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Abstract 

The aim of the present study was to determine how binge drinking (BD) affects brain 

functioning in male and female university students during the performance of a visual 

discrimination task. Thirty two binge drinkers and 53 controls (non binge drinkers), 

with no history of other drug use, personal or family history of alcoholism or 

psychopathological disorders, were selected. Event-related potentials (ERPs) were 

recorded during the performance of a visual oddball task. The latency and amplitude of 

the N2 and P3b components of the ERPs were analyzed. There were no differences 

between the groups in behavioral measures, but P3b amplitudes were significantly 

larger in binge drinkers than controls. This may suggest the presence of anomalies in 

neural processes mediating attention processing, or an imbalance (increased) of 

neuronal activity in P3b generators caused by the presence of BD pattern for a long 

time. 

 

 

 

 

 

 

 

Keywords: ERPs, Oddball Task, Visual Attention, Adolescence, Binge Drinking, 

University Students. 

 

 

Postprint (final draft post-refeering)



 3 

Introduction 

In recent decades, there has been increasing concern regarding the neurocognitive 

effects of alcohol intake in adolescents and young people (for a review see Monti et al., 

2005) because of the high prevalence of alcohol abuse among this population
 
(Serdula et 

al., 2004). Binge drinking (BD) has become increasingly common among adolescents 

and college students and refers to the consumption of large amounts of alcohol in a 

short time, often on Thursdays and at the weekend
 
(Beets et al., 2009), followed by a 

period of abstinence (Lange et al., 2002; Wechsler et al., 1994; 2002). 

The most widely accepted operating definition of BD is the consumption of five 

or more alcoholic drinks (four or more in the case of women) on a single occasion (in 

the time span of two hours, according to the National Institute on Alcohol Abuse and 

Alcoholism) at least once in the previous two weeks or month (for a review see 

Courtney and Polich, 2009; Parada et al., 2011). Additionally, considering the 

differences of pure ethanol that one Standard Alcoholic Drink contains in each country 

(International Center for Alcohol Policies, 2003), it is necessary to adjust the criteria to 

the location of the investigation. 

Although 6-10% of adolescents fulfil diagnostic criteria for alcohol use disorders 

(Clark et al., 2002), BD is much more prevalent in adolescents and young people and 

often viewed by them as innocuous (Johnston et al., 2009). Epidemiological studies 

across the USA and UK indicate that around 40% of university students are binge 

drinkers (Gill, 2002; Wechsler et al., 2002). In an epidemiological previous study by our 

research group in Spain (Caamaño-Isorna et al., 2008), 37% of first-year university 

students (N= 2700) were found to consume large amounts of alcohol (“risky 
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consumption”) and 12.2% showed a BD pattern of alcohol consumption, with higher 

prevalence in males than females (29.9% vs. 8.2% females). 

Adolescence is a time of dynamic brain changes that occur in the context of 

major physiological, psychological, and social transitions. Maturing neural circuitry 

during this life stage, particularly in the prefrontal cortex, limbic system, and white 

matter association and projection fibers, is linked with advancements in cognition and 

behavior (Bava et al., 2010). So, higher-order cognitive functions such as attention, 

working memory, planning, problem solving, and inhibitory control are developing 

during adolescence and historically linked to maturation of the frontal lobes (for a 

review see De Luca and Leventer, 2008). Given the extent of brain maturation occurring 

during this phase in life, adolescents who use substances appear to be vulnerable to 

alterations in brain functioning, cognition and behavior, and alcohol use may 

detrimentally influence the developing brain (for a review see Guerri and Pascual, 

2010). 

Animal studies have demonstrated that the intermittent consumption of high 

doses of alcohol causes major alterations in the central nervous system (CNS) (Jaatinen 

et al., 2003; Roberto et al., 2002; Tokunaga et al., 2006) and that the adolescent brain is 

more sensitive to the neurotoxic effects of alcohol and BD than the adult brain (Crews 

et al., 2000; White et al., 2000). Alcohol particularly affects those structures of the brain 

that mature late on in development, such as the hippocampus and the prefrontal cortex 

(PFC) (for a review see Monti et al., 2005). 

Human studies have revealed the presence of neurostructural and neurocognitive 

anomalies in adolescents with alcohol use disorders (AUDs). These studies have 

reported significant reductions in the volume of hippocampus and PFC (De Bellis et al., 
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2005; Medina et al., 2008; Nagel et al., 2005), and the presence of neurocognitive 

deficits in functions related to these brain areas, such as visuospatial attention, and 

particularly working memory (for a review see Brown and Tapert, 2004), in adolescents 

with AUD in comparison with paired controls. As regards BD, although few studies 

have investigated the neurobiological and neurocognitive effects of this pattern of 

alcohol consumption in non-clinical samples of adolescents and young people, it has 

been shown that young people who indulge in BD experience difficulty in carrying out 

tasks involving PFC functions, such as working memory, planning, attention and 

decision making (Crego et al., 2009; 2010; García-Moreno et al., 2008; Goudriaan et al., 

2007; Johnson et al., 2008), or hippocampus function as verbal memory (Parada et al., 

2011). 

The event-related potentials (ERP) have been widely used to assess the 

neurocognitive effects of alcohol in different populations such as alcoholics, abstinent 

chronic alcoholics and children of alcoholics (for a review see Porjesz et al., 2005). 

Most studies have focused on the P3b component, a positive wave peaking between 300 

and 600 ms after the stimulus onset, with maximum amplitude values at centroparietal 

sites, and functionally associated with processes of attention and memory access evoked 

by the evaluation of stimuli in tasks that require some form of action like a covert or 

overt response (for a review see Polich, 2007). These studies have shown that 

alcoholism is associated with reduced amplitude and a delayed latency of P3b to task-

relevant target stimuli, impairments considered as electrophysiological markers of 

earlier behavioral results showing that alcoholism is linked to a deficit in higher 

cognitive (attention and memory) processing (for a review see Campanella et al., 2009; 

Porjesz et al., 2005). Moreover, reduced P3b amplitude is considered a genetically 
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transmitted marker for the risk of alcoholism (for a review see Polich et al., 1994; 

Porjesz et al., 2005). Other studies (Cadaveira et al., 1991; 1992; Cristini et al., 2003; 

Maurage et al., 2008; Olbrich et al., 2000), although fewer in number and with more 

controversial results, have also focused on the N2 component, a negative waveform 

with a peak latency around 200 to 300 ms related to attentional processes.  

With regard to BD, few studies have used ERPs to explore BD in young people. 

Ehlers and cols. (Ehlers et al., 2007) used a facial emotional expression recognition task 

and evaluated ERPs in young adults with a history of BD during adolescence. They 

reported that the amplitude of the late P3 component (P3b) was lower in young adults 

participating in BD during adolescence than in subjects who did not partake in BD 

during adolescence. The authors suggested that these anomalies may be associated with 

a loss or delay in the development of inhibitory brain systems in binge drinkers. 

Recently, Maurage and cols. (Maurage et al., 2009) used a test–retest paradigm and 

reported that short-term BD can produce marked cerebral dysfunction that is 

undetectable by behavioral measures alone. The results of their study revealed that, after 

9 months of BD, subjects presented significantly delayed latencies in the P1, N2 and P3 

components elicited by emotional auditory stimuli, with respect to controls, with no 

behavioral differences. These studies have revealed that young binge drinkers show 

electrophysiological anomalies in the processing of emotional stimuli. Moreover, two 

previous reports by our research group have revealed that young binge drinkers show 

anomalous electrophysiological patterns and hypoactivation of the anterior prefrontal 

cortex during a working memory task (Crego et al., 2009; 2010).  

In the present study, the N2 and P3b components of the ERPs elicited in 

response to a visual oddball task were analyzed in a sample of young people (first-year 
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university students) with and without a BD pattern of alcohol consumption, in order (i) 

to establish whether ERPs differ between the young binge drinkers and corresponding 

control subjects, which may reveal any impairment in the process of attention and 

information processing, and (ii) to determine if the electrophysiological measurements 

are affected differently by BD in male and female subjects. 

 

Materials and Methods 

Participants 

Eighty-five first-year university students (age range 18–20 years) participated in the 

study. Thirty-two of the participants (15 females) were classified as binge drinkers and 

53 (25 females) as controls. 

For sample selection, first-year students at the University of Santiago de 

Compostela (Galicia, Spain) (N= 2700) were asked to complete a questionnaire during 

class. The initial sample used in the present study is the same as that used in an 

epidemiological study carried out by our research group (Caamaño-Isorna et al., 2008). 

The questionnaire included the Galician validated version of the Alcohol Use Disorder 

Identification Test (AUDIT) (Varela et al., 2005); items 10, 11 and 12 of the Alcohol 

Use Questionnaire (AUQ) (Townshend and Duka, 2002), i.e. speed of drinking (average 

number of drinks consumed per hour), number of times the subject became drunk in the 

previous 6 months, and percentage (average) number of times the subject became drunk 

when drinking, as well as other items regarding use of alcohol (frequency of BD 

episodes in the previous 2 weeks and the previous month, number of drinks per 

occasion, number of drinks consumed on each day of the last week, age of onset of use, 

etc.) and other drugs (type of drug use, frequency of consumption, etc.). 
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According to the quantitative definition of BD used in European countries such 

as Spain, where a standard alcoholic drink equals about 10 g of alcohol, this study 

established the criterion of consumption of six or more standard alcoholic drinks on the 

same occasion (rather than five or more, as in the USA, where one standard alcoholic 

drink equals about 14 g of alcohol), one or more times per month. This information was 

obtained from the subject’s response to question 3 of the AUDIT (“How often do you 

have six or more drinks on one occasion? Never/Less than 

monthly/Monthly/Weekly/Daily or almost daily”). In addition to this quantity/frequency 

criterion, speed of alcohol consumption was also considered. To be classified as binge 

drinkers, subjects had to drink at least three drinks per hour during BD episodes. This 

information was obtained from the subject’s response to question 11 of the AUQ, which 

refers to the speed of drinking (average number of drinks consumed per hour). 

Therefore, (1) subjects who drank six or more standard alcoholic drinks on the same 

occasion one or more times per week, and (2) those who drank six or more standard 

alcoholic drinks on the same occasion at least once a month and, during these episodes 

drank at a speed of consumption of at least three drinks per hour, were classified as 

binge drinkers. Those who drank six standard alcoholic drinks on the same occasion 

less than once per month and at a maximum speed of consumption of two drinks per 

hour, were classified as controls (non-BD). The control group was composed of 

university students who did not meet criteria for BD but not necessarily had to be 

abstinent, because the latter are scarce amongst young university students (at least in the 

study population). Thus, the low level of alcohol consumption of most subjects in the 

control group was representative of most of the students surveyed, and the amounts, 

frequency and speed at which they drank guaranteed the absence of a BD pattern or any 
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other type of alcohol-related problems. Anyway, an analysis comparing abstainers (13) 

and light drinkers (40) of the control group was performed, and the results showed no 

significant differences between them in any parameter (latency or amplitude) of ERPs 

components analyzed (N2 and P3b).The mean number of drinks that the BD and control 

subjects consumed on each day of the last week is shown in Fig. 1. 

 

Insert Figure 1 about here 

 

The Symptom Checklist-90-Revised questionnaire (SCL-90-R) (Derogatis, 

1994) was applied to the initially selected subjects in order to detect any 

psychopathological symptoms and compare the different scales in the two groups. 

Subsequently, the subjects were interviewed about their personal and family history of 

alcoholism and medical or psychopathological disorders. The interview comprised a 

translated and adapted version of the Semi-Structured Assessment for the Genetics of 

Alcoholism (SSAGA), Individual Assessment Module (IAM) and Family History 

Assessment Module (FHAM), designed by the Collaborative Study on the Genetics of 

Alcoholism (COGA) (Bucholz et al., 1994). Questions about individual and familiar 

psychopathological problems were based on DSM-IV criteria and at least one other 

diagnostic classification system. Alcohol abuse/dependence was assessed in all subjects, 

both controls and binge drinkers, by use of the AUDIT. This test has been validated to 

assess alcohol-related problems or disorders (Babor et al., 2001), and specifically in 

university students (for a review see Reinert and Allen, 2007). AUDIT scores in the 

range of 8–19 reveal “risky” consumption, while scores of 20 or above warrant further 

diagnostic evaluation for alcohol dependence. Information on tobacco, cannabis and 

Postprint (final draft post-refeering)



 10 

other drugs use was obtained from the subjects’ responses to items about drugs use 

included in the questionnaire. 

The exclusionary criteria were left-handedness, non-corrected sensory deficits, 

any episode of loss of consciousness for more than 20 min, history of traumatic brain 

injury or neurological disorder, personal history of psychopathological disorders (DSM-

IV Axis I and Axis II disorders), family history of major psychopathological disorders 

(major depressive disorder, schizophrenia or anxiety disorders according to DSM-IV 

criteria) in first-degree relatives, family history of first-degree alcoholism or substance 

abuse, and history of regular or occasional use of drugs (cannabis, opiates, 

hallucinogens, ecstasy, cocaine, amphetamine compounds or medically prescribed 

psychoactive substances). With regard to tobacco consumption, subjects with a regular 

tobacco consumption were excluded, while occasional smokers (who smoke during BD 

episodes but no in others situations) were controlled but not excluded. As regards 

alcohol consumption, subjects with AUDs (AUDIT scores ≥20) were excluded from the 

study.  

The demographic and drinking characteristics of the subjects finally selected to 

form the BD and control groups are presented in Table 1. With respect to psychological 

variables, the two groups did not differ either in global severity index (GSI) or any scale 

of SCL-90-R. 

 

Insert Table 1 about here 

 

The experiment was undertaken in compliance with Spanish legislation and the 

code of ethical principles for medical research involving human subjects outlined by the 
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World Medical Association (Declaration of Helsinki: see Williams, 2008). Participants 

signed an informed consent form and were paid for participating in the experiment. 

 

Tasks and procedure 

Participants were asked to abstain from consuming alcohol for 12 h before the 

experiment and not to have binge drinking episodes in the past 24 hours to prevent acute 

alcohol intake effects and to rule out withdrawal effects. In addition, they were 

instructed not to smoke or drink tea or coffee for at least 3 h prior to the experiment. 

Compliance with these restrictions was self-reported by the subjects. Each subject was 

seated in a comfortable armchair located in a light- and sound-attenuated electrically 

shielded room, and a brain cap and electrodes (see below) were fitted to the subject’s 

head. General instructions were given to avoid movements during the test and the task 

was explained. 

A visual oddball task was used. The oddball paradigm is a classical 

discrimination task, in which two stimuli are presented in a random series such that one 

of them occurs relatively infrequently and subjects must detect this occasional rare 

(“target”) stimuli occurring against a background of more frequent non-target 

(“standard”) stimuli.  

In the oddball task employed, 150 stimuli, size 2.5º × 2.5º visual angle, were 

presented at random on a black background in the centre of a CRT monitor placed 100 

cm in front of the subject’s eyes. The stimulus duration was 45 ms and the interstimulus 

interval (ISI) varied between 1000 and 1400 ms. The stimuli consisted of two different 

figures, a white circle designated as the standard stimulus (probability = 0.8) and a 

white star designated as the target stimulus (probability = 0.2). Participants were 
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instructed to press a button with the preferred hand when the target stimulus appeared 

and not to respond when the standard stimulus appeared.  

 

EEG recording 

The electroencephalogram (EEG) was recorded with Brain Vision Recorder system 

using a Braincap with 32 synterized Ag–AgCl electrodes placed at AF3, AFz, AF4, F7, 

F3, Fz, F4, F8, FC3, FCz, FC4, C3, Cz, C4, CP3, CPz, CP4, T7, T8, P7, P3, Pz, P4, P8, 

PO7, PO3, POz, PO4, PO8, O1, Oz and O2 (according to the extended 10–20 

International System). All active electrodes were referred to the nose tip and grounded 

with an electrode placed at Fpz. Vertical electrooculographic activity (VEOG) was 

recorded bipolarly from above and below the left eye to control eye movements and 

blinks. Electrode impedances were kept below 10 kΩ. EEG signals were continuously 

amplified and digitized at a rate of 500 Hz, and filtered on-line with a 0.01–100 Hz band 

pass filter. 

 

Data analysis 

Behavioral analysis. Only responses with reaction times (RTs) between 100 and 1000 

ms after the onset of a target stimulus were considered as correct. Responses to the 

standard stimuli were scored as false alarms, and failures to respond to target stimuli 

were defined as omissions. The RTs, the percentage of correct responses and the 

percentage of false alarms from the two groups (BD and control) were compared using a 

Student’s t-test for independent samples. 

ERP analysis. All EEG data were analyzed with Brain Vision Analyzer software 

(Version 2.0.1). The EEG was corrected for ocular artefacts by the semiautomatic 
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procedure in Independent Component Analysis (ICA) (Jung et al., 2000). It was then 

digitally filtered off-line with a 0.1–30 Hz bandpass filter and segmented into epochs of 

1000 ms from 100 ms pre-stimulus to 900 ms post-stimulus. Baseline correction was 

applied, epochs exceeding ±80 µV at any scalp electrode were rejected (lower than 5% 

in each task) and EEG epochs corresponding to incorrect responses (omissions or false 

alarms) were excluded. Average ERPs time-locked to the standard and the target stimuli 

were computed separately. 

The averaged ERPs were analyzed with a semiautomatic peak detection 

procedure and, subsequently reviewed and manually corrected at each of the 32 

electrodes for each participant. The N2 and P3b components were identified and marked 

in the averaged waveform elicited by the standard and target stimuli as the largest 

negative peak between 200 and 300 ms after the stimuli onset, and the largest positive 

peak within a time window of 300-600 ms, respectively. Both amplitudes (μV) and 

latency (ms) values of these ERP components were organized into three regions, each 

including six electrode positions: frontal (F3, Fz, F4, FC3, FCz, FC4), central (C3, Cz, 

C4, CP3, CPz, CP4) and parietal (P3, Pz, P4, PO3, POz, PO4). A mixed model 

ANOVA with two between-subjects factors and three within-subject factors was used 

for the statistical analysis of each component. The between-subjects factors were Group 

(BD and control) and Gender (male and female), and the within-subject factors were 

Condition (standard and target stimuli), Region (frontal, central and parietal) and 

Electrode location (six channels). In addition, an independent analysis was performed 

for each gender. 

An alpha level of 0.05 was used and, whenever appropriate, degrees of freedom 

were corrected by the conservative Greenhouse–Geisser estimate. All post hoc paired 
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comparisons were performed with the Bonferroni adjustment for multiple comparisons, 

also with an alpha level of 0.05.   

 

3. Results 

Behavioral results 

The behavioral data for each group are summarized in Table 2. No significant 

differences between the control and BD groups were observed for RTs, percentage of 

correct responses or false alarms. 

 

Insert Table 2 about here 

 

Electrophysiological results 

The grand averages of the ERPs for the standard and target stimuli in the control and 

BD groups are shown in Fig. 2 and 3, respectively. The grand averages of the ERPs in 

the two groups for the target stimuli in males and females are compared in Fig. 4 and 5, 

respectively. The mean and standard derivation (SD) values of amplitude and latency of 

P3b and N2 components for the two groups are shown in Table 3, and the mean and SD 

values of P3b amplitude for each gender in each group are shown in Table 4.   

 

Insert Figures 2 and 3, and Table 3 about here 

 

The analysis of the N2 amplitude revealed that the factor Condition had a 

significant effect [F(1,81) = 20.32, p < 0.001]. The N2 amplitude was significantly 

larger in the target than in the standard condition. The analysis also revealed that the 
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factor Region had a significant effect [F(2,162) = 25.34, p < 0.001], with higher 

amplitude in anterior than posterior regions (frontal > central > parietal) (p < 0.001 for 

all pair comparisons).  

The N2 latency or amplitude did not differ significantly between groups for any 

region or condition. 

Likewise N2, the P3b latency did not differ significantly between groups at any 

region or condition. 

 As regards P3b amplitude, the analysis revealed that the factor Condition had a 

significant effect [F(1,81) = 166.06, p < 0.001]. The P3b amplitude was significantly 

larger in the target than in the standard condition. The analysis also revealed that the 

factor Region had a significant effect [F(2,162) = 26.48, p < 0.001], with larger 

amplitude in posterior than anterior regions (parietal and central > frontal) (p < 0.001 

for all pair comparisons). As regards the factor Group, it had a significant effect 

[F(1,81) = 8.04, p < 0.01]. The P3b amplitude was significantly larger in the BD than 

control group. The interaction between Group and Condition also had a significant 

effect [F(1,81) = 12.31, p < 0.001]. The post hoc multiple comparisons revealed that 

P3b amplitude was larger in the target than in the standard condition in both groups as 

was expected (p < 0.001) (see Fig. 2 and 3), and that for the target condition was 

significantly larger in the BD than in the control group (p < 0.001). There was no 

significant Group x Condition x Region interaction, and an independent analysis for 

each region in the target condition confirmed a larger P3b amplitude in the BD group 

than the control group in the frontal [F(1,81) = 12.89, p = 0.001], central [F(1,81) = 

10.85, p = 0.001] and parietal [F(1,81) = 7.28, p = 0.008] regions.  
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Bearing in mind that previous studies have reported that oddball P3 is reduced 

among smokers (Anokhin et al. 2000; Polich and Ochoa, 2004), it is increased by acute 

smoking (Polich and Criado 2006) and decreased by smoking abstinence (Daurignac et 

al. 1998), the data were analyzed excluding the occasional smokers (three subjects in 

the control group and seven subjects in the BD group). The results did not show 

differences with those including the whole sample. Moreover, the occasional smokers 

were compared with the no-smokers into each group, and there were not differences in 

P3b amplitude between the subgroups. Therefore, the occasional smokers were not 

excluded from the sample. 

Finally, with regard to the factor Gender, no significant interactions between 

Group and Gender were observed on the latency or amplitude of both N2 and P3b 

components. However, as regards P3b amplitude, the analysis revealed that the 

interaction between Gender and Condition had a significant effect [F(1,81) = 4.62, p < 

0.05], and the post hoc multiple comparisons confirmed, as was expected, that P3b 

amplitude for the target condition was significantly larger in females than males (p < 

0.05). Moreover, independent analyses for each gender showed that the interaction 

between Group and Condition had a significant effect both in males [F(1,43) = 4.44, p < 

0.008] and females [F(1,38) = 7.48, p = 0.038], and the post hoc multiple comparisons 

confirmed that P3b amplitude for the target condition was significantly larger in the BD 

than in the control group for both males (p < 0.01) and females (p < 0.05) (see Fig. 4 

and 5).  

 

Insert Figures 4 and 5, and Table 4 about here 
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Discussion 

 

Although some neuropsychological studies have revealed that young people with a BD 

pattern of alcohol consumption show behavioral deficits in relation to cognitive 

functions such as working memory, attention, planning, decision making and verbal 

memory (García-Moreno et al., 2008; Goudriaan et al., 2007; Johnson et al., 2008; 

Parada et al., 2011;), in the present study no behavioral differences between BD and 

control groups were observed. This was not unexpected, since ERPs can reveal 

neurocognitive restrictions undetectable at the behavioral level, and perhaps the tasks 

employed, although useful for obtaining ERPs related to attentional processes, were not 

sensitive enough to detect differences in behavioral performance or any possible 

behavioral impairment. 

With regard to ERPs, the results revealed a larger P3b amplitude in the BD 

group than in the control group in frontal, central and parietal regions during the 

execution of the visual oddball task. This is surprising because a reduction in the P3b 

amplitude has long been associated with alcoholism and the risk of alcoholism (for 

review, see Polich et al., 1994; Porjesz et al., 2005). The P3b amplitude has been 

considered as an indicator of the allocation of attentional resources to the voluntary 

selection of relevant stimuli and context updating processes of working memory (for a 

review see Polich, 2007), and many studies have revealed that abstinent chronic 

alcoholics, who have significant attentional and memory deficits, show a reduction in 

the P3b amplitude (for a review see Campanella et al., 2009; Porjesz et al., 2005). 

However, the relation between alcohol consumption and anomalies in P3b is complex. 
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It has been proposed that, rather than a consequence of alcohol consumption, the 

reduction in P3b amplitude is an endophenotype, or a genetically transmitted risk 

marker for alcoholism (Hesselbrock et al., 2001), independent of lifetime alcohol 

consumption (Pfefferbaum et al., 1991; Perlman et al., 2009), and it has been linked to 

risk for alcoholism across a variety of experimental tasks and in a variety of clinical and 

epidemiological populations, including adolescents at high familial risk for alcoholism 

prior to alcohol exposure (Porjesz et al., 1998; Rodríguez Holguín et al., 1999)  

Regarding BD, Ehlers and cols. (Ehlers et al., 2007) found that adults with a 

history of BD during adolescence, with no diagnosed lifetime of drug dependence 

showed a lower P3b amplitude than adults with no regular BD during adolescence and 

no drug dependence, in response to an emotional facial expression task. However, the 

decrease in the amplitude cannot be attributed exclusively to BD during adolescence, 

because family history of alcohol and conduct disorder or antisocial personality disorder 

were not excluded and were significant covariates in the analysis. In the present study, 

in which subjects with AUD or personal history of psychopathological disorders (DSM-

IV Axis I and Axis II disorders) and a family history of alcoholism (factors involving 

the effect of reducing the amplitude of P3b) were excluded, no reduction in P3b 

amplitude was observed in the BD group. Conversely, the results of this study have 

revealed that P3b amplitude is larger in young university BD students than in matched 

paired controls, an anomaly that could be a specific electrophysiological marker of the 

BD pattern in young people. In this sense, two recent studies of Bartholow and cols., 

using a visual oddball task, have found that young university students with low alcohol 

sensitivity (with an alcohol consumption similar to the BD group in the present study) 

also showed increased P3b amplitude, but only to alcohol cues (Bartholow et al., 2007; 
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2010). P3b amplitude elicited by neutral, arousing or non-alcoholic beverage-related 

images targets did not differ to their high-sensitivity peers (Bartholow et al., 2010). The 

authors suggested that P3 reactivity to alcohol cues could be a new endophenotype for 

alcohol use disorder risk. Likewise, increased of P3b amplitude to neutral target stimuli 

in pure cognitive task also could be a specific electrophysiological marker of the BD 

pattern in young people and of the alcohol use disorder risk. However, more studies are 

needed to confirm this result.  

A functional explanation of these results would be linked to the results of 

different fMRI studies by Tapert and cols. (Tapert et al., 2004; Schweinsburg et al., 

2010). These authors reported that adolescents with AUD showed abnormalities in brain 

response (enhanced BOLD) to a spatial working memory task, despite adequate 

performance. The authors suggested the involvement of compensatory mechanisms and 

that binge drinkers exhibit a greater reliance on alternate memory systems during verbal 

learning. According to this compensation hypothesis, the larger P3b amplitude observed 

in the BD group in the present study might suggest that binge drinkers recruit different 

or wider brain areas associated with attentional processing to compensate the BD-

related neurocognitive decline and to successfully complete the specific task. This 

hypothesis must be further explored with other tasks, perhaps more sensitive to possible 

behavioral deficits, and complemented with neuroimaging studies before it can be 

confirmed. 

It is also possible that the effects found in the present study were related to an 

imbalance of neuronal activity in P3b generators. Alcohol generally has a suppressive 

effect on the CNS: It reduces the activity of excitatory neurotransmitters and their 

receptors and enhances the activity of inhibitory neurotransmitters and their receptors. 
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After long-term alcohol exposure, a complex set of mechanisms are activated to 

counteract the effects of the persistent presence of alcohol in the brain. These 

mechanisms promote the activity of excitatory neurotransmitter systems and suppress 

the activity of inhibitory neurotransmitter systems, attempting to return brain function to 

a “normal” state in the presence of alcohol. When the individual stops drinking, 

however, these adaptive changes result in an imbalance in inhibitory and excitatory 

neurotransmission, resulting in CNS hyperexcitability (“kindling effect”) that manifests 

itself as withdrawal symptoms (for a review see Becker, 1998). Binge drinking is 

characterized by the consumption of large amounts of alcohol within a limited time 

period followed by a period of abstinence, as opposed to regular drinking, in which a 

person might consume similar weekly amounts of alcohol but without the extremes of 

alcohol intoxications and continuous withdrawals. Repeated periods of alcohol binging 

and withdrawal increase the degree of withdrawal-induced neuronal excitability in 

several brain areas including amygdala, hippocampus, ventral striatum, periaqueductal 

grey and frontal cortical areas (for a review see Stephens and Duka, 2008), and the 

imbalance occurring during withdrawal may accrue with each successive episode and 

may culminate in a state of persistent increased of neural activity of P3b generators. In 

this sense, several animal studies have demonstrated increased neural hyperexcitability, 

alterations in spontaneous EEG and exacerbation of withdrawal symptoms following 

repeated withdrawal experiences (Becker and Hale, 1993; Becker and Littleton 1996; 

Duka et al., 2004). Therefore, taking into account that the total amount of P3b activity 

represents the summation of the outputs derived from different sources or generators 

(Johnson, 1993), the larger P3b amplitude observed in the BD group in the present 
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study may be a reflection of an imbalance (increased) of neuronal activity in P3b 

generators caused by the presence of BD pattern for a long time. 

As regards N2, BD did not have any effects on the amplitude of the N2 elicited 

by standard or targets stimuli. In a previous study by our research group (Crego et al., 

2009), the amplitude of N2 was larger in binge drinkers in response to the matching 

stimuli of a visual pairs-matching continuous task, suggesting higher levels of 

attentional effort required by these subjects. However, the pairs-matching continuous 

tasks and the oddball tasks are different in both the level of difficulty and in the nature 

of the cognitive processes involved, and this might account for the different influence of 

BD on the N2 amplitude in both experiments. It is well-known that several components 

contribute to the N2 wave, depending on the type of cognitive processes required by the 

task. A simple oddball task, such as the one of this study, only requires the 

categorization of two easily discriminable stimuli, so it is not likely that N2 components 

associated with processes required in the pairs-matching continuous task, such as 

maintenance in working memory or conflict monitoring were present in this study (for a 

review, see Folstein and Van Petten, 2008).  

Regarding latency values, which are usually considered an index of the speed of 

cognitive processing, Maurage and cols. (Maurage et al., 2009) found delayed latencies 

in the P1, N2 and P3b. The authors compared young adult binge drinkers (more than 10 

drinks of 10 g of alcohol at least two times a week) with matched paired controls (both 

were first-year university students), in a test–retest paradigm over a nine-month period. 

The potentially biasing variables were controlled and the subjects included met strict 

selection criteria: no personal or family history of alcoholism, total absence of past or 

current drug consumption (including tobacco and medication), no history of psychiatric 
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disorder and no moderate or high depression-anxiety scores. The results revealed that, 

although the two groups did not differ in any psychological, behavioral or 

electrophysiological measures in the first session (before the subjects started binge 

drinking habits), nine months later, the binge drinkers displayed significantly delayed 

latency in the P1, N2 and P3 components elicited by emotional auditory stimuli in a 

discrimination task, although they did not show any differences in amplitude. However, 

in the present study there were no significant differences in the latency of any 

component. Perhaps the differences in the specific tasks used by Maurage and cols. 

(emotional tasks) and in this study (pure cognitive tasks), and even the differences in the 

sensory modality, would account for the differences in the results relating BD and ERP 

latencies. In this sense, it must be noted that most of the studies reporting anomalies in 

ERP latencies in alcoholic populations used auditory stimuli (Cadaveira et al., 1991) or 

emotional tasks (Maurage et al., 2008). 

The assessment of possible gender differences was also of interest in the present 

study. In the last decade, the prevalence of BD has tended to rank equally among men 

and women (Wechsler et al., 2002; Young et al., 2005). Several neuropsychological and 

neuroimaging studies on alcohol consumption have reported that women are more 

sensitive to the neurotoxic effects of alcohol (Hommer et al., 2001; Mann et al., 2005; 

Medina et al., 2008), perform worse in spatial working memory tasks (Townshend and 

Duka, 2005), and display more anomalous patterns of brain activity than men (Caldwell 

et al., 2005). However, like in the two previous studies by our research group (Crego et 

al., 2009; 2010), no significant gender-related differences in the groups were observed 

in the present study. 

 

Postprint (final draft post-refeering)



 23 

 

Finally, it is important note that the results of this study should be interpreted with 

caution. Our results need to be generalized and extended and care must be taken in 

extrapolating the results of this study to other sensory modalities and even to visual 

stimuli using tasks different from the oddball paradigm. 

 

Conclusions 

The results of the present study revealed that young university-student binge drinkers 

(without AUD, psychopathological comorbilities or family history of alcoholism) show 

anomalies in ERPs in comparison with non binge drinking controls. These anomalies 

are characterized by a larger amplitude of the P3b component, which may suggest that 

young people with a BD pattern of alcohol consumption during adolescence and early 

adulthood may experience anomalies in neural processes that mediate attention 

processing or an imbalance of neuronal activity caused by the presence of BD pattern 

for a long time. Moreover, taking into account the sensitivity of the ERP technique and 

the specificity of the effect found, further research is required to confirm these results 

and to explore the (pre)clinical potential of this electrophysiological marker.  
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Figure Legends 

 

Fig. 1. Mean number of drinks consumed on each day of the last week by the BD and 

control subjects. 

 

Fig. 2. Grand averages of ERPs from the Control group in response to the standard 

(solid lines) and target stimuli (dashed lines) at the 18 electrodes analyzed. P3b 

amplitude was larger for the target than the standard stimuli in all the electrodes and 

regions analyzed. 

 

Fig. 3. Grand averages of ERPs from the BD group in response to the standard (solid 

lines) and target stimuli (dashed lines) at the 18 electrodes analyzed. P3b amplitude was 

larger for the target than the standard stimuli in all the electrodes and regions analyzed. 

 

 

Fig. 4. Grand averages of ERPs and voltage maps corresponding to the peak of P3b 

component in the males of the control (solid lines) and BD groups (dashed lines) in 

response to the target stimuli at the 18 electrodes analyzed. Males of the BD group 

showed larger P3b amplitude in all electrodes and regions analyzed than males of the 

control group. 

 

Fig. 5. Grand averages of ERPs and voltage maps corresponding to the peak of P3b 

component in the females of the control (solid lines) and BD groups (dashed lines) in 

response to the target stimuli at the 18 electrodes analyzed. Females of the BD group 
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showed larger P3b amplitude in all electrodes and regions analyzed than females of the 

control group. 
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Table 1. Demographic and drinking characteristics of the Control and BD groups (mean ± SD). 

 Control BD 

N (females) 53 (25) 32 (15) 

Age: years (range) 18.5 ± 0.5 (18-20) 18.8 ± 0.6 (18-20) 

Handedness (rigth/left) 53 / 0 32 / 0 

Caucasian ethnicity (%) 100 100 

Age of onset on alcohol consumption: years*  16 ± 1 15 ± 1.3 

Quantity of consumption: drinks per occasion 
a
 ** 1 ± 1.5  5.1 ± 2 

Drinks in the last week (self-reported) 
a
 ** 3.5 ± 1.4 19.7 ± 4.9 

Speed of consumption: drinks per hour 
a
 ** 0.6 ± 0.9 3.3 ± 1.1 

BD episodes in the last two weeks ** 0.02 ± 0.1 1.4 ± 1.4 

Times drunk in the last 6 months ** 1.2 ± 2.7 6.8 ± 7 

Percentage of times became drunk when drinking **  5.9 ± 10.1 42.7 ± 31.6 

Total AUDIT score (range)** 2.4 ± 2.1 (0-9) 11.3 ± 3.4 (6-18) 

Global Score Index (GSI) percentil of SCL-90-R 43.3 ± 29.7  52.2 ± 33.9 

* t<0.05 significant group differences (Control vs. BD) 

** t<0.001 significant group differences (Control vs. BD) 
a 1 drink equals 10 g of alcohol 
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Table 2. Behavioral data from the control and BD groups (mean ± SD). 

Behavioral Performance Control BD 

      Reaction time (ms) 392.6 ± 49.9 392 ± 46.8 

      % Correct responses 99.2 ± 1.8 99.3 ± 1.6 

      % False alarms 0.1 ± 0.4 0.2 ± 0.7 
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Table 3. Values of the latency (ms) and amplitude (µV) of the N2 and P3b components (mean ± SD) at the 18 electrodes analyzed in control and BD groups. 

 N2 values for target stimuli                             P3b values for target stimuli 

 Control BD Control BD 

   Latency  Amplitude Latency  Amplitude Latency  Amplitude Latency  Amplitude 

F3 274 ± 27.19 -3.81 ± 3.4 269.69 ± 21.96  -2.64 ± 4.16 379.96 ± 32.6 5.1 ± 4.47 385.31 ± 35.16   8.4 ± 4.42 

Fz 277.7 ± 22.62 -4.94 ± 4.06 276.25 ± 17.01 -3.59 ± 4.77 377.81 ± 31.81 4.56 ± 3.99 382.94 ± 32.5 8.28 ± 5.3 

F4 271.58 ± 28.22 -4.15 ± 3.7 265.06 ± 26.2 -2.59 ± 4.38 380.23 ± 36.39 5.05 ± 3.66 382 ± 28.42 8.52 ± 4.65 

FC3 271.02 ± 27.12 -3.87 ± 3.5 266.75 ± 21.82 -2.75 ± 4.53 377.66 ± 34.09 5.9 ± 5.03 387.5 ± 37.04 9.45 ± 4.82 

FCz 272.3 ± 24.66 -5.15 ± 4.25 274.75 ± 17.07 -4.14 ± 5.69 374.04 ± 29.70 6.51 ± 5.04 384 ± 30.14 10.63 ± 6.24 

FC4 267.96 ± 24.92 -3.61 ± 3.96 264.56 ± 24.84 -2.55 ± 4.64 379.32 ± 33.16 6.87 ± 4.14 385.37 ± 32.8 9.97 ± 4.9 

C3 267.58 ± 27.33 -3.15 ± 3.81 263.87 ± 21.02 -2.57 ± 4.79 379.62 ± 40.72 6.99 ± 5.24 386.75 ± 38.73 10.99 ± 5.06 

Cz 269.17 ± 22.15 -3.46 ± 4.6 267 ± 23.15 -3.5 ± 6.32 371.55 ± 35.94 7.71 ± 5.66 386.87 ± 37.54 11.81 ± 6.23 

C4 266.75 ± 25.36 -2.72 ± 4.09 264.06 ± 24.91 -2.29 ± 4.94 384.04 ± 39.8 7.53 ± 4.96 388.69 ± 37.58 10.77 ± 5.26 

CP3 262.94 ± 26.35 -2.57 ± 3.89 257.75 ± 22.05 -2.36 ± 5.19 375.13 ± 46.89 7.91 ± 5.86 386.75 ± 42.71 12.33 ± 5.09 

CPz 263.92 ± 26.27 -1.94 ± 4.54 263.06 ± 21.26 -2.12 ± 6.05 372.87 ± 47.26 8.57 ± 6 385.81 ± 44.72 12.79 ± 6.27 

CP4 259.74 ± 26.26 -2.19 ± 4.4 259.81 ± 23.06 -2.03 ± 5.4 375.47 ± 48.74 7.79 ± 5.2 387 ± 40.84 10.91 ± 5.83 

P3 254.94 ± 27.9 -2.17 ± 4.02 254.56 ± 22.94 -1.91 ± 5.5 370.34 ± 48.14 8.39 ± 5.94 398.06 ± 45.19 12.68 ± 5.19 

Pz 255.58 ± 28.65 -0.81 ± 4.62 259.62 ± 22.43 -0.93 ± 5.85 365.92 ± 50.3 9.57 ± 5.97 387.81 ± 44.14 13.69 ± 6.33 

P4 255.85 ± 27.92 -1.58 ± 4.6 256.06 ± 23.09 -1.7 ± 5.77 369.28 ± 53.47 8.11 ± 5.52 395.94 ± 43.77 10.72 ± 5.69 

PO3 247.13 ± 27.24 -2.01 ± 4.46 250.31 ± 21.19 -1.69 ± 5.87 368.11 ± 53.61 8.54 ± 5.92 390.44 ± 45.64 12.06 ± 5.57 

POz 246.98 ± 26.23 -0.9 ± 4.87 251.87 ± 22.35 -0.64 ± 6.05 364.91 ± 50.79 9.82 ± 6.02 391.81 ± 45.68 12.79 ± 6.29 

PO4 248.24 ± 24.89 -1.43 ± 4.86 248.25 ± 22.12 -1.35 ± 6.23 369.55 ± 56.14 8.29 ± 5.77 384. 81 ± 49.69  10.4 ± 5.79 
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Table 4. Values of  P3b amplitude (µV) (mean ± SD) at the 18 electrodes analyzed in males and females of the control and BD groups. 

 P3b values for target stimuli 

 Control BD 

   Males  Females Males  Females 

F3 4.69 ± 4.1  5.55 ± 4.89 8.24 ± 4.66 8.59 ± 4.29 

Fz 4.26 ± 4.19 4.88 ± 3.81 8.48 ± 5.26 8.07 ± 5.52 

F4 5.13 ± 3.68 4.96 ± 3.72 8.4 ± 5.18 8.66 ± 4.15 

FC3 5.16 ± 4.61 6.73 ± 5.43 8.8 ± 4.58 10.19 ± 5.13 

FCz 5.81 ± 5.06 7.29 ± 4.99 10.43 ± 6.01 10.86 ± 6.69 

FC4 6.68 ± 4.07 7.08 ± 4.29 9.32 ± 4.93 10.7 ± 4.93 

C3 5.94 ± 4.55 8.18 ± 5.78 10.05 ± 4.73 12.05 ± 5.37 

Cz 6.87 ± 5.66 8.65 ± 5.62 11.08 ± 5.84 12.65 ± 6.74 

C4 6.65 ± 4.16 8.52 ± 5.65 9.79 ± 4.92 11.88 ± 5.58 

CP3 6.64 ± 4.88 9.35 ± 6.59 10.78 ± 3.77 14.08 ± 5.91 

CPz 7.65 ± 5.63 9.59 ± 6.32 11.56 ± 5.08 14.18 ± 7.32 

CP4 6.77 ± 4.32 8.93 ± 5.91 9.45 ± 4.06 12.56 ± 6.31 

P3 7.1 ± 4.84 9.84 ± 6.78 10.98 ± 2.92 14.61 ± 6.51 

Pz 8.5 ± 5.09 10.77 ± 6.73 11.88 ± 4.23 15.74 ± 7.74 

P4 6.82 ± 4.3 9.57 ± 6.42 8.8 ± 3.5 12.89 ± 6.93 

PO3 6.92 ± 4.57 10.35 ± 6.79 10.1 ± 2.84 14.28 ± 7.04 

POz 8.57 ± 4.69 11.21 ± 7.07 10.68 ± 3.64 15.16 ± 7.8 

PO4 6.9 ± 4.56 9.84 ± 6.63 8.51 ± 3.6 12.49 ± 7.1 
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