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A new instanton approach is reported to tunneling at zero-temperature in multidimensional (MD)
systems in which a “light particle” is transferred between two equivalent “heavy” sites. The method
is based on two concepts. The first is that an adequate MD potential energy surface can be generated
from input of the stationary configurations only, by choosing as a basis the normal modes of the
transition state. It takes the form of a double-minimum potential along the mode with imaginary
frequency and coupling terms to the remaining (harmonic) oscillators. Standard integrating out of
the oscillators gives rise to an effective 1D instanton problem for the adiabatic potential, but requires
evaluation of a nonlocal term in the Euclidean action, governed by exponential (memory) kernels.
The second concept is that this nonlocal action can be treated as a “perturbation,” for which a new
approximate instanton solution is derived, termed the “rainbow” solution. Key to the approach is
avoidance of approximations to the exponential kernels, which is made possible by a remarkable
conversion property of the rainbow solution. This leads to a new approximation scheme for direct
evaluation of the Euclidean action, which avoids the time-consuming search of the exact instanton
trajectory. This “rainbow approximation” can handle coupling to modes that cover a wide range of
frequencies and bridge the gap between the adiabatic and sudden approximations. It suffers far fewer
restrictions than these conventional approximations and is proving particularly effective for systems
with strong coupling, such as proton transfer in hydrogen bonds. Comparison with the known exact
instanton action in two-dimensional models and application to zero-level tunneling splittings in two
isotopomers of malonaldehyde are presented to show the accuracy and efficiency of the approach.
[http://dx.doi.org/10.1063/1.4769198]

I. INTRODUCTION

Dynamic properties of quantum systems are often ex-
pressed in terms of particles tunneling through a barrier. One
of the theoretical approaches to such problems, and the one
used in this article, is the instanton approach, in which tun-
neling in a multidimensional (MD) configuration space is
described as 1D motion along a unique path, the instanton,
where the tunneling probability is maximal.1 Because of its
efficiency, this method has recently found application to many
tunneling problems in chemistry and even biology.2 The pur-
pose of this article is to introduce a new approach to tunnel-
ing at zero-temperature in MD systems where a “light par-
ticle” is transferred between two equivalent “heavy” sites.
The approach proposed here differs from other approaches,
including our earlier approximate instanton method (AIM),3

and promises good accuracy obtained with minimal computa-
tional effort. Although the new method is general, for definite-
ness we concentrate on zero-level tunneling splitting caused
by proton tunneling along hydrogen bonds in molecules and
complexes. This example has the benefit of allowing com-
parison with observed splittings and is sufficiently complex
to show the merits of the method relative to other available
methods.

The first application of instanton technics to problems of
this type was carried out in a pioneering study by Makri and

Miller,4 where the authors assume that tunneling is “fast” rel-
ative to the other motions and takes place in an effective 1D
potential along a “straight” path between turning points. In
the alternative case, the “slow” tunneling takes place in an ef-
fective 1D potential along the minimal energy path.5 These
approximations, referred to as the “fast-flip” or sudden ap-
proximation (SA), and the “slow-flip” or adiabatic approxi-
mation (AA), respectively, are reviewed in the book by Ben-
derskii, Makarov, and Wight.1 Much of the recent progress
in the field is due to the group of Benderskii,1, 6 which found
instanton solutions for a variety of low-dimensional models
with a double-minimum potential coupled to other degrees of
freedom. Although these methods can produce accurate so-
lutions for simple systems, the results are not readily gener-
alized to MD systems, where tunneling is coupled to many
degrees of freedom with a complex spectrum and of different
symmetry. To deal with such systems, we return to the ba-
sic definitions of the instanton approach, relating the tunnel-
ing probability to the imaginary part of the partition function,
which can be calculated as the trace of the density matrix.1

Using the relation of the density matrix to the time-evolution
operator, the partition function is expressed as a sum over
all possible paths s(t) in configuration space (a path inte-
gral), each contributing with the phase factor exp (iS), where
S is the classical action (hereafter action is in units ¯). The
resulting oscillatory behavior is overcome by transformation
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to imaginary time t → τ = it, each path acquiring the
“weight” exp (−SE), where SE = ∫

dτ H[s(τ )] is the Euclidean
action, defined via the Hamiltonian H = 1

2 ṡ2 + V (s), instead
of the Lagrangean; it describes classical motion in the upside-
down potential V (s) → −V (s). The path where the tunnel-
ing probability reaches its maximum value, i.e., where SE

has a minimum, is called the instanton; we denote it by sI.
The tunneling probability is then defined by a single term:
P ∼ exp (−SE), where SE = ∫

dτ [ 1
2 ṡ2

I + V (sI)] is the
Euclidean action evaluated along the extreme path, called
hereafter instanton action.

Application of this elegant idea to MD systems is not a
trivial task, mainly because the result is very sensitive to the
accuracy of the instanton action SE which enters as an expo-
nent. The common approach, pursued by Tautermann et al.;7

Meana-Paña et al.;8 Mil’nikov and Nakamura;9 and, more re-
cently, Richardson et al.;10 and Rommel and Kästner,11 in-
volves a search for the instanton trajectory via direct mini-
mization of the Euclidean action, and then evaluating it along
this path. Thus the MD potential (and the Euclidean action)
is generated on a grid in the configuration space of 3N − 6
dimensions, N being the number of atoms, until the trajectory
is found where the action reaches its minimal value. This ap-
proach requires, on the one hand, a sufficiently dense grid,
and on the other, accurate evaluation of the MD potential in
each point. Although the method is easy to apply, since it in-
volves frequently repeating the same routine computation, its
cost may be prohibitive unless the level of computation or the
density of the grid is taken lower than optimal. The method
has been applied to a variety of proton tunneling processes in
molecules and complexes, with mixed results, as discussed in
Sec. VI. Since the instanton path is not the same for different
isotopomers, extension to deuterium tunneling, for instance,
requires repeating the entire calculation; the procedure may
be abbreviated by mass-scaling of the grid, but this will affect
the accuracy.

We adopted an alternative approach by making an edu-
cated guess of the instanton on physical grounds, and gener-
ating the MD potential based on symmetry; to our knowledge
this was the first full-dimensional instanton application to real
systems reported in the literature.12 We took advantage of
the symmetry with respect to reflection in the dividing plane,
say x = 0, by recognizing that the instanton, in the vicinity
of the plane, must coincide with the direction x perpendic-
ular to it. We thus adopted x as the “reaction coordinate”
and constructed the MD potential as a sum of a (symmet-
ric) double-minimum potential V (x) that connects the min-
ima and coupling terms to the remaining 3N − 7 degrees of
freedom {y} perpendicular to x. As a basis set we employed
the (mass-weighted) normal modes (x, {y}) of the transition
state (TS) configuration, which is the configuration of high-
est symmetry, x being the mode with imaginary frequency.
This choice allowed direct generation of the MD potential in
the multi-term form V (x) + ω2

i y
2
i /2 + Cix

nym
i , where V (x)

and the constants {C} of the leading coupling terms allowed
by symmetry are evaluated from standard electronic-structure
and force field data for two stationary configurations only: the
equilibrium configuration (EQ) and the TS. In solving the in-
stanton problem for this potential, our earlier AIM (Ref. 3)

made use of the instanton action derived by Benderskii et al.
for model systems.6 We introduced simplifications that al-
lowed generalization of these results to MD systems, where
some of the coupled modes are “fast,” some “slow” on the
time scale of tunneling. This approach allowed us to derive
rates and splittings directly from the instanton action, thereby
circumventing the large number of structural calculations re-
quired to determine the exact instanton trajectory. Computa-
tionally the method, as implemented in the DOIT program3 is
not demanding and has been applied to proton tunneling in a
wide variety of molecules and complexes.2, 3, 12, 13 It has also
been successfully generalized to splittings of vibrationally ex-
cited levels. For instance, it predicted correctly,14 in contra-
diction to the proposal of the original authors15 and some ear-
lier estimates,16 that in the formic acid dimer, which repre-
sents a well-known test case for tunneling splittings, the split-
ting of the zero-point level exceeds that of an excited CO-
stretch level.17 Nevertheless, because of the approximations
involved, problems are encountered, as shown below, espe-
cially when the coupling is strong.

Subsequently Benderskii et al.18 developed a perturba-
tive instanton approach (PIA), both for ground and excited
state splittings, using a generalization to the AIM Hamilto-
nian. However, this method remains to be tested for the sys-
tems of interest in the present study; whether it can deal with
systems in which the coupling is strong remains to be estab-
lished.

Since the results of our method are comparable to those
of the other methods cited above, its simplicity would make
it the method of choice if the strong coupling problem can
be solved. In the AIM approach, this problem arises because
the approximations developed for the nonlocal part of the Eu-
clidean action depend on the relation of the frequency of the
coupled modes to the time scale of tunneling. To make use the
results of Benderskii for 2D systems,6 high-frequency (“fast”)
modes are treated in the AA, and low-frequency (“slow”)
modes in the SA, which formally means replacing the expo-
nential kernels in the non-local action by delta-functions, and
by their expansion over small parameters, respectively.1, 19

Their effect on tunneling is different, fast modes leading to
renormalization of the mass of the tunneling particle and slow
modes leading to barrier modulations. This different behav-
ior becomes critical in the intermediate region where the ef-
fect may go both ways. This may give rise to ambiguous re-
sults or, at least, to results that are extremely sensitive to the
quality of the calculated potential. This ambiguity arises in
systems with strong hydrogen bonds where a high hydrogen-
bond frequency is strongly coupled to the proton motion. Such
strongly coupled motions are not adequately described by ap-
proximation schemes for the kernels appearing in the AA or
SA.

In the present contribution we address this problem by a
two-step instanton approach. First we represent the Euclidean
action as a sum of a local and nonlocal parts, where the lat-
ter remains relatively small even in the case of strong cou-
pling and can be treated as a “perturbation”. Keeping the ex-
ponential kernels intact, we then evaluate the nonlocal part
based on a suitable approximate instanton solution, termed
rainbow solution, which we derive. As a result, the instanton
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action is now represented as a sum of two terms, a main term
representing the instanton action of a 1D motion in the adi-
abatic potential, and a correction term thus evaluated. This
approach allows us to deal conveniently with strong coupling,
because the reduced imaginary frequency tends to move the
most strongly coupled mode(s) towards the “fast” group; an
adequate approximate solution can thus be obtained by treat-
ing these most important modes in the AA; the remaining
(weakly coupled) modes can be treated in the AA or in the
SA, based on the implied separation criterion. We refer to this
approach as the rainbow approximation because of its ability
to handle a wide range of vibrational frequencies that bridge
the gap between the limits where the AA and SA apply. We
note that the method retains the main advantage of the AIM
approach, namely the circumvention of the large number of
structural calculations required to determine the exact instan-
ton trajectory.

In Sec. II, we give a general outline of this method and
present the results in a form that is convenient for practical ap-
plications. In Sec. III, we provide a detailed derivation to jus-
tify these results; this section may be skipped on first reading
by readers primarily interested in practical tests. In Sec. IV,
we define the zero-level tunneling splitting within the rain-
bow approach. In Sec. V, the performance of the method is
formally tested for a 2D model for which exact instanton so-
lutions are known, namely tunneling in a quartic potential
coupled symmetrically to a single harmonic mode. This test
is used to find out whether the approach is basically sound.
The ultimate test will be a comparison with realistic sys-
tems. For this purpose we choose in Sec. VI the molecule
malonaldehyde of which the observed splittings for proton
and deuteron tunneling are widely used as a benchmark for
calculations of such splittings. Other, more complex systems
we have examined are briefly mentioned; they will be dis-
cussed in detail in a subsequent article, hereafter referred to as
Part II.

II. GENERAL OUTLINE

A. The Hamiltonian

We consider tunneling at zero temperature of a parti-
cle of unit mass in a symmetric 1D double-well potential
V1D(Q) coupled to a system of harmonic oscillators {q, ω}
through couplings linear in {q}. The Hamiltonian is simi-
lar to that previously derived and applied in AIM.3 Its gen-
eration from quantum-chemical calculations is summarized
in the Appendix; a more detailed account can be found in
Ref. 3. In dimensionless units it takes the general form

H = 1

2
Q̇2 + 1

2

∑
i

q̇2
i + V (Q, {q}),

(1)

V (Q, {q}) = V1D(Q) +
∑

i

γi�i(Q)qi + 1

2

∑
i

ω2
i q

2
i ,

where V1D(Q) has a maximum (=1) at Q = 0 and min-
ima (=0) at |Q| = 1. Since the system is symmetric
under reflection in the dividing plane Q = 0, the coupled os-
cillators in Eq. (1) can be divided into groups of symmetric

modes {qs} and of antisymmetric modes {qa}. The leading
coupling terms allowed by symmetry are then of the type Qqa

and Q2qs, i.e., correspond to �(a)(Q) ∼ Q, �(s)(Q) ∼ Q2 in
Eq. (1). Here and hereafter, we use subscripts s and a as labels
and subscript i as a running number. The coupling constants
γ i are proportional to the displacements of the modes qi be-
tween the TS and EQ; undisplaced modes do not contribute:
�i �= a,s(Q) = 0. Higher-order (weaker) coupling terms of the
type Q2q2, etc., are not included in this Hamiltonian explic-
itly, but are effectively accounted for by a recalibration of the
constants γ i of linear coupling. This recalibration is done in
such a way that the most important parameter, namely the adi-
abatic barrier height, to be obtained from Eq. (1), is identical
with the barrier height obtained quantum-chemically for the
real potential energy surface (PES). Kinematic couplings are
neglected throughout, and so are couplings between the oscil-
lators of the type qiqj, etc. We address the adequacy of this
Hamiltonian to real systems at the end of this subsection.

As defined in the Introduction, in our approach we use
the set (x, {y}) of (mass-weighted) normal modes of the TS
configuration, the mode x with imaginary frequency serving
as the “reaction coordinate.” The parameters are generated
from electronic structure and force field calculations for the
EQ and the TS configurations. V1D(x) is generated as the po-
tential with the coupled oscillators {y} frozen in their equi-
librium positions; it is equivalent to the potential along the
linear reaction path (LRP). Its height V0 and (mass-weighted)
halfwidth �x are found from these calculations. The dimen-
sionless formulation of Eq. (1) is generated by appropriate
scaling of the parameters. Thus the Hamiltonian is scaled by
V0; the coordinates are defined by Q = x/�x and qi = yi/�x,
and the frequencies and time are measured in units of the scal-
ing frequency �, defined by �2�x2 = V0.

As we show in Subsection II B, the 1D potential along
the reaction coordinate with which we will operate in practice
is, however, not V1D(Q) but the adiabatic potential Vad(Q),
defined from Eq. (1) along the trajectory1, 19

∂V (Q, {q})/∂{q} = 0. (2)

This potential governs the dynamics and justifies the choice of
the coordinates (x,{y}) as our basis. We show in the Appendix
that, if the coupling to antisymmetric modes is weak, V1D(Q)
and Vad(Q) have the same shape, but the barrier height of
Vad(Q) is smaller than unity (in dimensionless units) as spec-
ified later. The width and height of the adiabatic potential,
along with its curvatures ω0 and |ω∗| in the minimum and
at the top, respectively, are thus directly obtained from the
above calculations at the stationary configurations. Its shape
in the intermediate region is obtained by interpolation using
the calculated curvatures; in previous studies we have shown
that this shape is well represented by an analytical function of
the quartic type −ax2 + bx4, which we therefore adopt in the
present study.

This Hamiltonian is the logical extension of the standard
“harmonic” Hamiltonian used for molecules with potentials
without multiple minima, in which anharmonic terms are gen-
erally neglected. The presence of a double minimum implies
an “anomalous” coordinate Q corresponding to the reaction
coordinate of transition state theory. This coordinate will be
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coupled to all 3N−7 normal coordinates qi. Since (Q, {q}) are
the normal modes of the TS, kinematic couplings, as well as
couplings qiqj vanish at the top of the barrier; they will thus
remain small near this most important region, where Q coin-
cides with the instanton. Therefore the 1D double-minimum
potential Vad(Q), which connects the minima, will be a good
zero-order approximation. The lowest-order (linear) coupling
terms allowed by symmetry will adjust the equilibrium po-
sitions of the qi. The associated frequency changes of these
modes would require quadratic coupling terms, which cannot
be directly handled by the formalism. However, their principal
effect, namely modifying (i.e., lowering) the barrier height,
we include by the recalibration of the constants γ i, as indi-
cated above. The effect of rotation is neglected in Hamilto-
nian (1) as usual, but all parameters are calculated so that
the Eckart conditions are obeyed. This is necessary in order
to conserve the linear and angular momenta and thus prevent
mixing of the vibrations with translations or rotations; details
can be found in the Appendix and in Ref. 3. The validity of
this Hamiltonian has been demonstrated by numerous appli-
cations of the AIM/DOIT approach.2, 3, 12–14 It is especially
well suited for proton-transfer in hydrogen bonds, where, as
we show below, the most strongly coupled modes of the hy-
drogen bridge tend to be shifted towards the adiabatic limit,
so that the adiabatic potential Vad(Q), which is the main term
of the MD potential, adequately represents the main effect of
the coupling.

B. The Euclidean action

The tunneling dynamics at zero-temperature (T = 0) is
governed by the Euclidean action evaluated along the “instan-
ton trajectory.” In particular, the zero-level tunneling splitting
is given by1

�E0 = A exp(−SE), (3)

where the pre-exponential A will be specified in Sec. IV and
SE is the Euclidean action at T = 0,

SE =
∫ ∞

−∞
dτ H [Q(τ ), {q(τ )}], (4)

evaluated along the “instanton trajectory” [Q(τ ), {q(τ )}]I that
satisfies the “instanton equation,” i.e., the equation of motion

δSE = 0. (5)

The Hamiltonian (1) allows integration over the coupled-
mode coordinates {q},19 for which the above equation cor-
responds to that of forced harmonic oscillators. The instanton
action and equation then assume the well-known forms1, 19

SE =
∫ ∞

−∞
dτ

[
1

2
Q̇2 + Vad(Q)

]
+ Snl; δSE/δQ = 0.

(6)

Here Vad(Q) is defined from Eqs. (1) and (2) and the nonlo-
cal term Snl may contain symmetric as well as antisymmetric
parts, governed by the corresponding exponential (memory)

kernels Us, a:

Snl = Snl,s + Snl,a,

Snl,s =
∫ ∞

−∞
dτ�̇s

∫ ∞

−∞
dτ ′�̇sUs(τ − τ ′),

(7)

Snl,a =
∫ ∞

−∞
dτ�̇a

∫ ∞

−∞
dτ ′�̇aUa(τ − τ ′),

Us,a(τ − τ ′) =
∑
i=a,s

αi exp(−ωi |τ − τ ′|); αi = γ 2
i /4ω3

i .

In the Hamiltonian (1) we will consider potentials with only
lowest-order coupling terms, viz., �a(Q) = −Q and �s(Q)
= −Q2. We recall that the 1D tunneling potential V1D(Q) in
Eq. (1) is the potential evaluated with the coupled oscillators
{q} frozen in their equilibrium positions. In the Appendix we
show that for this choice of V1D(Q), provided the antisym-
metric coupling is weak, the two 1D potentials are related by

Vad(Q) = (1 − B)V1D(Q), (8)

where B comprises the collective effect of the couplings on
the 1D potential,

B = Ba + Bs, Ba,s =
∑
i=a,s

γ 2
i /2ω2

i ; Ba � Bs. (9)

It follows immediately from Eq. (8) that for any meaningful
problem B < 1; otherwise the adiabatic barrier will vanish.
The Euclidean action (6) thus represents a tunneling prob-
lem where the coupling to modes {q} has a two-fold effect.
First, there is a “local” effect, whereby the tunneling po-
tential is transformed from V1D(Q) to Vad(Q), i.e., to a po-
tential with barrier height reduced from 1 to 1 − B (in di-
mensionless units), which has a promoting effect. Second, a
nonlocal term Snl enters, which can be shown to be always
positive and to have a suppressing effect that reflects the
“memory” (inertia) of the subsystem of coupled oscillators.
The collective parameter B is the main measure of the cou-
pling strength. It also imposes a characteristic time scale on
Eq. (6): τ ∗ = 1/

√
1 − B (or, equivalently, the imaginary fre-

quency under the adiabatic barrier |ω∗| ∼ √
1 − B ), which

qualitatively defines the modes ωi as “fast” or “slow,” de-
pending on whether ωiτ

∗ is larger or smaller than unity, re-
spectively. It also indicates that the nonlocal contribution of
modes with ωiτ

∗ ≥ 1 will be small.
For MD systems in general, the instanton equation (6)

cannot be solved unless approximations are introduced for the
nonlocal term. To this end, as mentioned in the Introduction,
the “fast” coupled modes are usually treated in the AA and
the “slow” modes in the SA.1, 19 In dimensionless units, this
formally means replacing the exponential kernel exp (−ωi|τ
− τ ′|) by a delta function (2/ωi)δ(|τ − τ ′|) for ωiτ

∗ � 1;
and by the leading terms of its expansion over a small ωi|τ
− τ ′| for ωiτ

∗ � 1. Hereafter we refer to this treatment of
the kernels as the “standard approach”. As indicated in the
Introduction, for strong coupling this method is not always
satisfactory. For this situation we therefore present an alterna-
tive approach based on a new approximation scheme, termed
the rainbow approximation.
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Historically, attention was focussed mostly on antisym-
metric coupling, which causes friction (more generally, re-
organizational effects).20 However, calculations on molecular
systems have shown that symmetric coupling, which tends to
dominate tunneling in these systems, e.g., in the form of pro-
ton transfer along hydrogen-bond bridges, may have much
larger effects, namely in cases where vibrations of the at-
tached heavier atoms modulate the transfer distance.12, 13 To
account for these effects in MD systems, we adopt here a two-
step procedure based on the notion that in such systems the
antisymmetric coupling is usually much weaker and can be
incorporated by rescaling of variables and parameters. In the
first step, covered by Subsection II C, we therefore deal exclu-
sively with symmetric coupling. In the second step, discussed
in Sec. III C, we show how to incorporate (weak) antisym-
metric coupling.

C. The symmetric nonlocal action

In this subsection, we limit ourselves to coupling with
symmetric modes only. We are mainly interested in strong
symmetric coupling, and to provide some background in-
formation, we list in Table I values of some of the param-
eters introduced above for hydrogen-bonded molecules and
complexes for which such information has been reported.
In particular, we note that the collective coupling parame-
ter B, which for these systems is dominated by the symmet-
ric coupling parameter Bs, tends to be in the range 0.5–0.7
with frequencies of the dominant modes of order ωi/

√
1 − Bs

∼ 1. In this range the standard approach performs poorly.19, 21

TABLE I. Main dynamics parameters of proton transfer in the hydrogen-
bonded systems considered here and in Part II: �x, half the barrier width
defined in Eq. (A9) (mass-weighted, in Å · (amu)1/2); V0 and U0, barrier
height along the LRP and at the TS, respectively (in kcal/mol); ω0 and |ω∗|,
frequency along the reaction coordinate in the well and at the TS, respec-
tively (in cm−1); B, collective coupling parameter defined in Eqs. (8) and
(9); �Eobs

0 , observed zero-level tunneling splitting (in cm−1). The level of
calculation for malonaldehyde (MA-d0/d1) is specified in Sec. VI; for the
other systems details will be given in Part II. Note that in MA-d0/d1 the
observed zero-level splitting is attributed to single-proton tunneling; in por-
phycene (PHC), the benzoic acid dimer (BAD), the formic acid dimer (FAD)
and the 2-pyridone-2-hydroxypyridine (2PH) complex, to concerted double-
proton tunneling, and in calix[4]arene (CLX) to concerted quadruple-proton
transfer, with correspondingly increasing U0 and decreasing �Eobs

0 .

Molecule �x ω0 |ω∗| U0 V0 B �Eobs
0

MA-d0 0.430 2642 1384 4.08 14.44 0.72 21.6a

MA-d1 0.571 1940 1036 4.08 14.44 0.72 2.9b

PHC 0.495 2027 1024 4.08 8.76 0.53 4.4c

BAD 0.585 2749 1255 7.33 21.43 0.66 0.037d

FAD 0.585 2946 1430 7.93 27.60 0.71 0.016e

2PH 0.596 2759 1310 8.35 24.26 0.65 0.017f

CLX 0.727 2835 1448 16.86 30.05g 0.44 —

aReference 23.
bReference 24.
cReference 31.
dReference 32.
eReference 17.
fReference 33.
gU0 + Er, defined in Eq. (A14).

Equally unsatisfactory are perturbative approaches of the type
developed for the “strong fluctuation limit”,6 when Bs is so
large that

√
1 − Bs � 1. We therefore propose an alternative

approach, based on the notion that the nonlocal term Snl,s in
Eq. (7) is relatively small even if the coupling is strong. This
follows from the observation that such coupling “shifts” the
most strongly coupled modes towards the “fast” group ωiτ

∗

≥ 1, whereby the exponential kernels defined in Eq. (7) fall-
off rapidly. Such terms need not be treated exactly, but can be
evaluated with some suitable approximate instanton solution
Q(0)(τ ) � Q(τ ), while the exponential kernels are kept intact.
The nonlocal part of the action SE is thus replaced by a con-
stant: S

(0)
nl,s � Snl,s, in which case Eq. (6) yields the instanton

action in the form

SE,s = Sad + S
(0)
nl,s, (10)

where the main term Sad is the instanton action of 1D-motion
in the adiabatic potential,

Sad = S1D

√
1 − Bs; S1D =

∫ 1

−1
dQ

√
2V1D(Q), (11)

and the nonlocal (correction) term is given by

S
(0)
nl,s =

∫ ∞

−∞
dτ�̇(0)

∫ ∞

−∞
dτ ′�̇(0) Us(τ − τ ′),

(12)
�(0)(τ ) = 1 − [Q(0)(τ )]2,

Us(τ − τ ′) being the exponential kernel defined in Eq. (7).
Since Snl,s is positive but presumed small, it makes sense to
start from Sad as the lower limit to SE,s and look for a suit-
able approximate solution Q(0)(τ ). The type of this solution
is dictated by the “shift” of the most strongly coupled mode
towards the “fast” group, as defined above. One may there-
fore expect that a “good enough” approximate solution can be
found by separating the modes into “fast” and “slow,” so that
this most important mode is treated in the AA; the remaining
(weakly coupled) modes can be treated in the AA or in the
SA, based (qualitatively) on whether the ratio ωi/

√
1 − Bs

is larger or smaller than unity. This “rainbow” solution, so
termed because it covers a wide range of frequencies, will be
our approximate solution of choice for the evaluation of the
nonlocal term in Eq. (12).

The advantage of the proposed scheme is two-fold: first,
the approximation involved in Eq. (12), whereby � is re-
placed by �(0) while the kernels are kept intact, proves to
be much less drastic than the standard approach; and second,
any ambiguity in assigning a mode to the “fast” or the “slow”
group affects only the (small) nonlocal action and leaves the
main adiabatic action untouched. However, for MD systems,
Q(0)(τ ) is known only in numerical form; as a result, evalua-
tion of the action (12) is not a trivial task since it contains dou-
ble integrations, each over terms of the type Q(0)(τ )Q̇(0)(τ ),
such that the multipliers tend to cancel each other. To over-
come this problem, we take advantage of a remarkable “con-
version property” of our chosen form of Q(0)(τ ), namely the
fact that, even though Q(0)(τ ) is numerical, the inverse func-
tion τ = τ (Q(0)) is analytical for the quartic shape of the adia-
batic potential in Eq. (6). This property allows us to reformu-
late the integration in Eq. (12) in terms of (�(0),�(0)′ ), instead
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of (τ , τ ′) by recasting the solution in the form of the exponent
of the kernel in Eq. (7). Thus, breaking the integrations in
Eq. (12) so that (τ , τ ′) ≥ 0 and introducing

exp(∓ωiτ ) = φ±
i (�(0)), (13)

we recast Eq. (12) in the following general form (the integra-
tion limits remain unspecified):

S
(0)
nl,s =

∫
d�(0)

∫
d�(0)′Us(�

(0),�′(0)),

(14)
Us(�

(0),�′(0)) =
∑
i=s

αiφ
+
i (�(0))φ−

i (�′(0)),

which allows a very efficient computational procedure, since
the functions φ±

i (�(0)) are analytical expressions. The eval-
uation of the nonlocal action (12) thus becomes much more
efficient, and the presentation is altogether more appealing.

To illustrate the approach, we consider a 2D model of
a quartic potential coupled symmetrically to a single mode;
henceforth, we shall refer to it as the 2D quartic model. The
1D potential V1D(Q), the Hamiltonian, and the action S1D in
Eq. (11) are then given by

V1D(Q) = (1 − Q2)2; H = 1

2
Q̇2 + 1

2
q̇2

s + (1 − Q2)2

− γsQ
2qs + 1

2
ω2

s q
2
s ; S1D = (4/3)

√
2. (15)

The nonlocal action in Eqs. (6)–(8) contains a single (sym-
metric) term, ω being the frequency of the coupled mode

and α the coefficient of the kernel. We evaluate S
(0)
nl,s using as

an approximate instanton solution the “zero-order” solution
Q(0)(τ ) obtained when the nonlocal action in Eq. (6) is sim-
ply neglected. This is the instanton solution for the action in
the main part of Eq. (6), where Vad(Q) = (1 − Bs)(1 − Q2)2,
which is known analytically,1

Q(0)(τ ) = tanh [τ
√

2(1 − Bs)]. (16)

For τ ≥ 0 the exponents of the kernel take the analytical form

exp(∓ωτ ) = [
�(0)

/(
1 +

√
1 − �(0)

)2]±ξ = φ±(�(0)),
(17)

ξ = ω/2
√

2(1 − Bs).

Hence the transformation leading to Eq. (14) can now be car-
ried out explicitly. Breaking the integrals in Eq. (12) so that
(τ , τ ′) ≥ 0, and taking advantage of the above presentation of
the exponents, we obtain S

(0)
nl,s in the form of simple quadra-

tures (z denotes �(0) or �′(0)):

S
(0)
nl,s = 2αC(φ±); C(φ±) = −I 2

1 (0, 1)

+
∫ 1

0
dz[φ+(z)I2(z, 1) + I1(0, z)φ−(z)],

I1(a, b) =
∫ b

a

dz φ+(z); I2(a, b) =
∫ b

a

dz φ−(z), (18)

where C is a constant; these integrals are readily evaluated
numerically.

Returning to our problem leading to Eq. (14), we show in
Sec. III that the rainbow instanton solution, described above,

leads to a similar transformation of the integrals. Since many
coupled modes are now present, the nonlocal action takes
the form of a sum-over-modes of expressions similar to the
one above, but with the contribution of each single mode
scaled down by the contributions of all the other coupled
modes. We will show that the scaling factor is determined by
Q0 = Q(0)(τ → ∞), the final result being

S
(0)
nl,s = 2Q4

0

∑
i=s

αiC(φ±
i ); Q0 = Q(0)(τ → ∞) ≤ 1,

(19)
where αi are the kernel coefficients in Eq. (7) and the func-
tions φ±

i (x) are defined by the rainbow solution Q(0)(τ ). The
specific form of the functions C(φ±

i ) and the value Q0, evalu-
ated by a simple numerical procedure, are derived in Sec. III.
The numerical problem of evaluating the nonlocal action is
thus reduced to simple quadratures over “well-behaved” func-
tions, the key being that the functions φ±

i (x) are known ana-
lytically. The instanton action is then obtained from Eqs. (10),
(11), and (19). This procedure remains valid if antisymmetric
coupling is included, provided this coupling is weak. In that
case it can be formally incorporated by rescaling the variables
and the parameters of symmetric coupling. A full justification
of the statements is provided in Sec. III.

III. THE RAINBOW APPROXIMATION

In this section, we provide a detailed mathematical jus-
tification of the results of Sec. II. In Sec. III A, we outline
the derivation of the rainbow solution and Eq. (19) for ar-
bitrary double-minimum potentials. To be specific and allow
comparison with model results, we present explicit formulas
for the quartic potential. In Sec. III B, we define a heuristic
model, in which all relations of Sec. III A can be simplified. In
Sec. III C, we reintroduce (weak) antisymmetric coupling and
show how it can be incorporated by rescaling.

A. Derivation of S(0)
nl,s

We consider a system of the type treated in Sec. II with
symmetric coupling only and with both “fast” and “slow”
modes based on a specified separation criterion. First, we ob-
tain the desired approximate solution Q(0)(τ ) by solving the
problem defined by Eqs. (6) and (7), to which we apply the
standard approach, i.e., we treat the exponential kernels in
the AA for the “fast,” and in the SA for the “slow” modes,
as prescribed in Sec. II B. As is well known,6 the correspond-
ing nonlocal terms renormalize the mass and the potential,
respectively. To simplify the notation, we use single and dou-
ble primes to denote parameters for “fast” and “slow” modes,
respectively, and write

Bs = B ′ + B ′′, B ′ =
∑
i=s′

Bi, B ′′ =
∑
i=s′′

Bi,

Bi = γ 2
i /2ω2

i , Beff = B ′′/(1 − B ′), As = A′ + A′′,
(20)

A′ =
∑
i=s′

Ai, A′′ =
∑
i=s′′

Ai, Ai = γ 2
i /4ωi,

Aeff = A′′/(1 − B ′)3/2.
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We omit the superscript (0) of Q and take � = 1 − Q2. In-
troducing Q0 = Q(∞), which remains to be found, we then
obtain for the Euclidean action:

SE,s =
∫ ∞

−∞
dτ

[
1

2
meff(Q)Q̇2 + Veff(Q)

]

−A′′
(∫ ∞

−∞
dτ

[
Q2

0 − Q2(τ )
])2

, (21)

where the renormalized mass and potential are given by

meff(Q) = 1 + �msQ
2, �ms = 4

∑
i=s′

γ 2
i /ω4

i ,

(22)
Veff(Q) = Vad(Q) + B ′′(Q2

0 − Q2
)2

.

We start with a general analysis of the instanton equa-
tion δSE/δQ = 0, which will allow us to define Q0; the
explicit solution will follow. Introducing the new variable
t = τ

√
1 − B ′ and the boundary conditions Q̇(t → ±∞)

= 0, we rewrite the instanton equation formally as

Q̇(t) =
√

2UF (Q)/meff(Q). (23)

In this expression we have introduced the “potential” UF (Q),
defined in terms of the (unknown) functional constant

F(Q0) = 1 − Beff
(
1 − Q2

0

) − Aeff

∫ ∞

−∞
dt

[
Q2

0 − Q2(t)
]
,

(24)

which for a quartic potential Vad(Q) = (1 − Bs)(1 − Q2)2

takes the analytical form

UF (Q) = [F(Q0) − Q2]2. (25)

The formal “solution” of this equation, in the form of the in-
tegral

t = 1√
2

∫
dQ

√
meff(Q)/|F(Q0) − Q2| (26)

can be obtained analytically for any F(Q0), because it is a
positive constant. The result t = tF (Q) has the correct asymp-
totic behavior t → ±∞ at Q → ±Q0 only if F(Q0) = Q2

0.
From Eqs. (25) and (26) we then obtain a closed relation for
Q0, as follows:

Q2
0 = 1 − Beff

(
1 − Q2

0

) − (Aeff/
√

2)I (Q0),

I (Q0) =
∫ Q0

−Q0

dz
√

1 + �msz2 = Q0

√
1 + ρ

+ sinh−(
√

ρ)/
√

�ms; ρ = �msQ
2
0, (27)

which can be solved numerically for Q0. With Q0 and F(Q0)
defined, the solution of the instanton equation (26) can
then be readily obtained for any system that contains both
“fast” and “slow” modes. For that we rescale to Q̄ = Q/Q0,
t̄ = τQ0

√
1 − B ′ and meff(Q̄) = 1 + ρQ̄2 to obtain the solu-

tion in a form that is convenient for our purpose,

t̄ ≡ t̄(Q̄) = σ−1 ln
g +

√
1 + g2

(f +
√

1 + f 2)κ
, (28)

here the functions f and g, and the constants κ and ρ are given
by

f (Q̄) = 2Q̄

√
ρmeff(Q̄), g(Q̄) = f (Q̄)/κ(1 − Q̄2),

(29)
κ =

√
ρ/(1 + ρ), σ = 2

√
2/

√
(1 + ρ).

This is the rainbow solution, which is so named because it
reproduces the known “slow-flip” and “fast-flip” solutions,
when all modes are “fast” and when all modes are “slow,”
respectively (which can be regarded as the “blue” and “red”
edges of the rainbow), as well as interpolating smoothly be-
tween those limits if both types of modes are present. Corre-
sponding solutions, albeit not in analytical form, can be ob-
tained for potentials other than the quartic potential.

At t̄ ≥ 0, the rhs of Eq. (28) is a function of �̄ = 1
− Q̄2 only. This immediately leads to the desired “conversion
property” (13) [superscripts (0) at �̄ omitted], since the ex-
ponential kernels exp (∓ωiτ ) can now be evaluated if we set
t̄ = t̄(�̄),

exp(∓ωiτ ) = exp[∓νi t̄(�̄)] ≡ φ±
i (�̄),

(30)

φ±
i (�̄) =

[
g +

√
1 + g2(

f +
√

1 + f 2
)κ

]±ξi

,

where ξ i = ν i/σ and νi = ωi/Q0
√

1 − B ′. With the expo-
nents defined, we are now in a position to transform the inte-
gration over (τ , τ ′) for the nonlocal term in Eq. (14) to an in-
tegration over (�̄, �̄′). This yields the final result in the form
of Eq. (19), which reads

S
(0)
nl,s = 2Q4

0

∑
i=s

αiC(φ±
i ),

C(φ±
i ) = −I 2

1i(0, 1) +
∫ 1

0
dz[φ+

i (z)I2i(z, 1)

+ I1i(0, z)φ−
i (z)], (31)

I1i(a, b) =
∫ b

a

dz φ+
i (z); I2i(a, b) =

∫ b

a

dzφ−
i (z).

Here αi are the kernel coefficients in Eq. (7). Despite the cum-
bersome appearance, the above sum is readily obtained nu-
merically, since the functions φ±

i (z) are known analytically.

B. A heuristic model

The transformation exp(∓ωiτ ) ≡ φ±
i (�̄) in Eq. (30),

whose merits are masked by the complicated form of the so-
lution (28), becomes much more transparent if written in the
form exp(−σ |t̄ |), in which form it can be very well approxi-
mated by the following function:

exp (−σ |t̄ |) � exp (−σ |t̄ |)(M) = �̄ exp
(−ε

√
1 − �̄

)
,

(32)
ε = (1 − κ)[κ + ln 4(1 + ρ)].

This defines a heuristic model to our solution, hereafter la-
beled by a superscript (M). Figure 1 shows the behavior of the
rainbow solution (28), depicted in the form of the exponent
exp (−σ |t̄ |) for parameter values derived for the molecule
malonaldehyde discussed in Sec. VI. It also depicts the model
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FIG. 1. Illustration of the rainbow solution (28) for malonaldehyde-d0 dis-
cussed in Sec. VI, where all coupled modes are “fast” and therefore the rain-
bow solution is simply the “slow-flip” solution. The thick solid line represents
this solution in the form of the exponent exp(−σ |t|), where t = τ/τ ∗; τ ∗

=
√

1 − B̃s. The thick dotted line represents its model counterpart given by
Eq. (32). The thin solid line represents this solution in the standard form
Q(τ ), in comparison with the “zero-order” solution of Eq. (16) (thin dashed
line), obtained by neglecting the nonlocal term in the action; only Q(τ ≥ 0)
is shown, Q(−τ ) = −Q(τ ). Parameters (see Sec. III C and Tables I and IV):
B̃s = 0.710, �ms = 8.657, Q0 = 1, σ = 0.910, ε = 0.245.

of Eq. (32), which is in excellent agreement with the exact re-
sult. The figure depicts the rainbow solution also in the stan-
dard form Q(τ ), on the time scale of tunneling τ ∗. Compar-
ison with the zero-order solution of Eq. (16), (also shown in
Fig. 1), in which the nonlocal term of the Euclidean action is
neglected, illustrates the effect of this term.

Within this model, the evaluation of S
(0)
nl,s becomes much

simpler, and the presentation much more transparent, since
the exponents (30) and the transformation of the integrals,
leading to Eq. (14), are similar to those for the 2D quartic
model used in Sec. II C for illustration. Thus (for τ ≥ 0)

exp(∓ωiτ ) � φ
(M)±
i (�̄) = [�̄ exp(−ε

√
1 − �̄)]±ξi .

(33)

The transformation of the integrals, leading to Eq. (14) can be
carried out explicitly. Noting that d�(0) = Q2

0d�̄ and that the
limits τ ∈ (0, ∞) transform into �̄ ∈ (1, 0), respectively, we
obtain the nonlocal action in the form of simple quadratures,

S
(0)
nl,s � S

(M)
nl,s = 2Q4

0

∑
i=s

αiC(M)
i ,

C(M)
i = 1

ξi + 1
+ ε

2ξi

ξi − 1

(
J1i − 2J0

ξi + 1

)
− J 2

2i ,

J0 =
∫ 1

0
dz (z

√
1 − z) = 4/15,

J1i =
∫ 1

0
dz (zξi

√
1 − z),

J2i =
∫ 1

0
dz [z exp(−ε

√
1 − z)]ξi . (34)

For any given MD system, this (model) approximation to the
nonlocal action is easily evaluated, since the relevant parame-
ters are readily available, without further reference to the de-
tails of the rainbow solution. This provides, for instance, a
transparent way to obtain a quick and sound estimate of the
tunneling splitting, as we show later.

C. Antisymmetric modes

Although for the systems to be considered, the coupling
is predominantly symmetric, antisymmetric coupling is not
absent and needs to be addressed; we therefore return to the
general formulation of the Euclidean action in Eqs. (6)–(9).
For the purpose of the present study, which deals primarily
with strong symmetric coupling, this coupling is weak: Ba

� Bs, such that it can be treated with the standard approach.
To this end we again separate the modes {qa} into “fast” (a’)
and “slow” (a”) modes, and replace the exponents in the an-
tisymmetric part of the kernel (7) by the corresponding ap-
proximations described earlier. As is well known, this leads
to mass renormalization for the fast modes, represented by a
constant term �ma to be added to the tunneling mass, and a
Franck–Condon factor for the slow modes, represented by a
term �Sa to be added to the Euclidean action; these terms take
the form6

�ma =
∑
i=a′

γ 2
i

/
ω4

i ; �Sa = Q2
0

∑
i=a′′

γ 2
i

/
ω3

i , (35)

where Q0 is evaluated from Eq. (27). It follows that apart from
adding a term �Sa to the action, the antisymmetric modes
modify the mass and the 1D potential of the tunneling particle.
These modifications transform Eq. (6) into

SE =
∫ ∞

−∞
dτ

[
1

2
(1 + �ma)Q̇2 + (1 − Ba − Bs)V1D(Q)

]
+

∫ ∞

−∞
dτ�̇s

∫ τ

−∞
dτ ′�̇s

∑
i=s

αi exp[−ωi(τ − τ ′)] + �Sa.

(36)

We can, however, recast this equation in a form that contains
symmetric terms only by rescaling the parameters as follows:

τ̃ = τ/C1, ω̃i = C1ωi, γ̃i = C2γi ; α̃i = γ̃ 2
i /2ω̃3

i ,

B̃s =
∑
i=s

γ̃ 2
i /2ω̃2

i ; Ãs =
∑
i=s

γ̃ 2
i /4ω̃i ,

(37)
C1 = [(1 + �ma)/(1 − Ba)]1/2,

C2 = [(1 + �ma)]1/2/(1 − Ba).

The Euclidean action then assumes the form

SE = CaS̃E,s + �Sa; Ca = [(1 + �ma)(1 − Ba)]1/2,

(38)
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where S̃E,s is given by

S̃E,s =
∫ ∞

−∞
dτ̃

[
1

2
Q̇2 + (1 − B̃s)(1 − Q2)2

]
+

∫ ∞

−∞
dτ̃ �̇s

∫ ∞

−∞
dτ̃ ′�̇s

∑
i=s

α̃i exp[−ω̃i (̃τ − τ̃ ′)]. (39)

This expression contains only symmetric coupling and there-
fore the evaluation of S̃E,s can be done as in Sec. III A; this
yields S̃E,s in the form of Eq. (10),

S̃E,s = S̃ad + S̃
(0)
nl,s; S̃ad = S1D

√
1 − B̃s, (40)

where S̃
(0)
nl,s is evaluated as detailed in Sec. III A, with the

rescaled parameters (37) (marked with a tilde).
Combining Eqs. (38) and (40), we finally obtain for the

instanton action

SE = CaS̃E,s + �Sa, S̃E,s = S̃ad + S̃
(0)
nl,s,

(41)

S̃ad = S1D

√
1 − B̃s.

In this expression, Ca and �Sa represent the effect of
the “fast” and “slow” antisymmetric modes, respectively,
exp(−2�Sa) being the familiar Franck–Condon factor in the
tunneling probability.1 Since the antisymmetric coupling is
weak, B̃s � Bs, and Ca and exp (−�Sa) are of order unity.
Note that the above action is “dimensionless”, i.e., needs to
be multiplied by the scaling coefficient V0/¯� (e.g., in the
evaluation of zero-level splittings).

A similar expression can be obtained for the heuristic
model defined in Sec. III B when S̃

(0)
nl,s is replaced by its model

counterpart,

S
(M)
E = CaS̃

(M)
E,s + �Sa, S̃

(M)
E,s = S̃ad + S̃

(M)
nl,s . (42)

It can be used for the evaluation of zero-level splittings,
for which, as we show later, it consistently provides a sound
estimate.

This concludes the derivation of the instanton action SE in
the present scheme. We note that the approach leading to these
expressions is general, although for definiteness we have used
the case where Vad(Q) assumes the form of a quartic potential
such that S1D(Q) is given by Eq. (15).

IV. THE ZERO-LEVEL TUNNELING SPLITTING

The zero-level tunneling splitting �E0 is defined in
Eq. (3), where the pre-exponent A, which reflects the fluc-
tuations around the instanton trajectory at T = 0, needs to
be specified. This pre-exponent is generally a complex quan-
tity which involves evaluation of determinants of differential
operators.1 If there is only one instanton path at T = 0, it al-
lows factorization of the determinants into “longitudinal” (l)
and “transverse” (t) factors, defined by the properties of mo-
tion along the instanton and the coordinates perpendicular to
it, respectively. Following Ref. 22, we can then write �E0 as
the product of the “one-dimensional” (longitudinal) tunneling
splitting �E

(l)
0 in the potential along the instanton trajectory,

and a transverse factor �t at T = 0:

�E0 = �E
(l)
0 �t. (43)

Here the longitudinal tunneling splitting �E
(l)
0 is of the gen-

eral form

�E
(l)
0 =

√
2SE/π �l exp(−SE), (44)

where SE is the instanton action and �l a “longitudinal” factor
which depends on the shape of the potential along the extreme
path. The “transverse” factor is given by

�t = lim
β→∞

∏
i=t

[
sinh(βω0i/2)

sinh(λi/2)

]1/2

, (45)

where β = 1/kBT, {ω0i} are the frequencies of the transverse
modes at the minimum and λi is a “stability parameter” which
indicates to what extent the transverse mode qi can cause de-
viation from the instanton trajectory. The pre-exponent A is
thus defined in the general form as

A =
√

2SE/π �l�t. (46)

There is at present no practical way to calculate �t for
an MD system at reasonable computational cost. In our
AIM/DOIT approach we evaluated this factor in the adia-
batic approximation for the transverse modes, which leads
to renormalization of the adiabatic barrier.3, 12, 13 Recently,
Mil’nikov and Nakamura9 proposed a promising approach,
using transformation to Jacobi fields, thus avoiding approxi-
mations about the properties of the transverse modes. Bender-
skii and Makarov21 have carried out calculations for a two-
dimensional model potential in which the transverse modes
are represented by a single “effective” symmetric mode. Al-
though these results can be applied to the MD systems under
discussion (vide infra), a simpler and more general approach
is desirable. Since inaccuracies in the pre-exponential factor
A affect the calculated splitting much less severely than inac-
curacies in the exponent SE, it seems justified to evaluate A
by a simpler scheme than that used for SE. Within the present
approach, a straightforward simplification is available, based
on the fact that S̃ad is the main part of the instanton action in
Eq. (40), all remaining terms being small corrections. Since
by definition S̃ad is the instanton action of 1D motion in
the adiabatic potential Vad(Q), which is in the shape of the
quartic potential (15), we adopt the expression found for this
potential,1

A = (¯ω0/π )
√

24πSE, (47)

where ω0 is the (dimensional) frequency along the reaction
coordinate in the potential well.

The expression for �E0 to be used in the present study
(and in Part II) thus takes the final form

�E0 = (¯ω0/π )
√

24πSE exp(−SE), (48)

where the final form of the Euclidean action, which includes
the scaling coefficient V0/¯�, is given by

SE = (V0/¯�)
[
Ca

(
S̃ad + S̃

(0)
nl,s

) + �Sa
]
,

(49)

S̃ad = S1D

√
1 − B̃s .

Here S1D is given by Eq. (15) and the other parameters
are defined in Sec. III; specifically, B̃s by Eq. (37); Ca by
Eq. (38); �Sa by Eq. (35), and S̃

(0)
nl,s is of the form of Eq. (31),
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FIG. 2. Periodic-orbit action SI(T = 0) for the model 2D system of Sec. V,
which consists of a quartic potential coupled symmetrically to a harmonic
oscillator, for B = 0.5 and varying ω. The symbols represent the results
of Benderskii and Makarov.21 The upper//lower dashed lines represent the
“slow flip”//“fast flip” results of Eq. (50). The dot-dash line represents
the main term SI,ad = (8/3)

√
2(1 − B) of our solution given by Eq. (52), and

the upper//lower solid lines depict its limits SAA
I //SSA

I . The short vertical line
indicates 1/τ ∗ = √

1 − B; all parameters are dimensionless.

but is evaluated with the rescaled parameters (marked with a
tilde) of Eq. (37).

As we show in Sec. V, this approach yields very good
agreement with known instanton solutions for 2D quartic
models. In Sec. VI and in Part II we show that it also per-
forms consistently well for a wide range of parameters en-
countered in actual hydrogen-bond systems for which split-
tings have been measured.

V. TESTS

In this section we test the performance of the rainbow
approach for a 2D model systems for which exact instanton
solutions for the Euclidean action are known. The 2D model
consists of a quartic potential coupled symmetrically to a sin-
gle harmonic mode, i.e., the 2D quartic model described in
Sec. II C [see Eq. (15)]. Since for this model the instanton so-
lution can be found by direct minimization or other technics,
we compare here our results with the periodic-orbit solutions
SI(=2SE) at T = 0 reported by Benderskii and Makarov.21 As
we are dealing with a single coupled mode, we omit the sub-
scripts s and i in this section.

For any 2D system of this type, the action SI is defined
by just two parameters, for which we choose B = γ 2/2ω2 and
ω (all parameters are dimensionless). Specifically, we explore
the behavior of SI by changing ω while keeping B constant,
which implies that the coupling constant γ = ω

√
2B and the

parameter A = Bω/2, defined in Eq. (20), change proportion-
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FIG. 3. Same as in Fig. 2, for B = 0.8 (lowest set); B = 0.5 (middle set),
and B = 0.3 (upper set). The symbols represent the results of Benderskii and
Makarov.21 The thick solid lines represent the result of linear interpolation
between SAA

I (ω � √
1 − B) and SSA

I (ω � 1).

ally to ω. Figures 2 and 3 depict the instanton solutions of
Benderskii and Makarov21 for B = 0.5 and B = 0.8.

For a given combination (B, ω), the action SI and the
instanton equation are described by Eq. (6), where Vad(Q)
= (1 − B)(1 − Q2)2; the nonlocal term contains a single
symmetric component with � = 1 − Q2 and α = B/2ω;
the characteristic time of motion is τ ∗ = 1/

√
1 − B. We first

summarize the well-known results of the standard treatment in
order to demonstrate its failure for the range of parameters of
interest. We obtain the “slow-flip” and “fast-flip” solutions by,
respectively, replacing the exponential kernel by a delta func-
tion and by expanding it, as detailed earlier. Then we solve
the corresponding instanton equations for Q(τ ) and evaluate
the action (6) for these solutions. This yields (for details see
Ref. 6),

Ssf
I = 3

2
S1D

√
1 − B

[
1

2

√
1 + �m

(
1 − 1

2�m

)
+ 1√

�m

(
1 + 1

4�m

)
sinh−1

√
�m

]
,

Sff
I = 2S1D

(
Q3

0,ff + 3

2
√

2
AQ2

0,ff

)
, (50)

where S1D for the quartic potential is given by Eq. (15) and
the parameters are

�m = 4γ 2/ω4; Q0,ff =
√

1 + s2 − s, s = A/(1 − B)
√

2.

(51)

In Fig. 2, these solutions for B = 0.5 are depicted by dashed
lines. For this large value of B these two approximations fail
unless the frequency of the harmonic mode is either very large
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(ω ≥ 3) or very small (ω � 1), leaving a wide range of ω val-
ues uncovered. We now show how the new approach bridges
this gap.

In terms of our scheme the action SI is given by

SI = 2
(
Sad + S

(0)
nl

)
; Sad = (4/3)

√
2(1 − B), (52)

where S
(0)
nl is given by Eq. (31) which contains a single term

with α = B/2ω. Comparison with Benderskii’s solution in
Fig. 2 shows that Eq. (52) indeed represents the action
as a sum of a main term, 2Sad = (8/3)

√
2(1 − B), de-

picted by the dot-dashed line, and a correction, 2S
(0)
nl >

0, which is relatively small in the sense that the ratio
(SI − 2Sad)/2Sad ≤ 20% in the range of interest ω ≥ √

1 − B,
covering the region to the right of the short vertical line.
This justifies the replacement of Snl by S

(0)
nl in Sec. II C,

whereby the nonlocal action is evaluated with the rain-
bow solution Q(0). Since there is just a single coupled
mode, this solution is obtained from Eq. (6), applying ei-
ther the AA or the SA to the exponential kernel, which in
Eq. (28) leads to Q̄(t̄) = Q̄AA(t̄) or Q̄(t̄) = Q̄SA(t̄), respec-
tively. From Eq. (20) we obtain for the AA the parameters: A′′

= B′′ = 0, B′ = B, �ms = 4γ 2/ω4, and for the SA the param-
eters: A′′ = A = γ 2/4ω, B′ = �m = 0, B′′ = B. The resulting
values SAA

nl and SSA
nl , obtained from Eq. (31), yield upper and

lower limits SAA
I = 2[Sad + SAA

nl ] and SSA
I = 2[Sad + SSA

nl ] to
the action (52), as depicted by solid lines in Fig. 2. Com-
parison with the exact result of Benderskii shows that while
SSA

I provides a satisfactory solution only at very low fre-
quency, the action SAA

I performs very well over a wide range
of frequencies, down to at least ω ∼ √

1 − B = 1/τ ∗. At still
smaller ω, SAA

I deviates from the exact solution, more so with
larger B, as illustrated in Fig. 3 for B = 0.3, 0.5 and 0.8. Note,
however, that the stronger the coupling, the smaller will be
the range of low frequencies; and the smaller the coupling,
the narrower will be the difference between the two limits.
The gap between SAA

I and SSA
I is therefore readily bridged

by interpolation, as illustrated in Fig. 3, where the thick lines
represent linear interpolation between SAA

I (ω � √
1 − B) and

SSA
I (ω � 1). Hence this approach can accurately reproduce

the instanton action of the 2D quartic model for arbitrary val-
ues of the relevant parameters.

VI. APPLICATION TO THE ZERO-LEVEL TUNNELING
SPLITTING IN MALONALDEHYDE

Section V shows that the rainbow method yields accurate
values for the (dimensionless) instanton action of a 2D model
system for a wide range of parameters. To provide a test for
real systems of practical interest, we first need to generate
the multidimensional Hamiltonian in the form of Eq. (1) from
data obtained quantum-chemically. Subsequently, our method
will use the resulting Hamiltonian to generate the desired
experimental observables, in the present instance zero-point
splittings in polyatomic molecules and complexes. In view of
the limited experimental data presently available, we will fo-
cus on observed splittings assigned to proton and deuteron
motion along hydrogen bonds.

A representative list of available examples is presented
in Table I, from which it is evident that the magnitude of the

splitting shows a strong (exponential) dependence on the adi-
abatic barrier height, a quantity that is not directly observable
but can be calculated with standard quantum-chemical pro-
grams. Evidently, such calculations need to be performed at a
level that is sufficiently high to yield reliable barrier heights.
Any experimental test of the theory presented in this paper
thus requires a thorough evaluation of the accuracy of the
quantum-chemical input data. An analysis of this kind for the
molecular systems listed in Table I will be presented in Part II.
Here we limit ourselves to the simplest of them, the molecule
malonaldehyde (MA), for which accurate zero-point split-
tings for both H and D transfer have been measured, namely
21.583 cm−1 for MA-d0 (Ref. 23) and 2.915 cm−1 for MA-
d1.24 In addition, Wang et al.25 reported a full-dimensional
ab initio potential energy surface, with which they obtained
splittings close to the measured values, using a diffusion
Monte Carlo method. This massive calculation can serve as
a theoretical benchmark.

The parameters needed in our approach we obtain from
quantum-chemical data for the equilibrium configuration and
the TS in terms of the normal modes of the latter; a de-
tailed description of how the quantum-chemical output is
transformed into our input can be found in the Appendix
and in Ref. 3. The quantum-chemical data are obtained by
standard methods, in this case a hybrid of MC-QCISD/3
and W1BD.26 Thus the geometries of the stationary points,
as well as the Hessians are obtained at the MC-QCISD/3
level. This is a multi-coefficient correlation method which
has proved to be cost-effective in several studies of hydro-
gen abstraction reactions.27 To obtain accurate reaction en-
ergetics (i.e., barrier heights at the TS and along the LRP),
single-point W1BD28 calculations over the previously opti-
mized MC-QCISD/3 geometries were performed. Since the
resulting adiabatic barrier height is similar to that obtained
by Wang et al.,25 this potential should be adequate for our
purpose of testing the rainbow approach. No further efforts
were made to “improve” the results by higher-level quantum-
chemical calculations.

As pointed out before, the present approach operates with
the adiabatic potential along the reaction coordinate. Its width
�x and height U0, as well as its curvatures in the minimum
and at the top, ω0 and |ω∗|, respectively, are directly ob-
tained from the above calculations at the stationary config-
urations; they are listed in Table I. For the intermediate re-
gion, we either interpolate between the two harmonic curves
or we assume a quartic potential; the parameters reported in
Tables I–III are based on the quartic potential. Table I com-
pares the relevant quantum-chemical and spectroscopic pa-
rameters of MA with those of systems to be analyzed in
Part II. Tables II and III list the relevant properties of the cou-
pled modes for MA-d0 and d1, respectively. The results show
the predominance of symmetric coupling, which amounts to a
collective value Bs = 0.70, which means that it is very strong.
By comparison, the value Ba = 0.02 indicates that antisym-
metric coupling is essentially negligible. The symmetric cou-
plings are dominated by a single mode, the O–O hydrogen-
bond stretch, indicated in bold in Tables II and III. The anti-
symmetric couplings are dominated by a deformation mode
of the O–H–O group. These dominant modes, as well as all
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TABLE II. Parameters of the normal modes of the transition state configura-
tion [symmetric (s) and antysymmetric (a)] contributing to the linear coupling
in malonaldehyde-d0: ωi, frequencies (in cm−1); �yi, displacements defined
in Eq. (A9) [in AA · (amu)1/2]; Bi, coupling parameters defined in Eq. (9);
αi, kernel coefficients in Eq. (7); ζ i, zeta-factor defined in Eq. (53) (ζ i > 1
indicates that the mode is close to the adiabatic limit); R1i, contribution to the
mass-renormalization �ms or �ma defined in Eq. (22) or (35), respectively
(in %); R2i, contribution to the (collective) coupling parameters Bs or Ba in
Eq. (9) (in %). The dominant hydrogen-bridge symmetric stretching mode is
listed in bold.

ωi �yi Bi αi ζ i R1i R2i Symmetry

627 0.733 0.488 0.365 1.2 90.5 68.4 s
943 0.192 0.076 0.038 1.9 6.2 10.6 s
1064 0.003 0.000 0.000 2.1 0.0 0.0 s
1361 0.059 0.015 0.005 2.7 0.6 2.1 s
1626 0.006 0.000 0.000 3.2 0.0 0.0 s
1896 0.127 0.134 0.033 3.8 2.7 18.8 s
3109 0.005 0.001 0.000 6.2 0.0 0.1 s
3244 0.000 0.000 0.000 6.4 0.0 0.0 s
569 0.069 0.004 0.003 1.1 71.0 22.9 a
1099 0.005 0.000 0.000 2.2 0.4 0.4 a
1319 0.006 0.000 0.000 2.6 0.5 0.9 a
1492 0.001 0.000 0.000 2.9 0.0 0.0 a
1604 0.043 0.011 0.003 3.1 27.6 70.6 a
3109 0.006 0.001 0.000 6.1 0.5 5.2 a

remaining modes, in both cases fall just into the “fast” cate-
gory, as indicated by the values of their “zeta-factors,”

ζi = ωiτ
∗ = ωi/

√
1 − B, (53)

which are larger than unity. The rainbow solution is thus
equivalent to the “slow-flip” solution. Table IV lists the rele-
vant parameters in the final expression (48) for the zero-level
splitting, namely the calculated splittings and their counter-
parts from the model of Sec. III B.

In Table V, our results are compared with experiment
and several other calculations. The massive calculation of
Wang et al.,25 which is not based on instanton technics, we
use as a theoretical benchmark, since their PES, constructed
from more than 11 000 calculated points is clearly the most

TABLE III. Same as in Table III, for malonaldehyde-d1.

ωi �yi Bi αi ζ i R1i R2i Symmetry

627 0.727 0.479 0.272 1.7 86.4 67.0 s
930 0.230 0.105 0.040 2.4 8.6 14.8 s
1063 0.008 0.000 0.000 2.8 0.0 0.0 s
1340 0.152 0.096 0.025 3.5 3.8 13.4 s
1387 0.080 0.028 0.007 3.6 1.0 4.0 s
1635 0.030 0.006 0.001 4.3 0.1 0.8 s
3109 0.005 0.001 0.000 8.2 0.0 0.1 s
3244 0.000 0.000 0.000 8.5 0.0 0.0 s
568 0.095 0.007 0.004 1.5 96.7 74.6 a
1099 0.003 0.000 0.000 2.9 0.1 0.3 a
1309 0.011 0.000 0.000 3.4 1.3 5.3 a
1487 0.005 0.000 0.000 3.9 0.3 1.4 a
1554 0.010 0.001 0.000 4.0 1.1 6.2 a
3109 0.007 0.001 0.000 8.1 0.5 12.2 a

TABLE IV. Parameters used to calculate the zero-level tunneling splitting
�E0 in malonaldehyde (MA-d0/d1) from Eqs. (48) and (49). V0/¯� and ω0

are taken from Table I. The action S̃ad is obtained from Eq. (49), where B̃s

is from Eq. (37) and S1D from Eq. (15). The nonlocal action S̃
(0)
nl,s is eval-

uated from Eq. (31) with the rainbow solution of Eq. (28), where �ms is
the mass-renormalization parameter, given by Eq. (22), and Q0 = Q(0)(τ
→ ∞) is evaluated from Eq. (27); all evaluated with the rescaled parame-
ters in Eq. (37). Note that all symmetric modes are “fast.” The comparison
between S̃ad and S̃

(0)
nl,s shows that the latter is a relatively small correction,

which justifies its evaluation with an approximate instanton solution. The ef-
fect of the (weak) antisymmetric coupling is represented by the coefficient
Ca defined in Eq. (38); �Sa = 0, since the asymmetric modes are also “fast”.
Also listed is the splitting �E

(M)
0 evaluated with the model described in

Sec. III B. Splittings are in cm−1; all other parameters are dimensionless.

Molecule B̃s Q0 �ms Ca S̃ad S̃
(0)
nl,s SE �E0 �EM

0

MA-d0 0.71 1.0 9.67 1.01 1.01 0.26 6.62 25.2 27.4
MA-d1 0.71 1.0 5.72 1.01 1.01 0.20 8.42 3.4 3.8

accurate presently available and so is their calculated zero-
point level. Their calculated splittings closely match the ob-
served values. In comparison our splittings are too large by
10–15%, although our deuterium isotope effect is accurate,
which indicates that the tunneling part is handled well by the
method. Thus, in principle, the result could be improved by
a slightly higher barrier. However, our barrier height is sim-
ilar to that of Wang et al. A problem that arises in our cal-
culation, and presumably in other instanton calculations as
well, is that the tunneling mode is treated as a harmonic os-
cillator in the equilibrium configuration. This indicates that
the rainbow approach will work best for systems with higher
barriers, including most of those listed in Table I, for which
the anharmonicity will be smaller. With a barrier as low as
4 kcal/mol for malonaldehyde, the mode will be strongly an-
harmonic, as follows from the observed OH-stretch frequency
of 2960 cm−1,24 well below the calculated harmonic fre-
quency of 3371 cm−1 obtained in our calculation. A lower
frequency would tend to lower the splitting; for MA our

TABLE V. Summary of malonaldehyde calculations. ωH
0 is the frequency

of the O–H stretching mode in the stable configuration (in cm−1); U0 the
barrier height at the TS (in kcal/mol); �E

H/D
0 , the calculated splittings for

MA-d0/d1, and KIE =�EH
0 /�ED

0 denotes the isotope effect.

Reference ωH
0 U0 �EH

0 �ED
0 KIE

Observeda 2960 21.583 2.915 7.40
Wang et al.b 3349 4.09 22 3.0 7.3
Mil’nikovc 3371 3.61 30.7 4.58 6.7
idemc,d (2845) (10.0) 57.7 8.63 6.7
idemc 3.81 21.2 3.0 7.1
Thompsone 2845 10.0 21.8 4.3 5.1
AIMf 3548 10.3 19.7 2.6 7.6
Rainbow approx.g 3371 4.08 25.2 3.4 7.4
idem (Model)g 3371 4.08 27.4 3.8 7.2

aReferences 23 and 24.
bReference 25.
cReference 29.
dThe same potential was used in Ref. 10 with slightly different results.
eReference 30.
fReference 12(b).
gPresent work.
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estimates show that the splittings based on harmonic fre-
quencies are overestimated by about 10–15%, a correction in
the right direction for our results. This problem was avoided
by Wang et al. by calculating the energy of the zero-point
level explicitly for the PES. It is not clear to what extent this
problem enters the reported accurate splittings of Mil’nikov
et al.,29 who used an instanton procedure. Their calculated
deuterium isotope effect is about 5% too low and the barrier
they used is about 7% lower than that of Wang et al.

An attempt by Thompson et al.30 to construct a PES
that adequately reproduces the vibrational force field in the
equilibrium configuration gave rise to a barrier height of
10.0 kcal/mol, more than twice the most recent results. Never-
theless, using a semiclassical approach based on Ref. 4, they
obtained an accurate value (21.8 cm−1) for the splitting of
MA-d0, although not for that of MA-d1 (4.3 cm−1). Mil’nikov
and Nakamura who used this PES in their invariant instan-
ton method, obtained splittings of 57.7 and 8.6 cm−1, respec-
tively, and concluded that the PES was inadequate.29 Using
different surfaces, these authors and their co-workers later re-
ported values of 30.7 and 4.58 cm−1 for a PES with a bar-
rier height of 3.61 kcal/mol, prior to the more accurate values
mentioned, reported by Mil’nikov et al.29 mentioned above.
In this connection we note that our earlier AIM calculations
for MA,12(b) based on a potential generated at the HF/6-31G∗∗

level, produced a barrier of 10.30 kcal/mol, similar to that
of Thompson and yielded comparable splittings. One reason
why they were so close to the observed values may be that a
high barrier corresponds to a high imaginary frequency, which
may reassign a strongly coupled mode from the fast to the
slow category, thereby reversing the effect of the coupling
from hindering to promoting tunneling. This self-correcting
effect reduces the sensitivity of the instanton approach to the
precision of the calculated barrier height.

It may be argued that MA is a very simple case, since in
the derivation of the rainbow solution, all coupled modes can
be treated within the adiabatic approximation. On the other
hand, it is one of the toughest tests to meet, both because of
the strong coupling and the low barrier height, as seen from
Table I. In Part II, we will show that the method works equally
well for the remaining molecules and complexes listed in the
table. The key reason is that they all belong to the class of
strong and dominant symmetric coupling, for which the ap-
proach was developed, as indicated by the large values of the
collective coupling parameter B. For these systems there are
far fewer calculations available and none on the scale of the
calculations of Wang et al.

VII. DISCUSSION

The method introduced here aims at improving the ap-
plicability of instanton methodology to tunneling dynamics
in systems with many degrees of freedom. It addresses in
particular systems in which the tunneling coordinate is cou-
pled strongly to one or more other (perpendicular) coordinates
whose frequency is neither very large nor very small com-
pared to the imaginary frequency of the tunneling coordinate,
such that neither the adiabatic (slow-flip) nor the sudden (fast-
flip) approximation is adequate for dealing with the coupling.

The term “rainbow” expresses the ability of the new method
to deal with coupled modes in a wide range of frequencies.
Systems considered here are molecules and complexes with
a symmetric barrier to proton transfer that is low enough to
be penetrated at zero temperature, thus leading to observable
level splitting. As an example, the method is applied to pro-
ton transfer along hydrogen bonds such as may occur between
oxygen and/or nitrogen atoms.

To make effective use of the power of the instanton ap-
proach, the method starts from two basic premises. The first is
the choice of the configuration of highest symmetry, i.e., the
transition state, as the origin of the set of normal coordinates
of the system, with couplings to the tunneling coordinate that
are kept linear, but subject to higher-order couplings through
recalibration of the linear coupling parameters. The instanton
methodology then allows integration over the coupled modes,
thereby effectively reducing the dynamics to that of a 1D sys-
tem involving only the tunneling coordinate, the coupling ef-
fects being manifested by local and nonlocal terms in the Eu-
clidean action. It favors the development of analytical approx-
imations, which at first sight may look abstruse, but in practice
can greatly improve the computational efficiency. This applies
in particular if the potential is symmetric, as required for level
splitting, because linear coupling implies that only modes that
are symmetric or antisymmetric with respect to the symmetry
element can affect the splitting. The effect of each coupled
mode on the splitting has a specific sign, depending solely on
the symmetry and the frequency of the mode as scaled by the
overall coupling; its magnitude depends, in addition, on the
strength of its specific coupling. The frequency dependence is
critical in the case of symmetric coupling, where it determines
the sign of the contribution to the splitting. All these effects
can be evaluated with good accuracy on the basis of standard
electronic-structure and force field data of only the two sta-
tionary configurations, implying that corresponding data for
the intermediate configurations are not critical but can be de-
duced from physical arguments based on the symmetry and
continuity of the potential.

The second basic premise is that, even in the case of
strong coupling, the local part of the Euclidean action domi-
nates the nonlocal part; the latter can therefore be treated as
a pertubation that needs to be calculated only approximately.
The treatment proceeds with the introduction of the rainbow
approximation based on an approximate instanton solution
with a conversion property that allows evaluation of the non-
local term with the exponential kernels intact. This approach
offers a satisfactory solution to the critical frequency depen-
dence of the contributions of symmetric modes in systems
with strong coupling, as encountered in proton transfer in hy-
drogen bonds.

The application of the method to 2D model systems for
which exact solutions are available shows that the rainbow
approximation can provide accurate values for the instanton
action of these systems and reduces to the known fast-flip and
slow-flip solutions in the appropriate limits. It thus bridges
the gap between the adiabatic and the sudden approxima-
tions for the parameter range of practical interest. However,
the generalization from a 2D to an MD system is not trivial,
in particular with respect to the recalibration of the coupling
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parameters, mentioned above as a means to simulate higher-
order effects of the couplings. As a further test, the method
is therefore applied to two isotopomers of malonaldehyde, a
widely used benchmark for the calculation of zero-point split-
tings. The results, based on relatively simple calculations of
the equilibrium and transition-state configurations only, show
that the method yields reasonably accurate values for the split-
ting and a very accurate value for its deuterium isotope effect
at a fraction of the computation cost of any other competent
method presently available. Qualitatively, a good fit to the iso-
tope effect combined with a less accurate fit to the absolute
splittings suggests that the barrier is inaccurate, while a good
fit to only one of two or three isotopes probed suggests that
the tunneling is not well handled. In this respect our calcu-
lation compares favorably with several other, more laborious,
calculations.

The rainbow approach is a new approximate scheme for
direct evaluation of the Euclidean action, which avoids the
time-consuming search of the exact instanton trajectory. Due
to its computational efficiency, it can be applied to systems
of practical interest for which other, more elaborate meth-
ods may be at present cost-prohibitive. The procedure to be
followed to turn standard quantum-chemical data of the sta-
tionary configurations into tunneling splittings is in fact quite
simple, as we will demonstrate in more detail in Part II, where
we investigate a number of larger molecules and complexes.
For the time being, these investigations are limited to sys-
tems with hydrogen bonds in which a proton is exchanged
between oxygen and/or nitrogen atoms. The van der Waals
forces involved are essentially electrostatic and give rise to
strong linear coupling of the mobile protons to one or, at
most, a few high-frequency skeletal vibrations. To our knowl-
edge no tunneling splittings have been reported for systems
in which a neutral hydrogen atom is exchanged between two
carbon atoms, one of which is a radical. The van der Waals
radii of methyl groups and methylene radicals imply a wide
barrier. The kinetic data available for some of these systems,
all asymmetric, indicate a strong temperature dependence at
low temperatures implying the involvement of low-frequency
vibrations.2 Unfortunately, no actual calculations are avail-
able to date.

APPENDIX: GENERATION OF THE HAMILTONIAN

In this part we outline the generation of the Hamiltonian
(1) from quantum-chemical data. Tunneling splitting of en-
ergy levels occurs when a light particle is exchanged between
two equivalent heavier (groups of) particles, as symbolically
represented by

Y − X · · · Y ↔ Y · · · X · · · Y ↔ Y · · · X − Y, (A1)

such that the equivalent structures left and right represent the
two equilibrium configurations (EQ), corresponding to en-
ergy minima and the central structure is the transition state
(TS) corresponding to an energy maximum. As the first step
towards calculating the splitting, we describe a system with
these three structures in terms of a coordinate system cen-
tered at the point of highest symmetry, namely TS, since this
will yield the simplest equations. The EQ and TS configu-

rations denote points along the “reaction coordinate” x. Our
choice of origen implies that TS is located at x = 0; for the
location of EQ we use the notation xEQ = ±�x. The simplest
system of this type is a linear triatomic molecule with atomic
masses mY = M, mX = m, m � M. As in all symmetric lin-
ear triatomics, the molecular vibrations will be governed by
three normal coordinates, a symmetric stretching mode to be
denoted by y, an antisymmetric stretching mode denoted by x
and a bending mode, which we will ignore since it is not dis-
placed during the tunneling. However, since the origen TS is
an energy maximum, the motion along x will be highly anhar-
monic; the negative curvature of the potential implies that we
can characterize this motion near x = 0 by an imaginary har-
monic frequency iω∗. This is the motion that gives rise to the
tunneling splitting. Because of its anharmonicity, it is coupled
in lowest order to y. We use the notation (x, y) for the (mass-
weighted) normal modes, and (Q, q) for their dimensionless
counterparts, as in the main text.

As a preliminary to the MD Hamiltonian in Eq. (1), we
derive the vibrational Hamiltonian of the collinear system
(A1). Excluding the center of mass, and assuming harmonic
forces with force constants kX-Y and kY-Y, this Hamiltonian in
dimensionless form is given by

H = 1

2
Q̇2 + 1

2
q̇2 + (|Q| − 1)2 + 1

2
ω2q2 − γ (|Q| − 1)q.

(A2)

The dimensionless normal coordinates (Q, q) are re-
lated to the mass-weighted normal coordinates (x, y) via Q
= x/�x and q = y/�x. To define the coordinates we intro-
duce Cartesian coordinates d2 for X and d1, 3 for Y, so that
x = 1

2

√
μ0 [(d1 − d3) − d2] and y = √

μ [(d3 − d1) − (d3 −
d1)EQ] with reduced masses μ0 = 2Mm/(2M + m) and μ =
M/2, and frequencies ω0 = √

kX−Y/μ0 and ω13 = √
kY−Y/μ,

respectively. The potential along the reaction coordinate
equals V (x) = 1

2ω2
0(|x| − �x)2 with V (0) ≡ V0 and �x

= 1
2

√
μ0 [(d3 − d1)EQ − 2(d2 − d1)EQ]. In Eq. (A2) energy is

scaled by V0; time and frequency are measured in units of
the scaling frequency �, defined as V0 = �2�x2. The tun-
neling motion is coupled to the harmonic oscillator q, which
describes the relative motion of the Y atoms with frequency ω

=
√

(ω13/�)2 + γ 2/2, γ = √
μ0/μ being the coupling con-

stant. For clarity we use, in this Appendix only, bold/ordinary
symbols ω and � for dimensional/dimensionless frequencies,
respectively.

The double-minimum potential in Eq. (A2) is formed by
crossing parabolas and thus has a cusp at Q = 0; it is usually
replaced by a smooth potential, for which the quartic potential
V1D(Q) = (1 − Q2)2 is a standard choice. Equation (A2) then
takes the form

H = 1

2
Q̇2 + 1

2
q̇2 + (Q2 − 1)2 + 1

2
ω2q2 − γ (Q2 − 1)q.

(A3)

The potentials (A2) and (A3) are defined so that q = 0
at EQ; we redefine them so that q = 0 at TS and q = ±�q
= ±γ /ω2 at EQ, after which the above potential reads

V (Q, q) = V1D(Q) + 1

2
ω2(q2 − �q2) − γQ2(q − �q).

(A4)
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The 1D potential along the reaction coordinate we actu-
ally use is the adiabatic potential Vad(Q), which is defined
from Eq. (A4) along the trajectory ∂V (Q, q)/∂q = 0; then
Eq. (A4) assumes the familiar form

V (Q, q) = Vad(Q) + 1

2
ω2

(
q − γ

ω2
Q2

)2
. (A5)

In Eqs. (A2) and (A3), the double-minimum potential
along the reaction coordinate corresponds to V (Q, q) eval-
uated at q = �q, i.e., with the heavy atoms “frozen” in their
equilibrium position; we call this potential “crude-adiabatic”.
With this choice of V1D(Q), the adiabatic potential can be for-
mulated as

Vad(Q) = (1 − B)V1D(Q); B = γ 2/2ω2 < 1, (A6)

i.e., V1D(Q) and Vad(Q) are of the same shape, with min-
ima equal to 0 at |Q| = 1 and maxima equal to 1 and 1
− B at Q = 0. The coupling parameter B thus measures
the reduction of the barrier height induced by the symmetric
Y· · ·Y-stretching vibration.

The calculations operate with potentials in the form of
Eqs. (A5) and (A6); setting the minimum of Vad(Q) equal
to zero, we obtain for the potential (A5) about the minima
|Q| = 1 and the transition state Q = 0,

VEQ = 1

2
ω2

0(|Q| − 1)2 + 1

2
ω2(q − �q)2,

(A7)

VTS = (1 − B) − 1

2
|ω∗|2Q2 + 1

2
ω2q2,

ω0 and iω∗ being the real and imaginary frequencies in the
minima and at the maximum of Vad(Q), respectively. This pre-
sentation shows that Q and q are the normal modes of the TS-
configuration, Q being the mode with imaginary frequency.
It also shows that the normal mode q, which represents the
skeletal motion, does not change its form and frequency be-
tween the stationary configurations, but undergoes only a dis-
placement �q.

Equations (A4)–(A7) can be generalized to the MD case
where Y represents a structure composed of many atoms and
subject to many vibrations. We summarize here the main
steps; details can be found in Ref. 3. We generate the Hamil-
tonian in the form of Eq. (1) using the set of (mass-weighted)
normal modes (x, {yi}) of the TS configuration centered at
(x = 0, {yi} = 0). The mode x with imaginary frequency is
again the “reaction coordinate,” to which the remaining skele-
tal modes {yi} are linearly coupled. Only modes that are dis-
placed between the stationary configurations contribute to this
coupling. These modes are separated into symmetric (i = s)
and antisymmetric (i = a) groups, depending on their sym-
metry with respect to reflection in the dividing plane x = 0.
Their displacements at the minima are ±�x; ±{�yi=a} for the
antisymmetric modes and {�yi=s} for the symmetric modes.
The crude-adiabatic potential V1D(x), which by definition cor-
responds to the atoms in Y frozen in their equilibrium posi-
tions, is evaluated along the LRP. As before, the height V0

and (mass-weighted) halfwidth �x of this potential are the
scaling parameters for energies and coordinates, respectively.
Frequencies and time are scaled by the scaling frequency �,

defined as �2�x2 = V0. The linear coupling constants γ i are
related to the (dimensionless) displacements and frequencies
as

γi = ω2
i �qi ; �qi = �yi/�x. (A8)

We use these relations in reverse, i.e., we evaluate the
coupling constants from the frequencies and displacements,
which we calculate from the corresponding atomic displace-
ments, as follows:

�x =
N∑

n=1

√
Mn rnL̂n,1, �yi =

N∑
n=1

√
Mn rnL̂n,i . (A9)

Here
√

Mn rn are the mass-weighted atomic displacements
between the TS and EQ; L̂ is the 3N × (3N − 6) matrix
that relates the normal modes of the TS configuration to the
Cartesian coordinates of a nonlinear system with N atoms.
Finally, introducing the dimensionless coordinates as Q
= x/�x and qi = yi/�x, scaling energy by V0, and time and
frequencies by �, we arrive at the potential in the form of
Eq. (A5), generalized to the MD case,

V (Q, {q}) = Vad(Q) + 1

2

∑
i=s

ω2
i

(
qi − γi

ω2
i

Q2

)2

+ 1

2

∑
i=a

ω2
i

(
qi − γi

ω2
i

Q

)2

, (A10)

where the adiabatic potential is defined by Eq. (2).
Analogous to Eq. (A7), the potential V (Q, {q}) about EQ

has the form

V (Q, {q})EQ � 1

2
ω2

0(Q ± 1)2 + 1

2

∑
i=a

ω2
i (qi ± �qi)

2

+ 1

2

∑
i=s

ω2
i (qi − �qi)

2, (A11)

where ω0 is an effective harmonic frequency associated with
the reaction coordinate in EQ. This frequency is evaluated
from the relation between the two sets of normal modes {z}
and (x, {yi}) of the equilibrium and TS configurations, respec-
tively, given by a unitary matrix G;3 thus

x =
∑

j

G0j zj ,
∑

j

G2
0j = 1, (A12)

so that

ω2
0 =

∑
j

G2
0jω

2
0j , (A13)

where ω0j are the frequencies of the normal modes {z} in EQ;
the frequency ω0 in (A11) is the dimensionless counterpart
ω0 = ω0/�. Note that the displacements (A9) and the trans-
formations (A12) are carried out in such a way that the Eckart
conditions are obeyed. This is necessary in order to conserve
the linear and angular momenta and thus prevent mixing of
the vibrations with translations or rotations. Details can be
found in Ref. 3.
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Similar to the collinear model, the normal modes in
Eq. (A10) and in Eq. (1), which describe the skeletal vi-
brations, do not change their form and frequency between
the stationary configurations, as easily seen from Eq. (A10).
To account for such changes, as well as for frequency shifts
and anharmonicities, higher-order coupling terms would be
needed, but these are not explicitly included in our approach,
since they would prevent the integration over harmonic os-
cillators required for instanton applications. To account for
the effects of such terms, we recalibrate the linear coupling
constants γ i in Eq. (1) so as to match the adiabatic bar-
rier height (1 − B)V0 (in dimensional units), obtained from
Eq. (A6), to the barrier height U0 obtained quantum-
chemically for the real PES (see Table I). This recalibration
takes the form

γi → γi

√
R; R = (V0 − U0)/Er; Er = 1

2

∑
i=a,s

ω2
i �y2

i ,

(A14)

where Er represents the “reorganization energy”.
For practical applications we also need to specify the

shape of the adiabatic potential Vad(Q) along the reaction co-
ordinate between the stationary points. In this range we ei-
ther interpolate between the harmonic curves given by the
calculated curvatures or we assume an analytical function.
The simplest of these, i.e., the one with the lowest powers
of Q, is the quartic form (1 − Q2)2, which is favored in the
present paper, since it has proved to be well suited to proton-
transfer processes. For a given Vad(Q), we can also spec-
ify the shape of the crude-adiabatic potential V1D(Q) under
certain conditions. Namely, if Vad(Q) is of the general form
Vad(Q) = (1 − B)F (|Q|), where F(±1) = 0; F(0) = 1, and B
is defined, analogously to Eq. (A6) as

Ba,s =
∑
i=a,s

γ 2
i /2ω2

i , (A15)

the crude-adiabatic potential is V1D(Q) = F (|Q|), i.e., the
two potentials are of the same shape. This relation is exact for
crossing parabolas but only approximate for the quartic po-
tential; however, if Vad(Q) = (1 − B)(1 − Q2)2, then V1D(Q)
is very well approximated by (1 − Q2)2 in the case where Ba

� Bs, which applies to hydrogen bonds. The relation between
the two potentials is therefore as the one given by Eqs. (8) and
(9). Note that a meaningful problem requires that B < 1, i.e.,
Er < V0, which is well met since the “reaction coordinate” is
the mode most displaced in the tunneling process.

If, for very large systems, evaluation of the barrier height
V0 along the LRP is not practical, one can instead use the
approximation V0 � V0,L = U0 + Er, which sets R = 1 in
Eq. (A14). In applications, we use, whenever practical, the
rescaled values of the γ i, but retain the notation of the main
text for convenience.

In conclusion we note that all input parameters needed
for practical applications of the approach are generated by
the DOIT code,3 which reads directly from standard output
of electronic-structure and force-field calculations for the sta-
tionary configurations.
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