2D-NS) partition function incorporates
coupling terms in both the kinetic and the potential energy. The methodology has been tested for
propane, methyl formate, and a hydrogen abstraction transition state from propanone by the OH rad-
ical. How to incorporate the 2D-NS partition function in the total vibrational-rotational partition func-
tion is also discussed. © 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4798407]

I. INTRODUCTION

The calculation of thermal rate constants in reactions in-
volving molecules with conformational flexibility is unavoid-
able linked to the problem of how to treat hindered internal ro-
tations. This subject has gained importance in later years due
to the increasing interest in the theoretical study of combus-
tion reactions. Many of the molecules that participate in com-
bustion (alkanes, alcohols, etc.) have many conformers with
interconversions among them by torsional rotations about sin-
gle chemical bonds. One way of treating these torsional mo-
tions is by the harmonic oscillator (HO) approximation, which
is of very common use for the rest of the vibrational degrees
of freedom. However, it has been long recognized, that the
low rotational barriers for interconversion between conform-
ers usually encountered, are a clear sign that anharmonic-
ity plays an important role for these low-frequency torsional
modes.1, 2

Several one-dimensional models have been proposed and
used in order to treat hindered internal torsions.3–9 These
methods can also deal with molecules with more than one
torsion if these torsions are not coupled or weakly coupled,
because in that case they can be separated.10 However, there
are systems in which torsions are coupled, both in the kinetic
and potential energy terms, and it is more accurate to con-
sider a non-separable approach. The path-integrals formalism
can be used to take into account quantum effects and coupling
in the potential energy.11–17 It is also quite common to calcu-
late the classical partition function18 taking into account the
global torsional potential.19, 20 In any case the calculation of a
global torsional potential energy surface with the same dimen-
sionality as the number of torsions is a very time consuming
task.

Therefore a number of approximations have been de-
signed in order to reduce the computational time while trying

a)Electronic mail: qf.ramos@usc.es

to retain the accuracy. For instance, Truhlar and co-workers
have developed a series of multi-structural methods21, 22 that
only require the location of the conformational minima of the
torsional potential, and Van Speybroeck and co-workers23, 24

indicated that torsional coupling may be only important
between neighboring torsions and that a high-dimensional
torsional potential can be well approximated by a sum over
two-dimensional potentials. This is an interesting approach
because it is well-known that two-dimensional potentials can
be accurately fitted by Fourier-type series as have been shown
by Durig and co-workers25, 26 and others.27 Those analytical
potentials can be used to calculate two-dimensional classical
partition functions28 to which it is easy to add quantum
corrections.29 One way to do that is to use the approximation
by Pitzer and Gwinn,2 in which the quantum effects are
calculated as the ratio between the quantum and classical
HO partition functions corresponding to the torsional modes.
However, this approximation may introduce substantial error
if the torsional modes are coupled. This is the starting point
of this treatment that leads to the quantum two-dimensional
non-separable (2D-NS) partition function. Specifically,
I propose a two-dimensional quantum method that goes
beyond that approximation, and that incorporates coupling
terms in both the potential and kinetic energy. The latter
through the method developed by Kilpatrick and Pitzer.30

The 2D-NS partition function is calculated for propane, S1,
methyl formate (also called methyl methanoate), S2, and the
transition state structures of the hydrogen abstraction reaction
of propanone by the OH radical, system S3.

For these three systems, the two-dimensional torsional
potentials and the kinetic energy terms of the dihedrals shown
in Fig. 1 are calculated and fitted to Fourier series. With these
analytical Hamiltonian, it is possible to solve the Schrödinger
equation by the variational method and to calculate the 2D-
NS partition function (as shown in Sec. II). Section II also de-
scribes a convenient way to incorporate the two-dimensional
partition function into the total vibrational-rotational (or
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FIG. 1. Balls and sticks models representing the stationary points and the
two torsional angles for systems S1, S2, and S3. It also indicates the two
torsional angles studied in each case. For S3 the hindered rotation φ1 is about
the C, O atoms.

rovibrational) partition function. Section III discusses the re-
sults obtained with this new method and compares them with
some previous models.

II. METHODOLOGY

A. The two-dimensional non-separable torsional
partition function

The seminal work of Kilpatrick and Pitzer30 showed that
the kinetic energy of a molecule presenting several rotating
tops is given by

Trot−tor = 1

2
ω
†
rot−torSωrot−tor, (1)

where ω
†
rot−tor and ωrot−tor are the row and column vectors of

angular velocities and S is a square matrix of length 3 + t
that includes the rotation of the whole molecule and the tor-
sions (being t the number of torsions). The S matrix by means
of a congruent transformation gives a diagonal matrix with
the principal moments of inertia of the overall rotation plus a
reduced D matrix with the coupled torsions. The rotation of
the molecule can now be separated from the torsional motions
and the kinetic energy of Eq. (1) can be rewritten as

Trot−tor = 1

2
ω
†
rotIωrot + 1

2
ω
†
torDωtor. (2)

The first term of the right-side of Eq. (2) represents
the kinetic energy of the overall rotation, being I the diag-
onal matrix containing the principal moments of inertia of
the molecule, whereas the second term of the right-side of
Eq. (2) deals with the torsions. It should be noticed that the S
matrix is affected by the torsional motion, and therefore both
the principal moments of inertia of the molecule and the D
matrix are also affected by the torsional motion. Pitzer31 ar-

gued that a good approximation would be to calculate the S
matrix only at the equilibrium geometry because the change
in the product of the moments of inertia with the torsional
angles roughly compensates the change in the product of vi-
brational frequencies, so the final rovibrational partition func-
tion remains unaltered. In this work some of the dependence
of the overall rotation and molecular vibrations with the tor-
sional angles is included (as discussed in Subsection II C),
whereas the dependence of the D matrix with the torsional
angles is fully taken into account. Therefore the torsional part
of the kinetic energy for two coupled (non-separable) torsions
φ1 and φ2 written in matrix form is given by2, 31

2Ttor = φ̇†D(φ1, φ2)φ̇

= (φ̇1, φ̇2)

(
I1(φ1, φ2) −�1,2(φ1, φ2)

−�1,2(φ1, φ2) I2(φ1, φ2)

) (
φ̇1

φ̇2

)
,

(3)

where φ̇τ = dφτ

dt
, with τ = 1, 2. In general the D(φ1, φ2) ma-

trix is non-diagonal, and the two elements along the diag-
onal, i.e., I1(φ1, φ2) and I2(φ1, φ2), correspond to the re-
duced moments of inertia calculated using the relations given
by Pitzer,31 which are exact for molecules with one or more
uncoupled internal rotors [I(3, 4) in the notation of East and
Radom29]. The off-diagonal term −�12(φ1, φ2) accounts for
the coupling between the two reduced moments of inertia, and
in this work that coupling was calculated by using the exact
treatment described by Kilpatrick and Pitzer (see Ref. 30 for
details).

Equation (3) can be written in terms of the angular mo-
mentum of the rotors. Taking into account that

Lτ = ∂Ttor

∂φ̇τ

, (4)

the following expression is obtained:

L = D(φ1, φ2)φ̇. (5)

The substitution of Eq. (5) into Eq. (3) leads to

2Ttor = {[D(φ1, φ2)]−1 L}†D(φ1, φ2)[D(φ1, φ2)]−1 L

= L†[D(φ1, φ2)]−1 L, (6)

where [D(φ1, φ2)]−1 is the inverse of the D(φ1, φ2) matrix,
i.e.,

[D(φ1, φ2)]−1 = 1

|D(φ1, φ2)|
(

I2(φ1, φ2) �1,2(φ1, φ2)
�1,2(φ1, φ2) I1(φ1, φ2)

)

=
(

d11 d12

d12 d22

)
(7)

and |D(φ1, φ2)| = I1I2 − �2
12 is the determinant of the

D(φ1, φ2) matrix.
Turning now to quantum mechanics by replacing the

classical angular momentum by Lτ = −i¯ ∂
∂φτ

, the kinetic en-
ergy operator due to the two-dimensional torsional motion is
given by

Ttor

(
∂

∂φ1
,

∂

∂φ2

)
= −¯

2

2∑
τ=1

2∑
ς=1

dτς

∂2

∂φτ ∂φς

+ ∂dτς

∂φτ

∂

∂φς

,

(8)
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where the elements dτς , τ = 1, 2; ς = 1, 2 are those of the
inverse matrix of Eq. (7).

The Hamiltonian for two strongly coupled (non-
separable) torsions φ1 and φ2 can be written as

Htor

(
∂

∂φ1
,

∂

∂φ2
; φ1, φ2

)
= Ttor

(
∂

∂φ1
,

∂

∂φ2

)
+ Vtor(φ1, φ2),

(9)
where the kinetic energy is given by Eq. (8), and the two-
dimensional potential is written in the form

Vtor(φ1, φ2) = V1(φ1) + V2(φ2) + V 2D(φ1, φ2). (10)

The two torsions are separable if V 2D(φ1, φ2), the coupling
term −�12, and the dependence of the reduced moments of
inertia with the torsional angles are negligible. In this case
the problem is reduced to two independent one-dimensional
hindered rotors given by the following Hamiltonian:

Hτ = −¯2

2

{
1

Iτ

d2

dφ2
τ

}
+ V 1D

τ (φτ ), τ = 1, 2. (11)

It is possible to solve Eq. (11) by representing the torsional
potentials V 1D

1 and V 1D
2 by Fourier series of the type

V 1D
1 (φ1) = a0 +

Mmax∑
M=1

aM cos(Mφ1) +
M ′

max∑
M ′=1

a′
M ′ sin(M ′φ1)

(12)
and

V 1D
2 (φ2) = b0 +

Nmax∑
N=1

bN cos(Nφ2) +
N ′

max∑
N ′=1

b′
N ′ sin(N ′φ2),

(13)

where a0, b0, aM (M = 1, . . . , Mmax), a′
M ′ (M ′ = 1, . . . , M ′

max),
bN (N = 1, . . . , Nmax), and b′

N ′ (N ′ = 1, . . . , N ′
max) are fit-

ting parameters. The trial wavefunctions will be linear com-
binations of the wavefunctions which are solution for the
Schrödinger equation of the particle in a ring, i.e.,

�1(φ1) = 1√
2π

kmax∑
k=−kmax

c1,ke
ikφ1 (14)

and

�2(φ2) = 1√
2π

nmax∑
n=−nmax

c2,ne
inφ2 . (15)

A typical value for the integers kmax and nmax that pro-
duces convergent results is 100. The matrix elements of
Hamiltonians H1 and H2 using the potentials of Eqs. (12) and
(13), and trial functions from Eqs. (14) and (15) are

〈j |H1|k〉 = ¯
2k2

2I1
δjk + 〈j |V 1D

1 |k〉, (16)

where

〈j |V 1D
1 |k〉 = a0δjk + aM

2
δ|j−k|M − i

aM ′

2
sgn(j − k)δ|j−k|M ′,

(17)

and

〈m|H2|n〉 = ¯
2n2

2I2
δmn + 〈m|V 1D

2 |n〉, (18)

where

〈m|V 1D
2 |n〉=b0δmn+ bN

2
δ|m−n|N − i

bN ′

2
sgn(m − n)δ|m−n|N ′ ,

(19)

respectively, being δ the delta of Kronecker, and sgn(x) the
sign function. Details about the solution of the integrals is
given in the supplementary material.32 The diagonalization
of each of the two secular matrices obtained from Eqs. (16)
and (18) allows the calculation of the partition function by di-
rect summation of the eigenvalues. Ellingson et al.7 used the
above method to obtain accurate one-dimensional hindered
rotor partition functions, and they refer to that method as tor-
sional eigenvalue summation (TES). Those authors only in-
cluded cosine functions in the Fourier series. It fits well po-
tentials with symmetry because the cosine is an even func-
tion; however sine functions are needed to fit asymmetric
potentials.33 This is probably the best one can do to treat
multidimensional hindered rotors that are independent, be-
cause in this case the problem is reduced to a product of one-
dimensional hindered rotor partition functions.

Therefore, the partition function for the two separable (S)
torsions τ obtained by the TES method is given by

QSTES
tor = qTES

1 qTES
2 (20)

with

qTES
τ = 1

στ

∑
j

e−βετ,j , τ = 1, 2 (21)

being β = 1/kBT, kB is the Boltzmann constant, and T is the
temperature; ε1, j and ε2, j are the eigenvalues (energies) after
diagonalization of the secular matrices with the matrix ele-
ments obtained from Eqs. (16) and (18). The symmetry num-
ber of the internal rotation τ is given by σ τ .

If the two torsions are not separable, a good fitting to the
potential by Fourier series needs cross terms. In this case the
potential can be written as

Vtor(φ1, φ2) = V1(φ1) + V2(φ2)

+
L1,max∑
L1=1

L2,max∑
L2=1

cL1L2 cos(L1φ1) cos(L2φ2)

+
P1,max∑
P1=1

P2,max∑
P2=1

dP1P2 sin(P1φ1) sin(P2φ2)

+
L′

1,max∑
L′

1=1

L′
2,max∑

L′
2=1

c′
L′

1L
′
2

cos(L′
1φ1) sin(L′

2φ2)

+
P ′

1,max∑
P ′

1=1

P ′
2,max∑

P ′
2=1

d ′
P ′

1P
′
2

sin(P ′
1φ1) cos(P ′

2φ2), (22)

where cL1L2 , L1 = 1, . . . , L1,max, L2 = 1, . . . , L2,max,
dP1P2 , P1 = 1, . . . , P1,max, P2 = 1, . . . , P2,max, c′

L′
1L

′
2
,

L′
1 = 1, . . . , L′

1,max, L′
2 = 1, . . . , L′

2,max, and d ′
P ′

1P
′
2
,

P ′
1 = 1, . . . , P ′

1,max, P ′
2 = 1, . . . , P ′

2,max are fitting pa-
rameters, and L1,max, L2,max, L′

1,max, L′
2,max, P1,max, P2,max,

P ′
1,max, and P ′

2,max indicate the largest number of each series.
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Once the number of terms for each of the series of Eq. (22)
are known, the same type of series are used to fit each of the
elements of the inverse of the D(φ1, φ2) matrix of Eq. (7),
i.e.,

dτς = F
τ,ς

1 (φ1) + F
τ,ς

2 (φ2)

+
L1,max∑
L1=1

L2,max∑
L2=1

c
τ,ς

L1L2
cos(L1φ1) cos(L2φ2)

+
P1,max∑
P1=1

P2,max∑
P2=1

d
τ,ς

P1P2
sin(P1φ1) sin(P2φ2)

+
L′

1,max∑
L′

1=1

L′
2,max∑

L′
2=1

c
′τ,ς
L′

1L
′
2

cos(L′
1φ1) sin(L′

2φ2)

+
P ′

1,max∑
P ′

1=1

P ′
2,max∑

P ′
2=1

dP ′
1P

′
2

′τ, ς sin(P ′
1φ1) cos(P ′

2φ2). (23)

The one-dimensional terms of Eq. (23) are similar to
Eqs. (12) and (13) and given by

F
τ,ς

1 (φ1) = a
τς

0 +
Mmax∑
M=1

a
τς

M cos(Mφ1) +
M ′

max∑
M ′=1

a
′τς

M ′ sin(M ′φ1)

(24)
and

F
τ,ς

2 (φ2) = b
τς

0 +
Nmax∑
N=1

b
τς

N cos(Nφ2) +
N ′

max∑
N ′=1

b
′τς

N sin(N ′φ2).

(25)

The substitution of the terms of Eq. (23) and of the po-
tential of Eq. (22) into Eq. (9) using the trial wavefunction
�(φ1, φ2) = �1(φ1)�2(φ2), leads to matrix elements of the
Hamiltonian given by

〈jm|H |kn〉 = ¯
2
{n2〈jm|d11|kn〉 + 2nk〈jm|d12|kn〉

+ k2〈jm|d22|kn〉}

− ¯
2
〈jm|

2∑
τ=1

2∑
ς=1

∂dτς

∂φτ

∂

∂φς

|kn〉

+ 〈j |V1|k〉δmn + 〈m|V2|n〉δjk + 〈jm|V12|kn〉,
(26)

where

〈jm|V12|kn〉 = 1

4
{cL1L2δ|j−k|L1δ|m−n|L2 − dP1P2 sgn(j − k)

× sgn(m − n)δ|j−k|P1δ|m−n|P2}

− i

4
{c′

L′
1L

′
2
sgn(m − n)δ|j−k|L′

1
δ|m−n|L′

2

+ d ′
P ′

1P
′
2
sgn(j − k)δ|j−k|P ′

1
δ|m−n|P ′

2
}. (27)

The 〈jm|dτς |kn〉 terms of the kinetic energy are a sum
of kinetic energy contributions with the same expression as
Eq. (27) of the potential but with the coefficients of Eq. (23).
The terms depending on the derivative of dτς in Eq. (27) are
given in the supplementary material.32

Similar potentials to the one of Eq. (22) have been used
often in the past to calculate accurate torsional frequencies
and the transitions between them.25–27, 34–36 However, our ob-
jective is to obtain a large number of eigenvalues to be able to
calculate converged quantum partition functions till tempera-
tures at which the classical partition function takes over.

Two important things should be mentioned at this stage:
(1) The trial wavefunction includes a double sum which leads
to squared matrix of length (2kmax + 1) × (2nmax + 1). If kmax

= nmax = 100 to obtain the eigenvalues by full diagonaliza-
tion is cumbersome. However, most of the matrix elements
are zero, so it is possible to use properties of the sparse matri-
ces to calculate a large number of eigenvalues. The quantum
partition function obtained from the direct sum of the eigen-
values is called 2D-NS and given by

Q2D−NS
tor = 1

σtor

∑
j

e−βEtor,j , (28)

where

σtor = σ1σ2 (29)

being σ 1 and σ 2 the symmetry numbers associated to the in-
ternal rotation about φ1 and φ2, respectively, and Etor, j the
eigenvalues. (2) The classical equivalent to the partition func-
tion of Eq. (28) is

Qcl,tor = 1

σtor

1

2πβ¯2

∫ 2π

0

∫ 2π

0
dφ1dφ2|D(φ1, φ2)|1/2e−βV(φ1,φ2),

(30)
and, therefore Eqs. (28) and (30) should coincide at high tem-
peratures.

B. 2D-NS vs Pitzer and Gwinn

It is interesting to compare Eq. (28) with the torsional
partition function proposed by Pitzer and Gwinn2 (TPG). The
TPG partition function is given by

QTPG
tor = Q

HO
tor

Q
CHO
tor

Qcl,tor, (31)

where Qcl, tor is given by Eq. (30). In the original derivation
the D matrix was evaluated only at the absolute minimum of
the torsional potential, but here the variation with the torsional
angles is allowed. The TPG partition function reaches the cor-
rect high temperature limit and it accounts for the quantum
effects within the HO approximation, i.e., by considering the
ratio between the quantum HO partition function given by

Q
HO
tor =

t∏
τ=1

qHO
τ (32)

being

qHO
τ = e−β¯ωτ /2

1 − e−β¯ωτ
, (33)
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and the classical HO partition function

Q
CHO
tor =

t∏
τ=1

1

β¯ωτ

. (34)

In this case the products in both Eqs. (32) and (34) run
over t = 2 torsional frequencies, and the frequencies ωτ are
not normal mode frequencies, but those associated with the
absolute minimum of two-dimensional torsional potential. An
approximated way of calculating these frequencies is

ω�
τ =

√
1

Iτ

(
∂2V

∂φ2
τ

)
φτ =φτ,e

, τ = 1, 2 (35)

being Iτ the reduced moment of inertia and φτ , e the value of
the torsional angle φτ at the minimum. A more rigorous way
to calculate the HO torsional frequencies is to consider also
the cross terms in both the reduced moments of inertia and the
force constants. The latter given by the second derivative of
the torsional potential. The new frequencies can be calculated
from the the eigenvalues of the secular determinant involving
the D matrix and the torsional force constants matrix,31 i.e.,

|K − ωτ D| = 0 (36)

being

K =
⎛
⎝ ∂2V

∂φ2
1

∂2V
∂φ1∂φ2

∂2V
∂φ1∂φ2

∂2V

∂φ2
2

⎞
⎠ . (37)

However, the classical partition function is built from all
the conformers that can be reached by the t-dimensional hin-
dered rotor potential (in this case t = 2), not just the lowest
minimum, and the rest of coordinates are minimized at every
point along this potential. Thus, the landscape of the poten-
tial presents a number of minima, being the number of con-
formers, nC (distinguishable configurations), the total number
of minima of the torsional potential divided by the symmetry
number of Eq. (29).37 In this context, provided that the quan-
tum effects are well represented by the HO approximation, it
seems more adequate to substitute the TPG partition function
by a new multi-conformational TPG partition function (MC-
TPG), which is given by

QMC−TPG
tor = Q

MC−HO
tor

Q
MC−CHO
tor

Qcl,tor, (38)

where the multi-conformer torsional HO partition function is

Q
MC−HO
tor =

nC∑
i=1

e−βUi

t∏
τ=1

qHO
i,τ (39)

and the multi-conformer classical HO partition function
would be given by

Q
MC−CHO
tor =

nC∑
i=1

e−βUi

t∏
τ=1

1

β¯ωi,τ

. (40)

The frequency ωi,τ is associated to torsion τ at the ith mini-
mum of the potential and given by Eq. (36).

Using the above relations, the MC-TPG partition func-
tion of Eq. (38) is given by

QMC−TPG
tor = F MC−PGFcQ

MC−CHO
tor (41)

being

F MC−PG = Q
MC−HO
tor

Q
MC−CHO
tor

(42)

and

Fc = Qcl,tor

Q
MC−CHO
tor

. (43)

The term Fc takes into account the couplings in both the ki-
netic an potential energies.

Similarly, the two-dimensional partition function of
Eq. (28) can be written as

Q2D−NS
tor = FqFcQ

MC−CHO
tor , (44)

where

Fq = Q2D−NS
tor

Qcl,tor
. (45)

The deviations of MC-TPG from the 2D-NS partition
function are collected in the ratio

Q2D−NS
tor

QMC−TPG
tor

= Fq

F MC−PG
. (46)

This relation can be seen as a deviation from the HO treat-
ment of quantum effects. In the case of TES, the ratio
Q2D−NS

tor /QSTES
tor is associated to the influence of coupling in

the quantum effects.

C. The multi-conformational rovibrational
partition function

Although this work deals with the evaluation of two-
dimensional hindered rotor partition functions, below I de-
scribe an easy way of incorporating this partition function
into the total rovibrational partition function. The latter can be
built accurately by taking into account rotational-vibrational
coupling.38 It has to include corrections due to the variations
of geometry by the rotation about the torsional angles, since
these changes have effect on the principal axes of inertia and
in the vibrations of the system. However, to calculate Hes-
sians for several dispositions of the torsional angles can be
very expensive in computer time, so it is interesting to work
in the line of Eqs. (39) and (40).21, 37, 39 These two equations
take the geometric effects partially into account by express-
ing the total harmonic rovibrational partition function, Q̃har,
for a number of conformers nC, as a sum of the rovibrational
partition functions of the individual conformers

Q̃har =
nC∑
i=1

QRRHO
i . (47)

The tilde over the Q letter is used to indicate that this is the to-
tal multi-conformational rovibrational partition function. The
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superscript RRHO indicates that the rigid-rotor (RR) HO ap-
proximation is invoked. Therefore, for each conformer

QRRHO
i = Qrot,iQ

HO
i e−βUi (48)

is the product of the classical rigid-rotor rotational partition
function Qrot, i, the QHO

i normal-mode harmonic oscillator
quantum vibrational partition function, and the Boltzmann
factor that includes the difference in energy Ui with respect
to the most stable conformer. It should be noticed that each of
the rotational partition functions should include the symmetry
number for external rotation of the whole molecule.37

To introduce the two-dimensional partition function of
Eq. (28), the HO oscillator frequencies due to the two tor-
sions have to be removed from the total rovibrational par-
tition function of Eq. (47). There are several approximated
ways of doing that, for instance one can directly remove the
normal-mode frequencies mainly associated to the torsions.
Other option is to define non-redundant internal coordinates
to identify the force constants corresponding to the torsions.
At this point, the torsional frequencies can be obtained us-
ing Eq. (35), as indicated in Ref. 21. The former procedure is
quite approximate if the normal mode is not a pure torsion,
whereas the latter does not include the coupling between the
torsions. Here, I propose to use the HO torsional frequencies
obtained from Eq. (36). Those include the coupling between
the torsions, and in the line of Eq. (47), if we take into ac-
count all the distinguishable wells of the torsional potential,
the torsional multi-former HO partition function of Eq. (39)
is obtained.

Therefore, the total multidimensional partition function
Q̃MD

tor including the anharmonic treatment for torsions de-
scribed in this work is expressed as

Q̃MD
tor = Q2D−NS

tor
Q̃har

Q
MC−HO
tor

(49)

or

Q̃MD
tor = α2D−NS

tor Q̃har, (50)

being

α2D−NS
tor = Q2D−NS

tor

Q
MC−HO
tor

. (51)

The parameter α2D−NS
tor enters as multiplicative coefficient

that includes deviations from the harmonic multi-conformer
partition function, when torsions are calculated with the 2D-
NS anharmonic treatment, instead of with the harmonic ap-
proximation.

D. Computational details

All the electronic structure calculations were performed
at the MPWB1K method,40 with the augmented polarized
double-ζ basis set, 6-31+G(d,p).41 This level is not very ex-
pensive in computer time and has shown to perform well for
nonmetallic thermochemical data and thermochemistry.42 The
energies, geometries, and normal-mode frequencies of all the
stationary points depicted in Fig. 1 are listed in the supple-
mentary material.32 The two-dimensional torsional potential

energy surfaces for each of the systems were generated by op-
timizing all the degrees of freedom, but the two torsions, using
a stepsize of 10◦ (usually, converged results are obtained with
a stepsize of 15◦, but for quite asymmetric torsional potentials
as for system S3 a stepsize of 10◦ is needed). The elements of
the D matrix were evaluated at each of the geometries as de-
scribed in Ref. 30 and implemented in Ref. 43. The frequen-
cies calculated at each of the stationary points were scaled by
0.964.44

The potential energy grid obtained from the electronic
structure calculations was fitted to Fourier series. In the fit-
ting procedure it is possible to use reference one-dimensional
potentials, i.e., potentials in which one of the dihedrals is kept
constant at a given reference value

V ref
1 (φ1) = Vtor

(
φ1, φ

ref
2

)
, V ref

2 (φ2) = Vtor
(
φref

1 , φ2
)
. (52)

The obvious choice is to use the torsional angles of the ab-
solute minimum as reference. However, that reference leads
to a very unsatisfactory fitting; it is better to perform an un-
restricted fit using Fourier series, and searching, a posteriori,
for φref

1 and φref
2 . The resulting one-dimensional potentials of

Eq. (10) can be approximately identified to reference poten-
tials with φref

1 = φref
2 = 99◦ for propane, φref

1 = 9◦ and φref
2

= 180◦ for methyl formate, and φref
1 = 68◦ and φref

2 = 284◦

for system S3.
A second finer grid with stepsize every 1◦ was generated

from the electronic structure calculations. The extra points
on this second grid were obtained by fitting the data to a
two-dimensional spline under tension.45 To guarantee that the
Fourier series accurately represent the potential, it was re-
quired that both grids (the one fitted to Fourier series and
the one fitted to the spline) would lead to classical partition
functions, calculated by Eq. (22), differing by less than 0.5%
in all the temperature range between T = 100 and 2000 K.
The classical partition functions were evaluated by numeri-
cal integration using the trapezoidal rule with a stepsize of 1◦.
In this iterative procedure, the elements of the D matrix in-
troduced in the two classical partition functions were always
those obtained by fits to splines under tension. Once the fit of
the potential to the Fourier series is satisfactory, I proceed to
fit the elements of the D matrix to Fourier series. These are
very well reproduced by assuming the same number of terms
as for the potential. All the fits to Fourier series were carried
out by the GNUplot program.46

The calculation of the eigenvectors was carried out with
the help of JADAMILU software.47 In particular, the eigenval-
ues from the matrix elements of Eq. (26) were obtained by
several runs of JADAMILU, which allows the calculation of
a selected number of eigenvalues in very large real or com-
plex symmetric Hermitian sparse matrices. The calculation of
Q2D−NS

tor was carried out by the HR2D program.48

In the case of propane, the torsional potential was taken
from Durig et al.34 Those authors obtained the potential by
fitting spectroscopic data to Fourier series. The geometry of
the minimum to calculate the reduced moments of inertia
and the harmonic frequencies was obtained at the MPWB1K/
6-31+G(d,p) level, as for the other two systems.
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TABLE I. Parameters (in cm−1) for the one-dimensional terms of Eq. (22)
for the three systems.

Parameter S1 S2 S3

a0 + b0 1235.1 3114.4 818.4
a1, a

′
1 . . . −831.4, . . . −94.6, 196.0

a2, a
′
2 . . . −2074.7, . . . −42.3, 106.3

a3, a
′
3 −661.7, . . . −120.6, . . . −10.7, 32.4

a4, a
′
4 . . . 74.1, . . . −1.20, 16.2

a5, a
′
5 . . . 8.36, . . . 1,76, 2.86

a6, a
′
6 . . . −6.03, . . . 0.80, 1.36

a9, a
′
9 . . . . . . 0.34, 1.15

b1, b
′
1 . . . . . . 269.2, . . .

b2, b
′
2 . . . . . . 322.0, . . .

b3, b
′
3 −661.7, . . . 139.5, . . . −84.7, . . .

b4, b
′
4 . . . . . . 22.4, . . .

b5, b
′
5 . . . . . . −6.40, . . .

b6, b
′
6 . . . . . . 11.5, . . .

b7, b
′
7 . . . . . . 5.56, . . .

b8, b
′
8 . . . . . . 6.22, . . .

b9, b
′
9 . . . . . . 4.20, . . .

III. RESULTS AND DISCUSSION

The three systems with hindered rotations that are con-
sidered here have different levels of coupling, as can be seen
in Tables I and II. Of the three studied systems, propane
is the molecule with the weakest coupling between tor-
sions. It presents only one minimum, S1-M1, but nine non-
distinguishable wells, which are generated from the internal
rotation about the C-C bonds, as shown in Fig. 2. Table I
shows that a Fourier series with one term of the type cos (3φ)
for both torsional angles, together with two small coupling
terms is enough for fitting the hindered rotor potential energy
surface.

In the case of propane the STES and 2D-NS partition
functions are very similar (Table III), but the weak coupling
between the torsions splits the two torsional frequencies. They
have a common value of 255 cm−1 when calculated with
Eq. (35), but have values of 226 cm−1 and 289 cm−1, respec-
tively, when calculated with Eq. (36). The electronic-structure
normal-mode frequencies confirm this splitting; the lowest
torsional frequency corresponds to the motion of two methyl
groups rotating in opposite directions, whereas the highest
frequency is associated to the rotation in the same direction.

Methyl formate presents two distinguishable minima, a
cis form, S2-M1, which is about 2000 cm−1 more stable
than the trans form. Without doing a global fit to the two-
dimensional potential energy surface, an approximate way of
looking at the coupling is to scan one of the dihedral angles,
but optimizing the other dihedral to its equilibrium value. If
the equilibrium value remains constant with the variation of
the other angle, then there is no coupling between the two
torsions. When proceeding this way for both torsions, the
two one-dimensional potentials are obtained. These poten-
tials are used to calculate the STES partition functions; how-
ever, as mentioned in Sec. II, they are different from the one-
dimensional potentials of Eq. (10), which are obtained from

TABLE II. Coupling parameters (in cm−1) of Eq. (22) for the three systems.

Parameter S1 S2 S3

c11, d11 . . . . . . −523.8, . . .
c12, d12 . . . . . . −134.5, . . .
c13, d13 . . . 15.9, 38.9 −17.0, . . .
c14, d14 . . . . . . −5.00, . . .
c21, d21 . . . . . . −175.0, . . .
c22, d22 . . . . . . −100.0, . . .
c23, d23 . . . −112.1, −129.3 −27.1, . . .
c24, d24 . . . . . . −22.6, . . .
c31, d31 . . . . . . −44.1, . . .
c32, d32 . . . . . . −45.0, . . .
c33, d33 88.3, −66.0 71.4, 59.9 −27.0, . . .
c34, d34 . . . . . . −12.1, . . .
c41, d41 . . . . . . −12.4, . . .
c42, d42 . . . . . . −21.3, . . .
c43, d43 . . . 37.1, 37.1 −19.4, . . .
c44, d44 . . . . . . −9.32, . . .
c53, d53 . . . 7.70, 7.90 . . .
c′

11, d
′
11 . . . . . . 57.6, . . .

c′
12, d

′
12 . . . . . . −101.2, . . .

c′
13, d

′
13 . . . . . . −29.6, . . .

c′
14, d

′
14 . . . . . . −48.5, . . .

c′
15, d

′
15 . . . . . . −19.3, . . .

c′
16, d

′
16 . . . . . . −13.1, . . .

c′
21, d

′
21 . . . . . . 92.9, . . .

c′
22, d

′
22 . . . . . . −46.1, . . .

c′
23, d

′
23 . . . . . . −34.1, . . .

c′
24, d

′
24 . . . . . . −36.5, . . .

c′
25, d

′
25 . . . . . . −33.0, . . .

c′
26, d

′
26 . . . . . . −5.90, . . .

c′
31, d

′
31 . . . . . . 50.2, . . .

c′
32, d

′
32 . . . . . . 6.29, . . .

c′
33, d

′
33 . . . . . . −20.0, . . .

c′
34, d

′
34 . . . . . . −22.2, . . .

c′
35, d

′
35 . . . . . . −18.6, . . .

c′
36, d

′
36 . . . . . . −6.85, . . .

c′
41, d

′
41 . . . . . . 24.6, . . .

c′
42, d

′
42 . . . . . . 9.61, . . .

c′
43, d

′
43 . . . . . . −6.81, . . .

c′
44, d

′
44 . . . . . . −12.6, . . .

c′
45, d

′
45 . . . . . . −11.2, . . .

c′
46, d

′
46 . . . . . . −7.22, . . .

the fit by Fourier series to the two-dimensional potential en-
ergy surface.

For methyl formate the coupling is somewhat stronger
than for propane, as shown in Fig. 2, which plots the slight de-
pendence of φ1 on φ2. In the cis structure, the three hydrogen
atoms of the methyl group form dihedral angles of 60◦, 180◦,
and 300◦, respectively, with respect to the molecular chain,
but in the trans structure those dihedrals are of 0◦, 120◦, and
240◦, respectively. Thus, the methyl group also rotates during
the scan about the φ1 torsional angle (Fig. 2). In the initial cis
structure (φ1 = 0◦) one of the hydrogen atoms of the methyl
group has a dihedral angle of φ2 = 60◦, whereas in the fi-
nal cis structure (φ1 = 360◦) the dihedral is φ2 = 180◦. Both
initial and final structures are the same because the hydrogen
atoms within the methyl group are indistinguishable, but this
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FIG. 2. Colour contour plot of the energy landscape (in cm−1) resulting from
the rotation about the two torsional angles. The solid-red and dashed-green
lines when displayed, indicate the one-dimensional torsional potentials.

variation of φ2 with φ1 shows that there is coupling between
the two torsions.

The HCO group is highly asymmetric and there is an im-
portant change in the partition function due of the variation of
the reduced moments of inertia associated to φ1 (Table IV).
Thus, at T = 100 K there is a 25% difference between the
2D-NS partition function and the partition function (QNS–V in
Table III) obtained considering a Hamiltonian with coupling
just in the potential energy, i.e.,

H NS−V = −¯2

2

{
1

I1

∂2

∂φ2
1

+ 1

I2

∂2

∂φ2
2

}
+ Vtor(φ1, φ2). (53)

The difference between Q2D–NS and QNS–V decreases with
temperature, but at T = 300 K is still above 10%. These results
indicate that coupling in the kinetic energy should be taken
into account for hindered rotations about asymmetric groups.
An approximated way of dealing with the coupling in the ki-
netic energy using just the QNS–V quantum partition function

TABLE III. Partition functions for the three systems calculated at several
temperatures. Qcl, tor, QSTES, and Q2D–NS are given by Eq. (30), Eq. (20),
and Eq. (28), respectively. QNS–V is calculated the same way as Q2D–NS, but
considering that the reduced moments of inertia are constant and calculated
at the equilibrium geometries of the the absolute minima.

System T(K) Qcl, tor QSTES QNS–V Q2D–NS

S1 100 0.0760 0.0270 0.0297 0.0288
200 0.314 0.241 0.249 0.245
300 0.735 0.668 0.670 0.663
500 2.22 2.22 2.17 2.15
700 4.61 4.77 4.59 4.55

1000 9.78 10.2 9.78 9.70
2000 34.9 36.6 35.2 34.9

S2 100 0.1113 0.0534 0.0578 0.0460
200 0.506 0.438 0.465 0.403
300 1.18 1.16 1.21 1.07
500 3.25 3.39 3.52 3.16
700 6.26 6.51 6.82 6.18

1000 12.8 13.2 13.8 12.8
2000 55.8 55.1 56.4 55.8

S3 100 1.08 1.68 0.596 0.580
200 6.53 11.9 5.93 5.80
300 17.6 31.7 17.4 16.9
500 56.0 93.3 57.5 55.4
700 112 174 117 112

1000 219 316 230 219
2000 677 862 717 677

would be to multiply this function by the ratio between the
classical partition function given by Eq. (30) and the classical
partition function obtained using constant uncoupled reduced
moments of inertia. At T = 300 K, the partition function cal-
culated in this approximate manner is 1.08, which is in very
good agreement with 1.07 (the value obtained using the 2D-
NS partition function).

The system S3 presents two transition states S3-M1 and
S3-M2, both of them having enantiomers. These transition
states have also been reported by Zhou et al.49 when study-
ing the hydrogen abstraction reactions from propanone by the
OH radical. However, those authors considered that S3-M1
and S3-M2 belong to different paths for reaction, but both
configurations and their enantiomers can be reached by ro-
tation about the two torsional angles, and therefore can be
treated using the same two-dimensional hindered rotor poten-
tial energy surface. For S3 there is a third torsion about the
unreacting methyl group, but it is reasonable to assume that
this rotor is weakly coupled to the rest of degrees of freedom,
and therefore the STES method would accurately described
this motion. Hereafter, I focus on the two torsions depicted in
Fig. 1. As shown in Fig. 2, there is a strong coupling between
both torsions, because the one-dimensional potentials of one
of the torsions involve substantial changes in the other torsion.
The ratio of Q2D–NS/QSTES (Fig. 3), which is a measure of the
strength of the coupling between the torsions, is quite close
to the unity for both propane and methyl formate (the param-
eters for the one-dimensional potentials and the graphs with
the fitting for the three systems are given in the supplementary
material.32). However, for system S3 there is a substantial de-
viation from the unity. This is expected, because the STES
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TABLE IV. Some parameters of interest for the two internal rotations of the three systems. The minima S3-M1 and S3-M2 have enantiomers. The frequencies
ωi, 1 and ωi, 2 correspond to normal-mode torsional frequencies, whereas ω�

i,1, ω�
i,2, and ωi,1 and ωi,2 are the frequencies calculated by Eqs. (35) and (36),

respectively. The zero-point energies (ZPE) calculated by the STES and 2D-NS methods are also indicated. All the frequencies, ZPEs, and the energy difference
between conformers Ui are given in cm−1. The reduced moments of inertia are given in amu Å2.

System Wells σ 1, σ 2 Conformer ωi, 1, ωi, 2 ω�
i,1, ω

�
i,2 ωi,1, ωi,2 ZPESTES ZPE2D–NS I1, I2 Ui

S1 9 3, 3 S1-M1 219, 270 255, 255 226, 289 256 251 2.667, 2.667 0
S2 6 1, 3 S2-M1 310, 130 310, 128 344, 128 221 232 3.531, 2.954 0

S2-M2 187, 58 192, 63 195, 34 5.761, 2.331 2015
S3 4 1, 1 S3-M1 421, 34 409, 67 412, 42 114 207 0.884, 24.91 0

S3-M2 158, 42 151, 48 152, 40 0.867, 25,91 119

method is based on two one-dimensional potentials that have
torsional frequencies substantially different from the ones of
the two-dimensional potential. Thus, the zero-point energy
due to the two torsions calculated with STES is 114 cm−1,
whereas the one calculated with 2D-NS is 207 cm−1, and thus
QSTES increases much faster. Actually, the coupling is also
important at high temperatures, and the ratio Q2D–NS/QSTES

never converges to the unity (it has a limiting value of 0.80).
This example shows that when the coupling is strong, the one-
dimensional potentials are not able to reproduce all the fea-
tures of the bi-dimensional potential and the STES approxi-
mation fails.

The MC-PG partition function, which in principle is less
accurate than STES, gives better results when compared to
2D-NS, and the ratios Fq/FMC–PG are all very close to the
unity (Fig. 4). This is a remarkable result taking into account
that the FMC–PG coefficient is based on the HO approxima-
tion. These examples indicate that MC-PG could be an ap-
proximate, but less expensive, alternative to 2D-NS. One im-
portant issue is that for the evaluation of QMC–PG we need to
know the torsional frequencies. As shown in Table IV, the
differences between ω�

τ and ωτ in some cases (for instance,
S1-M1, S2-M1, and S3-M1), reveals the importance of tak-
ing into account the off-diagonal terms in the calculation of
the torsional frequencies. Actually, these three systems indi-
cate that if the calculation of the ωτ frequencies is difficult, it
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FIG. 3. Plot of the ratio Q2D–NS/QSTES at several temperatures. The ratios for
systems S1, S2, and S3 are represented by filled squares, circles, and filled
circles, respectively.

would be better to use the normal-mode frequencies than the
ω�

τ frequencies in the evaluation of QMC–PG.
Finally, to show the adequacy of the multi-dimensional

partition function of Eq. (50), the standard state entropies So

and heat capacities at constant pressure Co
p at T = 298.15 K

for reactions S1 and S2 have been calculated. For system
S1, the values using Eq. (50) are So = 64.73 cal K−1 mol−1

and Co
p = 17.59 cal K−1 mol−1 that compare very well

with the experimental values of So = 64.6 cal K−1 mol−1

and Co
p = 17.6 cal K−1 mol−1.50 The results are also good

for methyl formate for which the calculated values are So

= 68.32 cal K−1 mol−1 and Co
p = 15.14 cal K−1 mol−1,

whereas the experimental values are So = 68.18 cal K−1

mol−1 and Co
p = 15.40 cal K−1 mol−1.51 These results are

encouraging, and the application to chemical reactions of the
2D-NS methodology described in this work, together with
Eq. (50) is on its way.

In this context, Eq. (50) can be easily implemented within
the framework of variational transition state theory,52 and it
is expected that the 2D-NS method would lead to an impor-
tant improvement over the harmonic approximation in the cal-
culation of thermal rate constants and kinetic isotope effects
of chemical reactions with two strongly coupled hindered
rotations.
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