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Abstract 10 

This article examines the potential benefits of using Data Envelopment Analysis (DEA) for conducting 11 

energy-efficiency assessment of wastewater treatment plants (WWTPs). WWTPs are characteristically 12 

heterogeneous (in size, technology, climate, function…) which limits the correct application of DEA.  This 13 

paper proposes and describes the Robust Energy Efficiency DEA (REED) in its various stages, a systematic 14 

state-of-the-art methodology aimed at including exogenous variables in nonparametric frontier models and 15 

especially designed for WWTP operation. In particular, the methodology systematizes the modelling process 16 

by presenting an integrated framework for selecting the correct variables and appropriate models, possibly 17 

tackling the effect of exogenous factors. As a result, the application of REED improves the quality of the 18 

efficiency estimates and hence the significance of benchmarking. For the reader’s convenience, this article 19 

is presented as a step-by-step guideline to guide the user in the determination of WWTPs energy efficiency 20 

from beginning to end. The application and benefits of the developed methodology are demonstrated by a 21 

case study related to the comparison of the energy efficiency of a set of 399 WWTPs operating in different 22 

countries and under heterogeneous environmental conditions.  23 

Keywords: WWTP; Energy efficiency; Benchmarking; Two-stage DEA; Exogenous factors.  24 
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 25 

1. Introduction 26 

Growing economic, social and administration pressures for improving energy efficiency has increased the 27 

interest of wastewater agencies, utilities and operators in the application of benchmarking procedures 28 

(Longo et al., 2016), which is considered a crucial approach to reduce operational costs (Doherty et al., 29 

2017) and mitigate global warming (Wang et al., 2016). The European Union (EU) Energy Efficiency 30 

Directive (Directive 2012/27/EU) launched in 2012, outlines the actions deemed necessary to address the 31 

objective of "increasing energy efficiency in the EU". This has resulted in several measures, including the 32 

establishment of EU wide and national energy utilisation targets and the obligation to carry out energy 33 

audits periodically (Bertoldi et al., 2015). An example of such growing awareness also in the wastewater 34 

sector is ENERWATER1, a project funded under the European Commission that aims at the development of 35 

a standard methodology for evaluation and improvement of energy performance in wastewater treatment 36 

plants (WWTPs).  37 

The management tools should address the WWTP’s main goals, i.e. the compliance with the water 38 

requirements using energy, water and chemical resources in a cost-effective and sustainable way (Silva et 39 

al., 2014). This requirement is not trivial since WWTPs can perform different functions, e.g. removing 40 

chemical oxygen demand (COD), nutrients such as nitrogen (N) and/or phosphorus (P), or producing an 41 

effluent free of pathogens among others (Rodriguez-Garcia et al., 2011). Furthermore, wastewater is 42 

increasingly valued as a source of renewable resources (Fang et al., 2016), therefore a sound assessment 43 

of WWTPs performance must be capable to take into account the production of multiple outputs besides 44 

clean water (e.g. energy, fertilizers, biopolymers). In a water-resource efficiency context, Life Cycle 45 

Assessment (LCA) is highly relevant for environmental authorities, regulators, and utility managers aiming 46 

to comply with the requirement for sustainable water management (Corominas et al., 2013). However, 47 

given the centrality of the water-energy nexus, the present paper will focus on energy efficiency as one of 48 

the priority areas of European Commission, whose need for transparency will be one of the main elements 49 

addressed in the next Water Directive (European Commission, 2018). 50 

From the aforementioned discussion, it seems clear that the usual measures of energy efficiency based on 51 

relative simple performance indicators and ratios of single input and output, such as energy use per volume 52 

                                                 
1 ENERWATER - Standard method and online tool for assessing and improving the energy efficiency of wastewater 
treatment plants. More information: www.enerwater.eu. 

http://www.enerwater.eu/
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of treated wastewater, are inadequate for evaluating the energy efficiency of WWTPs. Thanks to its ability 53 

to i) handle multiple inputs and outputs, ii) identify efficient input-output relations, and iii) identify sources 54 

and quantify inefficiency in each of the compared units, Data Envelopment Analysis (DEA) represents an 55 

attractive tool for performance assessment (Cook and Seiford, 2009) and focusing on the last 10 years, the 56 

application of DEA in energy efficiency analysis has increased. It currently represents the most widely used 57 

approach in published studies on WWTPs benchmarking (Guerrini et al., 2016).  58 

The results of DEA applied to WWTPs have highlighted that exogenous factors (any factor that is not under 59 

the direct control of the management is exogenous to the WWTP system) need to be included in the analysis 60 

to obtain well-grounded comparisons of WWTPs sets (Picazo-Tadeo et al., 2009; Carvalho and Marques, 61 

2011; Guerrini et al., 2016; Fuentes et al., 2017). The reason is that without controlling for exogenous 62 

factors, the efficiency estimates generated by DEA will be potentially biased as inefficiency in DEA is 63 

assumed to be fully attributable to managerial decisions, while exogenous factors are not under control of 64 

the management. A large part of the works that introduce exogenous factors in DEA efficiency analysis 65 

focuses on two-stage approaches (Liu et al., 2016). The method proposed by Simar and Wilson (2007) is a 66 

recognized statistical model of general applicability that led to valid, accurate inference in DEA framework 67 

(Bădin et al., 2014). The basic idea is to estimate efficiency scores in the first stage considering only the 68 

space of inputs and outputs, ignoring the exogenous factors. Then in the second stage, a bootstrap-based 69 

algorithm is used to assess the impact of the exogenous factors and obtain valid and accurate inference 70 

for bias correction of the efficiency estimates. However, the complexity of the aforementioned methods 71 

and the considerable number of open choices, may lead to non-comparable results depending on the user 72 

and the rigour in the application of DEA and regression analysis, with the risk of biasing the evidences on 73 

which decisions and energy policies are made.  74 

Systematic procedures have been recognizes as the best manner to address complex procedures in several 75 

fields (Lazzaretto and Tsatsaronis, 2006; Fernández-Arévalo et al., 2014; Gurevitch et al., 2018) for their 76 

ability to be transparent, reproducible and address well-defined questions in a robust way. Therefore, the 77 

main contribution of the present paper is to bring the ideas together in the context of DEA applied to WWTPs 78 

and formulate them more clearly, to offer some clarification and direction on these matters, and to present 79 

a good case study. In order to do so, a new general methodology is introduced for carrying out energy 80 

efficiency quantification at WWTPs in a systematic and rigorous way featuring DEA, thereby increasing the 81 

quality of the efficiency estimates and hence the effectiveness of benchmarking. 82 
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 83 

2. Context and previous work 84 

DEA is a technique that essentially quantifies the efficiency of entities of interest, called decision-making 85 

units (DMUs)2 (Charnes et al., 1978), which eventually allows identifying the best performers in the use of 86 

resources, pointing out where the potential gains may be made from possible improvements in efficiency, 87 

and helping the non-performers to achieve their potential. A DEA model estimates the efficiency of a DMU 88 

relative to the other DMUs identifying a best practice frontier with a simple restriction: all DMUs lie on or 89 

below the efficiency frontier (Cooper et al., 2011). Using linear combinations of inputs and outputs, DEA 90 

determines how efficient a DMU is at producing an output and/or utilising an input, compared to similar 91 

DMUs. 92 

Efficiency for a set of DMUs can be estimated by the CCR3 DEA (Charnes et al., 1978). For p inputs, q outputs 93 

and 𝑛 DMUs, we can determine the input oriented efficiency of the data matrix of input and output vectors 94 

(𝑋, 𝑌), by solving for each observation the following constrained linear programming problem:  95 

min
𝜃,𝜆

 𝜃 

subject to   

 𝜃𝑥𝑘 ≥ 𝑋 𝜆  

 𝑌𝜆 ≥ 𝑦𝑘  

 𝜆 ≥ 0. (1) 

where the index k represents a given observation, 𝑋 is the matrix of inputs, 𝑌 is the matrix of outputs,  96 

and 𝜆 is vector of weights given to each observation. Problem (1) can be interpreted as combining plants 97 

(by weights 𝜆) to produce an output level at least equal to plant k (𝑌𝜆 ≥ 𝑦𝑘 ) and then selecting the 98 

combination with the minimum input level  (𝜃𝑥𝑘 ≥ 𝑋 𝜆 for minimum 𝜃). Solving the linear programming 99 

problem (1) 𝑘 times generates the efficiency indices 𝜃k, one for each DMU. WWTPs with efficiency scores 100 

𝜃𝑘 < 1 are inefficient, since they are capable of reducing their input(s) without affecting the amount of 101 

output(s). On the other hand, efficient WWTPs receive efficiency score 𝜃𝑘 = 1. Output oriented efficiency 102 

                                                 
2 In the field of wastewater treatment a DMU is a WWTP and its evaluation of performances is defined as the ability of 
the plant in converting at least one input (i.e. energy) to outputs (i.e. the kg of COD removed).  
3 From the initials of authors Charnes, Cooper and Rhodes. 
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can be estimated by solving a similar linear programming problem (1) with a different set of restrictions 103 

(Cooper et al., 2011).  104 

DEA, as originally proposed, is a methodology for evaluating the relative (in)efficiencies of a set of 105 

homogeneous DMUs (Charnes et al., 1978). From this assumption, we can derive the following three 106 

requirements for the correct application of DEA at WWTPs:  107 

1. The plants under consideration perform the same function(s). 108 

2. The factors (both inputs and outputs) characterizing the performance of all plants in the group are 109 

identical, except for differences in intensity or magnitude. 110 

3. All the plants perform under the same set of environmental conditions.  111 

Requirements 1 and 2 may be easily not met when comparing WWTPs since i) plants can provide the same 112 

function (e.g. removing P) using different inputs (e.g. electricity, chemicals) or ii) use the same input (e.g. 113 

electricity) to provide different services (e.g. removing COD or nutrients). Examples of such 114 

misspecifications are the inclusion of P removal rate as DEA output without including as an input the 115 

resource consumed for its removal (e.g. chemicals for P precipitation) (Dong et al., 2017) or the exclusion 116 

of the removed N when (at least part of) the plants in the analysed set carry out also N removal on top of 117 

COD removal (Guerrini et al., 2017). In such cases, unless the heterogeneity among inputs and/or outputs 118 

are properly taken into account, users are likely to have a misleading picture of the true energy efficiency 119 

of WWTPs and might make misguided decisions when investing on energy efficiency measures.  120 

The last fundamental requirement of DEA is that DMUs operate within a homogenous environment. 121 

However, this assumption seldom holds in the wastewater sector in which the efficiency is influenced by 122 

several factors beyond managerial control. The inclusion of exogenous factors when estimating WWTPs 123 

efficiency has recently been tackled (Gómez et al., 2017; Guerrini et al., 2017). Although bias-corrected 124 

efficiency estimates (i.e. obtained from the two-stage DEA) are commonly perceived to be of better quality 125 

than efficiency estimates obtained with a single-stage DEA, the inference of the impact of the exogenous 126 

factors on the efficiency measures has to be carefully conducted because otherwise the results of the 127 

analysis may not be accurate. For example, earlier studies (Gómez et al., 2017; Guerrini et al., 2017) did 128 

not consider several regression model building issues such as the minimum required sample and 129 

multicollinearity. Furthermore, effective detection of outliers is critical for achieving useful results in 130 

benchmarking exercise. While outlier detection has been carried out by Gómez et al. (2017) by identifying 131 

observations that are “too good” relative to the DEA frontier (hereinafter referred to as “frontier outliers”), 132 

when two-stage DEA is considered, outliers that represents extreme observations with respect to the 133 
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explanatory variables (i.e. exogenous factors) included in the regression model (hereinafter referred to as 134 

“regression outliers”) might also distort the second stage results and cause misleading conclusions (Johnson 135 

and McGinnis, 2008).  136 

Therefore, in light of the above considerations, a rigorous and systematic methodology for carrying out 137 

energy efficiency quantification using DEA is demanded. The Robust Energy Efficiency DEA (REED) 138 

methodology here presented overcomes these limitations by considering composite indicators to reduce 139 

heterogeneity and allowing comparability among the reference data set of WWTPs, using a systematic 140 

approach to select relevant input/output variables, and taking up a number of refined diagnostics for 141 

checking the adequacy of the second-stage regression model. Thorough examination of these properties is 142 

vital for properly capturing the effect of the exogenous factors on the WWTP efficiency as well as obtaining 143 

robust DEA efficiency scores. The usefulness of the presented REED methodology is demonstrated step-by-144 

step on a comprehensive set of 399 plants. First, the user is guided through the data collection step, 145 

including the selection of inputs/outputs and exogenous factors, outlier detection and other validity checks, 146 

etc. Then, an appropriate DEA formulation (or model) is selected, possibly tackling the effect of the 147 

exogenous factors. Finally, the model results are refined and validated.  148 

 149 

3. Robust energy efficiency DEA (REED) methodology 150 

The REED methodology is based on decomposing the process of efficiency determination in a logical 151 

sequence of interconnected tasks (Fig. 1). This strategy involves four phases defined below: i) data 152 

collection and preparation, ii) model selection, iii) efficiency estimation, and iv) model refinement and 153 

validation. Clarifying comments to each of the steps are included in the methodology description as 154 

“remarks”.  155 

 156 

INSERT FIGURE 1 ABOUT HERE 157 

 158 

3.1. Data collection and preparation 159 

3.1.1.  Data collection  160 

Data collection involves obtaining data on the operation of a set of plants (e.g. influent and effluent 161 

characteristics) and the related energy consumption. Furthermore, for WWTP analysis, other types of 162 
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variables reflecting WWTP characteristics must be included to account for known or potential influence on 163 

energy efficiency (see exogenous factors selection in section 3.3.1).  164 

 165 

3.1.2.  Inputs and outputs selection 166 

DEA searches for units that minimize inputs and/or maximizes outputs to define the efficient performance. 167 

In other words, the resources used or required are usually the inputs and the outcomes are the outputs. In 168 

a WWTP, the outcomes are the quantities of pollutants removed from the water, e.g. COD, nutrients, 169 

pathogens, etc. depending on the function of the plant, while the inputs are the resources used for their 170 

removal (e.g. electricity and chemicals).  171 

As the choice of variables is an area likely to suffer from user subjective preferences it is important to 172 

complement engineering knowledge with the use of a systematic method for selection of relevant inputs 173 

and outputs. This purpose makes the work proposed by Ruggiero (2005) to be very suitable framework for 174 

selecting DEA variables. This method is based on the fact that if a potential output (input) is omitted from 175 

the DEA model, then that output (input) will be positively correlated with the measured efficiency. This rule 176 

can be implemented using the regression model: 177 

𝐸𝐸 = 𝛼 + 𝛽2𝑦2 + 𝛽3𝑦3 + ⋯ + 𝛽𝑚𝑦𝑚 + 𝜀, (2) 

Where 𝐸𝐸 is the efficiency as given by DEA including only 𝑥 and 𝑦1, and 𝑦2 through 𝑦𝑚 are the potential 178 

outputs that could have been included in the model. Only if the parameters 𝛽𝑖  are greater than zero, 179 

statistically significant at given level of significance (i.e. 𝛼 = 0.10) and have the proper signs (i.e. negative 180 

for outputs) is 𝑦1 added to the model. The procedure is repeated, identifying one variable at a time and 181 

stops when there are no further variables with significant and properly signed coefficients. 182 

Remark 183 

For WWTPs, potential inputs commonly include electricity, energy carriers (e.g. gas, fuel) and chemicals. 184 

Potential outputs include the removal of COD, N and P (in kg removed per day), pathogens (in m3·logreduction), 185 

etc. In case of heterogeneity of input/output variables (i.e. requirements 1 and/or 2 in section 2 are not 186 

fulfilled) a composite indicator can be used in order to allow comparability. Requirement 1 can be overcome 187 

by joining the removal of COD, N and P in a single output expressed as total pollution equivalent (TPE) 188 

according to Benedetti et al. (2008).4 It is also possible to lump the different energy sources into a single 189 

input when they all refer to the same function (e.g. pollutant removal) by using the Cumulative Energy 190 

                                                 
4 A list of possible weights for the calculation of the TPE is reported in Longo et al. (2016). 
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Demand (CED) (Huijbregts et al., 2006) to obtain the equivalent of primary energy consumption of a product 191 

over its entire lifecycle, as proposed in a publicly available deliverable of H2020 ENERWATER Project 192 

(ENERWATER, 2018). Using the CED the chemicals used for P removal can be converted into primary energy 193 

in order to be directly comparable with other sources of energy, e.g. electricity. 194 

Moreover, since the paradigm of wastewater treatment is changing towards the recovery of resources in 195 

addition to the treatment of wastewater, it may be convenient to consider the production of biogas, struvite 196 

or reclaimed water as outputs. Although we have limited the application of REED to energy efficiency, such 197 

a methodology would be readily extendable to other criteria such as capital and operational costs, space 198 

and environmental impacts; most of these criteria would be identified as inputs. 199 

 200 

3.1.3. Preliminary checks 201 

Size of the data sample. Two conflicting considerations are found when trying to define the right sample 202 

size. On the one hand, there is a tendency to increase the size of the dataset given that it is more likely 203 

that a large sample will contain high performance plants that would determine the efficiency frontier. On 204 

the other hand, a large set of plants has a lower probability of homogeneity within the set, and the results 205 

may be affected by some exogenous factors that are not of interest. Besides, the size of the WWTPs sample 206 

also depends on the number of inputs and outputs previously selected. A suggested rule of thumb is that 207 

to achieve a reasonable level of discrimination the number of units needs to be at least 2 𝑝 × 𝑞 where 𝑝 × 𝑞 208 

is the product of the number of inputs and outputs (Dyson et al., 2001). In general, a higher number of 209 

observations is required for the two-stage approach (see section 3.3.1).  210 

Detection of frontier outliers. The accuracy of process data in WWTPs can be a significant barrier to 211 

benchmarking. Many data accuracy detection methods based on advanced statistical analysis can be used 212 

in the wastewater sector, such as mass balances, artificial neural network and principal component analysis 213 

(Doherty et al., 2017). However these methods are often unfeasible in WWTP benchmarking due to their 214 

high data requirements. As any deterministic frontier method, DEA is sensitive to extreme values and 215 

outliers. The super-efficiency test (Andersen and Petersen, 1993) can be used to individuate possible 216 

outcomes of recording or measurement errors, which is an approach widely used in non-parametric 217 

analysis. Based on this test if an efficient observation is an outlier that has been contaminated with noise 218 

then it is more likely to have an output (input) level much greater (lower) than other observations. Those 219 

observations with higher than a pre-selected screen super-efficiency scores should be eliminated.  220 

Remark 221 
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In rare occasions, extreme observations can also represent the best practices, making the WWTP(s) a 222 

reference for the others. Furthermore, given the presence of heterogeneity in the reference set, extremes 223 

values may be the results of the effect of some exogenous factor (i.e. plant operating in a particular 224 

favourable environment may appear much more efficient), and hence, worthy of further investigation.  225 

 226 

3.2. DEA model selection 227 

3.2.1. Model orientation 228 

As efficiency can be thought as output/input ratio, there are two ways to increase the efficiency: input 229 

minimization or output maximization (Cooper et al., 2011). The model orientation is selected according to 230 

the objective of the analysis. For instance, efficient N elimination is achieved when the lowest amount 231 

energy is used to remove a given mass of N and comply with effluent regulations. Hence, the goal is to 232 

minimise an input and DEA would be input-oriented. In contrast, maximising an output such as the 233 

production of biogas (or other resource recovery process) would lead to the output-oriented DEA.  234 

Remark 235 

Despite the advent of resource recovery facilities, WWTPs must comply with effluent requirements and 236 

therefore it is recommended to use an input-oriented DEA unless the goal of the assessment is exclusively 237 

focused on resource recovery. 238 

 239 

3.2.2. Return to scale 240 

The return to scale (RTS) concept (Banker et al., 2011) refers to the rate by which output changes if all 241 

inputs are changed by the same factor. If input and output increase proportionally by factor 𝛼 and 𝛽 (i.e. 242 

𝐼2 = 𝛼 𝐼1 and 𝑂2 = 𝛽 𝑂1), constant returns to scale (CRS) applies if 𝛽 = 𝛼, increasing returns to scale (IRS) if 243 

𝛽 > 𝛼, and decreasing returns to scale (DRS) if 𝛽 < 𝛼.  244 

Remark 245 

Prior studies indicate that increasing the plant size positively affects efficiency (Longo et al., 2016) and 246 

therefore IRS is the recommended alternative for wastewater applications featuring the use of single-stage 247 

DEA. In the case of two-stage analysis, CRS DEA may be applied and the scale (in)efficiency may be taken 248 

into account in the second-stage regression by including a proxy of the size (e.g. flowrate, person 249 

equivalent) as exogenous factor.  250 

 251 

3.3. Efficiency estimation 252 
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If requirement 3 is not fulfilled, i.e. some exogenous factor may affect the efficiency estimation, WWTPs 253 

comparison can be done using the two-stage DEA, as described below. The problem that arise here in that 254 

the possible effect of the exogenous factors is not know a priori, hence unless the user considers that the 255 

set of plants is homogenous, it is suggested to apply the two-stage approach in the first instance and to 256 

test for the presence of heterogeneity depending on the significance of the coefficients of the second-stage 257 

regression. If the coefficients are not significant one may deduce that the homogeneity requirement is 258 

respected, and can apply the basic DEA model (1) and obtaining the final DEA efficiency estimates.  259 

Remark 260 

Regarding requirement 3, approaches based on one-stage DEA have attempted to reduce heterogeneity 261 

by breaking the set of DMUs into multiple groups, and then doing a separate DEA analysis for each group. 262 

As an example, Lorenzo-Toja et al. (2015) divided in two blocks their set of plants depending on whether or 263 

not tertiary treatment was performed on top of conventional secondary treatment. This approach is not 264 

applicable, though, for several factors or sources of heterogeneity as it leads to a combinatory explosion of 265 

ever-smaller subsets. The greater the number of splits required, the more difficult it is to estimate 266 

meaningful efficiency as efficiency scores would be artificially inflated (Cook et al., 2013).  267 

 268 

3.3.1. Exogenous factors selection 269 

The type and the number of exogenous factors to include in the analysis depend on the characteristics of 270 

the dataset. Furthermore, depending on the objective of the analysis, the user may be interested in 271 

selecting only some exogenous factors, e.g. to assess the impact of regulatory constraints upon treatment 272 

efficiency. The user in this phase should select all the factors whose effect on energy consumption is beyond 273 

the control of the management and for this reason whose inefficiencies are impossible to eliminate. The 274 

number of factors is, however, limited in order to provide adequate statistical power to detect meaningful 275 

effect of these factors. A common rule-of-thumb suggests that 10 observations per exogenous variable is 276 

the minimum required sample size for regression model to ensure correct estimation of regression 277 

coefficients and standard errors that display minimal bias (Harell, 2001).  278 

Remark 279 

In WWTPs, exogenous factors may reflect differences in technology choice (i.e. membrane bioreactors are 280 

known to be more energy intensive in comparison with conventional activated sludge processes), regulatory 281 

constraints (i.e. areas where further treatment is necessary to comply with national and /or international 282 

directives), urban infrastructure (i.e. combined or separate sewer), climate (i.e. rain intensity and 283 
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temperature) and so on. Whether a variable is considered as exogenous is context dependent, depending 284 

on the objective of the study and the stakeholder(s) involved. For example, the WWTP size might be 285 

exogenous for a water utility running a WWTP but not for a water regulation board considering merging of 286 

small WWTPs into larger ones; effluent limits are exogenous to most stakeholders in wastewater sector but 287 

not to environmental regulatory bodies which may wonder e.g. to what extent lowering the nitrogen 288 

requirement will impact the WWTP energy consumption. REED is therefore conceived as a flexible 289 

methodology that can accommodate different user’s objectives while being robust and repeatable, provided 290 

that the goals of the REED analysis are clearly stated.  291 

 292 

3.3.2. Bias-correction of DEA efficiency estimates  293 

To evaluate the impact of exogenous variables, we propose a modification of the method reported by Simar 294 

and Wilson (2007). As efficiency is, by definition, bounded between zero and one we use the inverse of the 295 

first-stage DEA estimates of efficiency: (
1

𝜃𝑘
) = 𝛿𝑘. This variable is left-bounded to one and can be regressed 296 

using a left-truncated regression in the second stage. Overall, the two-stage DEA is done as follows: 297 

1. Compute the efficiency scores 𝜃𝑘 , 𝑘 = 1, … , 𝑛  by solving the (first-stage) DEA linear programming 298 

problem (1). 299 

2. Transform the efficiency scores according to (
1

𝜃𝑘
) = 𝛿𝑘. 300 

3. Regress 𝛿̂𝑘 with respect to the exogenous factors Z using only the subset of inefficient observations, 301 

i.e. observations with an inverse efficiency (𝛿) greater than one: 𝛿̂𝑘 = 𝑍𝑘𝛽 + 𝜀𝑘. Note that step (3) is the 302 

(second-stage) truncated regression where 𝛽  is a vector of parameters to be estimated and 𝜀 ∈303 

𝑁 (0, 𝜎𝜀
2) describes the random term. Obtain estimates of 𝛽 and 𝜎𝜀, namely 𝛽̂ and 𝜎̂𝜀. 304 

4. Loop over steps (4.1) to (4.3) 𝐿1 times (i.e. 200) to obtain a set of bootstrap estimates for 𝛿: 305 

4.1. For each WWTP 𝑘 = 1, … , 𝑛, draw 𝜀𝑘  from a normal distribution 𝑁 (0, 𝜎̂𝜀
2) with left-truncation at 306 

(1 − 𝑍𝑘𝛽̂). 307 

4.2. Compute 𝛿𝑘
∗ = 𝑍𝑘𝛽̂ + 𝜀𝑘. 308 

4.3. For input-oriented DEA, set for all WWTPs 𝑥𝑘
∗ = 𝑥𝑘

𝛿𝑘
∗

𝛿̂𝑘
, 𝑦𝑘

∗ = 𝑦𝑘 and compute 𝛿̂𝑘
∗ by solving the linear 309 

programming problem (1) replacing 𝑥𝑘 with 𝑥𝑘
∗. 310 

5. For each WWTP 𝑘 = 1, … , 𝑛, compute the bias-corrected efficiency estimator 𝛿̂̂𝑘 = 𝛿̂𝑘 − 𝑏𝑖𝑎𝑠̂𝑘 , where 311 

𝑏𝑖𝑎𝑠̂𝑘 =
1

𝐿
∑ 𝛿̂𝑙,𝑘

∗𝐿
𝑙=1 + 𝑍𝑘𝛽̂. 312 
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6. Regress 𝛿̂̂𝑘 with respect to Z to yield estimates of 𝛽̂̂ and 𝜎̂̂𝜀. 313 

7. Loop over steps (7.1) to (7.3) 𝐿2 times (i.e. 2000) to obtain a set of bootstrap estimates 𝛽̂∗ and 𝜎̂𝜀
∗: 314 

7.1. For each WWTP 𝑘 = 1, … , 𝑛 , draw 𝜀𝑘  from a normal distribution 𝑁 (0, 𝜎̂̂) with left-truncation at 315 

(1 − 𝑍𝑘 𝛽̂̂). 316 

7.2. Compute 𝛿𝑘
∗∗ = 𝑍𝑘𝛽̂̂ + 𝜀𝑘. 317 

7.3. Regress 𝛿𝑘
∗∗ with respect to Z to yield estimates of 𝛽̂̂∗ and 𝜎̂̂𝜀

∗. 318 

8. Finally, using the bootstrap values from step 7 and the estimates of 𝛽̂̂ and 𝜎̂̂𝜀  construct confidence 319 

intervals for 𝛽. 320 

 321 

3.4. Regression model refinement and validation  322 

In this section we take up a number of standard refined diagnostics for checking the adequacy of the 323 

regression model and the final validation. These include methods for identifying problem of 324 

multicollinearity, outliers and influential observations (i.e. regression outliers). 325 

 326 

3.4.1.  Regression diagnostics  327 

If the exogenous factors are correlated (i.e. multicollinearity among explanatory variable exists), the 328 

regression coefficients cannot be reliably estimated even though the model may reproduce the sampled 329 

data. Variance inflation factors (VIF) (Kutner et al., 2005) is used in this framework to detect 330 

multicollinearity. A value of VIF higher than 10 is taken as an indication that multicollinearity may be 331 

significantly influencing the regression estimates. If highly correlated exogenous factors are detected, they 332 

should be removed from the model.  333 

A second source of spurious influence on the regression coefficients is the presence of outlying or extreme 334 

observations. When the two-stage DEA is used, outliers that represent particularly bad performance as well 335 

as bad monitoring/reporting in the explanatory variables (exogenous factors) may distort the second stage 336 

results (Johnson and McGinnis, 2008). As a consequence it is recommended that also in the second-stage 337 

(regression) analysis outlier detection to be carried out. The studentized residual, DFFITS, and Hat Matrix 338 

are three widely used methods to assess the robustness of the fit (Kutner et al., 2005).   339 

Remark 340 

In case of multicollinearity, a regression coefficient does not reflect any inherent effect of a particular 341 

variable but only a marginal or partial effect. For instance, correlating overall energy consumption w.r.t. 342 
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both WWTP size and flowrate as exogenous factors may result in finding that only size is relevant while 343 

flowrate appears as non-significant. As both are highly correlated, the effect of the flowrate is “shadowed” 344 

by the WWTP size. 345 

Regarding regression outliers, if it is obvious that the outlier is due to incorrectly entered or measured data 346 

it should be dropped from the dataset. Otherwise, it remains ultimately to the user’s judgement to decide 347 

whether an observation should be taken out of a data set. Removing outliers may provide more 348 

representative regression coefficients but it can dramatically narrow down the range of validity of the 349 

analysis and eliminate the actual best practices.   350 

 351 

3.4.2.  Model validation 352 

The final step of the analysis consists in the model validation, also called sanity test/check, which refers to 353 

the evaluation of the reasonableness of the regression coefficients, the plausibility of the regression 354 

function, and the ability to generalize inferences drawn from the regression analysis. In this phase the 355 

model needs to be checked in detail for the effect from exogenous factors, what its direction might be, and 356 

only finally, what the magnitude of the effect might be. When possible, theory or previous empirical results 357 

may be useful in determining whether the selected model is reasonable.  358 

 359 

4. Application of REED methodology for WWTPs energy performance 360 

assessment 361 

The usefulness of the REED methodology (Fig. 1) presented in section 3 is demonstrated step-by-step by 362 

the estimation of energy efficiency of a set of WWTPs so as to i) estimate the effect of the exogenous factors 363 

on WWTP energy efficiency, ii) evaluate the energy efficiency loss or gain caused by the exogenous factors, 364 

and iii) rank a set of WWTPs according to their energy efficiency. 365 

 366 

4.1. Data collection and preparation 367 

4.1.1. Data collection 368 

Data collection was carried out in the context of the H2020 ENERWATER coordination and support action, 369 

to provide an energy database for benchmarking energy efficiency (ENERWATER, 2015). The dataset used 370 

in this study was gathered i) by web-search engines; ii) by collecting energy data from regional water 371 
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agencies (in particular from Germany, Spain and Switzerland); by private communications. Those WWTPs 372 

with insufficient information were omitted from the analysis, so the final dataset consisted of 399 WWTPs 373 

receiving municipal wastewater. Descriptive statistics for all variables used in the analysis are given in 374 

Table 1. Both the database and the computer code used in this case study are available upon request from 375 

the authors.  376 

 377 

INSERT TABLE 1 ABOUT HERE 378 

 379 

Energy consumption was gathered together with data related to the operation, namely: population 380 

equivalent (PE) load basis, both the designed value and the actually served value; average flow rate; 381 

influent and effluent wastewater characteristics, e.g. COD, total N and P. 382 

Moreover, since energy consumption depends heavily on the technology (Krampe, 2013), WWTPs were 383 

classified according and the type of secondary treatment. The sample ranges from a few dozen PE to more 384 

than 500000 PE, and cover a wide range of technologies, e.g. biological nutrient removal (BNR), oxidation 385 

ditch (OD), membrane biological reactor (MBR), trickling filter (TF), mixed tricking filter and activated sludge 386 

processes (TFAS) and medium/high loading rate activated sludge (MHLOAD). Furthermore plants were 387 

classified based on the presence or absence of tertiary treatment (i.e. whether the plant carried out final 388 

filtration or ultraviolet disinfection). This sample covers most common layouts (up to 80%) of WWTPs in 389 

Europe in terms of treatment intensity, i.e. WWTPs including secondary or both secondary and tertiary 390 

treatment (EEA, 2013).   391 

From the analysis of the collected data, two WWTP operational indices, dilution factor (DF) and load factor 392 

(LF), were defined based on Longo et al. (2016). DF is mainly function of the sewer network design, age and 393 

materials, while LF represents the capacity utilization of the plant compared to the design capacity, showing 394 

then if a plant is under- or over-loaded. In addition, the annual average outdoor temperature (TEMP) was 395 

included as a proxy of the WWTP climate.  396 

 397 

4.1.2. Input and output selection 398 

The efficiency of the WWTPs was analysed for the following functions: removal of COD and nutrients, e.g. 399 

N and P. The candidates to output variables were the average mass of pollutants (in kg) removed per day, 400 

which were estimated as the product of the average flowrate (in m3/day) times the effluent/influent 401 
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difference in pollutant concentration (in kg pollutant/m3). The input variable was the overall electricity 402 

consumption (expressed as kWh/day).  403 

The result of the regression-based test described in section 3.1.2 confirms that the inclusion of the COD 404 

and N in the output set is correlated with inefficiency differences among the WWTPs sample. In contrast, P 405 

was identified as not relevant and as consequence omitted, as none of the treatment technologies in our 406 

dataset is intended to carry out biological P removal. An assessment of energy efficiency including P 407 

removal would require estimating the embedded energy of chemicals for P removal (i.e. using the CED 408 

method); however, as data on the consumption of chemicals were not available, it was decided to limit the 409 

scope of the analysis to the assessment of the energy efficiency for the removal of COD and N, hence 410 

excluding P.  411 

 412 

4.1.3. Preliminary checks 413 

Size of the data sample. In our empirical example with one input and two outputs the minimum number 414 

of WWTPs in the dataset is 4 (i.e. 2(1 × 2)), which is largely exceeded.  415 

Detection of outliers in frontier estimation. The test of super-efficiency was applied to individuate 416 

possible outcomes of recording/measurement errors using a pre-selected screen super-efficiency scores 417 

equal to 2.5. None of the WWTPs falls into this category. Therefore, all plants initially included in the dataset 418 

were considered for the analysis in this phase. 419 

 420 

4.2. DEA model selection 421 

4.2.1. Model orientation 422 

The input oriented model was selected since all the outputs are bounded by the effluent regulation. As a 423 

consequence, the goal of the efficiency estimation is to identify plants that are over-utilizing resources to 424 

remove COD and N. 425 

 426 

4.2.2. Return to scale 427 

The CRS DEA model is selected and the difference in scale was accounted for at the second-stage 428 

(regression) analysis by including a proxy of scale (SIZE). 429 

 430 

4.3. Efficiency estimation  431 
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WWTPs in the comparison set use different technologies as secondary and/or tertiary treatment (i.e. a 432 

different function that requires extra energy supply). Moreover, the WWTPs are operated under very 433 

different process conditions (e.g. large range of influent dilution and load factor), located in different 434 

countries with different climates, thus, the two-stage approach is selected to determine and correct the 435 

efficiency estimates based on a set of exogenous factors.  436 

 437 

4.3.1. Exogenous factors selection 438 

Four factors that may influence the energy consumption at WWTPs were selected: secondary treatment 439 

technology, plant size, influent dilution and load factor. Furthermore, the outdoor temperature was included 440 

as an additional exogenous factor. In this phase, variables that are proxies of the same factors were 441 

excluded (i.e. volume of treated wastewater, in order to avoid multicollinearity with PE). Then, since some 442 

of the WWTPs carry out also tertiary beside secondary treatment, the dummy variable TERTIARY was 443 

included to control for plants that have additional tertiary beside secondary treatment. Finally, we included 444 

a dummy variable to represent the geographical location of each plant as differences may be expected due 445 

the environmental regulations and technical progress. The resulting DEA model of WWTP energy 446 

performance has one input (E), two outputs (COD, N) and seven possible exogenous factors (COUNTRY, 447 

SECONDARY, TERTIARY, SIZE, LF, DF, TEMP). Considering our dataset composed by 399 observations, the 448 

rule-of-thumb of 10 observations for each exogenous variable is largely satisfied. 449 

 450 

4.3.2. Bias-correction of DEA efficiency estimates 451 

A modification of the Algorithm II of Simar and Wilson (2007) is applied to estimate bias-corrected efficiency 452 

estimates following the procedure in section 3.3.2. Two freely available toolboxes were used: the linear 453 

programming problem was solved using the Data Envelopment Analysis Toolbox for MATLAB (Álvarez et al., 454 

2016), while for the truncated regression was employed the James Lesage Econometrics Toolbox (LeSage, 455 

1999). The procedure to obtain the bias-corrected DEA efficiency scores was implemented in MATLAB. 456 

 457 

4.4. Regression model refinement and validation 458 

4.4.1. Regression diagnostics 459 

Multicollinearity was studied by calculating the VIF. The VIF values of COUNTRY and TEMP greatly exceeded 460 

10, which indicate that country and temperature are correlated variables. However, for their relevance 461 

these two variables are interesting to study, therefore we decided to develop two different models, one 462 
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using the categorical variable COUNTRY and another using TEMP as continuous variable (Model 1 and 2, 463 

respectively in Table 2). 464 

Outlier diagnostic methods suggested possible evidence of regression outliers at observations 167 and 204, 465 

which may affect the regressions residuals as well as the fit. To decide whether they should be removed, 466 

we proceeded by removing them from the sample and repeating the estimation procedure. Their omission 467 

was not found to have a large effect on the statistical interference. Moreover, no indication of incorrectly 468 

entered or measured data was encountered. Thus, we proceeded to maintain all the observations in the 469 

dataset.  470 

 471 

4.4.2. Model validation 472 

The final step of the analysis consisted in the model validation, i.e. evaluation of the reasonableness of the 473 

regression coefficients, the plausibility of the regression function, and the ability to generalize inferences 474 

drawn from the regression analysis. This step is discussed in next section 5.1 together with the presentation 475 

of the estimated energy efficiency estimation results by comparing when possible our results with the 476 

theory, previous empirical results and engineering considerations. 477 

 478 

5. Discussion 479 

5.1. Empirical findings 480 

The results of the two-stage DEA are given in Table 2. Preliminary data analysis showed that energy 481 

consumption at WWTPs has a nonlinear dependency with respect to the operational variables (Longo et al., 482 

2017). Therefore, all the continuous variables are log-transformed. Moreover, since we used the reciprocals 483 

of the efficiency scores as dependent variable in the second-stage regression a negative sign means 484 

efficiency enhancing and vice versa. The results prove that it is important to account for the characteristics 485 

and the heterogeneity of WWTPs.  486 

 487 

INSERT TABLE 2 ABOUT HERE 488 

 489 

Size. We first observe the expected positive relationship between the plant size and energy efficiency in 490 

the two specifications. This is consistent with previous studies (Longo et al., 2016).  491 
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Load factor. LF also shows a positive and highly significant relationship, however the available literature 492 

is quite conflicting on this factor. Using also a two-stage DEA approach, Gómez et al. (2017) found that the 493 

over- or under-loaded conditions does not significantly affect the WWTP efficiency, while Guerrini et al. 494 

(2017) reported increasing efficiency while increasing the ratio of used capacity (LF in this study). Our 495 

results confirm that plants receiving lower loads than design value present a significantly worse energy 496 

performance, and energy efficiency increases when approaching values of LF to 100% or higher. 497 

Interestingly, energy efficiency keeps increasing for over-loaded plants (in the range under assessment). 498 

Note, however, that malfunctions are likely to occur in severely over-loaded plants, leading to effluent 499 

quality deterioration and non-compliance with effluent requirements. A possible explanation is that in, 500 

general, design guidelines propose over-dimensioned WWTP designs. For example, Corominas et al. (2010) 501 

calculated that the aerobic volume could be reduced by 35% compared to the design of Metcalf and Eddy 502 

(2003) without affecting the design effluent requirements, and in Benedetti et al. (2010) the volumes 503 

obtained with the German Standard ATV design guidelines were reduced up to 60% of its original volume. 504 

Dilution. A factor that negatively affects energy efficiency is the influent dilution (DF) for example deriving 505 

from rainwaters and/or infiltrations; this effect is highly statistically significant in the two models. It strongly 506 

supports the hypothesis that plants receiving more diluted wastewater require more energy per mass of 507 

pollutant removed, even at equal pollutant loadings, caused by, e.g. pumping greater volumes of 508 

wastewater.  509 

Technology. The type of secondary treatment can impact on the energy efficiency (Fig. 2).  510 

 511 

INSERT FIGURE 2 ABOUT HERE 512 

 513 

TF is the less energy intensive technology in comparison with BNR. Tricking filter’s low energy consumption 514 

is the result of a simpler operation not requiring mixed liquor inventory control and sludge wasting. As a 515 

drawback, the produced effluent has higher turbidity than activated-sludge treatment (Metcalf and Eddy, 516 

2003). For that reason, TF are also used in combined processes with activated sludge to exploit the benefits 517 

of both processes. However, based on our results this configuration (TFAS) in not significantly different from 518 

BNR in terms of efficiency. It is interesting to note that BNR systems show extremely various results, 519 

including some very efficient WWTPs (red crosses in Fig. 2). This could be due to the fact that BNR category 520 

includes different configurations such as plug flow, step feed, LE, MLE, etc. Among all the technologies, 521 

MBR has the lowest energy efficiency due to intensive membrane aeration rates required to manage the 522 
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fouling and clogging (Verrecht et al., 2008). Finally, a statistically significant and positive coefficient (i.e. 523 

negative effect on energy efficiency) was found for those plants that besides secondary carry out also 524 

tertiary treatment (an additional function) due to the additional energy consumption due to filtration or UV 525 

disinfection. 526 

Geographical location. After controlling for the plant-specific heterogeneity (e.g. size, influent dilution 527 

and load factor, as well as the technology), it results interesting to investigate whether additional 528 

differences exist among countries. Our results suggest that these differences are present and are highly 529 

statistically significant. A plant located in Spain or Italy is on average less efficient than a plant located in 530 

Switzerland, which resulted as the most efficient country in our sample. This result is in accordance with 531 

the findings of Wett et al. (2007) who reported a 38% energy consumption reduction as a result of the effort 532 

carried out in Switzerland for the development of detailed energy management manuals. Additionally, it 533 

supports the hypothesis that policies for energy efficiency and benchmark initiatives are excellent measures 534 

to improve energy performance of WWTPs. However, testing adequately this hypothesis would require a 535 

representative and randomly selected subset of the WWTPs’ population in the different countries.  536 

It is worth nothing that Switzerland is the only country where all the trickling filter plants are located. As a 537 

result, in M1 the variable COUNTRY partially captured the effect of TF. TF in M1 has the correct sign 538 

(negative as in M2) but is not significant because its positive effect (e.g. lower energy use) is already 539 

controlled by COUNTRY. 540 

Temperature. We finally found a negative and highly significant relationship of TEMP with the energy 541 

efficiency (Model 2). On the one hand increasing the temperature increases the biological activity, both the 542 

substrate uptake rate as the endogenous respiration. On the other hand, oxygen solubility decreases 543 

sharply when increasing temperature, leading to a higher energy demand for aeration. It is difficult to 544 

conclude which of these effects prevail. The results suggest that, in the analysed range, the higher aeration 545 

energy demand may be more significant. Although the decreasing efficiency with temperature would 546 

partially explain the lowest energy efficiency of Spanish or Italian WWTPs, since this correlation does not 547 

imply causation future studies are needed to investigate these differences among countries. 548 

 549 

5.2. Impact of exogenous factors on estimated energy efficiency level 550 

Fig. 3 represents the energy efficiency estimates for the WWTPs under analysis resulting from the bias-551 

correction procedure.  552 

  553 
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INSERT FIGURE 3 ABOUT HERE 554 

 555 

Keeping the notation used previously let 𝑍 be the vector of exogenous factors that impact the WWTP energy 556 

efficiency. In an input oriented framework (like in this study), a favourable 𝑍 means that the exogenous 557 

variable operates as a sort of an ‘extra’ output freely available. For this reason the exogenous factors may 558 

be considered as ‘favourable’ to the WWTP. Controlling for the exogenous factors will decrease the 559 

efficiency of plants operating under favourable conditions (e.g. bigger plants, operating under high values 560 

of LF, and low values of DIL) such as WWTP 180 or 387 (Fig. 3). On the contrary, an unfavourable 𝑍 means 561 

that the exogenous variable acts as a ‘compulsory’ or unavoidable output to be produced as a result of the 562 

‘negative’ environmental condition. In other words, 𝑍 penalizes the removal of pollutants during wastewater 563 

process by increasing the amount of energy needed. In this situation, controlling for the exogenous factors 564 

will increase the efficiency of plants operating under unfavourable conditions, such as the WWTP 17 or 21 565 

(Fig. 3). Finally, the exogenous factors can have no impact on the efficiency or favourable and unfavourable 566 

conditions can exist at the same time, cancelling out positive and negative impacts. In this case the 567 

efficiency will not change after controlling for the exogenous factors. This is the case for example of WWTP 568 

5 or 113.  569 

It is clear from the results of this study that estimates of efficiency are conditional on the given exogenous 570 

factors and the technology used. A WWTP may appear inefficient for one technology, but it could be efficient 571 

with respect to a different technology. The implication for empirical analysis is that, when estimating the 572 

technical/operational inefficiencies of plants operated under different treatment technologies, it should be 573 

done with respect to the appropriate technology. For example, if we compare MBRs and BNRs together 574 

there might be unobserved or unknown differences in technology. In such circumstances, the differences 575 

in technology might be inappropriately labelled as inefficiency if such variations in technology are not taken 576 

into account, as done using the two-stage approach.   577 

 578 

6. Conclusions 579 

The growing number of applications of DEA in wastewater treatment must be accompanied by a rigorous 580 

approach in the selection of inputs and outputs according to the benchmarking objective and a sound 581 

treatment of the exogenous factors. The REED methodology described in this manuscript is meant to guide 582 
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operators, plant managers, and engineers through all the steps required to correctly use DEA for 583 

comparison of energy efficiency of WWTPs.  584 

The use of two-stage DEA to tackle the impact of the different characteristics and environmental conditions 585 

of WWTPs leads to a larger pool of open choices for the user, potentially leading to non-comparable results. 586 

By systematizing the selection criteria and offering guidance to the reader through the different choices, 587 

REED leads to robust energy efficiency quantification at WWTPs, thereby increasing the quality of the 588 

efficiency estimates and hence the effectiveness of benchmarking. Providing explicit details about the 589 

correct application of DEA for energy efficiency quantification in the REED methodology is therefore 590 

essential for clarity, transparency, and future reproducibility.  591 

The case study demonstrates that adjusting for the effect of exogenous factors can lead to substantial 592 

changes in efficiency estimates since they can be altered up to ± 50% compared to a single-stage DEA 593 

depending on the adverse or favourable environmental conditions a WWTP is operating, hence suggesting 594 

that given the characteristics of wastewater treatment sector the inclusion of exogenous factors in the 595 

benchmarking process by the two-stage approach is required to obtain meaningful results.  596 
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 717 

 718 

Table 1. Descriptive statistics for the dataset used. Notes: Variables are estimated on the daily basis. The 719 

reference for categorical variables is the most common value (mode). 720 

Variable Definition Obs. Mean  SD Min Max 

Input 
      

E Electricity consumption (kWh) 399 2271 4628 18.58 36653 

Outputs 
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COD COD removed (kg) 399 2414 5659 2.694 58318 

N N removed (kg) 399 145.9 365.9 0.089 4098 

P P removed (kg) 399 27.17 65.18 0.003 704.5 

Exogenous categorical variables 

COUNTRY (Ref = Switzerland) 
      

FRA France 19 / / / / 

DEU Germany 79 / / / / 

ITA Italy 15 / / / / 

ESP Spain 111 / / / / 

SECONDARY (Ref = Conventional activated sludge) 
     

EA Extended aeration 150 / / / / 

MHLOAD Medium/high rate activated sludge 25 / / / / 

MBR Membrane bioreactor 9 / / / / 

OD Oxidation ditch 18 / / / / 

TF Tricking filter 20 / / / / 

TFAS Tricking filter-activated sludge 5 / / / / 

TERTIARY (Ref = No tertiary treatment) 
     

YES Filtration or UV disinfection 41 
    

Exogenous continuous variables       

SIZE Actual plant size (PE) 399 21381 50164 23.91 507511 

LF Load factor (%) 399 71.80 59.26 4.192 782.5 

DF Dilution factor (L/PE·d) 399 380.0 380.4 61.70 3060 

TEMP Temperature (°C) 399 12.06 3.229 9.500 18.10 

 721 

 722 

 723 

 724 

Table 2. Estimated WWTP energy efficiency function.  725 

Variable Model 1 Model 2 

 Coefficient t-statistic Coefficient t-statistic 

Constant 4.0826*** 10.2811 5.0668*** 21.2251 

COUNTRY    

FRA 0.3287 0.5173 / 

DEU 0.6811 1.4258 / 

ITA 2.4044*** 3.1881 / 

ESP 1.7731*** 3.7307 / 

SECONDARY     

EA 0.6438 1.3879 0.1254 0.3146 

MHLOAD 0.8645 1.3977 0.2626 0.4828 
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MBR 2.7999*** 3.1453 2.5417*** 2.8789 

OD -0.0288 -0.0404 0.3605 0.5395 

TF -0.8467 -1.2100 -1.4523** -2.2565 

TFAS -0.9157 -0.7746 -1.5247 -1.3265 

TERTIARY     

YES 1.3685*** 2.7623 1.4736*** 3.0299 

SIZE -1.8492*** -10.3355 -1.8376*** -10.3004 

LF -0.8301*** -5.1393 -0.7799*** -4.7580 

DL 0.4077** 2.0584 0.4085** 2.0413 

TEMP / 0.6835** 3.6467 

𝜎2 6.2159 6.3093 

Log-Likelihood -921.4066 -924.3264 

Note: FRA = France; DEU = Germany; ITA = Italy; ESP = Spain. MBR = membrane bio-reactors; EA = extended aeration; TFAS = 726 

tricking filter-activated sludge; MHLOAD = medium/high loading rate activated sludge; OD = oxidation ditch; TF = tricking filter. 727 

*** Significant at 1% level. 

** Significant at 5% level. 

* Significant at 10% level. 

 728 

 729 

 730 

 731 
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 732 
Fig. 1. REED methodology decision guidance flowchart for WWTP energy efficiency determination using 733 

DEA.   734 

Work-flow REED methodology
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 735 

 736 

Figure 2. Energy efficiency for different treatment technologies. Note: MBR = membrane bio-reactors; EA 737 

= extended aeration; TFAS = tricking filter-activated sludge; MHLOAD = medium/high loading rate 738 

activated sludge; BNR = biological nutrient removal; OD = oxidation ditch; TF = tricking filter. 739 

 740 

 741 

 742 

 743 

 744 

 745 

 746 
 747 
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 748 

Figure 3. Bias-corrected efficiency estimates. Note: grey bars indicate original single-stage DEA scores; 749 

orange bars indicate positive bias (increase of the efficiency) and grey empty bars indicate negative bias 750 

(reduction of the efficiency). Full bars, independently of the colour, represent the bias-corrected final DEA 751 

efficiency.  752 
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