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Abstract. Let G be a graph and f be a continuous self–map on
G. We provide sufficient conditions based on the Lefschetz zeta
function in order that f has positive topological entropy. More-
over, for the particular graphs: p–flower graph, n-lips graph and
(p+r1L

1+ ...+rsL
s)–graph we are able to go further and state more

precise conditions for having positive topological entropy.

1. Introduction and statement of the main results

Along this work a graph G will be a compact connected space con-
taining a finite set V such that G \ V has finitely many open connected
components, each one of them homeomorphic to the interval (0, 1), called
edges of G, and the points of V are called the vertexes of G. The edges
are disjoint from the vertexes, and the vertexes are at the boundary of
the edges.

For a graph G, the degree of a vertex V is the number of edges having
V in its boundary, if an edge has both boundaries in V then we compute
this edge twice. An endpoint of a graph G is a vertex of degree one. A
branching point of a graph G is a vertex of degree at least three.

In this paper a discrete dynamical system (G, f) is formed by a con-
tinuous map f : G→ G where G is a graph.

A point x ∈ G is periodic of period k if fk(x) = x and f i(x) 6= x if
0 < i < k. If k = 1, then x is called a fixed point. Per(f) denotes the set
of periods of all the periodic points of f .

The set {x, f(x), f 2(x), . . . , fn(x), . . .}, where by fn we denote the
composition of f with itself n times, is called the orbit of the point
x ∈ G. To understand the behaviour of all different kind of orbits of f
is to study the topological dynamics of the map f .
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Roughly speaking the topological entropy h(f) of a discrete dynamical
system (G, f) is a non–negative real number (possibly infinite) which
measures how much f mixes up the phase space of G. When h(f) is
positive the dynamics of the system is said to be complicated and the
positivity of h(f) is used as a measure of the so called topological chaos.

Here we introduce the topological entropy using the definition of Bowen
[4].

Since it is possible to embedded a graph G in R3, we consider the
distance between two points of G as the distance of these two points in
R3. Now, we define the distance dn on G by

dn(x, y) = max
0≤i≤n

d(f i(x), f i(y)), ∀x, y ∈ G.

A finite set S is called (n, ε)–separated with respect to f if for different
points x, y ∈ S we have dn(x, y) > ε. We denote by Sn the maximal
cardinality of an (n, ε)–separated set. Define

h(f, ε) = lim sup
n→∞

1

n
logSn.

Then
h(f) = lim

ε→0
h(f, ε)

is the topological entropy of f .

We have chosen the definition by Bowen because, probably it is the
shorter one. The classical definition was due to Adler, Konheim and
McAndrew [1]. See for instance the book of Hasselblatt and Katok [16]
and [3] for other equivalent definitions and properties of the topological
entropy. See [1, 2, 9, 22] for more details on the topological entropy.

The homological spaces of G with coefficients in Q are denoted by
Hk(G,Q). Since G is a graph k = 0, 1. A continuous map f : G → G
induces linear maps f∗k : Hk(G,Q) → Hk(G,Q). H0(G,Q) ≈ Q and we
have that f∗0 is the identity map because G is connected. A subset of G
homeomorphic to a circle is a circuit. It is known that H1(G,Q) ≈ Qm

being m the number of the independent circuits of G in the sense of the
homology. Here f∗1 is a m×m matrix A with integer entries. For more
details on this homology see for instance [21].

Independently of the fact that to study the dynamical complexity via
the topological entropy of these kind of graph maps is relevant by itself for
understanding their dynamics, the graph maps are relevant for studying
the dynamics of some different kind of surface maps, see for instance
[15, 19].
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For a polynomial H(t) we define H∗(t) by

H(t) = (1− t)α(1 + t)βtγH∗(t),

where α, β and γ are non-negative integers such that 1 − t, 1 + t and t
do not divide H∗(t). We also define H∗∗(t) by

H(t) = (1− t)α(1 + t)βH∗∗(t),

where α and β are non-negative integers such that 1− t and 1+ t do not
divide H∗∗(t).

Inspired in the apparently relation between the topological entropy
and the periodic orbit structure and using as precedents the results of
the papers [6, 12, 18, 20] we present our main results which include
applications to some particular graphs where we are able to provide more
precise information on when they admits positive topological entropy
systems.

Our main results are the following four theorems, in them it appears
the notion of Lefschetz zeta function Zf (t) for a map f , for its definition
see subsection 2.1.

Theorem 1. Let (G, f) be a discrete dynamical system induced by a
continuous self–map f defined on a graph G, and let Zf (t) = P (t)/Q(t)
be its Lefschetz zeta function.

(a) Assume that P ∗(t) or Q∗(t) has odd degree, then the topological
entropy of f is positive.

(b) Assume that P ∗∗(t) or Q∗∗(t) has odd degree, G is either R or S1

and f is a C1 map, then f has infinitely many periodic points.

Statement (a) of Theorem 1 was proved by continuous self–maps on
connected surfaces in [6]. Statement (b) of Theorem 1 was already known,
see statement (c) of Theorem 1 of [11].

In the next corollary, statement (b) of Theorem 1 allows to re-proved
in a different way a known result for continuous circle maps in the smooth
case with a different approach from the classical one that can be read in
[2].

Corollary 2. Let (S1, f) be a discrete dynamical system induced by a C1
map of degree d, then if d /∈ {−1, 0, 1} the map f has infinitely many
periodic points.

A p-flower graph is a graph with a unique branching point z and p > 1
edges all having a unique endpoint, the point z, equal for all of them.
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So, this graph has p independent loops, each one is called a petal. See a
5-flower graph in Figure 1.

Figure 1. A 5-flower graph.

Theorem 3 (p-flower graph). Let (G, f) be a discrete dynamical system
induced by a continuous self–map f being G a p–flower graph. Then the
following conditions hold.

(1) If p is even and the number of roots of the characteristic polyno-
mial of f∗1 equal to ±1 or 0 taking into account their multiplicities
is not even, then the topological entropy of f is positive.

(2) If p is odd and the number of roots of the characteristic polynomial
of f∗1 equal to ±1 or 0 taking into account their multiplicities is
not odd, then the topological entropy of f is positive.

A graph with only two vertices z and w and n ≥ 1 edges having every
edge the vertices z and w as endpoints is called an n-lips graph and
denoted by Ln. See a 7-lips graph L7 in Figure 2.



TOPOLOGICAL ENTROPY OF CONTINUOUS SELF–MAPS ON A GRAPH 5

Figure 2. The 7-lips graphs.

Theorem 4 (n-lips graph). Let (G, f) be a discrete dynamical system
induced by a continuous self–map f being G an n–lip graph, with n > 1.
Then the following conditions hold.

(1) If n(n−1)
2

is even and the number of roots of the characteristic
polynomial of f∗1 equal to ±1 or 0 taking into account their mul-
tiplicities is not even, then the topological entropy of f is positive.

(2) If n(n−1)
2

is odd and the number of roots of the characteristic poly-
nomial of f∗1 equal to ±1 or 0 taking into account their multiplic-
ities is not odd, then the topological entropy of f is positive.

A graph p+ r1L
1+ ...+ rsL

s is formed by p petals and r1+ ...+ rs lips
where rj lips are of type Lj for j = 1, ..., s. Note that a such graph has
p+

∑s
j=1 jrj edges and

Lp,r2,...,rs = p+ r2 + r3

(
3

2

)
+ ...+ rs

(
s

2

)

is the number of its independent circuits.

See a (4 + 3L1 + 2L2 + 1L3)–graph in Figure 3, this graph has p = 4
and six lips, three lips L1, two lips L2 and one lip L3.
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Figure 3. A (4 + 3L1 + 2L2 + 1L3)–graph.

Theorem 5 ((p + r1L
1 + ... + rsL

s)–graph). Let (G, f) be a discrete
dynamical system induced by a continuous self–map f being G a (p +
r1L

1 + ...+ rsL
s)–graph. Then the following conditions hold.

(1) If Lp,r2,...,rs is even and the number of roots of the characteristic
polynomial of f∗1 equal to ±1 or 0 taking into account their mul-
tiplicities is not even, then the topological entropy of f is positive.

(2) If Lp,r2,...,rs is odd and the number of roots of the characteristic
polynomial of f∗1 equal to ±1 or 0 taking into account their mul-
tiplicities is not odd, then the topological entropy of f is positive.

2. Preliminary results

2.1. Lefschetz zeta function. Given a discrete dynamical system (M, f)
where f is a continuous self–map defined on the compact n–dimensional
topological space M the Lefschetz number is

L(f) =
n∑
k=0

(−1)ktrace(f∗k),

where the induced homomorphism by f on the k–th rational homology
group of M is f∗k : Hk(M,Q) → Hk(M,Q). We note that Hk(M,Q) is
a finite dimensional vector space over Q, and that f∗k is a linear map
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given by a matrix with integer entries. The Lefschetz Fixed Point Theo-
rem connects the fixed point theory with the algebraic topology via the
following result.

Theorem 6. Let (M, f) be a discrete dynamical system induced by a
continuous self–map f on a compact topological space M and L(f) be its
Lefschetz number. If L(f) 6= 0 then f has a fixed point.

For a proof of Theorem 6 see for instance [5].

Part of our interest in the present work is to provide information on
the set of periodic points of f . To this objective we shall use the sequence
of the Lefschetz numbers of all iterates of f denoted by {L(fm)}∞m=0. We
remark that the Lefschetz zeta function of f

Zf (t) = exp

(
∞∑
m=1

L(fm)

m
tm

)
contains the information of all the sequence of the iterated Lefschetz
numbers. Note that the function Zf (t) can be computed also through

(1) Zf (t) =
n∏
k=0

det(Ink
− tf∗k)(−1)

k+1

,

where n = dim M, nk = dim Hk(M,Q), Ink
is the nk×nk identity matrix,

and we take det(Ink
−tf∗k) = 1 if nk = 0, for more details on the function

Zf (t) see [7].

From (1) the Lefschetz zeta function is a rational function and it con-
tains the information of the infinite sequence of the iterated Lefschetz
numbers. Note that this information is contained in two polynomials.

2.2. Cyclotomic polynomials. The n–th cyclotomic polynomial is de-
fined by

cn(t) =
∏
k

(wk − t),

being wk = e2πik/n a primitive n–th root of unity and where k runs over all
the relative primes ≤ n. See [17] for the properties of these polynomials.

For a positive integer n the Euler function is ϕ(n) = n
∏

p|n,p prime

(
1− 1

p

)
.

It is known that the degree of the polynomial cn(t) is ϕ(n). Note that
ϕ(n) is even for n > 2.

A proof of the next result can be found in [17].
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Proposition 7. Let ξ be a primitive n–th root of the unity and P (t) a
polynomial with rational coefficients. If P (ξ) = 0 then cn(t)|P (t).

Lemma 8. If a polynomial has integer coefficients, constant term 1 and
all of whose roots have modulus 1, then all of its roots are roots of unity.

For a proof of Lemma 8 see [23].

2.3. Topological entropy. As we showed in subsection 2.1, given a
discrete dynamical system (M, f) with f a continuous self–map defined
on a compact n–dimensional topological space manifold M, the map f
induces an action on the homology groups of M, which we denote f∗k :
Hk(M,Q)→ Hk(M,Q), for k ∈ {0, 1, . . . ,m}. The spectral radii of these
maps are denoted sp(f∗k), and they are equal to the largest modulus of
all the eigenvalues of the linear map f∗k. The spectral radius of f∗ is

sp(f∗) = max
k=0,...,m

sp(f∗k).

The next result is due to Guaschi and Llibre [10] and Jiang [13, 14],
for more details see Theorem 5.4.2 from [2].

Theorem 9. Let f : G→ G be a continuous map on the graph G. Then
logmax{1, sp(f∗1)} ≤ h(f).

3. Auxiliary results

We need the following results for proving our theorems. The next
result is Theorem 6 from [8].

Proposition 10. Let M be a smooth compact manifold and let (M, f)
be a discrete dynamical system induced by a C1 self–map f such that
f(M) ⊆ Int(M), and assume that f has finitely many periodic points.
Then Zf (t) has a finite factorization in terms of the form (1± tr)±1 with
r a positive integer.

Lemma 11. Let (G, f) be a discrete dynamical system induced by a con-
tinuous self–map f defined on graph G. If the topological entropy of f is
zero, then all the eigenvalues of the induced homomorphism f∗1 are zero
or root of unity.

Proof. Since the topological entropy is zero, by Theorem 9 we have
sp(f∗1) = 1. So, all the eigenvalues of f∗1 have modulus in the interval
[0, 1] and at least one of them is 1. Then the characteristic polynomial
of f∗1 is of the form tmp(t), where m is a non–negative integer, positive
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if the zero is an eigenvalue. And p(t) is a polynomial with integer coef-
ficients and whose independent term a0 is non–zero. Since the product
of all non-zeros eigenvalues of f∗1 is the integer a0 and, these eigenvalues
have modulus in (0, 1], we have that any of these eigenvalues can have
modulus smaller than one, otherwise we are in contradiction with the fact
a0 is an integer. In short, all the non–zero eigenvalues have modulus one,
and consequently a0 = 1. By Lemma 8 all the roots of the polynomial
p(t) are roots of unity finishing the proof. �

Lemma 12. Let (M, f) be a discrete dynamical system induced by a
C1 self–map f defined on a smooth compact connected n–dimensional
manifold M. Assume that f(M) ⊆ Int(M). If f has finitely many periodic
points, then all the eigenvalues of the induced homomorphisms f∗k’s are
zero or root of unity.

Proof. Since by Proposition 10 the Lefschetz zeta function (1) has a finite
factorization in terms of the form (1± tr)±1 with r a positive integer, it
follows that all the eigenvalues of f∗1’s are roots of unity. This completes
the proof. �

4. Proof of Theorem 1

Proof of Theorem 1. From the definitions of a polynomial H∗ and of the
Lefschetz zeta function we have

Zf (t) =
P (t)

Q(t)
= (1− t)a(1 + t)btc

P ∗(t)

Q∗(t)
,

where a, b and c are integers.

Assume now that the topological entropy h(f) = 0. Then by Lemma
11 all the eigenvalues of the induced homomorphisms f∗1’s are zero or
roots of unity. Therefore, by (1) all the roots of the polynomials P ∗(t)
and Q∗(t) are roots of the unity different from ±1 and zero. Hence, by
Proposition 7 the polynomials P ∗(t) and Q∗(t) are product of cyclotomic
polynomials different from c1(t) = 1− t and c2(t) = 1 + t. Consequently
P ∗(t) and Q∗(t) have even degree because all the cyclotomic polynomials
which appear in them have even degree due to the fact that the Euler
function ϕ(n) for n > 2 only takes even values. But this is a contradiction
with the assumption that P ∗(t) or Q∗(t) has odd degree. This completes
the proof of statement (a).

For proving statement (b) we shall use as key point Proposition 10
taking account that the unique graphs admitting C1 maps are the ones
which are manifolds, i.e. the real line and the circle. Note that under
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the hypothesis of statement (b) if we assume that f has finitely many
periodic points, by Lemma 12 all the eigenvalues of f∗1’s are zero or root
of unity. From the definition of the polynomial H∗∗ and of the Lefschetz
zeta function we have

Zf (t) =
P (t)

Q(t)
= (1− t)a(1 + t)b

P ∗∗(t)

Q∗∗(t)
,

where a and b are integers. By Proposition 10 all the roots of the polyno-
mials P ∗∗(t) and Q∗∗(t) are roots of unity different from ±1. Therefore,
the rest of the proof of statement (b) follows as in the last part of the
proof of statement (a). This completes the proof of the theorem. �

5. Proofs of Corollary 2 and Theorems 3, 4 and 5

Let f : G→ G be a continuous map on the graph G. The homological
spaces of G with coefficients in Q are denoted by Hk(G,Q). Since G is
a graph k = 0, 1 and f induces linear maps f∗k : Hk(G,Q)→ Hk(G,Q).
Since G is a graph, then H0(G,Q) ≈ Q and f∗0 is the identity map.
A subset of G homeomorphic to a circle is a circuit. It is known that
H1(G,Q) ≈ Qm being m the number of the independent circuits of G in
the sense of the homology. Here f∗1 is a m ×m matrix A with integer
entries. For more details on this homology see for instance [21].

If A is a m ×m matrix, then a submatrix lying in the same set of k
rows and columns is a k × k principal submatrix of A. The determinant
of a principal submatrix is a k × k principal minor. The sum of the

(
m
k

)
different k × k principal minors of A is denoted by Ek(A). Note that
Em(A) is the determinant of A and E1(A) is the trace of A. Of course
the characteristic polynomial of A is given by

(2) det(tI − A) = tm − E1(A)t
m−1 + E2(A)t

m−2 − . . .+ (−1)mEm(A).

By (1), the form of the Lefschetz zeta function is the rational function

Zf (t) =
det(I − tf∗1)
det(I − tf∗0)

=
det(I − tA)

1− t
,

where A is the integer matrix defined by f∗1, for a proof see Franks [7].

Since det(I − tA) = tm det
(
1
t
I − A

)
, from (2) we get

det(I − tA) = 1− E1(A)t+ E2(A)t
2 − . . .+ (−1)mEm(A)tm.
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Proof of Corollary 2. Since G is the circle, H1(G,Q) ≈ Q, so the Lef-
schetz zeta function is equal to

Zf (t) =
1− td
1− t

,

where d is the degree of f . Therefore the result follows directly from part
(a) of Theorem 1 when d 6= −1, 0, 1. �

Proof of Theorem 3. Since G is a p-flower, which is a graph with p inde-
pendent circuits, H1(G,Q) ≈ Qp. Thus, the Lefschetz zeta function is
equal to

Zf (t) =
det(I − tA)

1− t
,

where det(I − tA) is a polynomial of degree p with integer coefficients
and f∗1 = A is a p× p matrix with integer entries. Note that in this case
Q(t) = 1− t and Q∗(t) = 1. So, by Theorem 1 the main role will be play
by the polynomial P (t) = det(I − tA) where f∗1 = A. If p is even and
the number of roots of the characteristic polynomial of f∗1 equal to ±1
or 0 taking into account their multiplicities is not even, then P ∗(t) has
odd degree. Therefore, the result follows by the application of statement
(a) of Theorem 1.

On the other hand, if p is odd and the number of roots of the char-
acteristic polynomial of f∗1 equal to ±1 or 0 taking into account their
multiplicities is not odd then P ∗(t) has odd degree and as before the
proof of theorem follows. �

Proof of Theorem 4. The proof is the same than the proof of Theorem 3
taking account that an n–lip graph has

(
n
2

)
= n(n − 1)/2 independent

circuits and therefore f∗1 is a polynomial of degree n(n− 1)/2. �

Proof of Theorem 5. The proof follows from the arguments stated in the
proof of Theorem 3 taking account that for a (p + r1L

1 + ... + rsL
s)–

graph, Lp,r2,...,rs = p+r2+r3
(
3
2

)
+ ...+rs

(
s
2

)
is the number of independent

circuits. �

Acknowledgements

The second author is partially supported by the Ministerio de Economía,
Industria y Competitividad, Agencia Estatal de Investigación grants MTM-
2016-77278-P (FEDER) and MDM-2014-0445, the Agència de Gestió
d’Ajuts Universitaris i de Recerca grant 2017SGR1617, and the H2020
European Research Council grant MSCA-RISE-2017-777911.



12 J.L.G. GUIRAO, J. LLIBRE, W. GAO

References

[1] R.L. Adler, A.G. Konheim and M.H. McAndrew, Topological entropy,
Trans. Amer. Math. Soc. 114 (1965), 309–319.

[2] L. Alseda, J. Llibre and M. Misiurewicz, Combinatorial dynamics and en-
tropy in dimension one, Second edition, Advanced Series in Nonlinear Dynamics
Vol. 5, World Scientific Publishing Co., Inc., River Edge, NJ, 2000.

[3] F. Balibrea, On problems of Topological Dynamics in non-autonomous discrete
systems, Applied Mathematics and Nonlinear Sciences 1(2) (2016), 391–404.

[4] R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans.
Amer. Math. Soc. 153 (1971), 401–414; erratum: Trans. Amer. Math. Soc. 181
(1973), 509–510.

[5] R.F. Brown, The Lefschetz fixed point theorem, Scott, Foresman and Company,
Glenview, IL, 1971.

[6] J. Casasayas, J. Llibre and A. Nunes, Algebraic properties of the Lefschetz
zeta function, periodic points and topological entropy, Publicacions Mathemà-
tiques 36 (1992), 467–472.

[7] J. Franks, Homology and dynamical systems, CBSM Regional Conf. Ser. in
Math. 49, Amer. Math. Soc., Providence, R.I. 1982.

[8] D. Fried, Periodic points and twisted coefficients, Lecture Notes in Maths., no
1007, Springer Verlag, 1983, 175–179.

[9] G. Liao and Q. Fan, Minimal subshifts which display Schweizer-Smítal chaos
and have zero topological entropy, Science in China Series A: Mathematics 41(1)
(1998), 33–38.

[10] J. Guaschi and J. Llibre, Periodic points of C1 maps and the asymptotic
Lefschetz number, Int. J. Bifurcation and Chaos 5 (1995), 1369–1373.

[11] J.L.G. Guirao and J. Llibre, Topological entropy and peridods of self–maps
on compact manifolds, Houston J. Math. 43 (2017), 1337–1347.

[12] J.L.G. Guirao and J. Llibre, On the peridods of a continuous self–map on a
graph, to appear in Computational and Applied Mathematics.

[13] B. Jiang, Nilsen theory for periodic orbits and applications to dynamical systems,
Comtemp. Math. 152 (1993), 183–202.

[14] B. Jiang, Estimation of the number of periodic orbits, Pacific J. Math. 172
(1996), 151–185.

[15] M. Handel and W.P. Thurston, New proofs of some results of Nielsen, Adv.
in Math. 56 (1985), 173–191.

[16] B. Hasselblatt and A. Katok, Handbook of dynamical systems, Vol. 1A.
North–Holland, Amsterdam, 2002.

[17] S. Lang, Algebra, Addison–Wesley, 1971.
[18] J. Llibre and M. Misiurewicz, Horseshoes, entropy and periods for graph

maps, Topology 32 (1993), 649–664.
[19] C. Mendes de Jesus, Graphs of stable maps between closed orientable surfaces,

Comput. Appl. Math. 36 (2017), 1185–1194.
[20] M. Misiurewicz and F. Przytycki, Topological entropy and degree of smooth

mappings, Bulletin de l’Académie Polonaise des Sciences, Série des Sciences
Math., Astr. et Phys. XXV (1977), 573–574.

[21] E.H. Spanier, Algebraic Topology, Springer–Berlag, New York (1981).
[22] P. Walters, An Introduction to Ergodic Theory. Springer-Verlag, 1992.
[23] L.C. Washington, Introduction to cyclotomic fields, Springer, Berlin, 1982.



TOPOLOGICAL ENTROPY OF CONTINUOUS SELF–MAPS ON A GRAPH 13

1 Departamento de Matemática Aplicada y Estadística. Universidad
Politécnica de Cartagena, Hospital de Marina, 30203-Cartagena, Región
de Murcia, Spain–Corresponding Author–

E-mail address: juan.garcia@upct.es

2Departament de Matemàtiques. Universitat Autònoma de Barcelona,
Bellaterra, 08193-Barcelona, Catalonia, Spain

E-mail address: jllibre@mat.uab.cat

3School of Information Science and Technology, Yunnan Normal Uni-
versity, Kunming 650500, China

E-mail address: gaowei@ynnu.edu.cn


