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Abstract

In this paper, an efficient calculation of the Green’s functions inside multilayered shielded cav-
ities with right isosceles-triangular cross-section is presented. The method is entirely developed in
the spatial domain, and it is based on image theory. The idea is to use the spatial domain Green’s
functions inside a multilayered shielded square box, in order to accurately obtain the Green’s func-
tions for the right isosceles triangular cavity. Image theory is then used to enforce the boundary
conditions along the non-equal side of the triangle. It is shown that the new algorithm is very
robust, with limited computational effort. Resonance frequencies and potential patterns of a tri-
angular cavity have been calculated and compared to those obtain by other techniques, showing
very good agreement. Finally, a transversal filter inside a multilayered triangular shaped cavity is

designed, manufactured and tested using the developed technique.

1 Introduction

The analysis of shielded microwave circuits is an interesting subject that has always attracted
attention. This is because they find huge applications in many modern telecommunication systems.
In order to achieve high accuracy, full-wave analysis must be performed to analyze microwave devices.
This is the case for example of modern monolithic microwave integrated circuits (MMIC). The effects
of the shielding enclosure can not be neglected, due to their influence in the electrical behavior of the

whole structure [1].

For the analysis of these devices, finite-elements methods can be employed (such as [2] or [3]).

However, these family of methods are computationally very heavy and time-consuming. Other possi-
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bility is to employ the integral equation technique (IE) combined with the Method of Moments (MoM)

[4].

In the latter case, the main problem is to compute the Green’s functions associated with the
multilayered shielded medium. This calculation can be performed in the spectral or in the spatial
domains. The spectral domain is usually very efficient, although it has some convergence problems
when the shielding box has large dimensions as compared to the size of the printed circuit. Rectangular
[5] and circular [6] multilayered enclosures have efficiently been treated in the spectral domain. On
the other hand, the spatial domain is able to solve some of the problems encountered in the spectral
domain, but still expresses the Green’s functions in terms of slow convergent series of spatial images.

Rectangular enclosures have extensively been analyzed in this domain (see [7] or [8]).

Recently, a new technique based on equivalent point sources has been developed to numerically
compute the Green’s functions in circular cavities [9] and in arbitrarily-shaped cavities defined by linear
segments [10], using an spatial formulation. These previous approaches were useful approximations to
the calculation of the exact Green’s functions for these kind of cavities. In the process, the weights of
the fictitious sources are numerically computed to impose the boundary conditions at discrete points
on the cavity wall. This imposition of the boundary conditions needs also to be done along the

longitudinal direction, for electrically long cavities.

In this paper, we present a new rigorous approach for the Green’s functions calculation inside
a multilayered shielded cavity with right isosceles triangular cross-section. The method is entirely
developed in the spatial domain and it is based on image theory. Unlike the previous techniques
([9],[10]), the method computes the Green’s functions rigorously in the whole cavity, without intro-
ducing equivalent sources. The key idea is to split a multilayered square shaped box in two right
isosceles triangular cavities (namely A and B as shown in Fig. 1). We then use the spatial domain
Green’s functions associated to the square cavity, to recover the Green’s functions related to one of
the triangular structures. Note that the Green’s functions of square cavities can be efficiently com-
puted by using series acceleration techniques [11]. Once the Green’s functions of the square cavity are
computed, simple image theory is used to enforce the boundary conditions along the non-equal side
of the triangle. In this way, for each point source inside (A), a spatial image will be placed in the
other triangular cavity, (B). This image is able to exactly satisfy the boundary condition along the
hypotenuse side of the triangular cavity, even along the longitudinal direction (height of the cavity).
Finally, the Green’s functions inside the triangle (A) are recovered by taking into account the presence

of the original and of the image sources.

As in the works presented in [9] and [10], this paper uses the concept of spatial images related to

the electric scalar and magnetic vector potentials. However, it is important to remark that the present
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approach exactly satisfies the boundary conditions along the whole cavity wall (even along the height
of the enclosure), and therefore it is not an approximation to the modeling of the enclosure. Fur-
thermore, the images are computed using the Green’s functions associated to a multilayered shielded
square cavity, instead of the usual multilayered infinite medium employed in previous works. On the
other hand, the use of this rigorous approach is restricted to the case of multilayered enclosures with

triangular right-isosceles cross section.

The usefulness of the technique is demonstrated by obtaining resonance frequencies and potentials
patterns of a multilayered cavity with right isosceles triangular cross-section. The results are compared
with those obtained by a finite-elements method (HFSS®), showing good agreement. In order to show
the practical value of the method, a hybrid waveguide-microstrip filter [12], inside a triangular cavity,
is designed using the developed technique. Since this filter combines one of the cavity resonances with
a resonance of a printed microstrip line, the correct model of the triangular-shaped multilayered cavity

is essential. Measured data is used to validate the filter results.

2 Theoretical Outline

The geometry for the calculation of the mixed-potential Green’s function is presented in Fig. 1.
As it can be seen in the figure, an electric unitary dipole is placed inside a right-isosceles triangular
metallic cavity (A). The final goal is to compute the Green’s functions associated to this triangular
cavity (A). To do that, a square cavity, which is composed of the original triangle (A) and of an
auxiliary triangle (B) is considered. The Green’s functions associated to a multilayered shielded
square enclosure, as presented in Fig. 1, can efficiently be obtained in the spatial domain using, for
instance, the procedure described in [13] or in [11]. These square cavity Green’s functions are then
used to recover the Green’s functions associated to the multilayered triangular cavity (A). To do that,
an electric point source (g.) or an electric unitary dipole (I) is placed inside this cavity (A) (see
Fig. 2 and Fig. 3) Then, the triangle (B) is used to place an exact image of the original source (q.,
or I'). Both original and image sources are computed using the square cavity Green’s functions, and
therefore, the boundary conditions at the external square walls are automatically satisfied. Finally, the
original and image sources are combined to compute the Green’s function associated to the triangular
cavity (A). Due to the combination of the original source with its image, the field will also satisfy the
boundary conditions at the hypotenuse of the triangular cavity. Since the original and image sources
are computed inside a multilayered structure, the final computed Green’s functions will also take into

account for the substrate layers.

The physical boundary condition to be imposed at the metallic cavity walls is the zero tangent

electric field. This boundary condition can also be translated to the potentials. First, the electric
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scalar potential must vanish along the cavity walls. If a single electric point charge is placed inside the
triangle A, the boundary condition will be automatically satisfied along the two external equal sides of
the triangular cavity. This is because these two sides are common to the square cavity used to calculate
the basic Green’s functions. In order to impose the boundary conditions along the hypotenuse of the
triangle, a spatial image of the original source is placed inside triangle B (see Fig. 2). From basic
image theory [14], the value of this new image is the same as the original, but with opposite sign. The
combination of both sources will make the electric scalar potential to be zero along the hypotenuse of
the triangle, even in the z-direction. Since the image also shares the square cavity sides, the boundary
conditions are also satisfied in the other walls. Finally, the electric scalar potential inside the triangular

cavity is recovered using a combination of the two sources:
- =/ - =/ - =/
GVT (Tv r ) = GVq (73 r ) - qu/ (7", Tim) (1)

where 7 is an arbitrary observation point (P), 7’ is the source position (both inside triangle A), and

7im is the source image position (placed in triangle B). It is important to remark that Gy, and qur

m
are the electric scalar potential inside a square multilayered shielded cavity containing the triangular

cavity.

For the evaluation of the magnetic vector potential dyadic Green’s function, a similar procedure
is followed, but taking into account the vector nature of this potential. Considering two unit dipoles
inside triangle A (I, and I,, oriented along the x and y axis), two images dipoles can be placed
inside triangle B (I, and IZ//, oriented along the y and z-axis respectively). These images are used to
enforce the boundary conditions along the triangle hypotenuse (see Fig. 3). Again, since all dipoles
are placed inside the associated square cavity, the boundary conditions are also imposed along the
external walls. By simple image theory, the values of the image dipoles are the same as the original,
but their orientations have been rotated by 90 degrees [14]. The final magnetic vector potential is

recovered using the superposition of all dipoles:

Ay (7, 7) = G (7,7) (2)
G (7 7)) = G, (7 im) (3)
Gy (7 7)) = =G%, (7, 7im) (4)
a7 ) = O () )

""is the source position (both inside

where 7 is the position of an arbitrary observation point (P), 7
triangle A), and 7/, is the source images position (placed in triangle B). It is worth mentioning that,
according to these expressions, an z-directed dipole will produce a y-component of the magnetic vector
potential (and viceversa). This cross component is given by the image dipole I, which is oriented

along the y-axis. Physically, this cross component is caused by the hypotenuse wall of the triangular

4



cavity.

The computational effort required to evaluate the proposed Green’s functions for multilayered
triangular cavities represents twice the effort required for the computation of the Green’s functions
associated to multilayered square cavities, which is the key of the proposed formulation. Note that
for the computation of the latter, different techniques for series acceleration, such as those proposed

in [13],[11], may be applied.

3 Results

In order to demonstrate the usefulness of the proposed technique, the resonant frequencies and
potential patterns of a multilayered triangular cavity are obtained. The results are validated by a
finite elements method (Ansoft HFSS®©). Finally, the analysis and design of a transversal microstrip

filter inside a triangular cavity is presented, using measured data as validation.

In Fig. 4 a multilayered shielded triangular cavity with right isosceles cross-section is shown. To
obtain the resonances of the cavity, the potentials are represented as a function of frequency for a
fixed position of source and observation points. In Fig. 5 sharp peaks in the potential response can
be observed. These peaks are closely related to the resonant frequencies of the cavity. It is important
to remark that at exactly the natural frequencies of the cavity, the value of the potentials will tend to
infinity. Consequently, to find the resonant frequencies of the cavity we detect the maximum value of
the potentials given by the selected frequency step during the frequency sweep. To study the accuracy
of the results, the same study has been performed by a finite-elements method (HFSS®). As it can
be seen in Table 1, high accuracy has been achieved, maintaining in all cases a relative error below
0.08%, when the frequency step is 0.005\. It is important to note that the accuracy obtained directly
depends on the step length taken by the frequency sweep. When this step becomes smaller, the error
decreases. For example, when the frequency step is reduced to 0.0025\, the maximum relative error

is always below 0.04%.

The method presented in this paper can compute the potentials (even at the cavity resonances)
without any convergence problem. To show that this is indeed the case, the electric scalar potential is
shown in Fig. 6 at the normalized frequency of LT/ = 0.2851, where L’ denotes the physical length of the
two equal sides of the triangle (see Fig. 1). Furthermore, the magnetic vector potential GY’ is depicted
in Fig. 7 at the normalized frequency of LTI = 0.2991. In both cases, a noise-free potential pattern can
be observed. Note that the potential values have been normalized, and the representation avoids the
singular behavior found at exactly the source position. The same study has been performed using the

commercial software HFSS®, obtaining similar results for the z-component and for the y-component



of the Electric Field, respectively.

Finally, in order to verify the boundary conditions for the computed Green’s functions, we include
in Fig. 8 a plot of the magnetic vector potential produced by a y-directed unitary dipole, in the same
conditions as in Fig. 7. We can observe in the figure that the magnetic vector potential remains
perpendicular to the three walls of the cavity, therefore fulfilling with accuracy the proper boundary

conditions.

The proposed technique can be useful to analyze microwave filters inside multilayered triangular
shaped cavities, as shown in Fig. 9. This filter is a hybrid waveguide-microstrip filter [12], which
combines one of the cavity resonances with a printed line microstrip resonance in order to obtain a
second order filter response. The L’ dimension of the cavity (related to the physical length of the
two equal sides of the triangle, see Fig. 1) is adjusted in order to tune the cavity resonance at the
frequency of 4.47GHz. The resulting filter follows the topology known as Modified Doublet [15], and

it can be expressed in term of the following coupling matrix (M) [12, 16]

0 —0.5249 —0.6487 0.0179
—0.5249  1.0447 0 0.5249

M = : (6)
0.6487 0 —0.9477 0.6487

0.0179  0.5249  0.6487 0

After the design process, a prototype, shown in Fig. 10, has been manufactured and tested. It is
important to remark that the adequate modeling of the triangular multilayered box is essential for
this type of filter. This is because one of the resonances of the filter is provided by the partially filled

cavity.

It is important to point out that a finite elements technique has difficulties in analyzing this filter.
This is because of the tight couplings existing between the input and output ports and the printed line
resonator, which is difficult to model by a volume mesh. On the contrary, with an integral equation
technique these couplings can be modeled more accurately. This is shown in Fig. 11, where we present
the response obtained with the new method. Measured results are also shown for validations. Good

agreement between both results can be observed.

4 Conclusions

In this paper, a novel technique for the evaluation of the Green’s function inside triangular mul-
tilayered cavities with right-isosceles cross section has been presented. The spatial domain Green’s
functions for a square multilayered box are used to accurately obtain the Green’s function for the

triangular cavity. Image theory is used to exactly enforce the boundary conditions for the potentials
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along the non-equal side of the triangular cavity. Resonance frequencies and potential patterns inside

a multilayered triangular cavity are obtained and validated with a finite elements technique. In order

to show the practical value of the proposed method, a novel waveguide-microstrip transversal filter

has been designed, analyzed and tested. Very good agreement between the simulated and measured

data has been found.

References

1]

[10]

L. P. Dunleavy and P. B. Katehi, “Shielding effects in microstrip discontinuities,” IEEE

Transactions on Microwave Theory and Techniques, vol. 36, no. 12, pp. 1767-1774, December

1988.

J.-M. Jin and J. L. Volakis, “A finite element-boundary integral formulation for scattering by

three-dimensional cavity-backed apertures,” IEEE Transactions on Antennas and Propagation,

vol. 39, no. 1, pp. 97-104, January 1991.

M. Omiya, T. Hikage, N. Ohno, K. Horiguchi, and K. Itoh, “Design of cavity-backed slot an-

tennas using the finite-difference time-domain technique,” IEEE Transactions on Antennas and

Propagation, vol. 46, no. 12, pp. 18531858, December 1998.

R. F. Harrington, Field Computation by Moment Methods. Wiley-IEEE Press, 1968.

C. J. Railton and S. A. Meade, “Fast rigorous analysis of shielded planar filters,” IEEE

Transactions on Microwave Theory and Techniques, vol. 40, no. 5, pp. 978-985, May 1992.

F. Zavosh and J. T. Aberle, “Single and stacked circular microstrip patch antennas backed by a

circular cavity,” IEEE Transactions on Antennas and Propagation, vol. 43, no. 7, pp. 746-750,

July 1995.

L. P. Dunleavy and P. B. Katehi, “A generalized method for analyzing shielded thin microstrip

discontinuities,” IEEE Transactions on Microwave Theory and Techniques, vol. 36, no. 12, pp.

1758-1766, December 1988.

A. A. Melcon and J. R. Mosig, “A novel spatial images technique for the analysis of cavity backed
antennas,” ACES, Applied Computational Electromagnetics Society, vol. 14, no. 3, March 1999.

F. Q. Pereira, P. V. Castejon, D. C. Rebenaque, J. P. Garcia, and A. A. Melcon, “Numerical

evaluation of the Green’s functions for cylindrical enclosures,” IEEE Transactions on Microwave

Theory and Techniques, vol. 53, no. 1, pp. 94-105, January 2005.

J. G. Diaz, M. M. Mendoza, F. P. Soler, F. Q. Pereira, and A. A. Melcon, “Practical implemen-
tation of the spatial images technique for the analysis of shielded multilayered printed circuits,”

7



[13]

[14]

[15]

[16]

IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 1, pp. 131-141, January

2008.

M.-J. Park and S. Nam, “Efficient calculation of the green’s functions for multilayered planar

periodic structures,” IEEE Transactions on Antennas and Propagation, vol. 46, no. 10, pp. 1582—

1583, October 1998.

M. Martinez-Mendoza, J. S. Gémez-Diaz, D. C. Rebenaque, J. L. G. Tornero, and A. Alvarez-
Melcon, “Design of bandpass transversal filters employing a novel hybrid structure,” IEEE

Transactions on Microwave Theory and Techniques, vol. 55, no. 12, pp. 2670-2678, December

2007.

A. A. Melcon and J. R. Mosig, “Two techniques for the efficient numerical calculation of the

Green’s functions for planar shielded circuits and antennas,” IEEE Transactions on Microwave

Theory and Techniques, vol. 48, no. 9, pp. 1492-1504, September 2000.

C. A. Balanis, Advanced Engineering Electromagnetics. John Wiley and Sons, 1989.

S. Amari and U. Rosenberg, “A universal building block for advanced modular design of mi-

crowave filters,” IEEE Microwave and Wireless Components Letters, vol. 13, no. 12, pp. 541-543,

December 2003.

R. J. Cameron, “Advanced coupling matrix synthesis techniques for microwave filters,” IEEE

Transactions on Microwave Theory and Techniques, vol. 51, no. 1, pp. 1-10, January 2003.




Table 1: Resonance frequencies for the triangular cavity shown in Fig. 4.

Resonance frequencies, | Resonance frequencies, Relative
New Method [Ghz] HFSS© [Ghz] Difference (%)
0.2035 0.2035 0.0000
0.2210 0.2209 0.0453
0.2342 0.2342 0.0000
0.2585 0.2583 0.0774
0.2588 0.2587 0.0387
0.2695 0.2693 0.0743
0.2851 0.2849 0.0702
0.2991 0.2990 0.0334

Triangle B

Triangle A L

Z X

L/
Figure 1: A square box is split in two right-isosceles triangular cavities (‘A’ and ‘B’). A

unitary electric dipole is placed inside triangle A. L’ = X\, 2’ = ¢y’ = 0.25).



Triangle B

Figure 2: Original and image charge sources used to enforce the boundary condition for the
electric scalar potential along the non-equal side of the triangular cavity. Point P

is a generic observation point. L' = A, 2’ =y’ = 0.25\.

Triangle B

Z X L‘,

Figure 3: Original and image electric dipole sources used to enforce the boundary condition
for the magnetic vector potential, along the non-equal side of the triangular cavity.

Point P is a generic observation point. L' = X\, 2’ = ¢’ = 0.25\.
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Figure 4: Multilayered shielded triangular cavity with right isosceles cross-section. L' = A,
Li = 0.2\, Ly = 0.2\, ¢, = 5.0. The point source is placed at the position
(0.25X,0.35),0.2)), and the observation point is placed at (0.35X,0.25,0.2)).
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Figure 5: Mixed potentials as a function of frequency in the cavity shown in Fig. 4.
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Figure 6: Electric scalar potential obtained with the new method at the normalized resonant

frequency LT/ = 0.2851. The source is placed at the position (0.2X,0.2X,0.2)).
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Figure 7: Magnetic vector potential dyadic component G’ obtained with the new method
at the resonant frequency LT/ = 0.2991. The source is placed at the position

(0.22X, 0.5, 0.2)).
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Y/\

Figure 8: Vector plot of the magnetic vector potential produced by a y-directed unitary

dipole in the same conditions as in Fig. 7.
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H, =317nmm H,=283mm W =2nmm S =8 =15mm T =165mm

Figure 9: Novel triangular-shaped second order transversal filter.
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Figure 10: Aspect of the manufactured breadboard, showing all pieces of the filter.
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Figure 11: Results for the band-pass filter shown in Fig. 9, obtained with the proposed
technique. Losses are included in the dielectric substrate (tand = 0.004) and in

the printed metalizations (o = 1-107Q~/m). Measured data are presented as

validation.
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