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ABSTRACT: In this paper, an optimization procedure is described to align electromagnetic 

(EM) three-dimensional (3D) models with two-dimensional (2D) models for the design of 

RF/microwave circuits. The optimization procedure is realized from a modified standard 

space mapping (SM) approach. The mapping function between the 2D and 3D parameter 

spaces is directly obtained from a linear iterated prediction method, which reduces the 

computational cost and also avoids inverse transformations. The linear iterated prediction 2D 

to 3D SM optimization of evanescent rectangular waveguide bandpass filters with inductive 

posts for the 2D models and non-inductive posts for the 3D models illustrate the advantages 

and the challenges of this approach. The proposed method is simple to be implemented, it 

requires a reduced computational cost and it can be useful for CAD environment with 2D and 

3D circuit structure electromagnetic (EM) analysis.  
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1. INTRODUCTION 

Nowadays, the exploitation of electromagnetic (EM) simulators is one of the basic 

prerequisites for a successful activity in the development of accurate designs of microwave 

circuits. Moreover, innovative designs may be achieved using three-dimensional (3D) full-

wave EM simulators. However, 3D EM simulators will not realize their full potential to the 

designer unless they are combined with optimization algorithms to automatically adjust 

designable parameters [1]. In a panel discussion on the state of microwave computer-aided 

design (CAD) in the year 2010, M. Mongiardo predicted much of the emphasis will shift to an 

optimization and design environment that allows integrated design [2]. In this sense, we want 

to focus this work in a particular case of design process, which is shown in the flowchart of 

Figure 1. The objective is to align the results of 2D and 3D EM simulators by means of an 

optimization procedure in order to avoid direct optimization of computationally intensive 3D 

models. In this way, the efficiency can be increased by employing a computationally efficient 

2D EM simulator, together with a fast and reliable 2D to 3D iterative mapping technique. 

The interest in interfacing various rigorous EM simulators into CAD frameworks, 

including the use of mapping between design spaces of different dimensionality, has been the 

purpose of numerous works [2-7]. To successfully interface EM simulators we need a 

powerful computational optimization tool to adjust designable parameters in order to meet 

design specifications. The two main classes are optimization techniques that require an initial 

solution such as a gradient-type approach [8], and techniques that do not require an initial 

solution such as genetic algorithm [9]. The use of these optimization techniques with rigorous 

EM simulators provides accurate designs. However, these approaches are very 

computationally intensive [10]. These last years, space mapping (SM) has been widely used 

in the optimization of microwave circuits integrating EM simulations with the purpose of 

reducing the computation time of the EM-based design process [7]. The SM approach 
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establishes a mathematical link (mapping) between the spaces of the design parameters of two 

models: fine model (FM) and coarse model (CM). The FM is accurate and slow in 

computation time, whereas the CM is fast but less accurate. The use of the SM technique in 

an optimization tool consists in directing the bulk of CPU intensive evaluations to the CM, the 

FM being used only a few times during the design process. 

In this paper, we propose a 2D to 3D SM approach combined with a linear iterated 

prediction procedure [11] in order to reduce the CPU time of the design process (Figure 1). 

This approach predicts the next 3D simulation tool design parameter space from the faster 2D 

simulation tool, until the required convergence between the 2D and 3D simulator responses is 

obtained. This linear iterated prediction 2D to 3D SM optimization procedure is a modified 

standard SM optimization approach [12]. The standard SM approach produces a mapping 

function P from 3D design parameter space of the FM to 2D design parameter space of the 

CM for fixed continuous design specifications, of which the values are known at all frequency 

points. The application of the standard SM approach requires m initial base points and, 

therefore, m evaluations of computationally intensive 3D simulators. Moreover, it needs an 

inverse transformation of the mapping function P generated between the 2D and 3D 

parameter spaces to obtain corresponding 3D model design, which makes difficult the 

optimization procedure when P is not invertible. Our proposed technique is simpler and 

reduces the computational cost. It realizes the inverse mapping function P from a linear 

iterated prediction 2D to 3D SM optimization procedure for fixed discrete design 

specifications. In this way, no generation of m base points around continuous target response 

at the initial mapping and no inverse transformation of the mapping function are necessary. 

This paper is organized as follows. Section 2 presents the 2D to 3D SM concept, the 

formulation of the linear iterated prediction 2D to 3D SM optimization procedure, and the 

algorithm interfacing two EM simulators (2D and 3D) with the linear iterated prediction SM 
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optimization for 2D to 3D microwave circuit designs. The resulting CAD framework is used 

in Section 3 to design C-band evanescent rectangular waveguide bandpass filters with non-

inductive dielectric posts, which present a great interest in satellite applications. The relevant 

information for the design of filters containing non-inductive dielectric posts is taken from the 

design of simpler filters based on inductive dielectric posts, together with the mapping 

technique developed in this paper. Finally, conclusions are presented in Section 4. 

 

2. 2D TO 3D SPACE MAPPING OPTIMIZATION 

This Section describes the 2D to 3D SM concept [7], the formulation of the 2D to 3D SM 

optimization procedure based on a linear iterated prediction method [12], and the algorithm 

interfacing two EM simulators (2D and 3D) with this optimization approach for 2D to 3D 

microwave circuit designs. 

 

2.1. 2D to 3D Space Mapping Concept. As in other SM-based optimization [7], two 

models are available for the device to be designed: a fine model (FM) and a coarse model 

(CM). Both CM and FM provide accurate EM analysis. The FM is very accurate to analyze 

arbitrary 3D geometries but computationally expensive. The CM is computationally efficient 

in its treatment of a variety of 2D geometries. In this way, the CM can be intensively 

evaluated without significant computational cost. The key idea is to extract the response of 

the real 3D structure, from a number of responses of a related 2D structure, which are faster to 

obtain. 

The 2D to 3D SM approach (Figure 2) consists in finding an appropriate linear 

mapping P from the design parameter space of a computationally efficient 2D EM simulator 

(CM) to the design parameter space of a computationally intensive 3D EM simulator (FM) for 

fixed discrete design specifications: 
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are, respectively, optimal 2D and 3D design parameter spaces for a predefined value over the 

error criterion (2) and fixed design specifications.  and  are the corresponding 2D 

and 3D simulator responses and f the frequency.  and the variables  of an 

additional third dimension are known or fixed by the constraints, like for example the cut-off 

frequency band for the rectangular waveguides, the thickness of the substrate (planar 

technology), the height of dielectric posts, or by the designer. 

D2R D3R

pnP +ℜ∈ kz

 Contrary to the standard SM concept [11], our approach (Figure 3) uses the design 

parameter space of the CM to produce a mapping function P on the design parameter space of 

the FM in order that the response of the FM is in good agreement with the fixed discrete 

design specifications. Applied to the 2D to 3D SM approach, the mapping function P is found 

by means of a design process that reveals the 3D design parameter space of the 3D simulator, 
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, in such a way that the 3D simulator response (FM), , is 

close enough to the target response, which is given by the optimal 2D simulator response 

(CM), , for the fixed discrete design specifications. The discrete design 

specifications are referred to those values defined between a frequency range and/or a 

frequency point. On the other hand, we define for continuous design specifications to those 

values known at all frequency points. In most practical cases of 3D structure design, it is 

difficult that the optimized responses of different dimensionality simulators coincide at all 

frequency points. They only agree in determined discrete design specifications, and therefore, 

the mapping function must be produced for these ones. Thus, to keep a reduced amount of FM 

simulations, the generation of m base points around continuous target response at the initial 

mapping is omitted by contrast to the standard SM concept. The proposed 2D to 3D SM 

approach consists of two sub-processes: 1) find a target response 

( )( )fXPR DD  ,23

( fXR DD  ,22

( )fXR DD  ,22  according to 

the design specifications by optimizing the CM, which is the 2D simulator; 2) find P and 

 of the FM (3D simulator) by means of linear iterated prediction 2D to 3D SM 

optimization procedure, which is described in the next sub-section. 

DX3

 

2.2. Linear Iterated Prediction 2D to 3D SM Optimization Procedure. The aim of this 

approach is to generate linear prediction models of the mapping function P from 2D to 3D 

design parameter spaces by means of an iterated prediction procedure until the predicted 

values of the optimal 3D design parameters, , satisfy an error criterion (2) between the 

2D and 3D simulator responses for fixed design specifications. 

∗
D3X

The linear prediction model used in the iterated prediction method for each variable  

in the 2D design parameter space to be mapped  in the 3D design parameter space, has the 

form: 

'x

∗x
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The coefficients ( )'' 10 , xx aa  are iteratively calculated over  by using two data sets of input-

output pairs from the ith and i-1th iterations, respectively. Assume that the ith iteration has a 
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where the inputs and outputs are the data defined in (6) and (7), respectively. In the same 

manner, we define ( )( )'
1 ,D2

'
1 ,D2 , −− ii XFX  for the i-1th iteration.  and  are the 

predicted values in the 2D and 3D design parameter spaces for the ith iteration, respectively. 

'
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On the other hand, the next 3D prediction space model ( )D2XPi  for iterated 3D 

design parameter space prediction has the form: 
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where  are the linear prediction models (5) obtained from the ith and i-1th iterations for all 

the variables to be optimized.  corresponds to the optimal 2D design parameter space (3) 

and 

F

D2X

( )∗
+

∗
+

∗
+

∗
+

∗
+ = 1  ,1  ,11  ,1  1,1  D,3 ,,,,, ipiinii yyxxX KK  (the variables  are known or fixed) are 

the predicted values of the optimal 3D design parameters to be determined in the i+1th 

iteration. The iterated prediction is performed from the predicted values  to construct 

the next 2D values , which are used to predict the next 3D values  and so on 

until the error criterion (2) is satisfied for fixed design specifications, or the user-defined 

number of iterations is exceeded. 

kz

∗
+1 ,D3 iX

'
1 ,D2 +iX ∗

+2 ,D3 iX

 

2.3. Algorithm Flow. The algorithm flow can be described from the following steps (  

and  are the corresponding 2D and 3D simulator responses): 

D2R

D3R

1) Set , optimize  for fixed design specifications using SM, and extract the value 

; 

0=i D2R

D2X

2) Evaluate  with ; D3R D20 ,D3 XX =∗

3) Optimize  using SM to find previous  and extract the value ; D2R D3R '
0 ,D2X

4) Obtain the slopes of (5) from  and ; ∗
0 ,D3X '

0 ,D2X

5) Calculate  using (8) and add X% over each variable of , such that 

; 

∗
1 ,D3X ∗

1 ,D3X

%1 ,D31 ,D31 ,D3 XXXX ×+= ∗∗∗

6) Evaluate  with ; D3R ∗
1 ,D3X

7) Set , optimize  using SM to find previous  and extract the values 

; 

1+= ii D2R D3R

'
 ,D2 iX
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8) Obtain the coefficients of the linear prediction models (5) from the two last iterations; 

9) Calculate  using (8); ∗
+1 ,D3 iX

10) Evaluate  with ; D3R ∗
+1 ,D3 iX

11) Compare  of Step 1 with  of Step 10; if the error criterion (2) is not satisfied 

for fixed design specifications and if the user-defined number of iterations is not 

exceeded go to Step 7; else END. 

D2R D3R

 

 The SM used in the Steps 1, 3 and 7 may be of the same or different type. X% in the 

Step 5 allows increasing the convergence rate of this iterative optimization method. 

 

3. RESULTS 

The linear iterated prediction 2D to 3D SM optimization technique described in Section 2 was 

applied to first-order and second-order evanescent rectangular waveguide bandpass filters 

with dielectric posts. The dielectric posts in 2D are inductive, that is the height of the posts is 

the same as the internal height of the rectangular waveguide. In this case, the EM filter 

analysis can be made simpler. In 3D (Figures 4 and 5), the height of the posts is lower than 

the internal height of the rectangular waveguide and, therefore, the structure is completely 3D. 

The posts are centered in the cavity of length . Rectangular waveguide size is standard: 

WR-229 ( , mm). Other parameters are: 

cl

mm 1.58=a 05.29=b mm 1.31=c ,  

(the height of the posts in 3D as shown in Figures 4(b) and 5(b)) and 

mm 05.171 =h

4=rε  (dielectric posts). 

The 3D design parameters to be optimized are ( )1D3   , φclX =  mm and ( )cc dlX  ,  , 1D3 φ=  

mm for the first-order and second-order filters, respectively (see Figures 4 and 5). 2D and 3D 

EM simulations were provided from a surface integral equation simulator [13] and a 

commercially available finite element simulator, respectively. The simulation times were, 



 11

respectively, 3:14 minutes and 1:12 hours for the 2D and 3D simulators and for the second-

order evanescent rectangular waveguide bandpass filter (Figure 4) with 101 frequency points. 

In the case of the first-order filter, the design specifications are  (resonant 

frequency) and 3dB bandwidth of 160MHz. The design specifications for the second-order 

filter are , ripple level in the passband of  and ripple bandwidth of 80 MHz. 

The error criterion (2) is 

GHz 40 =f

GHz 40 =f dB 12

dB 1≤ε  in the 3dB bandwidth for both filters. 

 In the algorithm, the 2D optimizations (steps 1, 3 and 7) were obtained from the same 

type that the linear iterated prediction SM method. The optimal 2D design parameters (Step 1) 

verifying the above design specifications were ( ) ( )5.7 ,37 , 1D2 == φclX  mm and 

( ) ( 55 ,7.5 ,92 , , 1D2 == cc dlX )φ  mm for the first-order and second-order evanescent 

rectangular waveguide bandpass filters, respectively. They constitute the target responses for 

the linear iterated prediction 2D to 3D SM optimization procedure. The responses of the 

surface integral equation and finite element simulators at these optimal 2D design parameters 

are shown in Figures 6 and 7 for the first-order and second-order filters, respectively. As it 

can be seen, great discrepancies are evident before 2D to 3D SM optimization. 

 Applying the above algorithm flow, we have successful obtained the optimal 3D 

design parameters for both filters. The solutions of these filters were achieved with five and 

four 3D simulator evaluations (included 3D simulator evaluation at starting point Step 2) for 

X=0% and X=10%, respectively. The optimal 3D design parameters provided with the linear 

iterated prediction 2D to 3D SM optimization technique were  mm and 

 mm. Figures 8 and 9 show the 2D and 3D simulator 

( )13.29 ,98.39D3 =∗X

( 58.67 13.18, ,8.98D3 =∗X ) ijS  

responses corresponding, respectively, to the first-order and second-order evanescent 

rectangular waveguide bandpass filters with the optimal 2D and 3D design parameters. It can 

be seen the response accuracy for both filters is good according to the design specifications 
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and the error criterion. By applying the proposed technique to several second-order structures, 

the coupling coefficients of higher order filters can be efficiently obtained for the design of 

more complex microwave filter [14]. 

 

5. CONCLUSION 

A linear iterated prediction 2D to 3D SM optimization algorithm is presented. The key idea is 

to reduce the number of analysis needed with time consuming 3D electromagnetic simulators, 

by performing optimization with fast 2D simulators, and a proper mapping between the two 

spaces. The application of this technique to the optimization of 2D to 3D first-order and 

second-order evanescent rectangular waveguide bandpass filters with dielectric posts has 

needed only a few iterations until the required convergence is reached, therefore leading to a 

reduced computational cost. This procedure can compete against other “state of the art” 

optimization procedures. Moreover, it does not require complex mathematical knowledge and 

tools, and therefore, it can be easily integrated in CAD environments with 2D and 3D circuit 

structure EM analysis. Consequently, it can also be easily used by circuits and systems 

designers. 
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Figure captions: 

 

Figure 1 Flowchart of the design process 

 

Figure 2 Illustration of the 2D to 3D SM concept 

 

Figure 3 2D to 3D SM approach 

 

Figure 4 First-order evanescent rectangular waveguide bandpass filter with one post. (a) 

Top view. (b) Cross-section view 

 

Figure 5 Second-order evanescent rectangular waveguide bandpass filter with two posts. 

(a) Top view. (b) Cross-section view 

 

Figure 6 Magnitudes of  and  of the first-order evanescent rectangular 

waveguide bandpass filter (one post) before 2D to 3D SM optimization 

11S 21S

--------  2D simulator 

– – – – 3D simulator 

 

Figure 7 Magnitudes of  and  of the second-order evanescent rectangular 

waveguide bandpass filter (two posts) before 2D to 3D SM optimization 

11S 21S

--------  2D simulator 

– – – – 3D simulator 
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Figure 8 First-order evanescent rectangular waveguide bandpass filter with one post: 2D 

and 3D model responses for the optimal 2D and 3D design parameters 

--------  2D simulator 

– – – – 3D simulator 

–——  Design specifications 

 

Figure 9 Second-order evanescent rectangular waveguide bandpass filter with two posts: 

2D and 3D model responses for the optimal 2D and 3D design parameters 

--------  2D simulator 

– – – – 3D simulator 

–——  Design specifications 



 17

Figure 1 

 

 

 

 

 



 18

Figure 2 

 

 

 

 

 



 19

Figure 3 
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Figure 4 
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Figure 4 
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Figure 5 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 

 

 

 

 

 


