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A technique for the accurate computation of the electromagnetic fields radiated by a charged particle moving
within a parallel-plate waveguide is presented. Based on a transformation of the time-varying current density
of the particle into a time-harmonic current density, this technique allows the evaluation of the radiated
electromagnetic fields both in the frequency and time domains, as well as in the near- and far-field regions. For
this purpose, several accelerated versions of the parallel-plate Green’s function in the frequency domain have
been considered. The theory has been successfully applied to the multipactor discharge occurring within a two
metal-plates region. The proposed formulation has been tested with a particle-in-cell code based on the finite-
difference time-domain method, obtaining good agreement.
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I. INTRODUCTION

The radiation of a charged particle moving within a cer-
tain metallic and dielectric waveguide structure has deserved
the attention of many researchers in different fields of elec-
tromagnetic theory. Several authors have investigated the ra-
diation of charges and beams in RF accelerating structures.
Concretely, the study of the radiated fields left behind by a
charged particle, which are called the wake fields, are par-
ticularly important because they influence the motion of the
charged particles that follow them. The rigorous analysis of
the wake fields is a nontrivial issue, and critically depends on
the geometry and materials of the accelerator structure. In
most of the current models found in the technical literature,
the particles move linearly at constant velocity �1–8�.

Another physical phenomenon directly related with the
radiation of electrons moving within an RF waveguide pas-
sive component is the multipactor effect. Multipactor dis-
charge is a nonlinear effect that may occur in high power
microwave devices at very low pressures, especially in sat-
ellite subsystems �9–22� and particle accelerators �23–33�.

Basically, multipactor is an electron avalanche in synchro-
nism with the existing RF field caused by secondary-

emission multiplication on the device walls: primary elec-
trons accelerated by the RF fields impact on a surface
releasing a larger number of secondary electrons, which may
in turn be accelerated by the RF fields striking successively
against the other surface, then extracting more and more
electrons, and so on. The discharge, which is normally un-
desired, can occur for a wide range of frequencies �from
megahertz to tens of gigahertz� and in a wide set of geom-
etries. In microwave devices for space communications, its
effects range from the signal degradation �increasing noise
levels� to the complete destruction of the component. In ac-
celerating structures, multipactor causes serious problems
during accelerator operation �increasing the reflection coeffi-
cient�, and can generate dielectric window breakdown on the
vacuum side.

The radiated power spectrum of a multipactor discharge
between two parallel plates has already been investigated by
the authors �34�. In such work, the multipactor discharge was
first approached as a spatially uniform electric current. How-
ever, in this paper we propose to transform the time-varying
current density of the particle into a time-harmonic current
density. Such transformation allows the accurate computa-
tion of the harmonic fields radiated by the charged particle,
both in the near- and the far-field regions. Thus, the main
goal of this contribution is the evaluation of the electric and
magnetic fields emitted by a multipactor discharge, as well as*benito.gimeno@uv.es
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the radiated power spectrum, using an efficient technique
which transforms the time-varying electron motion into
frequency-domain equivalent currents. For such purpose,
several accelerated versions for the frequency-domain
Green’s function of the considered metallic enclosure are
used. In particular, the theory has been applied to the multi-
pactor analysis in a parallel-plate waveguide following the
well-known Sombrin’s model �35�, where a single effective
electron is moving in one dimension under the influence of
an external RF harmonic electric field.

The paper has been organized in three sections. In the
next section, the frequency-domain representation of a
charged particle motion is developed in detail. Afterward, we
apply this theory to the multipactor analysis in a classical
parallel-plate scenario, where the Green’s function is ex-
pressed as an infinite series using the classical image theory,
whose computation is efficiently accelerated through the
Ewald’s and Kummer’s techniques. Next, numerical results
obtained with our theory are successfully compared with re-
sults from a particle-in-cell code, thus validating the pre-
sented formulation. Finally, conclusions and future work are
summarized.

II. FREQUENCY-DOMAIN REPRESENTATION OF A
CHARGED PARTICLE MOTION

Let us consider a charged particle arbitrarily moving in
one dimension �z axis� under the influence of an external
force. From an electromagnetic point of view, this charge can
be modeled as an electric density of charge � and a current
density Jz, which depend on position �z� and time �t�,

��z,t� = q�„z − zq�t�… ,

Jz�z,t� = qvq�t��„z − zq�t�… ,

where � is the Dirac delta distribution, q is the particle
charge, and zq�t� and vq�t� are its position and velocity, re-
spectively, which obviously satisfy vq= żq�t�; note that dot
indicates time derivative. It is well known that both singular
densities are related to each other by the continuity equation.
In this formulation we suppose that both trajectory zq=zq�t�,
and velocity vq=vq�t�, of the particle are known functions.

As it is mentioned in the Introduction, our aim is to trans-
form the singular electric current Jz into a time-harmonic
function depending on the position coordinate z. To proceed,
we need to express the Dirac delta distribution in terms of a
time-dependent function. First of all, we express the argu-
ment of the Dirac delta as an auxiliary function defined as
follows: �z�t��z−zq�t�. Next, we expand the Dirac delta of
such auxiliary function as a finite summation of time-
dependent Dirac elta distributions using the change of vari-
able operation described in �36� �see Sec. 1.7�,

�„�z�t�… = �
i=1

M
1

��̇z�ti��
��t − ti� , �1�

where ti, i=1,2 , . . .M, corresponds to the zeros of the func-
tion �z�t�, i.e., �z�ti�=0, which occur when the particle is
located at the position z: zq�ti�=z. The following condition

must also be satisfied for a consistent definition of Eq. �1�:
��̇z�ti���0 for i=1,2 , . . .M. As a consequence, ��̇z�ti��
= �vq�ti��, which allows to rewrite the current density in this
form.

Jz�z,t� = qvq�t��
i=1

M
1

�vq�ti��
��t − ti� . �2�

For multipactor applications under perfect resonant condi-
tions, we can consider that the particle velocity motion is a
periodic function of period Tq �which is directly related to
the multipactor discharge order and the period of the har-
monic external force�. Therefore, the electric current density
can be expanded in terms of the classical Fourier series as
follows:

Jz�z,t� = q�1

2
a0 + �

m=1

+�

am cos�m�qt� + �
m=1

+�

bm sin�m�qt�	 ,

�3�

where am and bm are unknown coefficients, and the angular
frequency defined as �q=2� /Tq has been used. It is evident
that if the motion of the particle is not a periodic function,
the Fourier transform integral should be used instead of the
Fourier series. Taking into account Eq. �2�, these coefficients
are trivially calculated, resulting in

am�z� =
2

Tq
�
i=1

M

sgn„vq�ti�…cos�m�qti� , �4a�

bm�z� =
2

Tq
�
i=1

M

sgn„vq�ti�…sin�m�qti� , �4b�

where the sign function defined as sgn�x��x / �x� has been
introduced. We emphasize that both coefficients am and bm
depend on the z coordinate because the zeros of �z�t� directly
depend on the considered z point. In order to use complex
phasor forms, it is more convenient to define another
pair of z-depending coefficients, cm=
am

2 +bm
2 and

�m=−arctan�bm /am�, thus finding

Jz�z,t� = q�1

2
a0 + �

m=1

+�

cm cos�m�qt + �m�	 . �5�

In practice, it is more convenient to represent the current
density using complex phasor forms defined as im�z�
=qcm�z�exp(i�m�z�) with i=
−1, thus obtaining

Jz�z,t� = Re�
m=1

+�

im exp�im�qt� , �6�

where Re denotes real part. As a conclusion, in this section
we have developed a time-harmonic representation of the
charge motion in terms of harmonic currents im�z�, which
only depend on the geometrical variable z.
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III. APPLICATION TO A MULTIPACTOR DISCHARGE
ANALYSIS IN A PARALLEL-PLATE WAVEGUIDE

REGION

A. Multipactor model

In order to implement the previous theory, we will apply it
to the analysis of a multipactor discharge occurring within a
parallel-plate region of gap d, as shown in Fig. 1. Several
approaches have been developed in the technical literature to
describe the multipactor effect, as we detailed in the Intro-
duction. As a first simple model of this double-surface mul-
tipactor problem we will use Sombrin’s model �35�, which is
based on the consideration of a unique effective electron
which accumulates the total charge and mass of the gener-
ated electrons. Based on the direct integration of the Lorentz
force, this model allows an analytical description of the mo-
tion equations and the resonance conditions, which will be
key in the development of the present derivation. Other rel-
evant parameters, such as the RF breakdown threshold volt-
age and the susceptibility charts, can be easily obtained using
Sombrin’s model. In order to obtain an analytical description
of the physical phenomena, Coulombian repulsion of the
electron cloud is not considered, and the formulation has
been derived for one single electron, which imposes some
limits in the application of the model. According to multi-
pactor theory, during the discharge the charge grows expo-
nentially as

ne�t� = ne�0�	2ft/N, �7�

where ne�t� is the number of elementary charges, ne�0� is the
number of charges at t=0, and 	 is the effective secondary-
emission yield �SEY�. Nevertheless, for multipactor regions
close to the breakdown level �	=1�, or high multipactor or-
ders �high N�, the charge grows slowly enough to be consid-
ered constant, ne�t��ne�0�, during a limited period of time.
Therefore the theory developed hereafter for one single elec-
tron �ne�0�=1 without loss of generality� remains valid
within the proximity of the breakdown regions, which are
indeed of the greatest interest for most applications.

To proceed, we will suppose an electron with charge
q=−e under the action of a z-oriented RF harmonic electric
field given by Ez�t�=E0 cos��t�, f =� / �2�� being the RF
frequency, T=1 / f its period, and E0 the field amplitude, re-
lated with the voltage amplitude V0 by E0=V0 /d; obviously
the driven voltage is V�t�=V0 cos��t�. In our model, an ef-
fective electron is launched from the lower plate �located at
z=0 plane� at time t= t
 with initial velocity vq0

=vq�t
�. The

Lorentz force law for this simple case is given by the follow-
ing equation: Fz=qEz�t�=mqaz, mq being the electron mass
and az its acceleration. Thus, its first integration gives the
velocity vq=vq�t�, and the second one provides the electron
position zq=zq�t�. Under multipactor perfect resonance con-
ditions, the transit time to the second surface �located at z
=d plate� is N half RF cycles �N odd� �11�. Under these
considerations, the electron velocity is a periodic function
with period Tq=NT, given by the following expression:

vq�t� =�
vq0

+
eV0

mq�d
„sin�
� − sin��t�… ,

t � t
, t
 +
Tq

2
�

− vq0
−

eV0

mq�d
„sin�
� + sin��t�… ,

t � t
 +
Tq

2
, t
 + Tq�.

� �8�

In Sombrin’s model it is assumed that the magnitude of the
initial velocity �vq0

� is constant in all launches �35�.
As an example, we have simulated two multipactor dis-

charges for orders N=1 and N=7, respectively; their more
relevant parameters are summarized in Table I. In Figs. 2 and
3, both electron position and velocity are plotted as a func-
tion of the normalized time �t /T�, showing a periodic behav-
ior of period Tq.

B. Time-harmonic currents patterns

Next we consider the spatial distributions of the harmonic
currents im�z� corresponding to the two cases of Table I. In
Figs. 4 and 5, the first Fourier coefficients cm�z� and �m�z�
are plotted as a function of the normalized position z /d for

V (t)

+

-
X

Y

Z
d

FIG. 1. Parallel-plate waveguide region excited with a harmonic
voltage.

TABLE I. Values of the parameters used for multipactor
simulations.

N
f

�GHz�
d

�mm� V0�V� 
�°�
�vq0

�
�eV�

1 10 0.1 60 68.16 2

7 10.5 0.7 335 85.09 2

FIG. 2. Electron position �continuous line� and velocity �dashed
line� as a function of time for multipactor order N=1.
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both multipactor orders N=1 and N=7, respectively. As we
observe in these graphics, the current patterns present more
oscillations for higher harmonics, as predicted by Fourier
analysis. It is worth noticing that these patterns are similar to
the current distribution in a dipole antenna, of electrical
length le=m� /2, where � is the free-space wavelength of the
RF signal. For instance, the current for the m=1 coefficient
is similar to the current induced in a half wavelength dipole.
The current for the m=2 coefficient is similar to the current
induced in a dipole one wavelength long.

We want to remark that the zeros of the �z�t� function
have been numerically calculated by means of the bisection
technique �37�.

C. Radiated fields by the harmonic currents

Our final objective is to evaluate to radiated fields of each
harmonic current im in the parallel-plate waveguide region.
In order to proceed, we will use the classical radiation theory
for time-harmonic fields, based on the use of the electric and
magnetic auxiliary vector potentials, as detailed in the tech-
nical literature �38�. For an electric current oriented in the z
axis, only a z component of the magnetic vector potential
exist, which satisfies the inhomogeneous Helmholtz equa-
tion,

�2Azm
+ km

2 Azm
= − �0Jzm

, �9�

where Azm
is the magnetic vector potential of the mth har-

monic, km is its wave number, and Jzm
is the z-oriented cur-

rent density. The wave number of each harmonic is ex-
pressed as km=m��q /c�=m�k /N�, k being the free-space RF
wave number given by k=� /c. Note that the term
exp�im�qt� has been omitted throughout the formulation, and
conventional cylindrical coordinates �r , ,z� are used. The
solution of Eq. �9� will be performed using the Green’s func-
tion technique. The unknown vector potential of the problem
can be expressed in terms of the following integral �39�,

Azm
�r�� = �0�

V

g�r�,r���Jzm
�r���dV�. �10�

The next step in the formulation deals with the evaluation
of the Green’s function of the problem g�r� ,r���, which satis-
fies the scalar Helmholtz equation,

�2g�r�,r��� + km
2 g�r�,r��� = − ��r� − r��� , �11�

with the Neumann boundary condition. The physical con-
figuration of our problem consists of a time-harmonic
z-directed electric point current element of value 1 A /m2,
located at the source point r��=z�ẑ, as depicted in Fig. 6. The
vector potential generated by such current element �g�r� ,r����
obviously satisfies Eq. �11�. The method of images �40� pro-
vides the solution of this problem as an infinite spatial image
series,

Jz�r�� = �
s=−�

+�

�
p=−1,+1

1��r� − r�sp� � ,

r�sp� = �pz� − 2sd�ẑ , �12�

as shown in Fig. 6. Each of these elemental point currents
radiate in free space; thus, the total field �in the region of
interest� is the superposition of the radiated field by each
infinitesimal element,

g�r�,z�ẑ� = �
s=−�

+�

�
p=−1,+1

g0�r�,r�sp� � , �13�

g0 being the Green’s function in free space �39�,

(b)(a)

FIG. 4. Spatial distribution of the harmonic currents im�z� for multipactor order N=1.

FIG. 3. Electron position �continuous line� and velocity �dashed
line� as a function of time for multipactor order N=7.
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g0�r�,r�sp� � =
exp�− ikmRsp�

4�Rsp
=

exp�− ikm

r2 + �z − pz� + 2sd�2�

4�
r2 + �z − pz� + 2sd�2
,

�14�

where Rsp is the magnitude of the relative vector position

R� sp=r�−r�sp� , i.e., Rsp= �R� sp�. It should be emphasized that the
singularity in this series is contained in the term s=0 and p
= +1. Therefore, the magnetic vector potential can be calcu-
lated by means of the following integral:

Azm
�r�� = �0�

0

d

g�r�,z�ẑ�im�z��dz�, �15�

where we have taken Jzm
= im, which is the case of our wire

currents.
Finally, the time-harmonic magnetic field can be evalu-

ated through the well-known expression H� m= �1 /�0�� �A� m,
obtaining

H� m =
− 1

�0

�Azm

�r
̂ = − ̂�

0

d �g�r�,z�ẑ�
�r

im�z��dz�, �16�

whereas the electric field is calculated using E� m=Emr
r̂

+Emz
ẑ=−��m− im�qA� m, �m being the electric scalar poten-

tial, resulting in

Emr
=

− i

m�q�0�0

�2Azm

�r � z
=

− i

m�q�0
�

0

d �2g�r�,z�ẑ�
�r � z

im�z��dz�,

�17a�

Emz
=

− i

m�q�0�0

�2Amz

�z2 − im�qAmz

=
− i

m�q�0
�

0

d �2g�r�,z�ẑ�
�2z

im�z��dz� − im�qAmz
,

�17b�

The Lorentz gauge �39� has been used above to obtain the

electric scalar potential: � ·A� m+ im�q�0�0�m=0.

In order to evaluate numerically the integrals involved in
Eqs. �15�–�17�, the Gauss-Legendre quadrature algorithm
has been used �37�. The computation of the Green’s function
and its spatial derivatives is a difficult task, as the infinite
series of spatial images shown in Eq. �13� converges very
slowly. In most cases, a large number of terms is needed for
achieving acceptable accuracy in the value of g�r� ,z�ẑ�.
Therefore, the evaluation of Azm

and its derivatives for sev-
eral hundreds of points becomes impractical. To solve this
problem, some acceleration techniques have been applied to
these series. First, by means of the Poisson formula, it is
possible to transform Eq. �13� into an equivalent series writ-
ten in the spectral domain,

g�r�,z�ẑ� =
− i

4�d
�
n=0

+�

�nH0
�2���nr�cos�kznz�cos�kznz�� ,

�18a�

kzn =
n�

d
, �n

2 = k2 − kzn
2 , �18b�

�n = �1 for n = 0

2 for n � 0,
� �18c�

In Eq. �18�, H0
�2� is the Hankel function of zeroth order and

second kind, which is defined as a combination of the Bessel

(b)(a)

FIG. 5. Spatial distribution of the harmonic currents im�z� for multipactor order N=7.

FIG. 6. Physical configuration to obtain the Green’s function of
the problem.
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functions. The Hankel function rapidly vanishes for large
values of the spatial distance of the transversal coordinates
�r�, allowing therefore a very fast convergence for this new
form of the series. However, if �r� tends to zero, the singu-
larity of the Bessel functions appears, and the convergence
rates are strongly affected in a negative way. For this situa-
tion, the authors have applied the Ewald method �41�, which
is a very efficient technique for accelerating this kind of se-
ries, even under singularity conditions �42–44�. For our par-
ticular Green’s function, the Ewald technique needs to be
reformulated, thus obtaining the following expressions:

g�r�,z�ẑ� = g1 + g2, �19a�

g1 =
1

4�
�

s=−�

+�

�
p=−1,+1

Re�e−ikRn1 erfc�x��RspE − ik/2E��
Rsp

,

�19b�

g2 =
1

2�d
�
n=0

+�

�nIn�E�cos�kznz�cos�kznz�� , �19c�

In�E� = �
0

E e−R2s2+��n
2 � 4s2�

s
ds . �19d�

In the previous expressions, erfc is the complementary error
function. It can be noticed that this technique decomposes
the original series into two new series, each one related to the
spatial and the spectral domains. The value E is the so-called
splitting parameter of the Ewald method, which controls the
convergence of the two series. An optimal value of this pa-
rameter must be obtained for the correct behavior of the
whole method, and several works have been developed con-
cerning this matter �43,45�. For our purposes, this value will
be set as E=
� /d. The presence of the erfc functions en-
sures Gaussian convergence for the g1 series, once this split-
ting parameter is properly selected. On the other hand, the
term g2 also converges very fast, provided that the integral In
is efficiently evaluated. The propagation constant �n plays a
very important role in the calculation of this integral. If kzn
�k, which is the case of nonpropagative modes of the par-
allel plates, �n

2 has a negative value, and the whole integral
can be evaluated numerically without effort. On the contrary,
for the complementary case of propagative modes, it is very

important to ensure that Re�
�n

2

s2 ��0 for the integral to be
convergent �43�. It is possible to fulfill this requirement if an
adequate integration path is chosen, which should satisfy the
following condition in the complex plane �43�:

3�

4
+ ��n

� �s �
�

4
+ ��n

, for s → 0, �20�

where ��n
and �s denote the phases of �n and the complex

integration variable s, respectively. Figure 7 shows with
dashed lines a generic path that fulfills condition �20�. The
authors have chosen a simple strategy based on a triangular
trajectory, also shown in the same figure. This path allows
splitting the integral In into two linear integrals, which are

very easy to evaluate numerically. Once In is computed for
all cases, the g2 series rapidly converges, and the total
Green’s functions are obtained employing very few terms,
even for the critical case of r→0.

Finally, in order to further reduce the computational ef-
fort, the authors propose the following algorithm based on
the combination of several techniques for the efficient calcu-
lation of the Green’s functions. First, the Ewald form of the
series is only used in the near-singularity cases, and it is
switched to the spectral form of the series for any other case.
This is convenient since the evaluation of Hankel functions
requires less CPU effort than the computation of Erfc func-
tions. By choosing to evaluate Eqs. �18� or �19�, depending
on the value of the spatial distance, the calculation of the
Green’s functions is performed very efficiently. The authors
have found that good performance is obtained by switching
to the Ewald approach if r�0.1�. For the computation of the
total electric and magnetic fields, the corresponding spatial
derivatives are also needed. They can be obtained by directly
operating with expressions �18� and �19�, obtaining the cor-
responding accelerated form of the series for each case. Once
all the different Green’s functions have been evaluated prop-
erly, the electromagnetic fields can be computed very effi-
ciently following this approach.

D. Numerical analysis of a multipactor discharge

We proceed to examine the field distributions of a multi-
pactor discharge occurring in a parallel-plate scenario for the
cases described in Table I. In Figs. 8 and 9, the real part of

Im(s)

Re(s)

Generic Path

0 E

π
4

π
4 + φγn3π

4 + φγn

FIG. 7. Generic integration path between 0 and E that satisfies
condition �20� in the complex plane, for the evaluation of In�E�. A
triangular path proposed by the authors is also shown.

FIG. 8. Real part of the z component of the electric field for
several Fourier harmonics. Multipactor order is N=1.
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the z component of the electric field Ezm
is plotted as a func-

tion of the normalized radial component r /�, for z=d /2 and
multipactor orders N=1 and N=7, respectively. The results
corresponding to the first Fourier harmonics are displayed. It
can be seen that the electric field tends rapidly to zero for a
distance of several wavelengths. Similar results have been
observed for the imaginary part, which are omitted for brev-
ity. We want to emphasize that the electromagnetic fields
related with the even Fourier coefficients �m=2,4 ,6 , . . .� in
Eqs. �16� and �17� vanish, even though such coefficients are
nonzero �see Figs. 4 and 5�, which is in agreement with
previously published simulations and experiments �46,47�.

Second, the time evolution of the previous multipactor
discharges has been compared with results obtained with an
electromagnetic particle-in-cell �PIC� code based on the
finite-difference time-domain technique �47�. In order to
compare with the analytical model, the numerical simula-
tions were carried out with a constant charge scheme. Figure
10 depicts the z component of the electric field as a function
of time, showing a good agreement between our simulations
and the results provided by the PIC code.

Finally, the power generated by the discharge has been
evaluated as a function of the frequency. In order to proceed,

the real part of the complex Poynting vector �defined as N�

= �1 /2�E� �H� �, � denotes complex-conjugate operation� has

been integrated over a cylindrical surface of height d and
radius r=�; such cylinder is centered on the z axis.

Figures 11 and 12 show the total power spectrum radiated
by the multipactor discharges for the two cases of Table I,
with multipactor order N=1 and N=7, respectively. Com-
parison with numerical results, computed with the cited PIC
code �47� fully validates the presented theory. As stated be-
fore, only the odd harmonics, located at frequencies mf /N,
carry some power. It can be seen that, for both test cases, the
maximum emitted power corresponds to the harmonic lo-
cated at the driven RF frequency, which is m=N, and agrees
with previously published results �34�. For the rest of har-
monics the power level decreases as 1 /m.

IV. CONCLUSIONS

In this paper, we have proposed a technique to compute
the electromagnetic radiated fields of a charged particle mov-
ing within a metallic enclosure. Such method is based on the
transformation of the time-domain charged particle move-
ment into an equivalent point-line time-harmonic current,
which radiates into the considered environment. In particular,
this formulation has been applied to study a multipactor dis-
charge �simulated with Sombrin’s approach� occurring in a
parallel-plate waveguide region. A standard Fourier analysis

FIG. 9. Real part of the z component of the electric field for
several Fourier harmonics. Multipactor order is N=7.

FIG. 10. The z component of the electric field as a function of
time is compared with a PIC code �47� at the point located in z /d
=0.5 and r /�=1. The case of multipactor order N=7 has been
plotted.

FIG. 11. Power spectrum of a discharge analyzed in this work
�dots� in comparison with a PIC code �continuous line�. Multipactor
order is N=1.

FIG. 12. Power spectrum of a discharge analyzed in this work
�dots� in comparison with a PIC code �continuous line�. Multipactor
order is N=7.
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has allowed the transformation of the periodic electron
movement into equivalent spatial-dependent harmonic cur-
rents. The Green’s function in frequency domain has been
used to analyze the radiation of such currents within the
parallel-plate guide, thus obtaining the total radiated fields
both in the frequency and time domains. Comparisons with a
PIC code fully validate the proposed theory.

Even though this formulation has been derived for a one-
dimension movement, it can be extended to the general case
of a charged particle moving into a more realistic three-
dimensional scenario. In this way, this theory might be used

to calculate the radiated fields in other more complex con-
texts, such as wake fields in RF accelerating structures, mul-
tipacting in microwave waveguides and other similar prob-
lems.
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