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Resumen  

Durante los años transcurridos en el desarrollo de esta tesis, la generación de energía 

eléctrica mundial habrá crecido a un ritmo medio anual del 3.6%
1
, que refleja las crecientes 

necesidades de la sociedad en términos de suministro eléctrico (voltaje, densidad de 

potencia, frecuencia de uso, fiabilidad o temperatura de trabajo). Estas necesidades se están 

volviendo más exigentes, las pérdidas de energía deben ser reducidas y el rendimiento 

mejorado. El progreso de las recientes décadas en el campo de la electrónica de potencia no 

se debe sólo a la introducción de arquitecturas novedosas, sino también a la evolución de la 

composición de los dispositivos. El progreso actual está obstaculizado por las limitaciones 

inherentes al silicio, componente del que están fabricados la mayor parte de los dispositivos 

electrónicos de potencia actualmente disponibles comercialmente. 

 

Los semiconductores de ancha banda prohibida tienen propiedades particularmente 

atractivas para funcionar a altos voltajes y frecuencias en entornos de alta temperatura. 

Como semiconductores de ancha banda prohibida, los dispositivos basados en diamante 

semiconductor se han manifestado como un campo de investigación prometedor, no sólo por 

la amplia aplicabilidad en las ciencias biológicas, si no por sus extraordinarias propiedades 

eléctricas (elevada movilidad de portadores, alto valor  de ruptura eléctrica y extraordinaria 

conductividad del calor). Tras casi quince años de investigación en diamante semiconductor 

se han resuelto gran cantidad de interrogantes, lo que ha permitido la aparición de los 

primeros prototipos. Es esta evolución en el conocimiento la que ha posibilitado la elección 

del diamante como candidato idóneo para la realización de componentes electrónicos de alta 

potencia, entendiendo estos dispositivos como aquellos que funcionan en condiciones de 

alta frecuencia de conmutación de señal. 

 

Paradójicamente, a pesar de sus numerosas ventajas y de los amplios estudios en esta 

materia, la explosión de las tecnologías basadas en diamante aún no ha llegado a su 

madurez. Esto es debido, fundamentalmente, a la mala calidad estructural en la 

implementación de los diseños ideados para los dispositivos electrónicos con canal activo de 

diamante. Adicionalmente, las limitaciones en las aplicaciones tecnológicas del diamante 

derivan de otras de sus propiedades extremas, como la dureza (que dificulta su clivaje) o la 

alta energía de activación de dopantes tipo n. 

 

Sin embargo, se han conseguido numerosos progresos en el crecimiento de estructuras de 

diamante para dispositivos eléctricos. En particular, estos esfuerzos han permitido 

minimizar la densidad de dislocaciones producidas durante el crecimiento de estructuras 

                                                      

1
 OECD, library: http://www.oecd-ilibrary.org/economics/oecd-factbook-2013_factbook-2013-en 
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multicapa u optimizar la densidad de dopantes activos durante el crecimiento de capas 

dopadas (lo que ha requerido de amplios estudios sobre la incorporación del boro en la red 

cristalina del diamante). Paralelamente a los esfuerzos desarrollados en la comprensión y el 

estudio de la incorporación de dopantes en la red del diamante, se han desarrollado otros no 

menos loables avances en el diseño de estructuras óptimas para establecer contactos 

eléctricos en diamante.  

 

En la presente contribución, se evidencia el uso del diamante semiconductor como base para 

un dispositivo de alta potencia con canal activo de diamante, las diversas alternativas de 

diseño, sus técnicas de estudio y las características eléctricas de los primeros prototipos de 

los diferentes dispositivos. 
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Abstract 

During the years lapsed on the developing this thesis, worldwide electrical power generation 

will have increased at an annual average rate of 3.6%, which reflects the growing needs of 

society in terms of electricity supply, voltage, power density, frequency of use, reliability or 

working temperature. These needs are becoming more demanding; energy losses must be 

reduced and performance enhanced.  In recent decades, progresses in the field of power 

electronics are not only due to the introduction of innovative architectures, but also to the 

evolution of composition of devices. Nowadays, progress is hindered by the inherent 

limitations of silicon, component of which is manufactured the vast majority of 

commercially available power electronics components.  

 

Wide band gap semiconductors have properties particularly suited to managing high 

voltages, high frequencies, and hot environments. As a wide band gap semiconductor, 

semiconducting diamond devices had become a promising research field, not only for its 

applications on biological sciences, but because its exceptional electric properties (elevated 

mobility, high breakdown electric field and outstanding thermal conductivity). After almost 

fifteen years of research on semiconducting diamond, a great amount of questions have been 

answered, having allowed the emergence of the first prototypes. This evolution in the know-

how has enabled the choice of diamond as the ideal material for the development of high 

power electronics devices, available for working in high commutation frequency conditions. 

 

Paradoxically, despite the many advantages and the extensive studies on this matter, the 

spread of diamond based technologies has not reached maturity. This is due, basically, to the 

bad structural quality on the implementation of the designs for the electronic devices with 

an active diamond channel. Additionally, limitations in the technological applications of 

diamond arise from some other of its extreme properties, such as its hardness (that makes 

cleavage extremely difficult) or the high activation energy of n-type dopants. 

However, numerous progresses have been achieved in the growing of diamond structures 

for electric devices. Particularly, these efforts lead us to minimize dislocation density 

produced during the growing of multi-layer structures or to optimize the active density of 

dopants during the growing of doped layers (which have required extensive studies about 

the incorporation of boron in the diamond lattice). Parallel to the efforts made in the 

understanding and study of the incorporation of dopants in the diamond lattice, other 

equally laudable progress in designing optimal structures have been developed to establish 

the electrical contacts in diamond. 
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In the present contribution, we feel evident the use of semiconducting diamond as a base for 

a high power electrical devices with a diamond active channel. The different alternatives on 

the design, technics for the study and electrical characteristics of the first prototypes of the 

different devices are shown. 
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Acronyms 

ADF  Annular Dark Field (electron microscopy imaging mode) 

Al2O3  Aluminum oxide - alumina 

ALD   Atomic Layer Deposition 

BF  Bright Field (TEM imaging mode) 

C   Capacitance [F] 

CL  Cathodoluminescence 

Cox   Oxide Capacitance [F] 

CMOS   Complementary Metal-Oxide-Semiconductor 

CVD   Chemical Vapor Deposition 

D   Drain 

DF  Dark field (TEM imaging mode) 
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EELS  Electron Energy Loss Spectroscopy 
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HREM  High Resolution Electron Microscopy 
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IG   Gate Current leakage [A] 

JFET   Junction Field-Effect Transistor 

k   Boltzmann constant =1.3806504·10
-23

 [J/K] 

L   Transistor Channel Length [μm] 

MBE  Molecular Beam epitaxy 

MESFET  Metal-Semiconductor Field Effect Transistor 

MIT  Metal-Insulator transition 

MODFET MOdulation-Doped Field Effect Transistor 

MOS  Metal-Oxide-Semiconductor 
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MOSFET Metal-Oxide-Semiconductor Field-effect transistor 

MPCVD Microwave-Plasma Chemical Vapour deposition 

ni   Electron concentration 

Ni  Nickel 

NiD  Non-intentionally doped 

Nit   Interface trapped charge concentration density [cm
-2

] 

Not   Oxide trapped charge density [cm
-2

] 

POA   Post Oxidation Annealing 

Pt  Platinum 

q   Basic Electronic charge [C] 

Qeff   Effective charge [cm
-2

] 

Qm   Mobile ionic charge [cm
-2

] 

Qox   Oxide trapped charge [cm
-2

] 

Qit   Interface trapped charge [cm
-2

] 

Qt   Traps charge [cm
-2

] 

SBD  Schottky Barrier Diode 

SiC   Silicon Carbide 

S   Source 

SEM  Scanning Electron Microscopy 

TEM  Transmission Electron Microscopy 

VDS   Drain-source Voltage [V] 

VGS   Gate-source voltage [V] 

W   Gate width [μm] 

WBG   Wide Band Gap 

WC  Tungsten carbide 

WxCy  Tungsten semicarbide 

Zr  Zirconium 

ZrO2  Zirconium oxide 

εr   Dielectric permittivity [F.m
-1

] 

μeff   Effective mobility in the inversion channel of a MOS transistor [cm
2
·V

-1
·s

-

1
] 

μn   Electron mobility [cm
2
·V

-1
·s

-1
] 

μp   Hole mobility [cm
2
·V

-1
·s
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Chapter I: Introduction to 
diamond devices 

 

 

This chapter contextualizes and exposes challenges of diamond as a semiconducting 

material for power electronic applications. Several approaches aiming to the fabrication of 

different diamond-based power devices are presented. This introduction is the followed by 

the motivations of the study of diamond-based power device: 

I.1 Context & history of semiconductor devices: Here, we introduce the use of 

semiconductor devices through a brief historical review; we also evaluate the 

impact of modern electronics and semiconductor devices in the information 

revolution of the 20
th
 century. Information is organized in the following sections: 

 Early history 

 Materials & devices 

 Information revolution 

I.2 Motivation for diamond in power electronics: As a consequence of the 

historical trend presented in I.1, world-wide demand of power supply is increasing 

and electricity has become a vital resource for human civilization. This fact carries 

with the consequent problems of power generation and CO2 emissions, as well as 

the rising demand of ultra-fast and more efficient technologies. In this section, we 

will present wide bandgap materials as the next step in the evolution of modern 

electronic. Finally, diamond will be presented as a wide-bandgap material with 

outstanding properties. 

 Diamond’s electrical applications 
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I.3 Challenges in power electronics are discussed and summarized in this section. 

Spotlights on the main challenges such as the increase of the power switch or the 

frequency are presented. 

I.4 Diamond and its properties: A brief introduction to semiconducting diamond 

is here presented together with its most relevant properties for power device 

applications. Such properties can be compared with those demanded in I.3. This 

section is presented with the following index: 

 Synthetic industrial diamonds 

 Diamond doping 

 Doping-induced metal-to-insulator (MIT) transition 

I.5 Relevant properties for electronic power devices: Diamond main properties, 

useful for power device applications, are here presented by following the next 

index: 

 Carrier mobility 

 Saturation velocity 

 Carrier lifetime 

 Dielectric breakdown field 

 Thermal properties 

I.6 Motivation: impact of the interface configuration in diamond devices. In this 

section, we introduce the motivation for the present PhD disertation, by presenting 

the problematic of the diamond termination and its impact on the behavior of the 

related final device. 

I.7 Objectives: unipolar devices studied in this work. Several diamond interfaces 

(such as diamond-metal or diamond-oxide) will be studied in the present thesis. 

Here we present a brief discussion of the objectives with this paper. 

I.1 Context & history of semiconductor devices  

There is no doubt that semiconductors changed the world beyond anything that could have 

been imagined before them. The history of semiconductors is long and complicated, and one 

cannot expect it to fit one short introduction. The information contained in this section can 

be extended by consulting literature [1]. 
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Early history 

The term “semiconducting” was first used by Alessandro Volta in 1782 [2]. The first 

documented observation of a semiconductor effect is that of Michael Faraday (1833), who 

noticed that the resistance of silver sulfide decreased with temperature, which was different 

than the dependence observed in metals [3]. In 1874 Karl Ferdinand Braun observed 

conduction and rectification in metal sulfides [4]. In 1929 Walter Schottky experimentally 

confirmed the presence of a barrier in a metal-semiconductor junction [5]. 

Theory 

In 1878, Edwin Herbert Hall discovered that charge carriers in solids are deflected in a 

magnetic field (Hall effect). Shortly after the discovery of the electron by J. J. Thomson, 

several scientists proposed theories of electron-based conduction in metals. In 1914 Johan 

Koenigsberger divided solid-state materials into three groups with respect to their 

conductivity: metals, insulators and “variable conductors”. 

In 1928 Ferdinand Bloch developed the theory of electrons in lattices [6]. In 1930, Bernhard 

Gudden reported that the observed properties of semiconductors were due exclusively to the 

presence of impurities and, consequently, chemically pure semiconductors did not exist. In 

1930, Rudolf Peierls presented the concept of forbidden gaps that was applied to realistic 

solids by Brillouin that same year.  

In 1938, Walter Schottky and Neville F. Mott (Nobel Prize in 1977) independently 

developed models of the potential barrier and current flow through a metal-semiconductor 

junction, thanks to the understood of the importance of surface states [7]. A year later, 

Schottky improved his model including the presence of space charge. In 1942 Hans Bethe 

developed the theory of thermionic emission (Nobel Prize in 1967). 

Materials & devices 

In 1945, William Shockley designed the first semiconductor amplifier operating by means 

of the field-effect principle (unfortunately this effect was not observed experimentally and 

the device didn’t work). Trying to understand why, while working on the field-effect 

devices, in December 1947 John Bardeen and Walter Brattain built a germanium-gold point-

contact transistor and demonstrated that this device exhibited power gain at all frequencies.  
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That is, W. Shockley, J. Bardeen and W.H. Brattain had invented the first working solid-

state amplifier, being awarded with the Nobel Prize in physics in 1956. Since that moment, 

the field of semiconducting devices hatches and evolves with the use of new 

semiconducting materials like Si (1949), GaAs (1962), GaN (1996) or SiC (1990-2000).  

Information revolution 

Silicon may be considered as the information carrier of our times. In the history of 

information there were two revolutions (approximately 500 years apart). The first was that 

of Johannes Gutenberg who made possible the dissemination of information (making it 

available to many) the other is the invention of the transistor. Currently the global amount of 

information doubles every year. Many things we are taking for granted (such as, e.g., 

computers, Internet and mobile phones) would not be possible without silicon 

microelectronics. Electronic circuits are also present in cars, home appliances, machinery, 

etc. Optoelectronic devices are equally important in everyday life, e.g., fiber-optic 

Figure 1: Number of transistors in successive Intel processors as a function of time (Intel website). Take into 

account that Moore’s law doesn’t actually consider computing power.  
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communications for data transfer, data storage (CD and DVD recorders), digital cameras, 

etc. 

Since the beginning of semiconductor electronics, the number of transistors in an integrated 

circuit has been increasing exponentially with time. This trend had been first noticed by 

Gordon Moore [8] and is called Moore’s law (here presented in Figure 1). 

Even though the bipolar technology was largely replaced by CMOS (more than 90 percent 

of integrated circuits are manufactured in CMOS technology), Moore’s law is still true in 

many aspects of the development trends of silicon microelectronics (obviously, with the 

appropriate time constant). The MOS transistor has been improved countless times but 

above everything else it has been miniaturized beyond imagination. The reduction of the 

feature size is more or less exponential. The number of transistors produced in 2015 I, is 

anticipated to be approximately ten billion transistors… for every person living on the 

Earth!
2
 

I.2 Motivation for diamond in power electronics 

Nowadays, electricity is the lifeblood of human civilization. All over the world, it is an 

essential and a vital resource for all economic sectors (production, manufactures and 

services). Worldwide electrical power generation rose at an average annual rate of 3.6% 

from 1971 to 2009
3
, greater than the 2.1% growth in total primary energy supply. As an 

example, the worldwide production of electricity in 2009 was 20053 TWh, which was 11% 

of the solar energy received by the earth in one hour (174000 TWh). Additional statistics 

can be found in the web of the International Energy Agency
4
. 

Power electronics is the branch of electronics specifically dealing with collecting, 

delivering, and storing energy, including general and local/commodity energy supplies, by 

conversion and control of electrical power. Specific applications range from power supply 

systems to motor vehicle drives, photovoltaic and fuel cell converters, inverters, and high-

frequency heating, among many others. The impact of power electronics has already been 

                                                      

2
 Hardware components, Intel processor history, http://www.interfacebus.com/intel-processor-types-

release-date.html 

3
 OECD, library: http://www.oecd-ilibrary.org/economics/oecd-factbook-2013_factbook-2013-en 

4
 https://www.iea.org/publications/freepublications/publication/ 
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significant and is expected to continue increasing in the future optimizing the energy 

production, energy conversion and management. 

Specific devices with efficiencies approaching 98–99%, ultra-fast switching capabilities, 

and high resiliency to high temperature and other harsh environmental conditions are 

required for power electronics, which was officially born with the silicon power metal oxide 

semiconductor field-effect transistor (MOSFET) entering the market in the late 1970s [9]. 

Indeed, market forecasts predict a strong increase in the next 5–10 years for power 

electronics technologies and an important contribution is expected to come from the use of 

wide bandgap semiconductors [10], as highlighted in Figure 2. 

As in most other electronics areas, silicon has been the predominant semiconductor in 

power electronics up to date. However, with the emergence of wide bandgap materials 

power electronic components which are faster, smaller, more efficient, and more reliable 

than their Si-based counterparts. Moreover, they permit the operation of devices at higher 

voltages, temperatures, and frequencies, making possible to reduce volume and weight in a 

Figure 2: Roadmap of the future advance power devices, showing the predicted evolution in semiconductor 

use. 
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wide range of applications. This could lead to large energy savings in industrial and 

consumer appliances, accelerate widespread use of electric vehicles and fuel cells, and 

integrate renewable energy into the electric grid [11]. 

Significant reductions in cost and CO2 emissions are expected to result in the long term in an 

extensive use of power electronics and related automation control technologies anticipated 

over the coming decades. In fact, the use of wide bandgap materials will result in a greener 

environment, by eliminating up to 90% of power losses currently occurring during 

conventional electric conversion. Wide bandgap devices can operate at  voltages 10 times 

higher than Si-based ones, because of their higher maximum electric field and operating 

temperatures of well over 300°C, twice the maximum operating temperature of Si-based 

devices [12]. 

Theoretically, the operating frequency of wide bandgap semiconductors is at least 10 times 

higher of that of conventional ones, thereby opening up a range of new applications, such as 

compact radio frequency amplifiers. Once wide bandgap materials and power devices have 

matured, substrate material and manufacturing costs are expected to decrease, and the 

devices will be widely used in highly efficient variable speed drives in motors or as compact 

power supplies in consumer electronics. They can convert direct current  (DC) electricity 

generated from wind and solar energy into alternating current electricity used in medium 

and high voltage at home and with reduced energy losses conversions.  

In addition, the transformer size could be reduced by a factor of 10 or more. These devices 

will also find applications in efficient high-voltage DC power transmission lines, while for 

automotive applications the use of wide bandgap materials will considerably reduce 

electricity loss during vehicle battery recharging. The greater efficiency possible in 

operating electric traction drives and the ability to tolerate high operating temperatures can 

also considerably reduce the size of automotive cooling systems. 

Application fields in power device technologies are summarized in Figure 3, according to 

literature [13]. An overview of several materials properties is summarized in Table 1, which 

can be used to compare diamond with other semiconductor’s properties. 

The high electric breakdown field of wide bandgap materials allows these devices to operate 

at higher voltages and with lower on-resistance while higher electron mobility and electron 

saturation velocity allow for higher operating frequency. 

However, despite its amazing properties for power electronics, some limitations concerning 

the wafer diameter, the dislocation density and the surface defects in diamond have to be 

overcome. The successful solution to these limitations will allow diamond to be the next 

generation material for power electronics, showing strong potential and promising 

significant advantages over Si-based conventional electronics. Diamond is superior to its 



Chapter I: Introduction to diamond devices 

 

24 

 

direct competitors from different points of view, and a revolution toward greener and more 

efficient technologies and devices is anticipated. 

On the other hand, there are also significant challenges to consider, including the materials 

science and technology details and device fabrication. Depending on the proposed solutions, 

cost reduction plays an important role for effective industrial implementation, production, 

and market penetration.  

It is worth noting that the development of semiconductors, in particular of wide bandgap 

semiconductors, and progress of their technologies, tends to trigger the development of 

other materials and new devices and technologies. Initial integration with Si, but in future 

integration with other materials as well, such as oxides, organics, chalcogenides, and 

graphene, promises new directions for applied science and technology. 

 New integrated composite architectures, interfaces, and the utilization of shape and 

nanoscale synergic effects by using wide bandgap semiconductors could further enhance the 

electronics revolution, possibly through new physical phenomena. 

Figure 3: Application fields in power device technologies. 
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To end with this brief introduction, we refer to commercially available Schottky Barrier 

Diodes (SBD) based in different materials: concerning the blocking voltage of these SBDs, 

those based on Si are limited to 300V, SiC reach to ≈4kV and GaN-based SBDs are actually 

working in a 2-6kV range, meanwhile, extreme dielectric strength [14] of diamond-based 

SBDs establishes an operation limit above 10kV(the corresponding values can be consulted 

in http://www.digikey.es). Finally, the reader is suggested to expand information on the 

comparison of wide band-gap semiconductors for power electronics devices by consulting 

literature [15]. 

Diamond’s electrical applications 

The use of wide band gap semiconductors in power electronics has been seriously 

considered since the 80s [16]. Table 1 lists the main electronic characteristics of silicon, 

diamond and two other wide band gap materials: silicon carbide (4H-SiC) and gallium 

nitride (GaN). In addition to its well-known optical and mechanical properties, diamond has 

exceptional electronic properties. Further information about semiconductor parameters can 

be found in literature
5
. 

The maximum voltage difference that can be applied across the material before the insulator 

breaks down and conduction is related to their bandgap energy. The wide bandgap 

semiconductor properties offer exceptional breakdown voltage. In addition, a wide band gap 

induces a low intrinsic carrier density, which allows using devices at higher temperatures 

without disturbing the properties of the semiconductor material. 

                                                      

5
 http://www.ioffe.ru/SVA/NSM/Semicond/ 

Table 1: Diamond key properties with respect to that of Si and other wide band gap 

semiconductors. Grey-background is used to highlight the most relevant values of each 

parameter. 

Property Symbol (unit) Si 4H-SiC GaN GaAs Diam. 

Band gap  𝐸𝐺 (eV)  1.12  3.23  3.49  1.4 5.45  

Breakdown voltage  𝐸𝐶 (×10
6 

V.cm
-1

)  0.3  3  3 .5 0.4 10  

Electrons mobility  𝜇𝑒 (cm
2

.v
-1

.s
-1

)  1500  980  1250  8500 1000  

Holes mobility  𝜇ℎ (cm
2

.v
-1

.s
-1

)  480  100  200  400 2000  

Thermal conductivity  𝜆 (W.cm
-1

.K
-1

)  1.5  5  1.5  0.46 22 

Relative permittivity  𝜀𝑟  11.8  9.7  10.4  13.1 5.7  

Saturated drift velocity  (×10
7 

cm
2

.s
-1

)  1.0  2.0  2.2   1.1  

Maximal temperature  𝑇𝑚𝑎𝑥 (K)  410  760  800   1350  
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The excellent mobility of electrons and holes in diamond allows high current densities 

(which are an important parameter because of the current increase in power) and its high 

thermal conductivity facilitates the heat dissipation. Finally, the wide band gap ensures 

greater immunity to radiation, which can be useful in space and nuclear applications, for 

example. Among the semiconductor considered, diamond has the widest band gap. The 

combination of these properties makes diamond an ideal candidate for the manufacture of 

components for power electronics.   

The maximal operating temperature is difficult to determine. In the case of silicon, the 

temperature of use is mainly limited by the increase of intrinsic carrier densities with the 

temperature. The law describing the variation of the intrinsic carrier density as a function of 

temperature can be written as: 

𝑛𝑖
2 = 𝑛 · 𝑝 = 𝑁𝐶 · 𝑁𝑉 · 𝑒−𝐸𝑔/𝑘𝑇 Eq. 1 

Where ni is the intrinsic carrier density, n is the number of electrons and p the number of 

holes. For intrinsic semiconductors at finite temperatures, thermal agitation occurs which 

results in continuous excitation of electrons from the valence band to the conduction band, 

and leaving an equal number of holes in the valence band. This process is balanced by 

recombination of the electrons in the conduction band with holes in the valence band. At 

steady state, the net result is n = p = ni. With this, the intrinsic carrier concentration at room 

temperature is 2.4·10
13

cm
-3

 in Ge, 1.45·10
10

cm
-3

 in Si, 2.1·10
6
cm

-3
 in GaAs and ≈10

-27
cm

-3
 

in diamond. As expected, the larger the bandgap is, the smaller the intrinsic carrier density 

will be. 

The maximum operating temperature of a semiconducting material is that when the 

calculated intrinsic carrier concentration is 10
13

 cm
-3 

[17]. This means that intrinsic behavior 

begins to dominate the extrinsic one. Therefore, there are no more minority and majority 

carriers and doping do not govern anymore the material behavior. This gives a maximum 

operating temperature of 290K for Ge, 410K for Si, 588K for GaAs, 760K in SiC, 800K in 

GaN and 1350K in diamond. 

Such intrinsic carrier concentration is not negligible compared with the carrier concentration 

induced by the low doping of the drift zone of power devices. The values presented are 

indicative: it is possible, for example, to design silicon components operating at higher 

temperature. However, if the intrinsic carrier density restricted the use of wide band gap 

semiconductors at high temperatures, the limitation comes from the environment rather than 

components that must be adapted to the constraints, including thermo-mechanical. 

Silicon is still the dominant material used in electronics, even for high voltage and high 

power applications. Silicon is a mature, low cost and widely available technology. However, 

it has significant limitations coming from its moderate thermal conductivity and its small 
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band gap. Thus its operation is limited at 200°C and a breakdown appears at relatively low 

electric field. The use of silicon in high power application is followed by relatively high 

losses and heavy cooling requirements, leading to major costs, space and weight. This is a 

big disadvantage in key applications such as power conversion, power distribution and 

transportation. Several groups, either industrial or academic, mainly in Europe, Japan and 

USA, have recognized and begun to use the huge potentialities of synthetic diamond for 

implementing electronic devices.  

If electronic, thermal and chemical inertness properties of diamond were simultaneously 

utilized, unprecedented performances would result. Recent progress of epitaxial growth, 

high boron doping level, surface treatment and improved crystalline quality and availability 

of synthetic diamond substrates make a solid background for enhancing the development of 

diamond based applications in several fields like fast and power electronics [18], sensors 

both in biological media [19] and harsh environment [20], monitoring systems in high 

radiation beams [21], etc...  

Such perspectives have motivated growing industrial developments in England (Element 

Six Company), Ireland (Diamond Microwave Devices Ltd) and USA (sp3 Diamond 

Technologies; Appolo Diamond). Recent advances in manufacturing and enlarging 

synthetic crystalline diamond substrates open a practicable route for growing epitaxially all 

the layers necessary for building electronic devices. The possibility of p-type doping from 

traces close to ppb boron concentration up to above one percent, and n-type doping with 

phosphorus, offers the opportunity of relying only on diamond for elaborating all 

functionalities. 

Diamond electronics holds a fantastic promise. A 10 kV diamond Schottky diode has been 

reported [22]. Such device exploits the high mobility and power handling properties of 

diamond. These characteristics would enable individual power devices capable of switching 

voltage of several kV and kA at temperature beyond 300°C.  Kato and co-workers reported 

a diamond bipolar junction transistor device with phosphorus-doped diamond base layer 

with a current amplification ratio of around 10 in (111)-oriented diamond at room 

temperature by utilizing optimized device geometry [23].  

Field Effect Transistors for high frequency and high power applications are still in 

development (this contribution aims to be a step forward in the development of a fully 

functional device). Structures as hydrogen-terminated diamond FET exhibited a drain-

current approaching 80 mA·mm
-1

, with a trans-conductance of 12 mS·mm
-1

, but were 

unstable at high temperature [24, 25]. A development hetero-junction field effect transistor 

(HFET) is designed to work at higher temperature. However, a maximum trans-conductance 

of 0.45 mS·mm
-1

 was reported with AlN/diamond [26].  
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Using high-quality polycrystalline diamond, MESFET exhibits a maximum transition 

frequency of 45 GHz, a drain–current density of 550 mA·mm
-1

 and a maximum trans-

conductance of 143 mS·mm
-1

. Another kind of transistor, solution gate field effect 

transistors used the biocompatibility and high frequency properties. Edington et al. shows a 

maximum gain and a trans-conductance of 3 and 200 μS·mm
-1

 respectively [27]. 

Technological developments were carried out in order to improve the low contact resistance, 

surface passivation and doping homogeneity. 

I.3 Challenges in power electronics 

Power electronics is the application of solid-state electronics for the control and conversion 

of electric power and it also refers to research in electronic and electrical engineering which 

deals with design, control, computation and integration of nonlinear, time varying energy 

processing electronic systems with fast dynamics. The capabilities and economy of power 

electronics system are determined by the active devices that are available. Power electronic 

devices may be used as switches, or as amplifiers. An ideal switch is either open or closed 

and so dissipates no power; it withstands an applied voltage and passes no current, or passes 

any amount of current with no voltage drop. Semiconductor devices used as switches can 

approximate this ideal property and so most power electronic applications rely on switching 

devices on and off, which makes systems very efficient as very little power is wasted in the 

switching devices. By contrast, in the case of the amplifier, the current through the device 

varies continuously according to a controlled input. The voltage and current at the device 

terminals follow a load line, and the power dissipation inside the device is large compared 

with the power delivered to the load.  

 

Several attributes dictate how devices are used. Devices such as diodes conduct when a 

forward voltage is applied and have no external control of the start of conduction. Power 

devices such as silicon controlled rectifiers and thyristors (as well as the former mercury 

valve and thyratron) allow controlling the start of conduction, but relying on periodic 

reversal of current flow to turn them off. Devices such as gate turn-off thyristors, bipolar 

junction transistors (BJT), and MOSFET transistors provide full switching control and can 

be turned on or off without regard to the current flow through them. Transistor devices also 

allow proportional amplification, but this is rarely used for systems rated more than a few 

hundred watts. The control input characteristics of a device also greatly affect design; 

sometimes the control input is at a very high voltage with respect to ground and must be 

driven by an isolated source. As efficiency is at a premium in a power electronic converter, 

the losses that a power electronic device generates should be as low as possible. 
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Semiconductor devices exist with ratings up to a few kilovolts in a single device. Where 

very high voltage must be controlled, multiple devices must be used in series, with networks 

to equalize voltage across all devices. Switching speed is a critical factor since the slowest-

switching device will have to withstand a disproportionate share of the overall voltage. The 

current rating of a semiconductor device is limited by the heat generated within the dies and 

the heat developed in the resistance of the interconnecting leads. Semiconductor devices 

must be designed so that current is evenly distributed within the device across its internal 

junctions (or channels); once a "hot spot" develops, breakdown effects can rapidly destroy 

the device. 

 

The main benefit of the power MOSFET is that the base current for BJT is large compared 

to almost zero for MOSFET gate current. Since the MOSFET is a depletion channel device, 

voltage, not current, is necessary to create a conduction path from drain to source. The gate 

does not contribute to either drain or source current. Turn on gate current is essentially zero 

with the only power dissipated at the gate coming during switching. Losses in MOSFETs 

are largely attributed to on-resistance. The calculations show a direct correlation to drain 

source on-resistance and the device blocking voltage rating, BVdss.  

Switching times range from tens of nanoseconds to a few hundred microseconds, depending 

on the device. MOSFET drain source resistances increase as more current flows through the 

device. As frequencies increase the losses increase as well, making BJTs more attractive. 

Power MOSFETs can be paralleled in order to increase switching current and therefore 

overall switching power. Nominal voltages for MOSFET switching devices range from a 

few volts to a little over 1000 V, with currents up to about 100 A or so. Newer devices may 

have higher operational characteristics. MOSFET devices are not bi-directional, nor are they 

reverse voltage blocking. 

We can focus the main challenges in these few points: 

 Drift: In a p-n junction in the OFF state, the breakdown voltage is determined by 

the architecture, doping and thickness of the drift zone and by the characteristics of 

the material (field maximum value which does not trigger the avalanche 

phenomenon by carrier multiplication). When switching from ON to OFF state (in 

the case of the bipolar devices) the holes in the n-region must recombine to be 

effective for blocking. The time required is called recovery time and constitutes the 

major handicap in bipolar components. In the case of unipolar devices, the time 

required to switch from ON to OFF state is very short. Switching times result in 

losing a significant electrical power (switching losses). For high frequency 

operation, it is thus preferable to use unipolar components. 

 The thermal limitation: The main types of losses in power electronics are 

conduction and switching losses. The energy dissipated due to conduction losses 
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and switching induced heating of the components, and the temperature increased in 

junction may impair their functioning (even leading to their destruction), so the 

dissipated energy must be extracted by cooling systems. There are several ways to 

resolve this issue: with cooling systems, from a research conducted on the 

components (to limit power thermal losses) or in devices able to operate at higher 

temperature, to overcome requirements in terms of cooling. 

 Increase the power switched: Transportation of electric energy, from its 

production site to its place of use, is a key problem in electronics. This should be 

made at high voltages and, because electrical losses in the line are due to the Joule 

effect, it is desirable to increase the voltage of power lines, and so, to reduce the 

current. The increase in the power spent by the load at constant supply voltage 

consists, for the power component, to provide a higher current. It can be achieved 

by increasing the voltage of the current rating of power components. 

 Increase the frequency: An increase in operating frequency induces a decrease in 

the value of capacitors an inductors used (in a power electronics module, the value 

of passive elements surrounding the active one varies inversely with frequency), 

which results in a decrease in the volume occupied by the capacitors. The diamond 

transistor presents the function to work at high frequency with low thermal losses 

being dissipated by the components. 

The unique properties of CVD diamond, particularly its large bandgap, high dielectric 

strength and high thermal conductivity, suggest that the material should be an ideal 

semiconducting medium for high-voltage and high-power switching applications [18]. If we 

now consider diamond as an alternative to overcome the difficulties mentioned above, it can 

be seen in Table 1 that it has a range of properties that offer the potential to extreme device 

performance. Even in the group of wide bandgap materials, which includes silicon carbide 

(SiC) and gallium nitride (GaN), diamond can be considered extreme on its intrinsic 

electronic properties. It is the unmatched combination of highest bulk thermal conductivity, 

high carrier mobility and high breakdown voltage that makes diamond a truly 

Figure 4: Wolfram’s Mathematica simulation of carbon tetrahedron (A), diamond unit cell (B) and diamond 

crystal fragment (C). 
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multifunctional material and will allow applications in environments simply too demanding 

for other materials and devices. As a result, diamond electronic devices, such as power 

diodes and high frequency field-effect transistors (FETs), can be expected to deliver 

outstanding performance. 

I.4 Diamond and its properties 

Diamond is a material composed of the single element carbon. In diamond each carbon 

atom is tetrahedrally coordinated and covalently bonded to four other carbon atoms. Carbon 

atoms in diamond can be placed in two crystal lattices, with cubic and hexagonal symmetry 

respectively. However, the dominant allotrope for both natural and synthetic diamond is the 

cubic diamond structure. The hexagonal symmetry is rarely found in nature as the mineral 

lonsdaleite. 

Diamond owes its hardness to its crystalline organization. The crystal lattice of diamond is 

one of the most studied ones; it’s well known that diamond has the highest hardness and 

thermal conductivity of any bulk material while remaining an electrical insulator, mainly 

due to its structure, based on a continuous network of tetrahedrally bonded carbon atoms in 

which extremely strong covalent bonds are formed between sp
3
-hybrid orbitals and low 

phonon scattering is produced.  

The C–C bond length is 154.448 pm.  The crystalline structure is of cubic symmetry with 

unit cell dimension a = 4/√3 rCC= 356.682 pm, containing eight carbon atoms per unit cell, 

density is established at ρ = 3.515 g·cm
-3, mobility at 300K is around 2200 cm

2
/V·s for 

electrons and 1600 cm
2
/V·s for holes. The structure can be characterized as two 

interpenetrating face-centered cubic lattices, displaced by a/4 in each dimension (as spotted 

in Figure 4, where carbon tetrahedron, diamond unit cell and diamond crystal fragment for 

the idealized crystal structure are shown). On the other hand, natural diamonds are classified 

as follows: 

 Type Ia - This is the most common type of natural diamond, containing up to 0.3% 

nitrogen.  

 Type Ib - Very few natural diamonds are this type (~0.1%), but nearly all synthetic 

industrial diamonds are. Type Ib diamonds contain up to 500 ppm nitrogen.  

 Type IIa - This type is very rare in nature. Type IIa diamonds contain so little 

nitrogen that it isn't readily detected using infrared or ultraviolet absorption 

methods.  
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 Type IIb - This type is also very rare in nature. Type IIb diamonds contain so little 

nitrogen (even lower than type IIa) that the crystal is a p-type semiconductor. 

Synthetic industrial diamonds 

Synthetic industrial diamonds are usually produced by of High Pressure High Temperature 

Synthesis (HPHT). In HPHT synthesis, graphite and a metallic catalyst are placed in a 

hydraulic press under high temperatures and pressures. After a few hours the graphite is 

transformed into diamond. The resulting diamonds are usually a few millimeters in size and 

too flawed for use as gemstones, but they are extremely useful as edges on cutting tools and 

drill-bits and for being compressed to generate very high pressures. 

On the other hand, a process called Chemical Vapor Deposition (CVD) is currently used to 

deposit thin films of polycrystalline diamond. CVD technology makes possible to put 'zero-

wear' coatings on machine parts, use diamond coatings to draw the heat away from 

electronic components, fashion windows that are transparent over a broad wavelength range, 

and take advantage of other properties of diamonds. 

Diamond doping 

In contrast with silicon manufacture and with other more common semiconductors, the high 

compacity of the diamond lattice offers a very small volume to allow impurities to substitute 

carbon atoms [28]. Few candidates are suitable for diamond doping; principal dopant atoms 

found are boron, nitrogen, phosphorous, silicon, nickel and sulphur. By ion-implantation 

techniques, other impurities can be introduced but the compensation resulting from crystal 

damage is not negligible and complex annealing techniques are required. 

If diamond p-type doping is available from traces close to ppb boron concentration up to 

above one percent, and n-type doping with phosphorus too, some intrinsic problems occur to 

get high conductive layers. The success of the doping resides in the diamond ability to 

receive the dopant (depends on crystal orientation), in the compensation ratio (depends of 

the doping technique and the crystal orientation) and in its ability to incorporate on 

substitutional sites where the dopant will be active (acceptor and donor ratio). 

 n-type diamond has not been found in nature yet. Since the CVD growth technique 

exists there have been quite a few attempts to dope diamond n-type. Nitrogen is a 

natural dopant but it doesn’t yield any shallow donor. Since 15 years a few groups 

in the world were able to dope diamond with phosphorus, and different approaches 

for the n-type doping of diamond are still under research [29, 30]. 
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 Even when, initially, aluminum was supposed to be the main acceptor in p-type 

diamond, it has been shown that boron is in fact the only the p-type dopant that can 

be incorporated with high reproducibility [31]. 

Band diagram for a semiconductor containing acceptor (Ea) and donor (Ed) impurities is 

shown in Figure 5 (a); it can be observed that additional energy levels are created inside the 

forbidden band energy. Figure 5 (b) shows ideal band diagram of diamond with dopants. 

Please note that, when doping a semiconductor, the Fermi level is modified as shown in 

Figure 5 (a). We will use Boron as main dopant 

during this thesis, which means p-type diamond 

due to acceptor impurities (charge carriers will 

be holes). 

An important point in the band diagram is the 

Fermi level (EF). The Fermi level of a body is a 

thermodynamic quantity, and its significance is 

the thermodynamic work required to add one 

electron to the body (or equally the work 

obtained by removing an electron). A precise 

understanding of the Fermi level (how it relates 

to electronic band structure in determining 

electronic properties, how it relates to the 

voltage and flow of charge in an electronic 

circuit) is essential to an understanding of solid-

state physics. 

In a band structure picture, the Fermi level can 

be considered to be a hypothetical energy level 

of an electron, such that at thermodynamic 

equilibrium this energy level would have a 50% 

probability of being occupied at any given time, 

if it does not lie in the forbidden gap. One can 

summarize the definition of the Fermi level as 

the top of the available electron energy levels at 

low temperatures. Such energy level is approximately located in the middle of the forbidden 

band energy in a semiconductor; please see Figure 5 (a). 

However, this is a very simplified picture of real band structure of semiconductors. Real 

band diagrams have a dependency on the lattice, the interactions of bonding with 

antibonding orbitals and depends on the Bloch function solution (in whose calculations, 

simplified assumptions as a “third parallel neighbor” approach and a Hartree-Fock type 

Figure 5: Band diagram of an ideal 

semiconductor without dopants and with 

acceptor/donor impurities (a) and band 

diagram of diamond dopants (b)  
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potentials are used). Calculations of real band diagram of diamond, carried out with the 

previously cited assumptions can be found in literature [32, 33].  

To experimentally determine the boron content in real diamond samples, the most 

commonly used techniques are: 

 Secondary Ion Mass Spectrometry: A destructive experiment in which accelerated 

ions are colliding with the sample, milling it (in a similar way of that of the Focused 

Ion Beam previously spotted). The sputtered atoms are then “weighted” through 

spectroscopy techniques, thus making possible to stablish a relation between the 

milling depth and the type/quantity of atoms present at each defined depth. 

 Cathodoluminescence: is a nondestructive technique (please see Annex I) in which 

an electron beam is used to create light emission from the sample. This light comes 

from recombination of a variety of particles. Among them, excitons (a bond of an 

electron-hole pair) are sensitive to variations in the crystal lattice such as defects or 

active doping. 

For high boron doped layers ([B] > 10
18

cm
-3

), cathodoluminescence technique cannot be 

used. However, we successfully applied this technique for low doped diamonds [34]. 

Usually, dopants are incorporated into the diamond lattice during the growth. However, the 

variety of doped structures available through this technique is reduced. For this, dopant 

implantation through ion implantation is attracting more interest at the present time. 

Doping-induced metal-to-insulator (MIT) transition 

Metal-to-insulator transition in diamond has been widely studied in literature [35, 36], 

concluding in a critical boron (main p-type dopant in diamond) concentration nc between 4 

and 5·10
20

cm
-3

. It has been found that, in p-type diamond, the critical boron doping of the 

MIT coincide with that for superconductive transition. Some of the critical exponents of the 

MIT were determined in [36]. Because diamond has a simple crystallographic structure and 

does not involve magnetism, it motivates special interest, as far as it can become an 

attractive model system for the study of superconductivity in low-dimensional structures of 

controlled dimensions and where disorder can hopefully be restricted to the chemical 

randomness of an ideal substitutional alloy. 

 [B] <   ̴10
14 

at·cm
-3

 insulator 

  ̴ 10
14

 < [B] <   ̴10
20

  at·cm
-3

 semiconductor 

 4·10
20

 < [B] < 5·10
20

 at·cm
-3

 superconductor 
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Critical temperature as a function of the boron content, conductivity vs boron content as a 

given temperature as well as more detailed calculations and discussion on this topic can be 

found in literature [36].  

I.5 Relevant properties for electronic power devices 

Until the advent of single-crystal diamond synthesized by CVD processes, most 

measurements of electronic properties were made on rare, carefully selected Type IIa 

natural diamonds (Type IIa diamonds are very rare in nature and have the lowest levels of 

nitrogen impurity as measured by spectroscopic techniques, below 10
17

cm
-3

, and no specific 

optical absorptions arising from H or B). These measurements have provided benchmarks 

against which CVD diamond can be compared. 

Additionally, where diamond really scores is that it far outperforms any other material in 

terms of its ability to insulate very high voltages across very thin layers of the material (see 

Figure 6 (a), where ON-resistivity vs breakdown field is plotted for various materials). The 

lower the insulation strength the more base material you need to start with (which is a big 

issue when wide bandgap semiconductors are already at least 10 times the cost of silicon), 

but more importantly the slower the device operates - which is why, in the case of power 

semiconductors, 6,500V appears to be the ultimate practical limit for silicon insulated gate 

bipolar transistors (IGBTs). 

Systems such as power converters and switches are made of silicon or silicon carbide at the 

moment. Thanks to the superior properties of diamond, the size of such devices could be 

dramatically reduced while the performances would be improved. For instance, thanks to 

the weight gain (less elements, reduced cooling system) and efficiency improvement, the 

use of diamond in public transport sector would allow reducing the losses by a factor of 

three with respect to the use of Si. 

Properties listed in Table 1 also stablishes a relation between the ON-state resistivity and the 

breakdown voltage for different semiconductor materials for power device applications, 

summarized in Figure 6 (b), it can be observed that there is a limitation between them for the 

conventional power devices. To expand information about the relationship between the 

specific ON resistance of the drift region and the maximum achievable breakdown field in 

different materials, we refer to the plot of [37]. 

It can be appreciated that diamond presents promising properties that makes it an ideal 

material for the future power devices. Among these properties, the most relevant for power 
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device operations, compared with its direct competitors, are listed below. We do refer to 

Table 1 to compare diamond properties with those of other semiconductors. 

 We can summarize the main advantages of using semiconducting diamond in power 

devices in three key points, that will be briefly discussed: 

 High thermal conductivity 

 High carrier mobility 

 High breakdown field 

Carrier mobility 

Single-crystal CVD diamond exhibits both the highest electron and hole mobilities at room 

temperature of any wide-bandgap semiconductor, which is clearly an immensely attractive 

property. Electron and hole mobilities of about 4500 cm
2
V

–1
s

–1
 and 3800 cm

2
V

–1
s

–1
, 

respectively, have been measured in intrinsic, single-crystal CVD diamond at room 

temperature. Corresponding values for 4H-SiC are 900 cm
2
V

–1
s

–1 
 for electrons and 120 

cm
2
V

–1
s

–1
 for holes.  

Figure 6: (a) Amount of material needed to isolate 10000V (source: evincetechnology.com) and RON vs 

Breakdown voltage for various semiconductors (b). The shape of this graph stablishes the range of operation 

in which a power device based in different semiconductor can operate properly. 
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Published data [38] indicate that the hole mobility in diamond drops as T
–1.5

 in the interval 

300–400 K, which is generally considered to be indicative of acoustic phonon scattering in 

high crystallographic quality, intrinsic samples as assessed by Isberg et al. [38]. However, 

Somogyi [39], points out that this reduction in mobility as a function of temperature (in this 

temperature range) could also be the result of scattering from incomplete ionization of 

common impurities within the diamond material. At temperatures above about 400 K, hole 

mobility falls more rapidly with an exponent in the range –2.5 to –3.66.   

Even so, mobilities of μh > 2000 cm
2
V

–1
s

–1
 at 400 K and μh > 1000 cm

2
V

–1
s

–1
 at 500 K have 

been measured, making high temperature device operation possible. Impurity scattering 

causes the mobility to drop with increasing dopant concentration. Fox et al.[40] have 

measured hole mobility dropping from ~1500 cm
2
V

–1
s

–1
 to ~1000 cm

2
V

–1
s

–1
 in B-doped 

CVD samples with B concentrations in the range 5·10
16

 – 2·10
18

 cm
–3

. Unpublished data on 

Element Six samples have shown a hole Hall mobility of 450 cm
2
V

–1
s–1 for a B 

concentration of ~10
19

 cm
–3

. Thus even highly B-doped diamond can exhibit good hole 

mobility. Of course, in devices where the active region consists of purely intrinsic diamond, 

the drop in mobility with dopant concentration is not relevant; however, the challenge is 

then to achieve impurity-free material. Figure 7 comparison of diamond’s combined carrier 

Figure 7: Comparison of diamond’s combined carrier mobility, bandgap and thermal conductivity with other 

semiconductors (area of circle is proportional to the material’s thermal conductivity). 
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mobility, bandgap and thermal conductivity with other semiconductors [18] (area of circle is 

proportional to the material’s thermal conductivity). 

Saturation velocity 

In high electric fields, the conductivity is determined by the saturation velocity rather than 

by the mobility. The velocity of charged carriers is saturated at high fields by the generation 

of optical phonons in the crystal lattice. A high saturation velocity is advantageous for the 

performance of FETs operating at high frequencies. The saturation velocity, vs, is given by: 

𝑣𝑠 = √
8𝐸𝑜𝑝𝑡

3𝜋𝑚∗
𝑡𝑎𝑛ℎ (

𝐸𝑜𝑝𝑡

2𝑘𝑇
) Eq. 2 

…where Eopt is the energy of (k = 0) optical phonons and m* is the effective mass of the 

charge carriers. High optical phonon energies thus tend to give a high saturation carrier 

velocity. Diamond has the highest optical phonon energy Eopt = 160 meV of any 

semiconductor. Experimentally determined values of vs vary significantly in the literature 

but most measurements indicate vs = 0.85–1.2·10
7
cm·s

–1
 and vs = 1.5–2.7·10

7
cm·s

–1
 for 

holes and electrons, respectively.  

Of the other wide-bandgap semiconductors, only SiC reaches values comparable to those of 

diamond. However, diamond has a real advantage in that its saturation velocity is reached in 

fields of ~10 kV/cm, whereas for SiC, the velocity saturates at fields close to its practical 

electrical breakdown strength. Such high fields can be very difficult to approach in devices.  

Carrier lifetime 

Carrier lifetime (τ) is important in designing bipolar (minority carrier) components. It is 

equally important for devices where electron-hole pairs are generated by radiation, such as 

radiation detectors. For unipolar devices, the recombination lifetime is of less interest. 

However, a high carrier lifetime is an indication of a low impurity and defect concentration, 

and thus an important material quality indicator. Carrier lifetimes of more than 2 μs have 

been measured in single crystal CVD diamond, which is similar to the best data in 4H-SiC. 

In natural diamond, lifetimes of less than a nanosecond are typical. The higher τ is, the 

higher the diffusion length L is, thus improving the detectivity. On the other hand, lower τ 

values are useful for fast switching applications, like those of high frequency operation 

devices. Finally, the higher the purity of the material, the higher the τ, dopants makes to 

decrease the τ value. 



I.6 Motivation: impact of the interface configuration in diamond devices 

 

39 

 

Dielectric breakdown field  

For many devices, a semiconductor material with a high electric breakdown field is 

desirable. This is true not only for power devices, such as diodes and switches intended to 

block several kilovolts, but also for high-frequency FETs. The reason is that, if higher 

electric fields can be tolerated, the devices can be designed with smaller dimensions, which 

results in faster switching. Intrinsic breakdown in semiconductors is inherent to the material. 

It results from impact ionization and subsequent avalanche breakdown.  

On the other hand, extrinsic breakdown at defects is dependent on crystalline quality and 

improves with better quality material. Diamond exhibits the highest predicted breakdown 

field of any semiconductor with values in the range 5–10 MV·cm
–1

 to be reasonably 

expected. In contrast, 4H-SiC and GaN exhibit measured breakdown fields of 3 MV·cm
–1

 

and 5 MV·cm
–1

, respectively. 

Thermal properties 

Diamond has the highest thermal conductivity of any material known. High-purity, single-

crystal CVD diamond has a thermal conductivity in excess of 2200 Wm
–1

K
–1

 at room 

temperature, falling to around 700 Wm
–1

K
–1

 at 773 K.  

The extremely high thermal conductivity of diamond enables diamond-based devices to 

handle high powers more simply. This is because the first stage of thermal management, 

getting any heat away from the point at which it is produced, is facilitated by the device 

itself rather than by an add-on solution. In some integrated circuits, a MOSFET is 

surrounded by a thick oxide (called the field oxide to distinguish it from the gate oxide) or a 

trench filled with insulator to electrically isolate if from adjacent devices. 

I.6 Motivation: impact of the interface configuration in 

diamond devices  

The carrier flow across the device layers in MOSFETs or diodes, is based on the 

electrostatic control of the band curvature at the oxide-semiconductor or metal-

semiconductor interface. The latter is achieved by modifying the biasing conditions. Thus, 

bands fitting and band bending at the metal-diamond interface should be precisely 

controlled. Impurities at this interface modify the band profile and, thus, the device is very 

sensitive to such aspects. 
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Nowadays, commercially available Schottky diodes and MOSFETS are based on SiC. 

Before SiC, commercial MOSFET were formed only with Si, because sufficient electronic 

passivation of dangling bonds at the semiconductor surface could only be achieved by 

thermally grown SiO2 as the gate dielectric. The fact that thermal oxidation of SiC also 

creates SiO2 was a significant motivating factor to attempt the development of MOSFET in 

SiC.  

Numerous problems were solved, but one significant problem persisted for a long time: 

electronic passivation of the SiC-SiO2 interface, created by either dry or wet oxidation of 

SiC, remained insufficient because the electrons attracted to the surface of SiC by the gate 

voltage would be trapped by a very high density of active defects at the interface. This 

problem was tentatively solved in SiC by nitriding the SiC-SiO
2
 interface, either grown or 

annealed in an NO atmosphere at temperatures above 1000ºC [41]; but still interfacial 

problems remain to produce reliable SiC MOSFETs. 

However, such technological step has not been successfully solved in diamond, mainly 

because surface properties of diamond are quite different between hydrogen-terminated (H-

terminated) and oxygen-terminated (O-terminated) surfaces. H-terminated diamond has p-

type surface conductivity even in undoped diamond [42]. Thus, undoped H-terminated 

diamond has potential for electronic device applications, because of its p-type surface 

conductivity. On the other hand, O-terminated diamond is insulating. This means that the O-

terminated surface has different electrical properties from the H-terminated surface.  

The H-terminated surface is positively polarized due to the polar covalent bonding of H-C. 

In the H-terminated surface, the difference in electronegativity
6
 between carbon (2.54) and 

hydrogen (2.1) partially induces the electron move from hydrogen atoms to carbon atoms. In 

contrast, the O-terminated surface is negatively polarized, because the electronegativity of 

oxygen (3.44) is larger than that of carbon [43]. Thus, the termination of the diamond 

surface is a key parameter that will govern the electrical properties of the interface: 

Hydrogen-terminated diamond surfaces: 

Diamond hydrogenated surface shows a negative electronic affinity of -0.9eV [44]. 

Lower potential barriers are implemented on the hydrogen-terminated diamond 

surfaces, due to the dipole H
+υ

-C
-υ

 [45, 46] responsible for the negative electron 

                                                      

6
 Electronegativity, symbol χ, is a chemical property that describes the tendency of an atom or a 

functional group to attract electrons (or electron density) towards itself. An atom's electronegativity is 

affected by both its atomic number and the distance at which its valence electrons reside from the 

charged nucleus. The higher the associated electronegativity number, the more an element or 

compound attracts electrons towards it. 
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affinity of these diamond surfaces (where υ is the averaged fraction of the 

elementary charge per atom). However, chemical stability is not guaranteed at 

temperatures as high as in the oxygen-terminated case, and reverse current densities 

turn out to be hardly weaker than 10
-7

 A/cm
2
 at room temperature, still higher than 

the thermionic limit [47, 48]. 

Oxygen-terminated diamond surfaces: 

Diamond oxygenated surface electronic affinity is reported between 1.0 and 1.7eV 

[44, 49, 50]. In case of oxygenated diamond surfaces, potential barriers near or 

higher than 2eV, stable at temperatures higher than 500ºC have been obtained 

during the development of this thesis, but reverse current densities and ideality 

factors in Schottky Barrier Diodes were much greater than expected from the 

thermionic mechanism alone at least at room and moderate temperatures. 

Because of an inverted electric dipole at the oxygenated surface of diamond, the 

largest potential barriers are generally obtained with either noble (Au) or transition 

metals deposited on this type of surface [51], but some authors shows that thermal 

treatments up to 500 or 600ºC are able to decrease the barrier height down to 1.2eV 

[52], probably because of the cancellation of the electric dipole O
-υ’

-C
+υ’

, still 

preserving a good adhesion of the metallic layer. 

In this respect, diamond surface oxygenation is known to be an efficient way to 

minimize electronic states on diamond surface. Unfortunately, the Schottky barrier 

height of oxygen-terminated surfaces are generally larger than 2eV, meaning high 

forward losses. Moreover, these structures can be thermally unstable due to 

dissociation of oxygen bonds. 

For that, we will focus on the of oxygen-terminated diamond/metal and diamond/oxide 

interfaces as a key problem to be solved. Additional knowledge is required and will help to 

reduce the density of active defects present in the interface, thus leading to performance 

improvements in the related power device. 

I.7 Objectives: unipolar devices studied in this work 

Building well defined interfaces at nanometer scale is especially necessary for electrical 

rectifiers, which can gain high benefits from the bulk properties of boron doped diamond 

(like it very high thermal conductivity, hole mobility and electrical breakdown field) if 

specific properties of the interface are also fulfilled. 
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These are mainly the good adhesion, thermal and chemical stability at elevated 

temperatures, compatible with the superior characteristics of diamond and potential barriers 

ensuring both low electrical losses under forward voltage and minimal reverse currents even 

at high temperatures. In fact, the main problem to make efficient power devices is the large 

ionization energies of the acceptor and donor impurities: 380 meV for the boron acceptor 

and 570 meV for the phosphorus donor. The ionization rate of dopants at room temperature 

is low and the resulting high series resistance of the active layer is not compatible with some 

device operation (like metal semiconductor field effect transistor (MESFET), bipolar 

junction transistor (BJT), or junction field effect transistor (JFET)).  

These poor rectifying current-voltage characteristics have been assigned to inhomogeneous 

and defective interfaces, especially with carbide forming metals [51, 53, 54]. In order to 

overcome this problem, solutions based on two dimensional (2-D) hole gas are under 

investigation:  

(i) H-terminated diamond field effect transistor (FET) using hole accumulation 

layer. Such transistors demonstrate high frequency operation but deteriorate 

under high temperature conditions [55]. 

(ii) Boron δ-FET consisting on a thin heavily doped (metallic) layer between 

two intrinsic layers resulting theoretically in high mobility (due to 

delocalization of carrier away from ionized impurities induced by 

confinement). However, obtaining a very thin layer (<2 nm needed [56]) is 

a technological challenge.  

(iii) Diamond/nitride heterojunctions FET [57] has been recently proposed and 

their electronic properties are under investigation at this moment. 

In power electronics, the field effect transistor and the Schottky diode are two 

complementary switches for the commutation cell in a power converter. Recently, in the 

framework of collaboration between Institut Néel (France) and NIMS (Japan), a 10kV 

diamond Schottky diode was reported [58].  

In order to study the relation between the diamond-interface configuration and the undesired 

electric behavior, several architectures and metallic stacks are investigated: 

a) Schottky Barrier Diodes: Oxygen-terminated diamond-metal interfaces are the 

basic component of power SBDs. Here, we will study the thermal evolution of the 

oxygen-terminated surface in relation with the contacting metal stack. For that, two 

different metals will be used: 

a. Zr , that is an easily oxidizable metal, which is expected to be able to hold 

oxygen at the interface, even at high temperatures. 
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b. WC which is a carbide-formed metal, and is expected to produce better 

stability up to 600K, due to the formation of an interfacial bonding between 

WC and diamond 

b) MOS Al/Al2O3/diamond capacitors are needed for the development of MOSFET 

structures. Here, we study the effect of the oxygen termination in different diamond 

MOS capacitors, as well as we evaluate the impact of the oxide thickness variations 

in the electric response of the related device. 

c) MOS δ-FET was created once reliable and reproducible diamond MOS structures 

were improved. Here, we do an attempt for creating a diamond-based FET based in 

an oxygen-terminated diamond surface and a δ-shaped channel. 

We can summarize the main goals to be achieved in this work as follow: 

 Contribute to improving the definition of interfaces at nanometer scales in diamond-

based power devices. 

 Nano-characterize the effect of thermal treatments in a variety of oxygen-terminated 

diamond-metal interfaces. 

 Relating the interface characteristic with the corresponding electrical behavior of 

the related device. 
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Chapter II: Materials and 
methods 

 

 

In this chapter, we briefly introduce the different samples/devices that have been 

characterized during this PhD project. A description of the growth process and a review of 

each final structure will be presented. Later on, we will introduce the some key techniques 

that have to be used for the nano-characterization of diamond-contact interfaces.  

II.1 Description of the samples: Here, we present the different specimens and 

interfaces that have been nano-characterized in this work, structured as follow: 

 Diamond-based Schottky Barrier Diodes 

 Metal-Oxide-diamond structures 

 Diamond δ-doped MOSFET 

II.2 Experimental techniques used for the chemical and structural nano-

characterization of the previously presented interfaces are briefly presented as 

follows: 

 Focused Ion Beam (FIB) 

 Damages produced by FIB operations 

 EELS analysis of the interface 
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II.1 Description of the samples 

During this work, a variety of diamond-based electric devices will be studied. Here, we 

summarize the structure of all the studied samples with their respective label. We will also 

present a brief description of the growth process of each device. 

Diamond-based Schottky Barrier Diodes  

Diamond-based SBD are composed by an oxygen-terminated diamond surface and a 

metallic stack, the resulting diamond/metal contact is characterized (structurally and 

electrically) before and after each annealing step.  

To do the oxygen termination in the diamond surface, a Vacuum Ultra-Violet treatment is 

carried out [59], as illustrated in Figure 8. The fabrication process of the SBD structures is 

produced according to the following sequence: 

1. Hydrogen-terminated surface, resulting from the MPCVD growth of the boron-

doped homoepitaxial diamond film 

2. VUV-light illumination of the oxygen atmosphere. It’s difficult to remove 

hydrogen-termination with the commonly used UV/ozone treatment (based on a 

low—pressure mercury lamp [43]). The VUV/ozone treatment used here is a 

convenient and effective mean to form an oxygen-terminated diamond surfaces 

[59]. 

3. Oxygenation of the surface 

4. WC contact deposition (magnetron sputtering [60]). 

Figure 8: Schematic description of the fabrication process flow of the SBD using VUV/ozone treatment. 
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The resulting structures are expected to present an oxygen-content layer between the 

diamond substrate and the metal stack. However, oxygen termination can be altered by the 

metal sputtering, as will be shown in future chapters. 

Note that oxygen termination is expected to have an impact in the electric behavior of the 

related device, meaning that a nanostructural characterization of the interface is needed. 

Here, we study two different approaches for SDB structures: WC-based and Zr-based SBDs.  

  #1. WC-based SBD
7
 

To create WC-diamond SBD, a lightly boron-doped diamond layer, with an acceptor 

concentration of NA≈10
15

cm
3
, were grown by microwave plasma-assisted chemical vapor 

deposition (MPCVD) on 3x3mm
2
 (100)-oriented diamond substrate HPHT type-Ib single 

crystal. Graphitic phases remaining on diamond after the epitaxy were eliminated by a 

boiling acids mixture. Ohmic contacts made of Ti/Au were deposited on the four corners of 

the p-layer surface by E-beam and annealed under vacuum at 600C during one hour.  

After the creation of the ohmic contacts, the p-layer surface was oxidized during 30 min by 

a vacuum-ultraviolet light (VUV)/ozone treatment at room temperature. Finally, a 1:1 

stoichiometric WC was deposited through a metallic shadow mask by conventional 

magnetron sputtering, whose base pressure was less than 10
-6

Pa, for making Schottky 

contacts. The resulting structure is presented in Figure 9. 

                                                      

7
 WC-based Schottky barrier diodes were designed and fabricated by A. Fiori, T. Teraji and Y. 

Koide, members of the National Institute for Materials Science. 1-1 Namiki, Tsukuba, Ibaraki 305-

0044, Japan. 

Figure 9: (a) Schematic of the final WC-based SBD structure. (b) SE image of the bulk specimen, WC 

contacts can be appreciated all over the surface. 
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#2. Zr-based SBD
8
 

For the fabrication of the diode, active layer (p
-
 layer) is grown on a highly conductive epi-

layer (p
+
 layer) grown on an insulating diamond substrate. This design is generally used in 

order to get an electrical behavior close to that of the vertical structure, as shown in Figure 10 

(a). The active layer is etched back in order to fabricate the ohmic contact on the top of the 

highly doped layer, thus delineating the pseudo-vertical structure. This fabrication process  

involves the epitaxy of active and p
+
 layer, the ohmic contact fabrication and the Schottky 

contact deposition. 

This choice was motivated by the current unavailability of commercial electrical grade 

highly conductive diamond substrates. The latter is, probably, the major obstacle towards 

vertical diamond Schottky diodes fabrication (even when vertical structures are the optimal 

geometrical configuration for SBDs). 

To do so, heavily boron doped (p
+
) and non-intentionally doped (p

-
) homoepitaxial diamond 

layers were grown. First, a 200nm thick p
+
 layer with a nominal doping level of 10

20
at·cm

-3
 

was grown in order to use it as a substrate for a 1.3µm thick p
-
 layer (with an average 

doping close to 10
15

cm
3
). An Inductively and Capacitively coupled Plasma (ICP) etching 

step was performed to reduce the p
–
 layer to a 2x2mm

2
 square centered at the middle of the 

                                                      

8
 Zr-based Schottky barrier diodes were designed and fabricated by A. Traoré, P. Muret, A. Fiori, D. 

Eon, E. Gheeraert and J. Pernot, members of the CNRS, Institute Néel, F-38042 Grenoble, France. 

Figure 10: (a) Schematic of the final Zr-based SBD structure. (b) SE image of the bulk specimen, studied 

Schottky barrier diodes corresponds with the four squared-shaped contacts at the center of the sample. 
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p
+
 layer, thus delineating a pseudo vertical 

Schottky diode structure. Then, an ozone 

treatment produced by deep UV light was 

performed to passivate the drift layer surface 

before Schottky contacts deposition. Finally, an 

electron beam evaporator was used to deposit Zr 

contacts and the first metallic material was 

subsequently covered with different cap layers 

to obtain the metallic stack. 

As for the vertical structure, the diode 

performance will be in part related to the crystal quality of the p
+
 layer and furthermore to 

its doping level. A high quality p
+
 layer will favor the minimization of defects inside the ac  

tive layer (p
-
 layer). Moreover, this layer has to be sufficiently doped to get a metallic 

behavior to minimize its contribution to the diode serial resistance and achieve a negligible 

ohmic contact resistance. The resulting final structure is presented in Figure 10. 

Metal-Oxide-diamond structures
9
  

The studied Al/Al2O3/diamond MOS structures were reported by Chicot et al in [61]. Such 

structures are here characterized by a combination of TEM techniques. In such structures, 

the Al/Al2O3 stack is designed to act as gate electrode on a boron-doped epitaxial diamond 

layer. The latter were grown in a microwave plasma assisted chemical vapor deposition 

(MPCVD) reactor on Ib high pressure high temperature (HPHT) (100) diamond substrate. 

#3. Oxygen-terminated diamond MOS – 10nm oxide 

Structure #3 consists in a B-doped diamond layer with a boron concentration of around 

10
17

cm
-3

. The deposition was performed at 910
o
C with CH4/H2=2% and B/C=2 ppm. Then, 

an ohmic contact (Ti/Pt/Au annealed at 750
o
C under high vacuum) was evaporated directly 

on the epitaxial layer to act as reference contact for capacitance measurement. After the 

creation of the ohmic contacts, diamond surface oxygenation was performed by deep UV 

ozone treatment [62].  

                                                      

9
 Oxygen-terminated diamond MOS structures were designed and fabricated by G. Chicot, P. Muret, 

A. Maréchal, E. Gheeraert and J. Pernot, members of the CNRS, Institute Néel, F-38042 Grenoble, 

France. 

Table 2: Summary of the Schottky Barrier 

diodes studied in this work, contacting metal 

and annealing temperature are presented. 

 Contact 

metal 

Annealing 

temperature (K) 

#1A WC 300 

#1B WC 600 

#1C WC 700 

#2A Zr 300 

#2B Zr 623 

#2C Zr 723 
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 Finally, photolithography process was used in order to selectively deposit the dielectric 

oxide. Then, a 10 nm Al2O3 dielectric oxide was deposited by low temperature (100
o
C) 

ALD, to preserve the lithography resist. The ALD system used in the present experiments 

was Savannah 100 from Cambridge NanoTech. The precursor used was trimethylaluminum 

(TMA), and the oxidant was H2O. Using the same window in resist, the dielectric has been 

covered by a 100 nm thick aluminum metal. The final structure is presented in Figure 11 (a). 

#4. Oxygen-terminated diamond MOS – 20nm oxide 

Following the same procedure than in sample #3, an oxygen-terminated diamond MOS 

structure with a 20nm oxide thickness was grown. In this case, a heavily doped layer was 

grown between the substrate and p-layer with the same technique but with CH4/H2=4%, 

B/C=1200ppm at 830
o
C. Ohmic contacts were deposited in the same sequence and 

geometry of #3. The resulting structure is presented in Figure 11 (b). 

Diamond δ-doped MOSFET  

To study diamond δ-FETs, we start by characterizing two multilayer structures (samples #5 

and #6), containing thin boron doped diamond layers with thickness between 20-60nm. 

These samples will be used to show the methodology here used to measure thickness and 

doping of the delta structure. 

#5. Stack of thick diamond doped layers 

Samples #5 and #6 were growth by MPCVD (Microwave Plasma Chemical Vapor 

Deposition) in a vertical silica tube reactor as described elsewhere [63] on a (100)-oriented 

HPHT (high pressure high temperature) type Ib diamond substrate. After a 2 h cleaning with 

Figure 11: (a) Schematic of the final MOS structures in samples #3 and #4.  (b) Schematic view of MOS-

Ohmic structure. (c) Optical image of #4 in which MOS and ohmic contacts are highlighted and related with 

the previously presented schematic. (d) SE image of #4, white-dashed circle is used to highlight one of the 

studied MOS structure. 
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pure hydrogen plasma at 880ºC, undoped (p
-
) and heavily boron-doped (p

++
) epilayers have 

been grown alternatively from respectively H2/He/CH4/O2 and H2/He/CH4/B2H6 gas 

mixtures without turning off the plasma.  

For the purpose of the related study, the p
++

 epilayers of sample #5 have been labelled from 

L1 to L4 according to the growth sequence. After the growth of each heavily p
++

 layer, a 

specific etch-back procedure was performed during 3 min (L2), 6min (L3), and 10 min (L4) 

using a mixture of hydrogen and oxygen in the plasma. So, #5 consists in a multilayer stack 

including four thick (nominally 20–60 nm thick) and highly boron doped homoepitaxial 

diamond layers  

 #6. Single, thin diamond δ-doped layer 

After the characterization of #5, sample #6 was grown. Sample #6 is including only one 

boron d-doped layer, to evidence the ultimate doping level and thickness that can be reached 

in the related study. 

#7. Multilayer structure of “thick” diamond δ-doped layer 

To study boron doping characterization by using TEM, a 001-multi-layer structure have 

been studied. Diamond films were grown on Ib-type HPHT substrates from Sumitomo 

Electric on 001-oriented substrate orientation.  

A chemical cleaning process was carried out to remove the superficial contamination 

including non-diamond carbon phases, before growth. Prolonged 0.3–2 h H2 plasma has 

been applied to eliminate residual contamination and to etch away the damaged surface 

layer resulting from the substrate polishing.  

Diamond growths were performed in a NIRIM-type Microwave Plasma Chemical Vapor 

Deposition (MPCVD) reactor, under 50 Torr. Growth parameters were adjusted to achieve 

high boron doping levels, (0.5% CH4/H2, 6000ppm B/Cgas). 

#8. Single-layer “thin” diamond δ-doped structure 

After the characterization of #7, sample #8 was growth. Sample #8 is including only one 

boron d-doped layer, to evidence the ultimate doping level and thickness that can be reached 

in the related study (growth parameters are the same used on #7). 
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#9. Diamond δ-FET
10

 

A delta-FET in its simplest for is represented on Figure 12 (c). In this architecture, the role of 

the channel is played by the delta layer. This delta layer is grown on a thick NiD layer called 

buffer layer and covered by a thinner NiD layer called cap layer. The drain and source are 

ohmic contacts which connect the delta layer channel through the cap layer. For matter of 

convenience, these contacts are directly deposited on the cap layer before being annealed to 

reduce the contact resistance by mean of a titanium-carbide formation at the interface. 

Therefore the drain and source are connected to the delta layer through the cap layer, but, 

thanks to the low thickness of the cap layer and macroscopic contact size, the induced 

access resistance is negligible with respect to the resistance of the channel. 

Delta structure was growth by using the following recipe: 

1. Creation of a non-intentionally-doped (NiD) buffer layer 

2. Controlled growing of the delta layer 

3. Etching process (to avoid back-edge effects) 

4. Growing of a NiD cap layer 

Table 3 summarizes the etching and growth steps as well as the different mixtures used for 

growing the delta. MOS-gate contacts as well as ohmic contacts were fabricated by 

following the procedure already shown in #3. In this sample, different geometries for δ-

FETs were fabricated (as can be appreciated in Figure 12 (a)) in order to check for an 

optimum electric response that minimizes edge-related effects and leakages. 

                                                      

10
 Oxygen-terminated diamond δ-FET structures were designed, fabricated and characterized by J. 

Piñero and A. Maréchal in the facilities of the CNRS, Institute Néel, F-38042 Grenoble, France. 

Figure 12: (a) Picture of different FET architectures over a diamond-delta structure and (b) schematic of the 

structure which shows best electric behavior. (c) Schematic of a diamond delta-FET in its simplest form, red 

squared region is used to highlight the electric bound between the source-drain contacts and the δ-layer.  
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II.2 Experimental techniques 

 

To study chemical and structural properties at nanoscale, Transmission Electron Microscopy 

(TEM)-related techniques are needed. TEMs are capable of imaging at a significantly higher 

resolution than light microscopes, owing to the small de Broglie wavelength of electrons. 

This enables the instrument's user to examine fine detail (even as small as a single column 

of atoms, which is thousands of times smaller than the smallest resolvable object in a light 

microscope).  

TEM forms a major analysis method in a range of scientific fields, in both physical and 

biological sciences and, of course, semiconductor research. Alternate modes of use allow for 

the TEM to observe modulations in chemical identity, crystal orientation, electronic 

structure and sample induced 

electron phase shift as well as 

the regular absorption based 

imaging. Further information 

about electron microcopy-

based techniques (scanning 

and transmission) can be 

found in Annex I.  

In this PhD dissertation, we 

focus on the study of 

diamond-related interfaces, 

whose nanostructure and 

atomic distribution is 

expected to explain the 

Table 3: Etching and growth rate for different mixtures used for growing (and etching) delta-structures in the 

surface contact mode (evaluated by ellipsometry) 

 

Step Press 

(Torr) 

H2 

(sccm) 

CH4/H2 O2/H2 B/C(ppm) Power 

(W) 

T 

(ºC) 

Duration 

(min) 

1 50 200 0,75 0,32  311 903 50 

2 50 2000 0,5  6000 228 830 1 

3 50 200  0,25  311 906 5 

4 50 200 0,74 0,32  311 915 3 

 

Figure 13: Schematic picture describing the architecture of a 

diamond Schottky barrier diode, showing a diamond - metal contact 

and detail of the oxygen-terminated interface, showing oxygen 

distribution after metal sputtering.  
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details of the related device behavior. Such interfaces exist between the oxygen-terminated 

diamond surface and the oxide or metal contact, as spotted in Figure 13. In Figure 13, a 

schematic view of a metallic stack over an oxygen-terminated diamond surface (Schottky 

contact) is presented. On the other hand, detail of Figure 13  shows diagram of the atomic 

distribution in the studied interface. 

In this sense, to have access to the previously exposed interfaces in all the samples 

presented in II.1 Description of the samples, specific tools have to be used. Among them, 

the most important are: 

 The Focused Ion Beam, that will be used to prepare electron-transparent diamond 

specimens 

 The Electron Energy Loss Spectroscopy mode of a TEM, that will provide chemical 

information as well as a mapping of the chemical distribution in a cross-section 

interface 

 The High Angle Annular Dark Field, which will be used to determine the thickness 

of the δ-layers in diamond-based δ-FET devices. 

Focused Ion Beam (FIB) 

To analyze diamond using electron microscopy techniques it’s necessary, in most of the 

cases, get electron-transparent samples. It means that we need really thin diamond samples 

(around 70nm thickness). To get electron-transparent samples as well as to realize a cross 

section analysis, diamond has to be machined… but this is not so easy. Diamond extreme 

hardness makes impossible a traditional polish to get electron-transparent specimens! This is 

the main cause to use Focused Ion Bean techniques when working with diamond.  

The Focused Ion Beam (FIB) is a special type of SEM with an additional column. This 

second column is tilted a specific angle and has a different source to work with Ions (Ga
+
 in 

most of the cases). Gallium irradiation allows nano-milling samples. When high energetic 

Ga
+
 ions impact in the surface of a sample some atoms of the bulk materials are sputtered. 

This phenomenon combined with an appropriate design of the geometry of the “hole 

produced” and with different angles of incidence, makes possible the sample preparation. A 

FIB instrument looks and operates much like a scanning electron microscope (SEM).Both 

instruments rely on a focused beam to create a specimen image; an ion beam for the FIB and 

an electron beam for the SEM. For both instruments, the intensity of the secondary electrons 

produced at each raster position of the beam is displayed to create an image of the sample. 

In the FIB, secondary ions may also be detected and used to construct an image of the 

sample. Images having magnifications up to ~ 100 000 times are available using a FIB with 

a very good depth of field.  
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In our experimental setup, the operation of a FIB begins with a liquid metal ion source 

(LMIS). A reservoir of gallium (Ga) is positioned in contact with a sharp Tungsten (W) 

needle. The Ga wets the needle and flows to the W tip. A high extraction field (>10
8
 V/cm) 

is used to pull the liquid Ga into a sharp cone whose radius may be 5–10 nm. Ions are 

emitted as a result of field ionization and post-ionization and then accelerated down the FIB 

column. The use of Ga is advantageous for two reasons: 

1. Ga has a low melting point and, therefore, exists in the liquid state near room 

temperature. 

2. Ga can be focused to a very fine probe size (<10 nm in diameter). 

FIBs typically operate with an accelerating voltage between 5 and 50 keV. By controlling 

the strength of the electrostatic lenses and adjusting the effective aperture sizes, the probe 

current density (and therefore beam diameter) may be altered from tens of pA to several nA 

corresponding to a beam diameter of ~ 5 nm to ~ 0,5 µm). 

Most of the literature listed in the reference section refers to the conventional FIB method of 

TEM specimen preparation. A detailed description of this method is given in [64-67]. And a 

schematic of the procedure is spotted in Figure 14. Figure 14 (a) shows a cross section diagram 

of a Schottky contact (as in Figure 13) with a protective layer deposited, region of interest 

(O-terminated diamond surface/metal interface) is highlighted. Figure 14 (b) shows the effect 

of the ion beam irradiation; ion milling is used to reduce the thickness of the specimen till 

500nm approximately.  

Figure 15 shows SEM images of the whole procedure, from the original sample (#2 was used 

to illustrate this procedure, see dashed-square in Figure 15 (a)) to the final specimen. White 

arrows are used in Figure 15 (e) to highlight the pre-cut section. As can be noted, a metal line 

is usually deposited on the area of interest to prevent damage and spurious sputtering of the 

top portion of the specimen and to also delineate the location of the area of interest. Typical 

dimensions of the metal line are ~ 1 µm wide, ~ 2 µm high and ~ 30 µm long. Large 

trenches are sputtered on either side of the area of interest using a high Ga
+
 beam current.  

Figure 14: Schematic lateral view of a conventional FIB prepared sample from (a) the initial protective layer 

deposited, (b) creation of both trenches and (c) reduction of the thickness of the specimen. 
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The beam current is reduced and milling is performed on alternate sides of the specimen to 

reduce redeposition of sputtered material onto the surface of the specimen. Milling is 

continued until the membrane is thinned to ~ 100 nm or less (the final thickness of the 

specimen will depend on the information sought and the density of the material, ~70nm in 

case of diamond samples). A finished electron transparent portion of the sample is usually ~ 

5 µm x ~ 20 µm.  An understanding of the sputtering process is important for a 

knowledgeable operation of the FIB. When a Ga
+
 ion is accelerated toward the target 

sample, it enters the sample and creates a cascade of events which results in the ejection of a  

sputtered particle (which may be an ion or a neutral atom). This sputtering mechanism thus 

also results in Ga
+
 implantation into the sample. The primary ion penetration depth is ~20 

nm for 25 keV Ga
+
. The use of enhanced etching may increase the sputtering rate. 

Damages produced by FIB operations
11

 

Beside its high precision, during FIB operations several undesired phenomena take place: 

Gallium implantation, surface amorphization and other associated damages can be 

produced, altering diamond’s optical, structural and electrical properties. These phenomena 

are particularly important in our case, due to the fast tendency of diamond to graphitize and, 

as can be observed in Figure 16, the angle of incidence of ions at the interface is higher than 

                                                      

11
 Influence of the Ga implantation in diamond opto-electronic properties were evaluated by the 

author in a previous work (“CL evaluation of the Ga+ implantation on diamond”, HETECH 2013-

Glasgow, Scottland). 

Figure 15: SEM micrography of a conventional FIB procedure. (a) Original sample, (b) deposition of the Pt 

protective layer, (c) from the initial protective, (c) creation of the trenches, (d) in-sample lamella thickness 

reduction, (e) pre-cut of the structure, (f) transfer from the bulk to the specimen holder, (g) final thickness 

reduction. 
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that of the rest of the lamella due to the difference in hardness between diamond and metal. 

This induces an increase of amorphous C just at the interface. 

 To prevent diamond amorphization, low energy, low incident angle ion beam is used during 

the last steps of the preparation. However, due to the huge difference in the hardness of the 

diamond bulk substrate and the hardness of the metallic stack, undesired damages (like Ga 

implantation or C redeposition) are difficult to avoid when studying diamond/contact 

interfaces. Schematic of a collision 

cascade, provoking damages in the 

diamond lattice and Ga 

implantation is shown on Figure 17. 

Additionally to the previously 

described diamond-surface 

amorphization, further artifacts are 

produced during the FIB 

manipulation of diamond samples. 

The most important artifact to be 

taken into account when studying 

diamond-metal interfaces is the 

bottleneck-shaped interface (see 

Figure 16).  

This bottleneck-shaped interface is 

produced during the last steps of 

the sample preparation procedure, 

Figure 16: Schematic diagram of a collision cascade generated by an incident ion (a), represented only in 

2D. Accelerated Ga+ atoms can be implanted during the milling process, thus damaging the surface of the 

semiconductor (b), the latter is revealed as a thick layer with mixture of graphite and amorphous carbon in 

case of semiconducting diamond. 

Figure 17: Schematic of a diamond-FIB preparation. 

Bottleneck-shaped interface is shown as a consequence of the 

different hardness between the metallic stack and the diamond 

bulk. 
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and is a consequence of the different hardness between the diamond bulk and the metallic 

stack.  

Both effects (diamond-surface amorphization and bottleneck-shaped interface) have to be 

taken into account during TEM observations: 

 Bottleneck-shaped interface distorts EELS diamond mapping, because the relative 

content of amorphous C is higher near the interface. 

 HREM imaging of diamond/metal interfaces are limited by the FIB nanomachining. 

 

EELS analysis of the interface12
 

In electron energy loss spectroscopy, a material is exposed to a beam of electrons with a 

known, narrow range of kinetic energies. Some of the electrons will undergo inelastic 

scattering, which means that they lose energy and have their paths slightly and randomly 

deflected. The amount of energy loss can be measured via an electron spectrometer and 

interpreted in terms of what caused the energy loss. Inelastic interactions include phonon 

excitations, inter and intra band transitions, plasmon excitations, inner shell ionizations, and 

Cherenkov radiation. The inner-shell ionizations are particularly useful for detecting the 

elemental components of a material.  

 

                                                      

12
 EELS data of Figure 18 and Table 3 were obtained at EELS database (https://eelsdb.eu/) 

Table 3: Main EELS transitions shown in this study, as presented in Figure 18 

Peak Energy (eV) Peak Energy (eV) Peak Energy (eV) 

D1 20.7 G1 6.2 C1 4.9 

D2 30.9 G2 32.1 
  

D3 60.9 π* 256.6 
  

D4 266.9 σ* 263.9 
  

D5 272.1 G3 267.9 
  

D6 280.1 G4 274.8 
  

D7 301.7 G5 278.6 
  

  G6 299.8   
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For example, one might find that a larger-than-expected number of electrons comes through 

the material with 285 eV less energy than they had when they entered the material. This is 

approximately the amount of energy needed to remove an inner-shell electron from a carbon 

atom, which can be taken as evidence that there is a significant amount of carbon present in 

the sample. With some care, and looking at a wide range of energy losses, one can 

determine the types of atoms, and the numbers of atoms of each type, being struck by the 

beam. The scattering angle (that is, the amount that the electron's path is deflected) can also 

Figure 18: Typical EELS shape of pure diamond, pure graphite and amorphous carbon. Main transitions are 

labeled and detailed in Table 3 
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be measured, giving information about the dispersion relation of whatever material 

excitation caused the inelastic scattering. 

Finally, typical EELS signature of diamond, graphite and amorphous carbon is shown in 

Figure 18. Main transitions are labeled and summarized in a Table 4. In this section, we have 

focused in the typical diamond, carbon and graphite EELS spectra. However, additional 

information and generalities about EELS technique is presented in Annex I.  
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Chapter III: Diamond-
based Schottky barrier 
diodes 

 

 

Oxygen-terminated diamond-based Schottky diodes for power device applications are 

analyzed in this chapter. Our purpose is to relate its nanostructure to the behavior of the 

oxygen-terminated diamond and, in particular, its relationship with the thermal treatment.   

III.1 Introduction: A brief tour in previous attempts on designing diamond-based 

SBDs is presented. Oxygen-termination in diamond is introduced and discussed. 

Role of the contacting metal is also presented by following the next index: 

 The oxygen termination 

 Conventional vs Schottky diodes for power device applications 

 Choosing a metal 

III.2 WC-based diodes [#1]: WC-based oxygen-terminated diamond SBDs are 

expected to present an optimum behavior at high temperatures. For this, in this 

section, WC-based SBDs will be nano-characterized with a novel EELS 

methodology according to the following index: 

 Current-voltage plot of SBDs  

 Electrical properties 

 Structural analysis of the thermal treatment 

 Interface analysis 
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III.3 Zr-based diodes [#2]: Zr is an easily oxidizable metal, so, oxygen-terminated 

Zr-diamond contacts are expected to fix oxygen and then should show good 

electrical behavior at high temperatures. We will use the EELS methodology 

(defined in III.2) to evaluate the nanostructure of these interfaces. 

 Electrical properties 

 TEM-EELS characterization of the metal-semiconductor interface 

 Variations with thermal treatment 

III.4 Analysis of WC vs Zr-based Schottky diodes: physical behavior of the 

interface: Different behavior of WC-based and Zr-based oxygen-terminated 

diamond SBDs have been evidenced. In this section, we will discuss and compare 

the results obtained in both structures by following the next index: 

 Real metal-semiconductor contacts: Interface states 

 Effect of the thermal treatment on the O-terminated diamond surface 

III.5 Conclusions: Main conclusions derived from this chapter are here 

summarized. 

III.1 Introduction 

The most common function of a diode is to allow an electric current to pass in one direction 

(called diode’s forward direction), while blocking the current in the opposite direction 

(reverse direction). The diode unidirectional behavior is called “rectification”, and is used to 

convert alternating current to direct current, including extraction of modulation from radio 

signals in radio receivers. 

However, diodes can have a more complicated behavior than this simple on-off action due 

to their nonlinear current-voltage characteristics. Semiconducting diodes begin conducting 

electricity only if a certain threshold voltage or cut-in voltage is present in the forward 

direction (a state in which the diode is said to be forward-biased). The voltage drop across a 

forward-biased diode varies only a little with the current, and is a function of temperature. 

The current-voltage characteristic of a diode can be tailored by the choice of the 

semiconductor material and doping. Thus, diamond-based diodes are expected to act as 

excellent rectifiers (due to both, its high breakdown voltage and its high electron/hole 

mobility). 
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The different architectures for designing diodes depend on its applications. Among them, 

the following structures can be mentioned: to regulate voltage (Zener diodes), to protect 

circuits from high voltage surges (avalanche diodes), to electronically tune radio and TV 

receivers (varactor diodes), to generate radio-frequency oscillations (tunnel diodes, Gunn 

diodes, IMPATT diodes), or to produce light (light-emitting diodes). 

Diamond Schottky barrier diodes (SBDs) have been intensively studied during the past half-

decade, in order to fabricate high-performance rectifiers fulfilling both high-voltage 

resistance in reverse operation and low on-resistance in forward operation, which are 

difficult to achieve using common semiconductor materials. In addition, because of the 

larger band-gap of 5.5 eV and strong mechanical hardness of semiconducting diamond, 

diamond-based SBDs are expected to be operated under higher temperatures above 200 °C. 

Most studies consider homoepitaxially grown boron-doped p-diamond (100) films [58]. 

Several interesting results have been reported up to date for diamond SBDs. 

Simultaneously, problems that should be solved before practical applications are been 

clarified gradually. In other words, experimentally obtained device performance has not 

reached the theoretically expected performance in terms of the physical parameters of 

semiconducting diamond. 

Among the aspects that should be improved, it can be mentioned the larger reverse current 

and lower breakdown voltage of diamond SBDs present severe obstacles for device 

applications. In most cases, the reverse current of p-diamond SBDs increased rapidly with 

the bias voltage increase. Increasing features of reverse current cannot be explained using 

the standard current transport model, which is represented by Schottky barrier lowering [68] 

(see A.I Metal – Semiconductor interfaces for more details), even though the acceptor 

concentration is rather low. Thermionic field emissions and field concentrations at the 

electrode fringe are possible causes of the enhanced reverse current level [69]. The electric 

breakdown field of diamond SBDs was experimentally less than 4 MV/cm [70], which is 

less than one-third of the expected value [71]. 

Finally, the most important parameters that will govern the behavior of diamond-based 

SBDs are the diamond termination (as described in I.6 Motivation: impact of the interface 

configuration in diamond devices) and the choice of the metal contacting the diamond 

surface. Both parameters will be studied in this chapter. 

The oxygen termination 

Other key problems to be solved in diamond-based SBDs are dispersion and thermal 

stability of the diamond Schottky interface. This problem might derive from inhomogeneous 
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and unstable oxygen termination of diamond surface. In most common semiconductors, 

oxygen species at the Schottky interface can be removed to inhibit the degradation of 

interface properties. However, the oxygen-terminated diamond surface is frequently used 

[72] for diamond-based SBD fabrication to suppress external leakage current passing 

through the hydrogen-terminated diamond surface. In addition, the Schottky barrier height 

of diamond is altered drastically by the condition of surface termination [73]. This fact 

suggests that the performance of diamond SBD is increased by improving the surface 

oxidation condition. 

The wet-chemically oxidized diamond surface has termination groups of ether (C-O-C), 

carbonyls (C=O), and hydroxyls (OH) [74]. In the conventional diamond SBD fabrication 

process, the oxidized diamond samples must be post-annealed (T>800K) after ohmic 

electrode deposition for the formation of the ohmic contact through an interfacial reaction. 

Oxygen termination is not stable at such high temperatures. Therefore, non-terminated areas 

are probably formed on the diamond surface where Schottky electrodes are deposited in the 

following process step. This behavior is presented in Figure 19, where an ideal oxygen-

terminated diamond surface is presented (Figure 19 (a)) together with the probably real 

oxygen distribution (Figure 19 (b)). Finally, Figure 19 (c) shows the effect of the metal 

sputtering in the oxygen termination. Figure 19 (b) also shows all the expected configurations 

for the oxygen termination: C-O-H, C=O, C-O-C and dangling bonds (carbon atoms without 

oxygen termination). 

To obtain better Schottky properties, an alternative diamond surface oxidation process that 

can be applied with a gas phase reaction after ohmic contact formation is indispensable to 

fulfill the non-terminated area by oxygen groups without deterioration of the fabricated 

ohmic contacts. The diamond surface is known to be oxidized by ozone under vacuum 

ultraviolet (VUV) light irradiation. The surface termination was dominated by hydroxyl 

groups [75], producing a homogeneously terminated surface. This process is conducted 

Figure 19: Oxygen-terminated diamond surface after VUV ozone treatment in (a) an ideal situation, (b) a 

real situation (where some places of the diamond surface are not oxygen-terminated) and (c) oxygen-

terminated surface, mixed by metal sputtering. 
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without intentionally heating of the diamond sample. Therefore, diamond surface oxidation 

using ozone under VUV irradiation is a promising method for SBD fabrication. 

In this work, several diamond surfaces were oxidized through VUV irradiation. The 

resulting oxygen-terminated diamond SBDs, treated with different annealing processes, will 

be analyzed and characterized in this chapter. 

Conventional vs Schottky diodes for power device applications 

In electronics, a diode is a two-terminal electronic component with asymmetric 

conductance; it has low (ideally zero) resistance to current in one direction, and high 

(ideally infinite) resistance in the other. A semiconductor diode, the most common type up 

to date, is a crystalline piece of semiconductor material with a p–n junction connected to 

two electrical terminals. Nowadays, most diodes are based on silicon, but other 

semiconductors such as selenium or germanium are sometimes used too. 

A schematic band diagram of p-n classic junction is shown in Figure 20 (a). The subsequent 

charge carrier diffusion process implies the creation of an electric field and, thus, a potential 

contact. This structure allows an electric current to pass in one direction (called diode’s 

forward direction), while blocking current in the opposite direction (the reverse direction). 

This unidirectional behavior is called rectification.  Main characteristics of pn-type and 

Schottky barrier diodes are summarized in Table 4. 

On the other hand, the Schottky diode is based in a metal/semiconductor interface with a 

low forward voltage drop and a very fast switching action. When forward current flows 

Figure 18: (a) Energy band diagram of a classic p-n diamond junction, Fermi levels are aligned and 

conduction/valence bands are bended in the interface. (b) Energy band diagram of a metal/p-type 

semiconducting diamond contact, Schottky barrier is created in the vicinity of the metal/semiconductor 

interface. 
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through a diode, there is a small voltage drop across the diode terminals. A normal silicon 

diode has a voltage drop between 0.6–0.7 volts, while a Schottky diode voltage drop is 

between approximately 0.15–0.45 volts
13

. This lower voltage drop can provide higher 

switching speed and better system efficiency, which makes them useful in voltage clamping 

applications and prevention of transistor saturation.  

They can also be used as low loss rectifiers
14

, although their reverse leakage current is, in 

general, higher than that of other diodes. Schottky diodes are majority carrier devices and, 

so, do not suffer from minority carrier storage problems that slow down many other diodes, 

so they have a faster reverse recovery than p–n junction diodes. They also tend to have 

much lower junction capacitance than p–n diodes, which provides for high switching speeds 

and their use in high-speed circuitry and RF devices such as switched-mode power supply, 

mixers, and detectors [76]. 

To create a Schottky barrier, a metal–semiconductor junction is formed between a metal and 

a semiconductor (instead of a semiconductor–semiconductor junction as in conventional 

diodes). Typical metals are molybdenum, platinum, chromium or tungsten, and certain 

silicides; the semiconductor typically is n-type silicon. The metal side acts as the anode and 

n-type semiconductor acts as the cathode of the diode. This Schottky barrier results in both 

very fast switching and low forward voltage drop.  

                                                      

13
 http://www.datasheetcatalog.com/datasheets_pdf/1/N/5/8/1N5817.shtml 

14
 A rectifier is an electrical device that converts alternating current (AC), which periodically reverses 

direction, to direct current (DC), which flows in only one direction. 

Table 4: Comparison of characteristics of Schottky diode and pn diode, data were obtained from radio-

electronics.com 

Characteristic Schottky diode PN junction diode 

Forward current 

mechanism 
Majority transport 

Due to diffusion currents, i.e. minority 

carrier transport 

Reverse current Results from majority carriers that 

overcome the barrier. This is less 

temperature dependent than for 

standard PN junction. 

Results from the minority carriers diffusing 

through the depletion layer. It has strong 

temperature dependence. 

Turn on voltage Small (around 0.2 V in Si) Comparatively large (around 0.7V in Si) 

Switching speed Fast - as a result of the use of 

majority carriers because no 

recombination is required. 

Limited by the recombination time of the 

injected minority carriers. 
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The choice of the combination of the metal and semiconductor determines the forward 

voltage of the diode. Both n- and p-type semiconductors can develop Schottky barriers; the 

p-type typically has a much lower forward voltage. As the reverse leakage current increases 

dramatically with lowering the forward voltage, it cannot be too low; the usually employed 

range is about 0.5–0.7 V and p-type semiconductors are employed only rarely.  

With increased doping level of the semiconductor the width of the depletion region drops. 

Below certain width the charge carriers can tunnel through the depletion region. At very 

high doping levels the junction does not behave as a rectifier anymore and becomes an 

ohmic contact.  

This can be used for simultaneous formation of ohmic contacts and diodes, as diodes form 

between the silicide and lightly doped n-type region and ohmic contacts form between the 

silicide and a heavily doped n- or p-type region. Lightly doped p regions turns into a 

problem as the resulting contact has too high resistance for a good ohmic contact and too 

low forward voltage and too high reverse leakage to be a good diode. 

As the edges of the Schottky contact are fairly sharp, high electric field gradient occurs 

around them, limiting the reverse breakdown voltage.  Several strategies are used, from 

guard rings to overlaps of metallization to spread out the field gradient. The guard rings 

consume valuable die area and are used primarily for large higher-voltage diodes, while 

overlapping metallization is employed primarily with smaller, low-voltage diodes.  

For power Schottky diodes, the parasitic resistances of the buried N+ layer and the epitaxial 

n-type layer become important. The resistance of the epitaxial layer is more important here 

than for a transistor as the current has to cross its entire thickness. In comparison with the 

power p–n diodes, the Schottky diodes are less rugged.  

The junction lies in direct contact to the thermally sensitive metallization, a Schottky diode 

can therefore dissipate less power than an equivalent-size p–n one with deep-buried 

junction, before failing especially during reverse breakdown. The relative advantage of 

lower forward voltage of Schottky diodes is diminished at higher forward currents, where 

the voltage drop is dominated by the series resistance. Unbiased Schottky contact band 

diagram is shown in Figure 20 (b).  

Compared to other diamond power devices (as bipolar transistor [77], junction field effect 

transistor [78], Schottky-pn diode [79], etc…) Schottky diode is the most promising because 

of the highest breakdown voltage reported (2.5kV [80], 6.7kV [81], 10kV [58], 8-12kV 

[82]) and architectural progress to minimize its serial resistance. Indeed, the high serial 

resistance of the lightly doped Schottky active layer required to get high breakdown field, is 

one of the main limitations of such device. 



Chapter III: Diamond-based Schottky barrier diodes 

 

70 

 

Choosing a metal 

As briefly spotted in Figure 20, the choice of the metal (and thus, the metal work function 

and its respective electronegativity) contacting the oxygen-terminated diamond surface will 

determine key aspects of the related device features. Indeed, Schottky barrier height of 

metal contacts depends on the diamond termination and the annealing process [45].  

According to the nature of the Schottky metal, barrier inhomogeneity may be observed due 

to partial oxygen desorption [83], meaning that Schottky metal selection and surface 

pretreatment are crucial to get low enough barrier heights, low defect density at interface, 

and a thermally stable interface. Two Schottky electrode metals were examined in this 

study: 

 Tungsten carbide (WC) is a carbide preformed metal. Direct bonding between WC 

and the diamond surface is expected to be formed [59] with breakage of the oxygen 

termination during deposition. Carbide preformed metal is a good candidate for a 

high-temperature Schottky contact compared to the carbide forming metal such as 

tungsten because excess extraction of carbon atoms from diamond accompanied by 

vacancy formation is expected to be suppressed. 

 Zirconium (zr) is an easily oxidizable metal that can be combined with an oxygen-

passivated heavily boron doped diamond surface. This procedure could lead to the 

formation of a very stable and uniform ultra-thin oxide film at the interface, which 

acts as a chemical and electrical passivation layer. 

We labelled WC-based SBD as sample #1, and Zr-based SBD as #2. Information about 

growing conditions, oxygen termination procedure and metal deposition process of both 

samples was previously described in II.1 Description of the samples. Such specimens were 

annealed at different temperatures in order to evaluate the relation of the thermal treatment 

with the electrical behavior of both SBDs. Here, Table 5 summarizes the full set of studied 

samples. 

 

Table 5: Summary of the samples studied in 

this work with its corresponding annealing 

temperature 

 Contact 

metal 

Annealing 

temperature (K) 

#1A WC 300 

#1B WC 600 

#1C WC 700 

#2A Zr 300 

#2B Zr 623 

#2C Zr 723 
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III.2 WC-based diodes [#1]  

As first approach to select the Schottky metals, let’s remember that the contact has to ensure 

good adhesion, a thermally and chemically stable interface, and a potential barrier leading to 

optimum forward losses (a low forward voltage drop) and minimal reverse current even at 

high temperatures.  

Conversely to an ohmic contact where a high density of gap states (or interface states) is 

promoted by forming a carbide interface layer (titanium carbide is expected to be formed in 

Ti-diamond ohmic contacts), the main issue towards high performance diodes, fully 

exploiting the diamond's electrical and thermal properties, is to prevent the carbide 

formation while minimizing the interface states. Diamond surface oxygenation is known to 

be an efficient way to minimize electronic states on diamond surface [51], and is known to 

change the band alignment in the diamond surface. This kind of surface termination was 

adopted by several research groups as being the first step of the Schottky contacts 

deposition process.  

As Schottky diodes are supposed to be used as rectifiers, they have to be thermally stable. 

However, thermal dissociation of the oxygen bonds was observed for inter metal such as 

gold [59] (above 500 K) as well as for easily oxidizable metals (like aluminum) due to the 

thermal instability of the oxide material. An alternative solution is to use diamond surface 

oxygenation [59, 84] based in carbide-formed metals, such as tungsten carbide (WC), to 

improve to contact adhesion. These kinds of interfaces are expected to have a better stability 

up to 600K, due to the formation of an interfacial bonding between WC and diamond. 

Summarizing, WC/diamond contacts performed over diamond oxygen-terminated surfaces 

are expected to combine both properties: 

 Oxygen-terminated diamond interfaces in the metal/semiconductor junction will 

minimize the electronic states on diamond surface, thus suppressing external 

leakage currents passing through the hydrogen-terminated diamond surface 

(diamond surface conduction is known to be caused by hydrogen termination [44]).  

 Tungsten carbide metal/semiconductor contact will create WC-diamond bonds in 

the interface. Carbide preformed metal is a good candidate for a high-temperature 

Schottky contact compared to the carbide forming metal such as tungsten because 

excess extraction of carbon atoms from diamond accompanied by vacancy 

formation is expected to be suppressed. 

In our study, after the growing process and the metal deposition (carried out as described in 

Diamond-based Schottky Barrier Diodes), the resulting SBDs were electrically, chemically 

and nano-structurally characterized in each subsequent annealing step.  
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Electric properties of the SBDs (measured at NIMS, Japan) were taken using a micro-

probing system with a Pico-ammeter/voltage source unit (6487; Keithley). Measurements 

were performed under vacuum.  

Homemade software for electrical measurements was developed for detailed analyses, 

carried out at NIMS (Japan). TEM samples were prepared using FIB nanomachining to get 

electron-transparent specimens by using a Quanta 200 3D FIB dual-beam system. Finally, 

EELS mapping of the area of interest was carried out by using the beam of a JEOL 2010F 

transmission electron microscope in STEM mode. 

Current-voltage plot of SBDs 

Schottky barrier diodes are characterized attending to their current-voltage plots. The key 

parameters that can be obtained from such plots are:  

 The Schottky-barrier heights (ΦB): Whether a given metal-semiconductor junction 

is an ohmic contact, or Schottky barrier, depends on the Schottky barrier height, ΦB, 

of the junction. For a sufficiently large Schottky barrier height, where ΦB is 

significantly higher than the thermal energy kT, the semiconductor is depleted near 

the metal and behaves as a Schottky barrier. For lower Schottky barrier heights, the 

semiconductor is not depleted and instead forms an ohmic contact to the metal. The 

Schottky barrier height is defined differently for n-type and p-type semiconductors 

(being measured from the conduction band edge and valence band edge, 

respectively). The alignment of the semiconductor's bands near the junction is 

typically independent of the semiconductor's doping level, so the n-type and p-type 

Schottky barrier heights are ideally related to each other. In practice, the Schottky 

barrier height is not precisely constant across the interface, and varies over the 

interfacial surface. 

 Ideality factor (n): This parameter is used to “weight” how close the real SBD 

structure to an ideal one is. 

Experimentally, Schottky-barrier heights (ΦB) and ideality factors can be estimated from the 

fitting of the semi- logarithmic linear region (log-linear region) of forward current density 

(J) versus voltage (V) characteristics, by mean of the thermionic emission model issued 

from the SBD theory [85].  

According to the latter, the current density behavior follows: 
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𝐽 = 𝐴∗. 𝑇2. 𝑒𝑥𝑝 (
−𝑞. 𝜙𝐵

𝑘𝐵. 𝑇
) × [𝑒𝑥𝑝 (

𝑞. 𝑉

𝑛. 𝑘. 𝑇
) − 1] Eq. 3 

Where ΦB, n, T, q, kB, and A* are the Schottky barrier height, ideality factor, absolute 

temperature, elementary charge, Boltzmann constant, and Richardson constant, respectively. 

In this work, A* is taken as 90Acm
-2

K
-2

, as widely employed in the literature [86, 87]. 

According with Eq. 3, the shape of the DC current flowing through a Schottky barrier is 

plotted in Figure 21. From a DC current-voltage plot (I-V plot) we can determine: 

 the ideality factor n from the slope in forward bias 

 the correct model for conduction 

o in thermionic-emission theory, the reverse current saturates (levels off) 

o in diffusion theory, the reverse current depends on the bias 

 the saturation current J0 from the reverse-bias saturation current or the extrapolated-

to-zero-volt forward-bias current 

 the barrier height ΦB when the temperature is varied (from a plot of ln(J/T
2
) vs 1/T, 

which results in a straight line with a slope from which the barrier height can be 

derived) 

 the rectification ratio of a device, this depends (for a fixed voltage) on the J0, also 

known as “leakage current” 

 For high forward voltages, the current may be limited by the resistivity of the bulk. 

Figure 19: Thermionic-emission theory for the DC current through a Schottky barrier. Positive bias feature is 

known as the “forward characteristic”, while negative bias is known as “reverse characteristic”. Ideality 

factor n can be obtained from the slope of the linear section of the forward characteristic, while reverse-bias 

saturation current J0 can be extrapolated from the negative bias region of this plot. 
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In that case, the current doesn't continue rising exponentially with the bias, but only 

grows linearly. In the semi-log IV curves this is visible as a bending of the curve at 

strong forward bias. Since the current is limited by the bulk conductivity we can 

again apply the theory for bulk samples. 

 Additionally, in view of the particular properties of the Schottky diode there are several 

parameters that are of key importance when determining the operation of one of these 

diodes against the more normal PN junction diodes: 

 Forward voltage drop:   In view of the low forward voltage drop across the diode, 

this is a parameter that is of particular concern. As can be seen from the Schottky 

diode IV characteristic, the voltage across the diode varies according to the current 

being carried. Accordingly any specification given provides the forward voltage 

drop for a given current. Typically the turn-on voltage is assumed to be around 0.2 

V. 

 Reverse breakdown:   Schottky diodes do not have a high breakdown voltage. 

Figures relating to this include the maximum Peak Reverse Voltage, maximum 

Blocking DC Voltage and other similar parameter names. If these figures are 

exceeded then there is a possibility the diode will enter reverse breakdown. It 

should be noted that the RMS value for any voltage will be 1/√2 times the constant 

value. The upper limit for reverse breakdown is not high when compared to normal 

PN junction diodes. Maximum figures, even for rectifier diodes only reach around 

100 V. Schottky diode rectifiers seldom exceed this value because devices that 

would operate above this value even by moderate amounts would exhibit forward 

voltages equal to or greater than equivalent PN junction rectifiers.  

 Capacitance: The capacitance parameter is one of great importance for small signal 

RF applications. Normally the junctions areas of Schottky diodes are small and 

therefore the capacitance is small. Typical values of a few picofarads are normal. As 

the capacitance is dependent upon any depletion areas, etc, the capacitance must be 

specified at a given voltage. 

 Reverse recovery time: This parameter is important when a diode is used in a 

switching application. It is the time taken to switch the diode from its forward 

conducting or 'ON' state to the reverse 'OFF' state. The charge that flows within this 

time is referred to as the 'reverse recovery charge'. The time for this parameter for a 

Schottky diode is normally measured in nanoseconds, ns. Some exhibit times of 100 

ps. In fact what little recovery time is required mainly arises from the capacitance 

rather than the majority carrier recombination. As a result there is very little reverse 

current overshoot when switching from the forward conducting state to the reverse 

blocking state. 
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 Working temperature: The maximum working temperature of the junction, Tj is 

normally limited to between 125 to 175°C. This is less than that which can be sued 

with ordinary silicon diodes. Care should be taken to ensure heatsinking of power 

diodes does not allow this figure to be exceeded. 

 Reverse leakage current: The reverse leakage parameter can be an issue with 

Schottky diodes. It is found that increasing temperature significantly increases the 

reverse leakage current parameter. Typically for every 25°C increase in the diode 

junction temperature there is an increase in reverse current of an order of magnitude 

for the same level of reverse bias. 

Further details of the real Schottky contacts, as well as a detailed description of the 

experimental procedure employed on the electrical characterization of the Schottky 

structures studied on this thesis can be consulted in literature [88]. 

Electrical properties
15

 

Figure 22 (a) shows the electrical response, taken at various temperatures, for thermally 

treated WC-based SBD structures. This structure exhibit an improvement of his related 

electric behavior with the thermal treatment, as revealed by the change of the related slope 

and the shape of the curves. For a 600K thermal treatment temperature (see dark, thick line 

in Figure 22 (a)), this structure shows the optimum operation regime.  

The goodness of such regime is quantified evaluating Schottky-barrier heights (ΦB) and 

ideality factors. Such parameters are estimated from the fitting of the semi- logarithmic 

linear region (log-linear region) of forward current density (J) versus voltage (V) 

characteristics, by mean of the thermionic emission model issued from the SBD theory (see 

Eq. 3). 

In Figure 22 (a), it can be observed that WC SBDs are showing different behaviors depending 

on the thermal treatment:  

 I(V) characteristic acquired at 500K and 600K are far from the ideal SBD 

behaviour. 

 Current density taken at 300K just after the contact deposition is close to the ideal 

SBD I(V) shape. 

                                                      

15
 WC-based Schottky barrier diodes were electrically characterized by A. Fiori, T. Teraji and Y. 

Koide, National Institute for Materials Science. 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.  
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 Current density measured at 300K once heated at 600K shows an optimum I(V) 

behaviour, with an ideality factor close to 1. On the other hand, the Schottky barrier 

height on this oxygen-terminated surface is not larger than 1.5eV (barriers larger 

than 2eV can lead to high forward losses). 

 Finally, I(V) characteristic (acquired at 300K) of a 700K annealed SBD shows a 

degradation of the ideality factor. 

Thus, SBD electric properties improve with thermal treatment up to an optimum behaviour 

at 600K annealing. After such point, the structures are presenting certain degradation. So it 

is established that tungsten carbide (similarly to other carbide-preformed metals) have 

thermal stability up to 600 K.  

An operating temperature higher than 600 K induced a degradation of WC based diamond 

rectifiers, as can be appreciated by the change in the ideality factor (that goes far from n = 1, 

rising till n = 1.9). In the same way, Schottky barrier height decreases, this aims to 

variations in the metal-diamond interface. 

Figure 20: (a) Current density vs bias voltage measured at different temperatures and with different 

thermal treatments. (b) Evolution of the ideality factor and the SBH with thermal treatment. 
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Structural analysis of the thermal treatment 

To explore the possibility of a relation between the thermal treatment and the interface 

configuration in WC-based SBD, TEM observations were carried out. TEM study is 

consisting in a first visual CTEM characterization and EELS probing of the 

metal/semiconductor interface. 

Figure 23(a) shows low magnification 001 BF images of WC-based SBD before (sample 

#1A) and after (sample #1B) a 600K annealing. Diamond substrate, WC metal layer and Pt 

protective layer (deposited during FIB preparation II.2 Experimental techniques) are 

revealed. Grain formation can be appreciated in the 50nm thick WC layer before and after 

thermal treatment. 

Figure 23(a) is used to compare TEM images of WC/diamond interfaces before and after a 

600K thermal treatment (corresponding with samples #1A and #1B, respectively, see Table 

6). Morphological changes in the diamond/metal interface can be appreciated.  

To analyze the chemical composition of the diamond/metal contact, EELS profiles were 

acquired along and across the diamond/oxide/metal interface. EELS mapping of the area of 

interest was also carried out. White numbered dots in Figure 23(b) show location of the 

recorded EELS spectra. 

To easily understand the experimentally acquired EELS spectra, low loss spectra, 

Figure 21: (a) Low magnification 001-Bright Field micrography of the WC/diamond SBD structure before and 

after a 600K annealing. White arrows are used to highlight grain formation. (b) 001-Bright Field micrograph of 

the WC/diamond interface before and after a 600K annealing. Numbered dots are used to highlight EELS 

probe position. 
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corresponding to amorphous carbon, pure diamond and pure tungsten are shown in Figure 24. 

All of them, used as a reference for each pure phase, are picked up from the literature 

(https://eelsdb.eu/). In Figure 24 a figure, C1 carbon-related peak is  revealed at 4.9eV; 

diamond-related EELS D1, D2 and D3 peaks are located in 20.7, 30.9 and 60.9 eV 

respectively (as presented in Table 3); finally tungsten-related W1, W2 and W3 peaks, 

located in 23.2, 41 and 51.6eV respectively, are presented.  

 

Such transitions are summarized and presented in Table 7. Experimental EELS spectra, 

acquired at different locations of the interface of sample #1 are presented in Figure 25. Figure 

25 summarizes the results of the EELS analysis acquired across the WC-diamond interface 

after the 600K annealing.  

 

Figure 22: Low-loss EELS spectra for amorphous carbon. pure 

diamond and pure tungsten, as presented in literature 

(https://eelsdb.eu/). 

Table 6: Summary of the peak position in low-loss transition in amorphous 

carbon, pure diamond and pure tungsten. 

Carbon Diamond Tungsten 

Label Energy loss (eV) Label Energy loss (eV) Label Energy loss (eV) 

C1 4.9 D1 20.7 W1 23.2 

  D2 30.9 W2 41 

  D3 60.9 W3 51.6 
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Such results can be compared with EELS spectra of pure diamond and pure tungsten, 

already presented. EELS spectra of pure diamond and pure tungsten are here used to 

identify the formation of a possible W-C mixture. Dark line in Figure 25 is used to plot EELS 

data of #1A (annealed at 300K), while grey line is used to plot EELS data of #1B (after 

thermal treatment), spectra were acquired as shown in Figure 23 (b). 

 S1 spectra, acquired in diamond bulk position of #1A: low energy loss region 

shows D2 and D3 diamond-characteristic transitions, while D1 transition almost 

vanishes. This behavior can be explained by a slight amorphization produced during 

the FIB nanomachining (see II.2 Experimental techniques). 

 S2 spectra, acquired in the diamond-metal interface of #1A: Low loss region 

shows the presence of WC2 peak, which 23.9eV energy is between that of D1 and 

W1 peak. W2 and W3 peaks are also revealed.  

 S3 spectra, acquired in the metal contact, near the interface of #1A: Low loss 

signal shows WC1 peak at 13.5 energy loss. WC2, W2 and W3 peaks are also 

present.  

 S4 spectra, acquired in metal contact, far from the interface of #1A: Low loss 

signal is identical of that of S3 position, while no peak is observed in the oxygen 

peak position. 

 S5 spectra, acquired in the diamond-metal interface of #1B: Core loss region 

shows different carbon signature for the sample annealed at 300K (dark line) and at 

600K (grey line). Oxygen peak is revealed at 532eV in both samples (spectra S2 

and S5). However, oxygen signal in sample #1B (annealed at 600K, grey line), 

shows a more defined O-K line. 

 S6 spectra, acquired in metal contact, close of the interface of #1B: Extremely 

weak peak, located at the oxygen signal position is detected in #1B. 

 S7 spectra, acquired in metal contact, far from the interface of #1B: No 

oxygen-related peak is observed. 

Data are summarized in Table 7. Both peaks seem to be characteristic of a tungsten 

semicarbide mixture. Oxygen peak is revealed right at the interface, thus verifying the 

Table 7: Summary of the experimentally observed EELS peaks right in the 

diamond-metal interface, compared with those of amorphous carbon, pure diamond 

and pure tungsten. 

 Energy loss 

(eV) 

 Energy loss 

(eV) 

 Energy loss 

(eV) 

 Energy loss 

(eV) 

C1 4.9 D1 20.7 W1 23.2 WC1 13.5 

  D2 30.9 W2 41 WC2 23.9 

  D3 60.9 W3 51.6 O-K 532 
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presence of a thick oxygen-content layer before and after thermal treatment. However, after 

thermal treatment, spectra acquired in S6 position shows an extremely weak peak located at 

oxygen position, that may be related with some oxygen desorption through the WC layer. 

On the other hand, spectra acquired in S2 position shows the simultaneous presence of the 

oxygen-related peak (O-K line, at 538eV) and a W-C mixture in the low loss spectra, as can 

be observed by the presence of WC1 and WC2 peaks at 13.5 and 23.9eV, respectively.  

WC2 peak energy is between W1 and D2 energies, while WC1 is clearly different from D1 

peak. W-characteristic peaks W2 and W3 are not shifted in S2-S4 spectra. π* and σ* peaks 

verify the presence of  amorphous carbon in the diamond interface, however, this signature 

clearly changes when annealing at 600K.  

Figure 23: (a) EELS spectra of pure diamond, amorphous carbon and tungsten. (b) Experimentally acquired 

low-loss EELS spectra, measured across the WC-diamond interface in sample #1A (after 600K annealing). 

(c) and (d) Core loss EELS spectra measured across the WC-diamond interface in samples #1A and #1B. 

Dark line is used to plot EELS spectra of WC-SBD annealed at 300K (sample #1A), while grey line is used 

to plot EELS spectra of sample #1B (annealed at 600K). 
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Concerning the metal, WC1/WC2 ratio is slightly changing across the contact, meaning that 

stoichiometry of the W-C mixture is also changing. 

Finally, as observed in S5 spectra, weak oxygen signal is still remaining at the WC contact 

in the vicinity of the diamond-metal interface. The latter can be related with oxygen 

diffusion from the interface to the contact, an effect that can be related with thermal 

treatment. 

To evaluate this behavior, specific methodology is developed and described in the following 

section. 

Interface analysis by STEM-EELS: oxygen quantification 

To study the impact of the O-termination in different diamond devices, atomic composition 

of oxygen terminated diamond interfaces contacting with metals and oxides have been 

studied. Experimentally, this can be achieved by means of EELS in a sufficiently thin TEM 

specimen. The methodology is consisting in: 

 A thin specimen, containing the interface, is evaluated by TEM. Sample has to be 

thin enough to provide High Resolution Electron Microscopy conditions. 

 Nano-size EELS probe is located at the diamond/contact interface, as shown in 

Figure 26 (a). This allows simultaneously probing the diamond bulk, diamond 

oxygen termination and first atomic layer of the metallic stack. 

Figure 24: Diagram of the methodology used to evaluate O-terminated diamond/contact interfaces. (a) Ideal 

conditions for a thin TEM specimen and a perfectly oriented sample. (b) A more realistic situation, 

containing the relative EELS probe-size, the effect of a slight beam-sample tilt and the creation of a thin 

amorphous C layer during the FIB process. 
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 During TEM experiments, sample is positioned in a selected crystallographic 

orientation (in order to align atomic columns and to have a defined interface with 

respect to the electron beam), thus avoiding thickness-related effects (see in Figure 

26 (b)). 

However, as the EELS probe size has a relatively large spot-size compared to the atomic 

scale, the atomic probe is not reached and the spot-size slightly averages the chemical 

quantification. In fact, diamond substrate, interface and contact are probed in the same 

EELS spectra (nominal size of the EELS probe is 0.19nm). Even though, the latter needs a 

signal intensity reference as the oxygen peak varies with the sample preparation thickness.  

 

Thus, at any location, comparing it to that of C, allows to avoid thickness effects. For this 

purpose, the oxygen/carbon intensity ratio is an appropriate parameter to have a relative 

quantification of the oxygen content. Oxygen-to-Carbon EELS peak intensity ratio (OCR) is 

defined as follows: 

𝑂𝐶𝑅 =  
𝐼𝑂

𝐼𝐶
 Eq. 4 

Where OCR is the O/C related peaks ratio, while IO and IC are the oxygen and carbon peaks 

intensities respectively. For measuring the carbon signal intensity, we use a 2eV window 

centered at 292eV in the EELS spectra; while oxygen signal is acquired with a 2eV window 

centered at 532eV (see details in Figure 27). To obtain more accurate data, O/C ratio were 

Figure 25: Experimental EELS spectra of O-terminated diamond/WC 

interfaces before and after thermal treatment and the associated OCR. 

Oxygen-related signal (O-K line) is revealed at 532 eV while carbon-

related signal is revealed at 292eV. 
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measured by probing the oxide/diamond interface along a several nanometers linescan, thus 

allowing to calculate the mean value for each sample. 

This procedure allows comparing O-terminated diamond interfaces, and can be used to 

evaluate the impact of the thermal treatment on this kind of structures (see Figure 28 (a) and 

(b)). As the OCR is a mean value, determined over a finite distance of several nm, results 

will not only depend on the interfacial reaction and sharpness, but also on the interface nm-

scale roughness.  

In order to quantify the relative oxygen-content at one defined location, O/C ratio analyses 

were carried out in both SBD structures. As shown in Figure 27, O/C ratio (OCR) prior to the 

annealing (#1A) was around OCR=0.35 along the contact (data were acquired along an 

80nm diamond-oxide interface), evolving to an OCR=3.03 value after the 600K annealing 

(#1B). This reveals an oxide gain of 66%, which can explain the related change in the 

ideality factor.  

Here, we use OCR to evaluate the change on the rugosity of the interface; however, using 

this methodology, other parameters like the Oxygen-to-Tungsten EELS ratio (OWR) can 

also be defined. Nevertheless, O and W signals are hardly observable in the same EELS 

spectra: O low-loss EELS peak is extremely close to zero-loss peak, and O-K line (≈532eV) 

is far from the Tungsten M4,5 line (≈1840eV). This experimental limitation leads us to use 

the OCR parameter for this study. 

The difference of the oxygen signal before and after vacuum annealing lead us to think in a 

surface reaction:  probably, the oxygen film at the diamond surface is mixed by the collision 

of heavy W atoms and C during the sputtering by Ar plasma process. This means that some 

oxygen terminations are probably dissociated during deposition, thus highlighting the fact 

that WC-SBDs is sensitive to the surface oxidation method, as previously reported by Teraji 

et al. [59]. Indeed, during the plasma treatment, oxygen deposition probably did not result in 

Figure 26: Schematic of the methodology used to study diamond/contact interfaces before (a) and after (b) 

thermal treatments. (c) Real EELS spectra acquired in a O-terminated diamond/WC SBD interface showing 

the parameters used in the definition of the Oxygen-to-Carbon EELS peak ratio (OCR). 
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a monoatomic layer, covering the 100% of the surface; but should probably result in small 

accumulations of several atomic layers in some places, while in other ones, no oxygen is 

deposited. Thermal treatment and metal deposition are expected to modify this behavior. 

However, we don’t know how the real oxygen-terminated surface is, because oxygen 

distribution in the diamond surface cannot be evaluated by EELS till the metallic deposition 

is done. The two possibilities, previously discussed, are expected and presented in Figure 29: 

formation of oxygen clusters (a) and homogeneous oxygen distribution (b). 

 

After the EELS analysis, three facts are revealed in the WC/diamond structure: 

 Oxygen atoms in the diamond-metal interface remain after the first annealing step 

(Figure 30 (a)). 

 The related electric behavior improves after first annealing, showing degradation in 

the last annealing step. 

 O/C ratio improves with first annealing. 

This leads to conclude that vacuum annealing makes the oxygen-terminated diamond/metal 

interface to be more homogeneous. Probably, a tungsten semicarbide (WCxOy) is formed in 

the interface during the 600K annealing [89]. Additionally, diamond oxygen-termination 

can be dissociated through heating, thus explaining the bad electric behavior at high 

temperatures; at the present time, additional experiments are required in order to verify 

these points. 

The behavior of the oxygen signal (much weak prior to the thermal treatment) leads us to 

think in a redistribution of the oxygen atoms with the thermal treatment, as shown in Figure 

30 (a) and (b).  

Probably, diamond-termination is mixed by the sputtering Figure 30 (a)) and then, thermal 

treatment makes the diamond-oxide-metal interface more homogeneous: oxygen is, then, 

Figure 27: Schematic view used to illustrate different 

possibilities of oxygen distribution in diamond surface after 

VUV-ozone treatment (a) with oxygen clusters and (b) without 

clusters. Dangling bonds are expected in both possibilities. 
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well distributed just at the diamond-metal interface (Figure 30 (b)). This mechanism explains 

the change in the related O/C ratio. Finally, high temperature annealing may induce oxygen 

desorption, as schematically shown in Figure 30 (c). 

III.3 Zr-based diodes [#2] 

The fabrication of the pseudo-vertical diode structure of the Zr-based diode was previously 

described in II.1 Description of the samples. The decision of fabricating a pseudo-vertical 

diamond SBD was motivated by the fact of that vertical diamond Schottky diode structures 

suffer from the propagation of defects such as dislocations from heavily doped substrate 

(highly conductive substrate) in the diode active layer, as a result of epitaxial growth. The 

best values reported for critical field in vertical structures are 2.1 MV/cm [90] and 2.7 

MV/cm [91], which is much lower than that achieved for the lateral diamond Schottky 

diodes (7.7 MV/cm in [92]). So, for Zr-based diode, a pseudo-vertical structure was 

adopted. 

For the fabrication of the pseudo-vertical diode, active layer (p
-
 layer) is grown on a highly 

conductive epi-layer (p
+
 layer) grown on an insulating diamond substrate. This design is 

generally used in order to get an electrical behavior close to that of the vertical structure. As 

for the vertical structure, the diode performance will be in part related to the crystal quality 

of the p
+
 layer and furthermore to its doping level. A high quality p

+
 layer will favor the 

minimization of defects inside the active layer (p
-
 layer). Moreover, this layer has to be 

sufficiently doped to get a metallic behavior to minimize its contribution to the diode serial 

resistance and achieve a negligible ohmic contact resistance. 

Figure 28: (a) Schematic of the oxygen-terminated diamond surface with the WC contact “as deposited-

300K”, (b) after first annealing at 600K and (c) after annealing at 700K, when oxygen desorption is expected. 
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Electrical properties
16

 

Following the same procedure than in the WC-based diode, Zr-based diode was electrically 

characterized in each step of the thermal treatment. Figure 31 (a) shows the current density vs 

voltage behavior of the Zr-based diodes with thermal treatment. As indicated in the figure, 

the slope of the related I(V) changes with thermal treatment, becoming “more ideal”.  

 The performance of the related electrical behavior of this SBD structures vs the respective 

thermal treatment was also characterized by the combination of ΦB and n by fitting Figure 31 

(a) with Eq. 3. According to the evolution of such parameters, we can observe that Zr-based 

SBD is improving till a 700K annealing without thermal degradation. Annealed Zr/p-

diamond rectifiers exhibited a better electrical properties than as-deposited electrodes as 

reflected by the current density about 120A·cm
-2

 for 723K annealing (#2C), 19·cm
-2

 for 

623K annealing (#2B) and 0.61A·cm
-2

 for as-deposited electrodes (#2A) at 2V. Zr-Schottky 

electrodes annealed at 723K exhibit a barrier height about 1eV, whereas the as-deposited 

electrodes have a SBH of 1.97eV. Besides the decrease on SBH, the annealing leads to a 

decrease of the ideality factor, thus suggesting an improvement of the Zr/p-diamond 

interface. To verify this, TEM measurements were required and are presented in next 

section. 

                                                      

16
 Electric measurements over #2 were carried out at Institut Néel by Dr. Aboulaye Traoré. 

Figure 29: Electrical properties measured on the Zr-based diamond Schottky diode (a) and modifications to 

the electrical behavior induced by heating. (b) Evolution of the related SBH and ideality factors. Sample #2A 

is annealed at 300K, #2B at 623K and #2C at 723K. 



III.3 Zr-based diodes [#2] 

 

87 

 

TEM-EELS characterization of the metal-semiconductor interface  

Figure 32 shows 001 BF 

micrography of the SBD metallic 

stack (before and after a 700K 

annealing), ending in oxygen 

terminated diamond-Zr contact. As 

can be appreciated, prior to the 

thermal treatment (inset of Figure 

32, corresponding with #2A, 

T=300K), different metals of the 

stack are easily identifiable. 

However, after a 700K annealing, 

metals seems to be slightly 

merged.  

In Figure 32, it can also be 

appreciated an ALD-deposited 

ZrO2 layer. Such a layer was 

deposited after all the electric 

measurements and thermal 

treatments. The purpose of this 

layer was to evaluate the 

differences between the ALD-

deposited ZrO2 and whatever is produced between the oxygen-terminated diamond interface 

and the Zr metal. As we will see, EELS spectra of ALD-deposited ZrO2 will be compared 

Figure 31: (a) 001-Bright Field micrography of the metallic stack before (inset) and after a 700K annealing. 

EELS probe positions are highlighted with white numbered dots. (b) EELS spectra for pure diamond, pure 

graphite and ZrO2 as presented in literature (https://eelsdb.eu/). 
 

Figure 30: 001-Bright Field micrography of the metallic stack 

before (inset) and after a 700K annealing. Metal layers can be 

distinguished before thermal treatment (see inset). After a 700K 

annealing, layers seems to be slightly merged. 
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with those spectra acquired right at the oxygen-terminated diamond/Zr interface. 

A more detailed Bright-Field TEM image of the interface is shown in Figure 33 (a). White, 

numbered dots are used in Figure 33(a) to label the probe positions where EELS spectra were 

carried out. Finally, Figure 33 (b) shows EELS spectra (data are available in literature, 

https://eelsdb.eu/), to ease the comparison of the experimentally acquired spectra. EELS 

peak position of Figure 33(b) spectra are summarized in Table 8. 

 

Figure 34 shows experimentally acquired EELS spectra, measurements were carried out in 

the “as-deposited” structure (300K, sample #2A) and probe positions are those of Figure 33. 

In Figure 34, typical diamond signature of EELS spectra is revealed in S8 position, while 

Table 8: Summary of the peak position of Zr, graphite and oxygen, as labelled in 

Figure 31 (b). 

Graphite Zirconium Oxygen 

Label Energy loss (eV) Label Energy loss (eV) Label Energy loss (eV) 

π* 285 M4,5 189.3 O-K 532 

σ* 291.6 M3 331.4   

  M2 343.9   

 

Figure 32: Experimental EELS spectra (sample #2A) acquired across the Zr-diamond interface (in as-

deposited contact, 300K) are shown. Dark arrows are used to highlight the main EELS peaks, which can be 

compared with those of Figure 31 (b). 
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slight amorphization is observed in the vicinity of the interface (spectrum S9, with carbon-

shaped signature), probably due to FIB-related damages (see II.2 Experimental techniques 

for further details).  

Position S10 corresponds with the diamond/metal interface; here we observe the presence of 

Zr-characteristic peaks and oxygen-related peak at the same time. Finally, no O-related 

EELS peak is observed in S11 position, confirming the presence of a thick oxygen layer 

between the metal/semiconductor contacts. Thus, oxygen is detected only at the interface. 

Such oxygen layer is observed in all the annealing steps of sample #2, as revealed in Figure 

35, where EELS spectra experimentally acquired in #2A and #2C interfaces are shown. 

Before annealing, carbon-related signal, Zr-related signal and O-related signal are present at 

interface. However, Zr-M4,5 peak seems to be shifted, probably due to a different 

stoichiometry ZrxOy formation (see spectra #2A in  Figure 35).  On the other hand, after a 

700K annealing (#2C in Figure 35), Zr-M4,5 peak is slightly observed (see arrows) at 

189.3eV. In this case, the presence of the O-related peak is recorded, which evidences the 

existence of an oxygen-content layer even after thermal treatment.  

We can compare spectra #2C in Figure 35  with ZrO2 spectra acquired in the ALD-deposited 

and with ZrO2 spectra from literature, and conclude that a thin zirconia layer is formed 

Figure 33: EELS spectra experimentally acquired at diamond/Zr interfaces before (#2A) and after (#2C) 

annealing. For shake of comparison, ALD-deposited ZrO2 and EELS spectra of ZrO2 from EELS database 

(https://eelsdb.eu/) are also presented. 
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between the oxygen-terminated diamond surface and the Zr metal contact after the thermal 

treatment. 

Variations with thermal treatment
17

 

To determine the oxygen distribution in the p-diamond/Zr interface, EELS mapping at the 

oxygen-peak energy is carried out (see spectrum at position S10 in Figure 34). Inset of Figure 

36 shows the EELS map of the oxygen peak intensity (red signal), where most of the oxygen 

signal is located at the metal/semiconductor interface, even when some weak oxygen signal 

can be observed in other points (probably due to oxidation or other experimental-related 

artifacts). This is confirming the confinement of the oxygen layer at the interface. It can also 

be observed some rugosity in the oxide layer, which can mean oxide thickness variations. 

 

To deeper investigate on this O-related layer at the interface, spectra linescans were carried 

out at the interface, before and after thermal treatment along a 20nm interface. To perform 

                                                      

17
 EELS mapping were obtained in cooperation with D. Méndez (Applications Specialist TEM in FEI 

company, Eindhoven, Netherlands). 

Figure 34: 001-Bright Field micrography of #2A and EELS 

mapping of the oxygen signal (inset, red signal). Oxygen is 

shown to be confined in the interface, with slight thickness 

variations. 
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this, an EELS probe of 0.1nm (nominally) was used to do 5nm linescans, crossing the 

interface along 20nm. Linescans were spaced for 1nm. Oxygen-related EELS peak intensity 

versus probe position is obtained.  

This procedure allows improving the spatial resolution, thus averaging the distribution of 

the oxygen content along 20nm of the interface, as schematically illustrated in Figure 37 (a). 

Figure 37 (a) shows 001-BF micrography (very close to HREM conditions) of samples #2A 

and #2C. 

In Figure 37 (b), each point of the EELS linescan profile corresponds to oxygen-signal 

intensity. To improve the signal to noise ratio, each point is obtained averaging 20 EELS 

spectra at this defined position. When repeating this procedure in samples #2A and #2C, a 

variation in the oxygen layer thickness is revealed.  

Prior to the annealing (#2A), this layer has a mean thickness of 0.5nm while, after a 723K 

annealing (#2C), the mean thickness becomes 0.2nm (near the probe-size resolution), thus 

showing a sharper layer: thinner and with increased oxygen content. 

This means that the oxygen layer becomes “sharper” with annealing. Annealed and not 

annealed EELS profiles at Figure 37 (b) were normalized by using the O-C ratio as described 

for the WC-based SBD. 

As in the WC-based diode, the behavior of the oxygen signal leads us to think in a 

redistribution of the oxygen atoms with the thermal treatment. Again, probably, diamond-

termination is mixed by the sputtering and then, thermal treatment makes the diamond-

Figure 35: (a) 001- High Resolution Electron Microscopy (HREM) micrography showing the interface of 

sample #2A. Dark arrows are used to illustrate EELS linescans acquired along the interface.  (b) EELS-

oxygen signal intensity profiles acquired across the p-diamond/Zr interface before (#2A) and after (#2C) a 

723K annealing, oxide thickness variation is revealed 
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oxide-metal interface more homogeneous (redistributing oxygen atoms in the 

metal/semiconductor interface). 

This procedure could be carried out due to the high intensity of the oxygen signal. However, 

in the WC-based diode, O-signal intensity wasn’t high enough to allow an acceptable 

resolution. This last fact highlights that the oxygen content in the Zr-based diode is higher 

than in the WC-based one. 

III.4 Analysis of WC vs Zr-based Schottky diodes: 

physical behavior of the interface 

Once the electrical, chemical and structural properties of each specific SBD configuration 

have been studied, both structures can be compared as competitor devices. Figure 38 

summarizes the obtained current density vs bias behavior. It can be observed that WC-based 

SBD presents an optimum response for an annealing temperature of around 600K ( #1B, 

thick blue line in Figure 38), ideality factor is, then, close to 1. On the other hand, Zr-based 

SBD is still improving till 700K (#2C, hick orange line in Figure 38) and ideality factor 

remains high till a 700K annealing. WC-SBD shows an excellent rectification ratio of their 

related electrical properties, as revealed by the fact of that ideality factor value of n=1 is 

reached at 600K. On the other hand, #2C (Zr/O-terminated diamond, annealed at 723K 

during 30min, with a previous post annealing at 623K of the same duration) shows n=1.16, 

high enough to argue for inhomogeneous interface or defects. Differences between both 

metals yielding in the annealing temperature, and annealing duration are remarkable. 

Results obtained in III.2 WC-based diodes and in III.3 Zr-based diodes are summarized in 

Table 9. 

 

Table 9: Summary of the samples studied in this work with its corresponding annealing temperature. 

The related ideality factors and Oxygen-to-Carbon EELS are also presented for ease of interpretation. 

 Contact metal Annealing temperature (K) na ϕB (eV) OCRb 

#1A WC 300 1.44 1.36 0.35 

#1B WC 600 1.02 1.61 3.03 

#1C WC 700 1.9 1.58  

#2A Zr 300 1.58 1.97 0.55 

#2B Zr 623 1.28 1.4  

#2C Zr 723 1.16 1 1.5 

aValues of ideality factor n described, see plot in Figure 36 

bOxygen-to-Carbon EELS ratio obtained  by using  Eq. 4 
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As can be appreciated in Figure 38, Zirconium Schottky contacts exhibited an extremely 

good rectification behavior characterized by a high current density 10
3
A/cm

2
 (at 6V), a 

reverse current density less than 1·10
-8

 A/cm
2
 up to the maximum voltage (|Vmax|=1000V) 

available with the measurement set-up of institute Néel [86], and an ideality factor near 1.16 

(see plot in Figure 39). 

On the other hand, WC-based SBD shows degradation of the electrical behavior when 

annealing at 700K, while Zr-based SBD are still showing a good electrical response. WC-

based and Zr-based SBD shows a decreasing of the related SBH in each step of the thermal 

treatment.  

On the other hand, ideality factor becomes closer to 1 after each annealing step. In case of 

the WC-based SBD, Figure 38 show an excellent rectification ratio below 700K, but this 

structure seems to degrade for annealing above 700K. Finally, Zr-diamond SBD shows a 

slower rectification ratio with the thermal treatment. Besides of that, Zr-diamond SBD 

structure seems not to degrade after a 700K annealing (see ideality factor value #1C in 

Figure 39). 

Figure 36: Electrical properties measured in WC and Zr-based diamond Schottky diodes: Modifications to 

the electrical behavior induced by heating over ZR-based (left) and WC-based (right) diamond Schottky 

diodes. 
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Comparing both structures as competitor devices, one can conclude that: 

 Zr-based SBDs are showing lower reverse currents, higher Schottky barrier heights 

and an adequate electrical performance at high temperatures (>700K). 

 WC-based SBDs shows ideality factor close to 1, meaning a more stable interface. 

However, oxygen desorption is produced at high temperatures (>700K). 

Real metal-semiconductor contacts: Interface states  

One can compare the experimental results of Figure 38 with the expected theoretical 

behavior, issued from the thermionic emission theory already shown in Figure 21. For ease of 

consult, Figure 40 summarizes both results. Some differences with respect to the ideal 

behavior can be appreciated in Figure 40 (a). 

The differences between ideal and experimental behaviors can be explained in terms of 

interfacial states. This is because the barrier heights of a metal-semiconductor contact are, in 

general, determined by both the metal work function and the interface states. 

Figure 37: Plot of the evolution of the related Schottky barrier height (up) and ideality factors (bottom) for 

Zr-based and WC-based SBDs as summarized in Table 9 
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As previously mentioned, when a metal is deposited onto a semiconductor, even when the 

metal film is smaller than a single atomic layer, the Fermi levels of the metal and 

semiconductor must match. This pins the Fermi level in the semiconductor to a position in 

the bulk gap. Shown to the right is a diagram of band-bending interfaces between two 

different metals (high and low work functions) and two different semiconductors (n-type 

and p-type). 

A general expression for the barrier heights can be obtained on the bases of the following 

assumptions: 

 With intimate contact between the metal and the semiconductor, and with an 

interfacial layer of atomic dimensions, this layer will be transparent to electrons but 

can withdraw potential across it 

 The interface states per unit area per energy at the interface are a property of the 

semiconductor surface and are independent of the metal. 

A detailed energy-band diagram of metal-semiconductor contacts (see additional 

information in Annex II)) is shown in Figure 41.  

The first quantity of interest in Figure 41 is the energy level qϕ0 above EV at the 

semiconductor surface. It is called the neutral level above which the states are of acceptor 

type (neutral when empty, negatively charged when full) and below which the states are of 

donor type (neutral when full of electrons, positively charged when empty). Consequently, 

when the Fermi level at the surface coincides with this neutral level, the net interface-trap 

charge is zero. This energy level also tends to pin the semiconductor Fermi level at the 

surface before the metal contact was formed.  

Figure 38: Experimental (a) and theoretical (b) behavior of SBDs. 
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The second quantity is qϕp, the barrier height of the metal-semiconductor contact; it is this 

barrier that must be surmounted by electrons/holes flowing from the metal into the 

semiconductor.  

By supposing a potential change across the interfacial layer and using the image-charge 

model as described in [68], it can be proved that for a high interface trap density Dit, the 

Fermi level at the interface is pinned by the surface states at a given value (qϕ0) above the 

valence band. The barrier height is independent of the metal work function and is entirely 

determined by the properties of the semiconductor. 

For additional details on the Schottky effects and the barrier lowering phenomena, we 

emplace the reader to Annex II. 

Effect of the thermal treatment on the O-terminated diamond 

surface 

As demonstrated during this chapter, metal-oxygen terminated diamond junctions are 

known to be highly sensitive to annealing. This sensibility may be reflected in the thermal 

Figure 39: Energy-band diagram for a (a) metal-semiconductor contact and (b) a real metal-

semiconductor contact with interface effects 



III.4 Analysis of WC vs Zr-based Schottky diodes: physical behavior of the interface 

 

97 

 

stability
18

 of the interface existing between the metallic electrodes and oxygen terminated 

diamond. When the Schottky electrode does not react sufficiently with the oxygen 

passivation layer (as for noble metals such as Au), induces a posterior desorption of the 

oxygen termination with the thermal treatment (above 600 K), which degrades the Schottky 

contact [83].  

The main consequences of this desorption process are an increase of the ideality factor 

(because of the apparition of spatial inhomogeneity) and a decrease of the Schottky barrier 

height. This diminution is a typical feature of diamond rectifiers based on oxygen-

terminated surfaces [69, 93, 94]. This feature has been observed not only in Schottky 

electrodes that do not react sufficiently with oxygen layers (such as Au, Mo, Ru or Ir), but it 

has also been observed for easily oxidizable metals, like Al. The latter suggests the 

requirement of thermally stable interface layers to prevent the oxygen layer desorption when 

easily oxidizable metals are used. However, results obtained in Zr/oxygen-terminated 

diamond surfaces seem to provide an stable interface that avoids oxygen desorption. Taking 

into account the different oxidation features of the metallic electrodes plotted in Figure 42 

(b), it could be assumed that annealing can favor the establishment of chemical bonds 

between Schottky metals and O-terminated diamond, thus leading to oxide-type interfaces 

for Zr-electrodes. 

A similar behavior can be expected in WC-based SBDs, the value of 𝜙𝑏, 1.85eV, is 

consistent with the consideration that oxygen termination of diamond was dissociated 

                                                      

18
 The thermal stability of each annealing step is defined by the temperature range in which its barrier 

height can be considered as constant 

Figure 40: Barrier heights of metals/p-diamond contacts versus the difference of metals and carbon 

electronegativities reported by Mönch for clean and H-terminated diamond surface (a) and for metal/oxidized 

diamond for electrodes as-deposited and annealed at temperature ranging from 623 to 723K (b). 
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through the tungsten-carbon bond formation between WC and diamond. Because of the 

reaction between WC and diamond during the WC deposition, interfacial bonding forms 

between WC and diamond. Here, most of the oxygen termination is probably dissociated 

during the deposition.  

This result can be linked to the fact of 𝜙𝑏 is sensitive to the surface oxidation method 

(termination can be mixed by sputtering). This partially remaining oxygen-termination at 

the interface can lead to a more homogeneous interface when heating, till the point in which 

diamond-oxygen termination will be dissociated through the heating. 

According with electronegativity theory, absorbed atoms at diamond surface induce a dipole 

layer [50] that can affect the diamond electron affinity (EA), as illustrated in “I.6 

Motivation: impact of the interface configuration in diamond devices”, thus inducing a 

negative (hydrogen, -1.3eV) and a positive (oxygen, 1.7eV) electron affinity. This explains 

the formation of a high SBH (above 2eV) for SBDs on oxygen-terminated diamond, 

whereas for hydrogen-terminated diamond surfaces, the barrier height is below 1eV. 

In 1994, Mönch [45] demonstrates the correlation between the barrier height observed for 

metals/H-terminated diamond rectifier and C-H dipoles using MIGS-and-Electronegativity 

concept. Heine's MIGS concept defines a continuum virtual gap states in junction area due 

to the metal's electron wave functions tailing in semiconductor.  

These virtual states are defined by their neutral level ϕ0 (Charge-Neutrality Level CNL) 

inducing a Fermi level pinned even for ideal junction, thus predicting a linear correlation 

between SBH and the difference χm-χs of the metal and the semiconductor 

electronegativities. Zero bias SBH is, then: 

𝜙𝑏
0 = 𝜙0

∗ − 𝑆𝑥(χ𝑚 − χ𝑠) Eq. 5 

… where 𝜙0
∗ is the Charge Neutrality Level (CNL) at the metal-semiconductor interface. 

The slope parameter 𝑆𝑥  is calculated from the expression Ax/Sx-1=0.1(εr-1)
2
, where εr is the 

electronic part of the static dielectric constant of semiconductor and Ax=0.86 (when 

Miedema’s electronegativity scale is used [45]). According to the data presented in [45], the 

following slopes are deduced for the zero-bias SBH: 

 Metal/clean surface diamond junctions 𝜙𝑏
0 = 1.4 − 0.3(χ𝑚 − χ𝑠) 

 Metal/hydrogen terminated diamond junction 𝜙𝑏
0 = 0.017 − 0.37(χ𝑚 − χ𝑠). 

 Metal/oxygen terminated diamond junction 𝜙𝑏
0 = 2.33 + 0.21(χ𝑚 − χ𝑠) 

 Annealed metal/oxygen terminated diamond junction 𝜙𝑏
0 = 1.45 + 0.23(χ𝑚 − χ𝑠) 
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Combining this result with the data reported in literature ([83, 94, 95]) Figure 42 has been 

built. Figure 42 (a) corresponds with clean diamond/H-terminated diamond surfaces, data 

were extracted from [45]. Figure 42 (b) shows SBHs for metal/O-terminated diamond 

surfaces in “as deposited” and annealed electrodes. It can be noticed that the SBH 

diminution due to annealing is a common feature of easily oxidizable metals (Zr, Al) as well 

as for noble metals (IR, Au, Ru). Such a SBH diminution seems not to happen for Ag and 

Cu electrodes (even when they were stable up to 873K [95]). In case of Zr, Mo and Ru 

electrodes, a good electrical behavior and reproducibility were reported even after a 673K 

annealing, with a SBH dropping by approximately 1 eV. 

Finally, additionally to the fact that diamond surface could be not entirely covered by 

oxygen layer, oxygen adsorption on diamond surface give rise to several terminations such 

as carbonyl (C=O), hydroxyl (COH), Carboxyl (O=COH group, and eventually epoxide 

(COC). It was demonstrated through theoretical calculations that these different 

terminations may induce different electron affinities [49]. Thus, according to the 

geometrical distribution of these different bonds, the SBH of a metal/O-terminated diamond 

junction could be spatially inhomogeneous. By annealing, a final state where an almost 

homogeneous interfaces with an ideal behavior can be reached (by cancelling the interface 

dipoles). Several mechanisms linked to the presence of an oxide layer can produce this 

effect (see [96]): 

a) Effective disappearance of the oxygen-carbon dipole layer due to a new bonding 

arrangement at the diamond interface after annealing. 

b) Compensation of the initial dipole layer by positive charges in the oxide, as usually 

due to extrinsic deep levels, often related to oxygen vacancies. 

c) Intrinsic gap states within the oxide layer resulting in a new dipole induced by the 

alignment of the charge neutrality levels in the oxide and diamond. 

d) A combination of these mechanisms or a change in the oxide properties which 

eventually promoted one of them after annealing 

Figure 42 summarizes the picture for both SBD structures. In Figure 42 (a), VUV/ozone 

Figure 41: Schematic model of the O-terminated diamond interface after the VUV/ozone treatment, (a) as-

deposited contact, (b) annealed, (c) annealed once annealed at 700K in the Zr diode and (d) annealed at 700K 

in the WC diode. 
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treatment creates an O-terminated diamond 

surface. C-OH, C-O-C and other terminations 

are expected. Deposition of the metallic stack 

can lead to mixtures or O dissociation in the 

interface, as shown in Figure 42 (b). Initial 

thickness of the oxide layer (Ti) of 0.5nm could 

be measured in case of the Zr diode. Once the 

samples are annealed a thin, sharp oxide layer is 

formed at the interface (see Figure 43 (c)). Final 

thickness of the oxide layer (Tf) could be 

measured in the Zr diode. Finally, in case of the 

WC/diamond diode, oxygen desorption is 

produced at high temperature annealing (see 

Figure 43 (d)); thus leading to the bad electrical 

behavior already shown. Probably, oxygen-

termination is missed in some points of the 

diamond/metal interface just after the metal 

deposition. After thermal treatment atoms in the 

interface are locally displaced, thus contributing 

to the formation of a sharper interface (here, 

appreciated as an improvement of the OCR). 

For higher annealing temperatures, oxygen-

termination is not stable and oxygen desorption 

leads to the disappearance of the O interface. 

III.5 Conclusions 

TEM-based techniques, particularly EELS-related ones, allow detecting and quantifying the 

oxygen content at oxygen-terminated diamond/metal interfaces. By using these techniques, 

we have demonstrated the following facts: 

 VUV-ozone treatment of the diamond surface followed by metal deposition, leads 

to the formation of an oxygen-content layer both in WC/ and Zr/based diodes. 

 Thermal treatment of such structures leads to oxygen redistribution in the interface, 

thus making a “more defined” interface (as evidenced by the oxygen-to-carbon 

ratio). This fact is also supported by the behavior of the ideality factor. 

Figure 42: Schematic model of the O-

terminated diamond interface (a) after the 

VUV/ozone treatment, (b) as-deposited 

contact, (c) annealed with ideality factor close 

to n =1 (case of the WC diode) and (d) 

annealed with a higher ideality factor but also 

with a higher oxygen content. 
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o Probably, diamond surface is not fully covered by oxygen after the ozone 

treatment. Additionally, oxygen accumulations can formed in the surface as 

presented in Figure 42 (a). 

o In WC-based diodes, thermal treatment at 600K leads to an ideality fact 

close to ideality (which means a clear and sharp interface). However, by 

heating up to 700K, such structures seem to degrade: ideality factor rises 

and oxygen desorption is expected. See Figure 42 (b). 

o In Zr-based diodes, thermal treatment at 623 and 723 leads to an 

improvement in the ideality factor. However, ideality factor of 1.16 is still 

high enough to argue for interfacial defects (see Figure 42 (c)). On the other 

hand, no degradation is observed at 700K, and oxygen layer is evidenced to 

exist even at such high temperatures. 

One can conclude that WC-based diodes leads to lower interface-states defects and more 

defined oxygen-terminated interfaces, but electronegativity of WC makes impossible to hold 

the oxygen-termination at high temperatures. On the other hand, Zr is an easily oxidizable 

metal, whose electronegativity allows holding diamond oxygen-termination even at high 

temperatures, even when such an interface is still defective. 
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Chapter IV: Diamond 
MOS structures  

 

 

Metal-Oxide-Semiconductor structures, as part of the MOS Field-Effect-Transistor, are key 

structures of the modern electronics. MOS structures are needed to implement capacitors 

and to control the channel of a MOSFET. 

IV.1 Introduction: An overview on the previous attempts on designing diamond-

based MOS structures is presented. Atomic layer deposition (ALD) is used to create 

oxide-metal stacks over oxygen-terminated diamond surfaces. Classic Diamond 

MOS structures 

 MOS operation regimes 

 Si vs diamond for MOSFETs 

 Controlling the active channel 

IV.2 Functional vs structural behavior of diamond-MOS structures [#3] & 

[#4]: Diamond MOS structures were electrically characterized by 

capacitance/voltage (C(V)) and current/voltage measurements. To explain such 

behavior, diamond-MOS structures were characterized by a variety of TEM 

techniques. Particularly, EELS mapping of the oxygen-related peak allows an 

accurate measurement of the oxide thickness, as well as to explore oxygen 

distribution inside the oxide layer. 

 Experimental details 

 Electrical properties 

 Structural characterization of [#3] & [#4]  
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IV.3 Interface effects: The observed nanostructure and electric behavior is here 

related with the surface states in the semiconductor. 

 Band bending 

 Fermi level pinning 

 Spotlight on interface traps 

IV.5 Oxide charges: Oxide defects, other than interface-related effects, were 

detected by TEM and C(V) measurements. Here, we summarize the evidences for 

the presence of oxide-related charges, following the next index: 

 TEM evidences of oxide charges 

 Electric evidences of oxide charges 

IV.6 Conclusions: Partial conclusions of this chapter are summarized here. 

IV.1 Introduction 

MOS structures are needed to store energy (acting as capacitors) [97] and also to control the 

channel in MOSFET devices [68]. The designs of practical capacitors vary widely, but all of 

them contains at least two electrical conductors (plates) separated by a dielectric (i.e. an 

insulator that can store energy by upon polarization). The conductors can be thin films, foils 

or sintered beads of metal or conductive electrolyte, etc. The non-conducting dielectric acts 

to increase the capacitor's charge capacity. A dielectric can be glass, ceramic, plastic films, 

air, vacuum, paper, mica, oxide layer etc.  

MOS capacitors are widely used as parts of 

electrical circuits in many common 

electrical devices. Unlike a resistor, an 

ideal capacitor does not dissipate energy. 

Instead, a capacitor stores energy in the 

form of an electrostatic field between its 

plates. Capacitors are also used in 

electronic circuits for blocking direct 

current while allowing alternating current 

to pass. In analog filter networks, they 

smooth the output of power supplies. In 

resonant circuits they tune radios to 

Figure 43: Schematic of a MOS-FET device, 

designed for n-type channel. MOS structure 

highlighted in dashed-square region. 
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particular frequencies. In electric power transmission systems, they stabilize voltage and 

power flow.  

The metal oxide semiconductor (MOS) structure is a specific case of metal insulator 

semiconductor (MIS) structure where the insulator is an oxide. The traditional metal–oxide–

semiconductor (MOS) structure is obtained by growing a layer of oxide on top of a 

semiconducting substrate and depositing a layer of metal. As the oxide is a dielectric 

material, its structure is equivalent to a planar capacitor, with one of the electrodes replaced 

by a semiconductor. 

When a voltage is applied across a MOS structure, it modifies the distribution of charges in 

the semiconductor. If we consider a p-type semiconductor (being NA the density of 

acceptors, p the density of holes; p = NA in neutral bulk), a positive voltage, VGB, from gate 

to body creates a depletion layer by forcing the positively charged holes away from the gate-

insulator/semiconductor interface, leaving exposed a carrier-free region of immobile, 

negatively charged acceptor ions. If VGB is high enough, a high concentration of negative 

charge carriers forms in an inversion layer located in a thin layer next to the interface in the 

semiconductor. 

Unlike the MOSFET, where the inversion layer electrons are supplied rapidly from the 

source/drain electrodes, in the MOS capacitor they are produced much more slowly by 

thermal generation through carrier generation and recombination centers in the depletion 

region. Conventionally, the gate voltage at which the volume density of electrons in the 

inversion layer is the same as the volume density of holes in the body is called the threshold 

voltage. When the voltage between transistor gate and source (VGS) exceeds the threshold 

voltage (Vth), it is known as overdrive voltage. 

Concerning the MOS-FET, its insulating behavior of a metal-oxide-semiconductor field 

effect transistor (as schematically presented in Figure 44) is based on the electrostatic control 

of the band curvature at the oxide/semiconductor interface. In theory, this effect should 

allow to overcome the high ionization energy of diamond dopants in the channel. Carriers 

would then flow with a high mobility in the channel, opening the way for fast switching 

MOSFET able to withstand high voltage and to get rid efficiently of the heat, thanks to 

diamond material. 

This structure with p-type body is the basis of the n-type MOSFET, which requires the 

addition of an n-type source and drain regions. We refer to Annex II for a brief introduction 

to the background of MOS and MOSFET structures. 
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MOS operation regimes 

As its name implies, a metal-insulator-semiconductor (MIS) structure is composed of a 

stack of a metal, an insulator (generally, an oxide) and a semiconductor. An ohmic contact 

acting as a reference is necessary for applying a voltage on the metal gate. Here, we use 

energy-band diagram to introduce and highlight the capacitance behavior of these structures 

under different bias. In section A.2 Metal – Oxide – Semiconductor interfaces, different 

operations regimes, depending on the applied bias. Such operations regimes are 

schematically shown in Figure 44. 

 V < 0 Accumulation: At this interface, the valence band is now closer to the Fermi 

level than further in the semiconductor when the bands are flat. This band bending 

causes an accumulation of majority carriers (here holes) in the semiconductor near 

the SC/oxide interface, giving its name to the regime called accumulation. 

 V = 0 Flat band 

 V > 0 Depletion: When a positive voltage is applied, the bands bend and a space 

Figure 44: Band diagrams and charge carrier distributions at different regimes of a MOS capacitor (p-type 

substrate, n-type channel) showing: (a) accumulation, (b) flat band condition, (c) depletion and (d) inversion. 

Electrons, provided by the semiconductor without thermal generation are appreciated in inversion mode. 
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charge region appears where the majority carriers are depleted. This means those 

majority carriers are repulsed away from interface by the generated electrical field. 

This is the depletion regime. 

 V >> 0 Weak inversion of charge carriers: When a larger positive voltage is applied, 

the bands bend downward more and more, until the Fermi level EF crosses the 

intrinsic Fermi level Ei (Ei is the Fermi level for an intrinsic semiconductor, it lies 

at   ̴Eg/2 in the gap far from the oxide/semiconductor interface). Conduction at the 

SC/oxide interface is no longer carried out by the holes but by the electrons which 

are more numerous than the holes in this region. The semiconductor is said locally 

inverted (as more minority than majority carriers are present at the interface) and 

this regime is called the weak inversion. 

 V >>> 0 Strong inversion: By increasing further the voltage, the strong inversion 

regime is reached. The sheet density of electrons in the inversion layer is now larger 

than the density of holes in the neutral part of the semiconductor. Usually, no 

distinction is made between weak and strong inversion regime and what is often 

called inversion regime corresponds to the strong inversion case described here. 

Si vs diamond for MOSFETs 

The conducting or insulating behavior of the MOSFET is based on the electrostatic control 

of the band curvature at the oxide/semiconductor interface.  Unfortunately, the physical 

properties of Si semiconductor do not allow building efficient MOSFET for power 

electronics applications (generally insulated gate bipolar transistor are preferred but also 

limited to 4k V).  

MOSFET based on other semiconductors, like III-V compounds or SiC [98, 99], are 

improving but the performances of such devices are still not competitive with Si devices 

and, anyway, will be always lower than those expected for a diamond based MOSFET.  

The first successful MIS structure made of SiO2 on Si led immediately to the report of the 

famous Si MOSFET which is now ubiquitous in analog and digital electronics. Thanks to 

sufficiently clean SiO2/Si interfaces (we do refer to I.6 Motivation: impact of the interface 

configuration in diamond devices), the inversion regime can be reached in silicon.  

On the contrary, in the case of most semiconductors this regime has never been reached; 

mainly due to interface impurities that avoid a clean control of the interface band-bending. 
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Controlling the active channel 

So, the main problem to fabricate a metal oxide semiconductor (MOS) structure is to 

achieve a high-quality semiconductor oxide interface (it means: sufficiently clean) in order 

to control the different regimes of the MOS: accumulation of majority carriers, depletion, 

deep depletion or inversion of carriers. This oxide/diamond interface is highly related to 

both the oxide and the diamond surfaces quality. Thus, the choice of the oxide as well as the 

diamond surface treatment is of the uttermost importance. 

To address this challenge, taking into account the most common values reported in literature 

[61, 100], an aluminum oxide layer deposited by atomic layer deposition (ALD) on an 

oxygenated-diamond surface was the chosen option for the MOS structure, because of the 

expected match of the oxide with the diamond band gap as shown on Figure 45 for a low 

doped diamond (values were taken from literature [50]). Moreover, the reaction leading to 

ALD aluminum oxide is known to be well initialized on hydroxyl (-O-H) terminated 

surfaces such as the oxygen terminated diamond one [101]. 

 

The electrostatic control of the band curvature is a possible solution to solve the issue of the 

low ionization rate of the diamond dopants, but requires clean and low defect interfaces 

between oxide and semiconductor to avoid the Fermi level pinning at the interface. 

Therefore, MOS structures made of diamond as a semiconductor must be studied first, 

before fabricating the MOSFET device, in order to answer questions such as: 

 Can a diamond MOS structure allow an electrostatic control of the channel to be 

achieved? 

 If achieved, will the interface oxide/diamond be good enough (sufficiently clean) to 

avoid the Fermi level pinning and to allow reaching the inversion layer in a 

MOSFET? 

Figure 45: Theoretical band diagram of a MOS structure composed of a stack 

of Al/Al2O3/p-type diamond before Fermi level alignment.  
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IV.2 Functional vs structural behavior of diamond-

MOS structures [#3] & [#4]  

Literature shows that previous MOS structures performed on diamond [26, 102, 103] 

exhibited accumulation regime, but no deep depletion or inversion regimes. More recently, 

investigations of Al2O3 with hydrogen-terminated [104, 105] and oxygen-terminated 

diamond [61] demonstrate that such MOS capacitors could undergo accumulation, depletion 

and deep depletion. However, some structures in [61] are still presenting  some undesired 

electric behavior. In this chapter, we will focus on the latter structures, exploring the relation 

between the thermal treatment of ALD growth conditions (ALD cycle of Al2O3 is briefly  

presented in Figure 46) and the oxide layer modifications in Al/Al2O3/diamond MOS 

structures. Oxide layer properties are expected to have an impact on the electrical response 

of such MOS structures. 

Experimental details 

The growth procedure of the studied Al/Al2O3/diamond MOS structures was presented in 

II.1 Description of the samples, as previously reported by Chicot et al. in [61] (in such 

contribution, the studied interfaces were labelled as #1 and #4). In such structures, the 

Al/Al2O3 stack is designed to act as gate electrode on a boron-doped epitaxial diamond 

layer. Gate electrodes are here characterized by a combination of TEM techniques.  

Figure 46: ALD cycle of Al2O3. Surface reacts with trimethyl aluminum (TMA) producing methane as 

reaction product (a), (b). TMA reacts with the adsorbed hydroxyl groups until the surface is passivated (c). 

H2O pulsed into chamber (d) reacts with the new surface, forming Al-O bridges (e), (f). Again, methane is 

pumped and surface becomes passivated. Several cycles of TMA and H2O pulses creates the layer Al2O3 (g). 
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Structure of samples #3 and #4 consists in a B-doped diamond layer with a boron 

concentration of around 10
17

cm
-3

, on each; an ohmic contact (Ti/Pt/Au annealed at 750
o
C 

under high vacuum) was evaporated directly on the epitaxial layer to act as reference 

contact for capacitance measurement. After the creation of the ohmic contacts, diamond 

surface oxygenation was performed by deep UV ozone treatment [62]. Finally, 

photolithography process was used in order to selectively deposit the dielectric oxide.  

Then, a 10 nm thick for sample #3 and 20 nm for #4 of Al2O3 dielectric oxide have been 

deposited by low temperature (100
o
C) ALD (see Figure 46),  to preserve the lithography 

resist. The ALD system used in the present experiments was Savannah 100 from Cambridge 

NanoTech. The precursor used was trimethylaluminum (TMA), and the oxidant was H2O. 

Using the same window in resist, the dielectric has been covered by a 100 nm thick 

aluminum metal using an electron beam evaporator. The resulting structures and further 

details are well described in [61]. 

Electrical properties
19

 

Electrical properties of MOS capacitors have been measured using a Keithley 6517B 

source-electrometer apparatus for the static current/voltage I(V) characteristics and a 

Agilent E4980A Precision LCR Meter for the capacitance/voltage C(V) measurements. The 

measurements reported in this chapter were done with frequencies in the range of 50kHz to 

220kHz by Chicot et al., details of the capacitance measurements can be consulted in 

literature [61]. To understand this plot, as well as to have a direct comparison between these 

data and the theoretical behavior, we refer to “A.I Metal – Semiconductor interfaces”. In 

sample #3, different regimes can be observed on C(V) measurements (Figure 49 (a)). For 

negative voltage (V≤-5V), hole accumulation is observed.  

This phenomenon was analyzed by Chicot et al., being is partially attributed to the presence 

of interface states or/and deep levels in the diamond layer close to the Al2O3/diamond 

interface (compensating levels in the first hundred nanometers under the Al2O3/diamond 

interface in a diamond growth without oxygen in the gas phase [62, 93, 106].  

While the voltage increases, a space charge region begins to appear in the semiconductor. 

Then, for voltage increasing values (V≥3V), the capacitance starts to increase again (see 

arrow in Figure 47 (a)). Usually, this kind of increase is characteristic of the strong inversion 

regime, where majority carriers are locally inverted; meaning that electron concentration at 

the oxide/diamond interface is larger than the hole density in the p-type diamond region.  

                                                      

19
 Electric measurements over #3 and #4 were carried out at Institut Néel by Dr. Gauthier Chicot. 
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This behavior was explained in [61] by the fact of that diamond p-layer of sample #3 shows 

a large amount of defects such as hillocks. These defects are generally passing through the 

whole depth of the layer (it means: from the bottom to the surface of diamond), and can act 

as a mechanism to provide electrons from neutral regions through these defects up to the 

oxide/semiconductor interface.  However, a measurement artifact due to the high oxide 

leakage current or impedance due to deep levels couldn’t be discarded. 

To clarify this, sample #4 was designed and fabricated. In this sample, hole accumulation 

and depletion are also observable. But, instead of increasing again the positive voltage 

range, the capacitance continues decreasing, as shown in Figure 47 (a). This decrease is 

typical of the deep depletion regime. In fact, applying a linear fit to the 1/C
2
 vs voltage 

(Figure 47 (b)), the effective doping of the p-diamond can be deduced. The good agreement 

of this fitting with the SIMS measurements confirms that the whole area of the capacitor is 

active. 

In Figure 48 the static I(V) measurements of both structures are shown. In sample #4, a quite 

high current density flowing across the “insulating” Al2O3 layer, and a not symmetrical 

behavior in the I(V) characteristic can be observed. The latter reveals more current flowing 

in the negative voltage (hole accumulation) than in the positive voltage (depletion).  

Moreover, for sample #4, the current is lower under positive voltage than under the negative 

ones. Assuming a very small barrier for holes when the structure is in deep depletion, the 

current is only limited by the insulating space charge region.  

Figure 47: Experimentally acquired electrical properties of capacitors labelled as #3 and 

#4. (a)  Capacitance C/Cmax versus voltage measurement, and (b) 1/C2 versus voltage. 
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On the contrary, for sample #3, the almost symmetrical current may be due to a parallel 

leakage path inside the depletion zone, as previously mentioned to explain the capacitance 

anomalies. The latter may be related with different oxygen content between metal and 

semiconductor, thus leading to bandgap fluctuations along the interface. 

Structural characterization of [#3] & [#4]  

To understand the differences in the electric behavior of #3 and #4, structural and chemical 

characterization of both MOS structures is carried out by combining CTEM and EELS 

experiments. Figure 49 shows 001-BF micrography acquired in both samples.  

Figure 49 has been composed to show both interfaces at the same magnification, #3 is shown 

in left/upper side and #4 is shown in bottom/right side. Arrows in Figure 49 are used to guide 

the reader’s eyes along the Al2O3 layer, white arrows are used for #3, while black arrows are 

used to identify the oxide layer in #4. It can be observed that the diamond/oxide interfaces 

of both samples are well defined, while the oxide/metal interface in #3 seems to be modified 

from point to point. Indeed, white arrows in Figure 49 (oxide layer in #3) reveal variations in 

the oxide thickness.  

On the other hand, black arrows in Figure 49 are used to highlight diamond/oxide and 

oxide/metal interfaces of #4. It can be observed that both interfaces have a sharp transition 

and that the oxide thickness at #4 is remaining nearly constant. 

Figure 48: (a) Theoretical variation of space-charge density in a semiconductor as function of the surface 

potential for a p-type low-doped semiconductor. (b) Experimentally measured electrical properties of #3 and 

#4 capacitors, here static current versus voltage is shown. 
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To highlight oxide variations 

in #3, Figure 50 was prepared. 

In Figure 50, a 001 BF 

micrography of #3 

diamond/Al2O3/Al stack is 

shown. White arrows are 

used to label oxide thickness 

variations, revealing the 

following phenomena: 

(1) 5nm stable oxide 

thickness  

(2) bottlenecks with oxide 

thickness below 5nm 

(3) oxide thickness over 

the expected 10nm ALD-

growth oxide thickness 

To get an accurate 

determination of the oxide 

thickness of samples #3 and 

#4, EELS analyses were 

carried out in both specimens. This technique allows acquiring structural and chemical 

information simultaneously. So that EELS spectra were acquired along the arrows indicated 

in Figure 49. EELS spectra, recorded at positions S12 to S15 of MOS structure #4, as 

indicated in Figure 49, are shown in Figure 51. The latter reveals Al2O3 formation (position 

S14) due to the presence of the oxygen-related O-K peak simultaneously with Al-related Al-

K peak. This allows identifying the Al2O3 layer and, thus, measuring the oxide thickness 

along the MOS structure. On the other hand, positions S12 and S13 show a typical diamond 

Figure 50: 001 BF micrography of #3 diamond/Al2O3/Al stack. White arrows are used to label oxide 

thickness variations: (1) 5nm stable oxide thickness, (2) bottlenecks with oxide thickness below 5nm and (3) 

oxide thickness over the expected 10nmALD-growth oxide thickness 

Figure 49: Bright Field micrography of the diamond MOS interfaces 

#3 and #4 and location of the EELS profiles 
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shape EELS spectra. Some carbon signal is still remaining at positions S14 and S15, 

probably due to carbon redeposition produced during the ion milling of the FIB sample 

preparation procedure.   

Once the presence of the oxide layer has been evidenced, EELS maps of the oxygen 

distribution in both structures were acquired. This allows evaluating the homogeneity of the 

oxygen distribution in the oxide layer, as well as an accurate measurement of the oxide 

thickness; oxide thickness variations and oxide thickness mean value. 

Figure 52 shows oxygen map (green-blue scale) of #3 (a) and #4 (b) diamond-MOS 

structures. EELS maps were acquired by performing a 20x20 pixels mapping, with a 3nm 

EELS probe size and the same exposure time pixel by pixel. Inset of Figure 52 (a) shows 

oxygen mapping of #3; it can be appreciated that oxygen signal is present on the Al2O3 

layer, but also at some points of the metal layer, as spotted by label (3). In fact, Figure 52 (a) 

shows an oxygen island inside the metal layer (upper-left side of inset, labelled as (1)). This 

is attributed to the presence of Al2O3 in the Al layer.  

Probably, thickness’s inhomogeneities in the ALD-deposited Al2O3 layer lead to the 

formation of vertical and curved structures. During a cross section study, these structures are 

appreciated as islands, with no apparent connection with the Al2O3 layer. On the other hand, 

Figure 51: EELS spectra acquired in #4, following the linescan indicated in Figure 49. A: diamond 

substrate, B: diamond substrate near the interface, C: oxide layer and D: metal layer 
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oxygen map on #4 is shown in Figure 52 (b); an homogeneous oxygen distribution and sharp 

transitions at both sides of the interfaces can be observed. 

EELS mapping for #4 (presented at inset of Figure 52 (b)) reveals an oxide mean thickness 

value of around15nm (20nm thick oxide layer was expected by the growing procedure). 

However, sample #3 shows a 5nm thick oxide layer, with thickness variations in the same 

order of magnitude than the width of the oxide layer. Indeed, an oxide thickness between 3 

and 15nm was evidenced by EELS in #3. Furthermore, it can be appreciated that in Figure 52 

(a), oxygen distribution in #3 is not homogeneous inside the oxide layer. The latter can be 

related with oxide/metal mixtures. 

Oxygen inhomogeneities can be revealed by profiling the EELS oxygen-peak intensity 

across the oxide layer. Figure 53 shows the EELS oxygen-peak intensity profiles, acquired at 

the positions highlighted in Figure 52; grey rectangle is used to mark the position of the 

diamond bulk. A 0.1 nm probe size was used for oxygen-intensity EELS profiling. 

Oxygen distribution in samples #3 and #4 are revealed, in Figure 53, by: 

 Unfilled dots are used to plot EELS linescan corresponding with label (1) in Figure 

52 (a) 

 Filled dots are used to plot EELS linescan corresponding with label (2) in Figure 52 

(a) 

 Thick black line is used to plot EELS linescan corresponding to Figure 52 (b) 

Note that data shown in Figure 53 are presenting higher resolution than those presented in 

Figure 52 mapping. This is because EELS profiles in Figure 53 were averaged over 5nm (so, 

each profile in Figure 53 corresponds to the averaged value of 5 linescans). 

Figure 52: EELS mapping (insets) of the oxygen signal (blue color) in oxide layer of samples #3 (a) and #4 

(b). In sample #3, oxygen signal could be observed inside the AL metal layer, revealing inhonogeneities in 

the oxide thickness. Figure also shows the position where EELS linescans were acquired in both samples. 
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Back to discussion, Figure 53 evidences that oxide layer in #3 is presenting inhomogeneities: 

oxygen seems to be concentrated in the vicinity of the diamond bulk. A similar behavior is 

observed in sample #4 (black thick line in Figure 53), with a higher oxygen content near the 

diamond-side of the contact. Finally, oxide island revealed in inset of Figure 52 ((a), label 

(1)) is also presented in Figure 53 as a second peak in de unfilled dot-line plot. This behavior 

can lead to Al/diamond shortcuts, explaining the electrical behavior discussed in the last 

section. 

For an accurate comparison of both oxide layers, O/C ratios were acquired as described in 

Chapter III (see Eq. 4): “Interface analysis”. The latter allows measuring OCR values of 0.96 

for #3 and 3.85 for #4. This means that the oxygen signal is almost four times higher in #4 if 

compared with the carbon signal. This result allows a direct comparison of the oxide gain in 

both samples, thus allowing to determine the relative efficiency of the oxygen incorporation 

in both structures. 

Table 10 summarizes the key results obtained in this section. Oxide thickness variations in #3 

have been evidenced and oxygen distribution in the oxide layer varies in both samples. 

Figure 53: EELS oxygen-intensity profiles of samples #3 and 

#4 acquired along the linescans shown in Figure 49. Second 

peak in unfilled dot line plot corresponds with an “oxide island” 

inside the Al layer, as shown in inset of Figure 52 (a) 
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Even though the ALD experimental procedure is identic in both samples, strong differences 

in terms of electrical behavior and nanostructure are revealed. It can be tentatively attributed 

to some substrate differences as much or to a partial passivation of the oxide layer during 

the ALD-growth. 

The difference in OCR may be related with the presence of oxygen vacancies (VO) in #3. 

The shape indicates that oxygen atoms migrate toward the metallic contact (Al), probably as 

a consequence of the electrical measurements (samples are electrical strained). Indeed, 

polarization can drive the electrically charged vacancies (VO) to one side of the oxide layer. 

IV.3 Interface effects 

The previously presented electric behavior of #3 and #4 (Figure 47 and Figure 48) differs from 

that of the ideal MOS structure. Here, we explain these differences according to the theory 

of real metal-oxide-semiconductor structure. Further information can be found in literature 

[68, 107]. 

Surface states 

Due to the interruption of the periodic lattice structure at the surface of the crystal, interface 

traps Qit (historically also called “interface states”, “fast states” or “surface states”) exists 

within the forbidden gap. Surface states are electrically active states, resulting from the 

disruption of the periodicity of the lattice at the semiconductor surface, formed due to the 

sharp transition from solid material that ends with a surface and are found only at the atom 

layers closest to the surface.  

The termination of a material with a surface leads to a change of the electronic band 

structure from the bulk material to the vacuum. In the weakened potential at the surface, 

new electronic states can be formed, so called surface states. On the other hand, an interface 

trap is an electrically active defect, located at the interface between oxide and 

Table 10: Summary of the samples studied in this chapter with its corresponding experimentally 

measured oxide parameters obtained by combining CTEM and EELS techniques 

Sample 
Nominal oxide 

thickness (nm) 

Measured oxide 

max. thickness 

(nm) 

Measured oxide 

min. thickness 

(nm) 

Measured oxide 

mean thickness 

(nm) 

OCR 

#3 10 15±1 ≈3±1 5 0.96±0.02 

#4 20 15±1 15±1 15±1 3.85±0.02 
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semiconductor, capable of trapping and de-trapping charge carriers. Interface traps have an 

adverse effect on device performance. 

We conclude that, when the periodic pattern of chemical bonds in the crystal is interrupted 

at the surface, it results in unsaturated (dangling) bonds, which can rearrange themselves 

(surface reconstruction) and/or which might be saturated by a (mono) layer of atoms 

(sometimes oxygen). This results in a change of both the surface crystal structure and the 

allowed energies that depend sensitively on the materials and bulk crystal structures 

involved. Often, the electronic surface structure has little to do with the bulk structure. The 

surface states can be probed, for example with scanning tunneling techniques or with photo 

emission spectroscopy.   

The number of surface states per area is essentially given by the number of atoms per area at 

the surface. These states can be comprised of states that in the infinite, boundary less crystal 

would have contributed to either the conduction or the valence bands and can be an 

admixture of both types of bands.  Due to charge neutrality, in the case of the intrinsic 

semiconductor the number of filled surface states is equal to the number of electrons that 

were removed from the bulk valence band due to surface formation, resulting in a neutral, 

uncharged surface. The remaining surface states are empty.  

Filled surface states have electrons that in principle could be given into empty available 

states and can therefore be considered donor-like states. Vice-versa: empty surface band 

states are called acceptor-like. The energy up to which the surface states (within the surface 

band) are filled in the intrinsic, un-doped semiconductor is dictated by charge neutrality and 

is sometimes referred to as the charge neutrality level or charge neutrality chemical 

Figure 54: (a) diagram of a MOS stack where interface-trap region is highlighted and (b) interpretation of a 

system with both acceptor and donor states with a neutral level E0 above which the states are of acceptor 

type and below which of donor type. When EF is above/below E0, net charge is – /+. 
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potential. 

Similar to bulk impurities, an interface trap/surface state is considered a donor if it is 

neutral, and can become positively charged by donating (giving up) an electron. An acceptor 

interface trap is neutral and becomes negatively charged by accepting an electron. 

Presumably, every interface has both kinds of traps. A convenient notation is to interpret the 

sum of these by an equivalent distribution Dit, with an energy level called neutral level E0 

above which the states are of acceptor type, and below which are of donor type (see diagram 

in Figure 56 (b)). Note that, when a voltage is applied, the Fermi level moves up or down 

with respect to the interface-trap levels and a change of charge in the interface traps occurs. 

This change of charge affects the MIS capacitance and alters the ideal MIS curve 

Band bending 

For a bit more quantitative consideration, let zdep denote the extent of the depletion region 

into the bulk starting from the surface at z = 0, and N the dopant density (per m
3
). All 

donors are ionized in the depletion region, giving a space charge density of ρ = eN. The 

Poisson equation for the z-dependence of the potential V(z) within the depletion region 0 ≤ z 

≤ zdep is [107]: 

𝑑2𝑉

𝑑𝑧2
= −

𝑒2𝑁

𝜖𝜖0
=> 𝑉(𝑧) =  −

𝑒2𝑁

2𝜖𝜖0
(𝑧 − 𝑧𝑑𝑒𝑝)2 Eq. 6 

Where the normalization of V was chosen as V = 0 in the bulk (for z > zdep) and the constant 

of integration was chosen to match V(zdep) = 0 accordingly. According to Eq. 6, the bands are 

therefore bending quadratically, with a total shift of V (z→0
+
) = -e

2
Nz

2
dep/2ϵϵ0. More 

generally, the local curvature of a band is proportional to the local space charge density. At 

the surface Z = 0, V(z) will jump (over the narrow extent of the surface charge accumulation 

layer), due to the charge accumulated strongly localized at the surface ns.The surface 

accumulation charge is of equal size but opposite sign as the local depletion region charge ns 

= -N zdep (charge neutrality) and creates a further change in V that we neglect. I this 

approximation, the bands have bent by a total amount of ΔV = V (0).  

At the surface, the chemical potential
20

 is in the surface band, since that band is partly filled 

for sufficiently low doping density; and the surface band energy and width depends on 

                                                      

20
 In thermodynamics, the chemical potential is a form of potential energy that can be absorbed or 

released during a chemical reaction, the chemical potential of a system of electrons at a temperature 

of zero Kelvin is known as the Fermi energy. 
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material properties. In the bulk, the chemical potential is in the gap, usually closer to the 

conduction band (again, depending of the doping density). However, in equilibrium, the 

chemical potential has to be the same everywhere, and in particular needs to be the same at 

the surface and in the bulk. This condition therefore dictates the value of ΔV, i.e. the amount 

by which the bands need to bend, originating from the material dependent surface 

properties, and therefore determines the depletion depth zdep 

Fermi level pinning 

To make an example, let's assume that the surface band is centered in the middle of the gap, 

with a width of a fraction of the gap size, and is half filled in the intrinsic material. Doping 

will fill the surface band slightly more. Let’s take the case of diamond MOS structure #3, 

with a band gap of Eg = 5.45eV (Table 1), and a nominal doping of N = 10
17

at/cm
-3

 = 

10
23

at/m
-3

 (here we use the value reported for #3, as described in II.1 Description of the 

samples, Metal-Oxide-diamond structures). Then, ΔV ≈ Eg/2, and with ϵ ≈ 5.7 (Table 1) and 

using: 

𝑧𝑑𝑒𝑝 =  √
2𝜖𝜖0∆𝑉

𝑒2𝑁
 Eq. 7 

Figure 55: Theoretical band diagram in a diamond/ALD-Al2O3 interface in the case of an oxygen-terminated 

diamond surface and an hydrogen-terminated diamond surface. 
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It follows that zdep ≈ 130nm, we can compare this quantity with diamond lattice constant a0 

= 0.35nm
21

. This result in a surface charge of ns = N zdep ≈ 3.71·10
16

m
-2

, much smaller than 

the total surface density of states (≈ 2/a
2
0 ≈ 16.3·10

18
m

-3
)

22
 with the previously presented 

lattice constant. Therefore, the chemical potential at the surface is essentially independent of 

the doping level (at least, for typical doping densities as above). One says  that the Fermi 

level is pinned at the surface. Particularly considering that the surface atoms make up a very 

small fraction of the total number of atoms in the crystal, the role of the surface is quite 

important. Also, note that the depletion depth zdep can be changed with the dopant density, as 

formulated in Eq. 7. 

Spotlight on interface traps 

When a voltage is applied, the Fermi level moves up or down with respect to the interface-

trap levels and a change in the interface traps occurs. This change of charge affects the MOS 

capacitance and alters the ideal MOS curve. Capacitance measurements can be used to 

evaluate the interface-trap density, because the input capacitance of the equivalent circuit 

contains information about the interface traps (see Figure 56). The basic equivalent circuit 

incorporating the interface-trap effect is shown in Figure 56 (a).  

In Figure 56, Ci and CD are the insulator and the semiconductor depletion-layer capacitance, 

respectively. Cit and Rit are the capacitance and resistance associated with the interface traps 

and, thus, are also functions of energy. The product Cit·Rit is defined as the interface-trap 

lifetime τit, which determines the frequency behavior of the interface traps. The parallel 

branch of the equivalent circuit in Figure 56 (a) can be converted into a frequency-dependent 

capacitance Cp in parallel with a frequency dependent conductance Gp as shown in Figure 58 

(b) and according with the expressions: 

𝐶𝑝 = 𝐶𝐷 +  
𝐶𝑖𝑡

1 + 𝜔2𝜏𝑖𝑡
2  Eq. 8 

𝐶𝑝

𝜔
= 𝐶𝐷 +  

𝐶𝑖𝑡𝜔𝜏𝑖𝑡

1 + 𝜔2𝜏𝑖𝑡
2  Eq. 9 

                                                      

21
 http://www.semiconductors.co.uk/propiviv5431.htm 

22
 Further information about the total surface density of states can be found in literature: K. NG. 

Kwok S. M. Sze,  Physics of semiconductor devices, 2nd ed. Wiley, New York (1981) 
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Also of particular interest are the equivalent circuits in the low-frequency and high 

frequency limits included in Figure 56 (c) and (d) (deduced from the previous equations). 

Physically, it means that the traps are not fast enough to respond to the fast signal. Figure 56 

(e) shows qualitatively the high-frequency and low-frequency C-V characteristics with and 

without interface traps.  

A very noticeable effect on the interface traps is that the curves are stretched out in the 

voltage direction. This is due to the fact that extra charges has to fill the traps, so it takes 

more total charge or applied voltage to accomplish the same surface potential ψs (or band 

bending). This is demonstrated more clearly in Figure 56 (f), where ψs is plotted against the 

applied voltage directly, with and without traps. This means that interface traps affects the 

total capacitance in two ways: 

 Through the extra circuit elements Cit and Rit 

 Indirectly, on CD: for a fixed bias, since some charge will be needed to fill the 

interface traps, the remaining charge to be put in the depletion layer is reduced and 

this will reduce the surface potential or band bending. But since the relationship 

between CD and ψs is fixed, changing ψs means changing CD also.  

Figure 56: (a), (b) Equivalent circuits including interface-trap effects. (c) Low frequency limit. (d) High 

frequency limit. (e) and (f), influence of interface traps on high frequency and low frequency C-V curves in 

a p-type semiconductor. 
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IV.5 Oxide charges 

Oxide-related charges, other than that of the interface traps, include the fixed oxide charge 

Qf, the mobile ionic charge Qm and the oxide-trapped charge Qot, as shown in Figure 57. In 

general, unlike interface-trapped charges, these oxide charges are independent of bias, so 

they cause parallel shift in the gate-bias direction.  

The effect on the voltage shift is weighted according to the location of the charge, i.e., the 

closer to the oxide-semiconductor interface, the more shifts it will cause.  

Positive charge is equivalent to an added positive gate bias for the semiconductor so it 

requires a more negative bias to 

achieve the same original 

semiconductor band bending. 

Notice that in the new flat band 

condition, the oxide field is no 

longer zero. The fixed oxide 

charges Qf, has the following 

properties: 

 They are located very 

close to the oxide-

semiconductor interface 

 They are generally 

positive 

 Their density is not 

greatly affected by the 

oxide thickness or by the 

type or concentration of 

impurities in semiconductor 

 They depend on oxidation and annealing conditions 

 They depend on semiconductor surface orientation 

It can be regarded as a charge sheet located at the interface: ΔVf = -Qf/Ci Mobile ionic 

charges can move back and forth through the oxide layer, depending on biasing conditions, 

and thus rise to voltage shifts. The shift is usually enhanced at elevated temperatures. 

Oxide trapped charge is associated with defects in the oxide. The oxide traps are usually 

initially neutral and are charged by introducing electrons and holes into the oxide layer. This 

can occur from any current passing through the oxide layer. 

Figure 57: Terminology for charges associated with a standard 

thermally oxidized MOS structure. 
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On the other hand, charged oxygen vacancies in Al2O3 oxide layer are usual. Indeed, 

different kinds of oxygen vacancies [108] can be produced (see Figure 58) when: 

(b) VO: Oxygen is removed from the Al2O3 lattice, 2 electrons remains. 

(c) VO
+
: Oxygen is removed from the Al2O3 lattice, 1 electron remain. 

(d) VO
++

: Oxygen is removed from the Al2O3 lattice, no electron remaining. 

Concerning native point defects in Al2O3, it’s generally believed that they have their full 

normal charges: VO
2+

, Oi
2-

, VAl
3-

, Ali
3+

. On the other hand, defects in pure alumina can only 

form in charge neutral combinations as follow: 

 Schottky (vacancies) and anti-Schottky (interstitials): 3 VO
2+ 

+ 2 VAl
3- 

and 2 Ali
3+

 + 

3 Oi
2-

 

 Cation Frenkel (Al
3+

 ions) and anion Frenkel (O
2-

 ions): VAl
3-

 + Ali
3+

 and VO
2+

 + Oi
2-

 

Point defects [108] in alumina can diffuse particularly, oxygen vacancy diffusion has been 

investigated by other authors [109], resulting in three distinct classes of diffusion jumps. 

Charged oxygen vacancies in the oxide can be moved from its site to an adjacent one in a 

biased MOS structure [109], even in amorphous alumina [110], thus leading to oxide-charge 

related effects in the C-V curve. 

TEM evidences of oxide charges 

EELS measurements, carried out in the oxide layer of sample #4, reveal some differences in 

the oxygen distribution inside the oxide layer. Sample #4 presents a variety of diamond 

MOS capacitors, some of them were electrically characterized, while some others were not. 

This means that some MOS structures were “electrically strained”, while some others 

remains “as deposited”. For that, an EELS study of the oxygen distribution in the oxide 

layer depending on the “on duty” operation was considered of interest. 

Figure 58: Oxygen vacancies in an Al2O3 oxide. (a) No oxygen vacancy, (b) VO, (c) VO
+ and (d) VO

++ 

vacancy types. 
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Two #4 structures were studied: one before and one after the electrical characterization. The 

results are summarized in Figure 59. Figure 591 (a) shows 001-BF image of both structures, 

white arrows are accompanied by red/black spots to highlight the points where EELS data 

were acquired. It can be observed that EELS oxygen-related signal is higher in the vicinity 

of the diamond interface in electrically characterized samples. On the other hand, MOS 

capacitors that were not electrically characterized are showing a more homogeneous oxygen 

distribution in the oxide layer. This was revealed by EELS profiling of the oxygen-related 

peak (O-K line, at 532 eV) over the oxide layer (see Figure 61(b)).  

Note that oxygen-EELS intensity profiles presented on insets of Figure 61(b), were acquired 

by averaging several profiles over a 5nm interface. The previously described behavior is 

here tentatively attributed to oxide charges, which may be induced by oxygen migration. 

Such migration may lead to oxygen inhomogeneities in the oxide layer. 

Electric evidences of oxide charges 

In the previously described electrical behavior (see IV.2 Functional vs structural behavior of 

diamond-MOS structures [#3] & [#4]), an horizontal shift on the C(V) curve of both 

samples can be observed. Indeed, Figure 47 (a) shows that flat band condition is modified 

(look at the 0V position of Figure 47 (a)). 

This is explained in terms of the presence of oxide charges, as schematically presented in 

Figure 60. Figure 60 (a) shows the impact of positive charges in the oxide, horizontally 

displacing the shape of the related C(V) feature. Figure 60 (b) shows an schematic view of 

Figure 59: (a) 001-BF image of diamond MOS structures electrically strained (inset) and not strained. (b) 

EELS oxygen-intensity profiles measured across the oxide layer in strained (black line) and not strained (red 

line) diamond-MOS structures. Different oxygen distribution, depending on the electric strain, are evidenced. 
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the original flat band condition, once the structure is polarized (c) the new flat band 

condition remains as indicated in Figure 60 (d).  

IV.6 Conclusions 

Taking into account the previously exposed phenomena, a variety of conclusions can be 

extracted: 

 Shift in the C-V plot (see Figure 47 (a)) can be explained by two factors: 

o In terms of oxide charges in the Al2O3 layer  

o Additionally, interface states also modify the shape of the C-V curve with 

respect to the ideal behavior. 

 Oxygen distribution inside both oxide layers is not homogeneous. Even when the 

oxide thickness in #4 remains constant, a not homogeneous oxygen distribution 

inside the oxide layer can be observed. This can be due to the formation of oxygen 

Figure 60: (a) High frequency C-V curve (p-type semiconductor) shifted along the voltage axis due to 

positive oxide chares. Band diagram at flat band (b), original, (c), with positive oxide charges and (d) new 

flat band bias. 
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vacancies in the oxide, induced by the applied voltage. Additional measurements 

are required in order to verify this point. 

 Thickness variations of the Al2O3 layer in #3 respect to #4 have been evidenced. 

Such variations could be related with the ALD process, and are shown to have a 

clear impact in the electric response of the related device. 

These facts allow us to identify the real problems and, thus, to design more reliable 

structures in the future. As spotted, the main sources of the bad behavior of the diamond 

MOS structures are the oxide thickness variations, the interface states and the oxide charges. 

Concerning the interface states, diamond’s covalent semiconductor surface is expected to 

have a high density of surface states or defects near the neutral level (which is expected to 

be about one-third of the bandgap from the valence-band edge). Indeed, the theoretical 

calculation by Pugh [111] for (111) diamond surfaces, gives a narrow band of surface states 

slightly below the center of the forbidden gap. 

Such interface states are minimized when VUV-ozone treatment of the diamond surface is 

carried out. However, probably the oxygen atoms are not covering the whole diamond 

surface (“size” of the oxygen atoms makes it very difficult). This will lead to direct 

diamond-oxide contacts, which means surface charges (see Figure 63). Direct diamond-oxide 

contacts or “dangling bonds” leads to undesired charge carriers along the interface, modeled 

as interface states, which are not completely avoided after the ozone treatment. 

 

 

  

Figure 61: Diagram of the diamond surface after the VUV-ozone treatment (a) fully covered of oxygen and 

(b) with oxygen vacancies.  (c) Direct diamond-oxide contact or “dangling bond”, that leads to charges in the 

interface. 
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Chapter V: Diamond δ-
FETs 

 

 

In the previous chapter, diamond-MOS structures were characterized in order to build 

reliable MOSFETs devices. However, diamond-based traditional MOSFET architecture 

presents the problem of the n-type doping of drain and source (needed to supply carriers to 

the active channel as well as for the manufacture of reliable p-n junctions [112, 113]). 

Additionally, diamond-oxide interface states still prohibit a good control of the field 

expansion in the diamond material. Nevertheless, despite the progress in n-type doping of 

diamond [30, 114, 115], n-type doping still carries some technological difficulties as 

growing in an specific CVD reactor or by implantation. C. Saguy et al. [116] demonstrated 

that [P-V] complexes are not broken even after high temperature annealing, explaining the 

difficulty of n-type doping by P ion implantation in diamond. Moreover, n-type diamond 

with phosphorous impurities leads to a very deep donor level (0.6eV below the band 

minimum [117]), so boron still remains as the most commonly employed dopant in 

diamond. 

In this sense, p-type diamond is more easily obtained either by MPCVD growth or by using 

boron ion-implantation followed by annealing [118, 119]. Boron is known as an efficient 

dopant for diamond because of its 0.37eV acceptor level above the valence band. So, to 

achieve a Field Effect Transistor in diamond, δ-FET architecture seems to be an ideal first 

approach in which charge carriers (created in the δ -doped structure) can move through the 

diamond lattice without requiring n-type doping. 

In this chapter, we will focus on the architecture of diamond δ-FETs as well as in our efforts 

to fabricate it, following the next index: 
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V.1 Introduction: Basic concepts and fundamentals behind a δ-FET architecture 

are introduced. Simulations of charge carrier confinement in δ -doped diamond 

structures, carried out by various authors in literature, are also presented and 

discussed. 

 Charge carrier confinement 

V.2 Boron concentration profiling: For the manufacturing of reliable δ-doped 

diamond devices, an accurate control of the doping process is needed, together with 

specific methods for the characterization (both in terms of doping level and 

localization of boron acceptors). Here, an STEM-based methodology is developed 

to quantify the boron distribution in diamond δ -doped structures. 

 Experimental details 

 Z-contrast for boron profiling of δ-doped layers (STEM-HAADF) 

 HAADF corrected profiles 

 

V.3 Diffraction contrast for boron doping profiling of δ-doped layers by TEM : 

An accurate characterization of the thickness and doping of the δ -layer is 

mandatory, in order to reach an optimum configuration of the device. 

 Experimental details 

 Contrast in TEM 

 Methodology 

 δ-FET characterization (#9) 

V.4 Diamond δ-FET [#9]: The configuration of the samples used in this work to 

fabricate δ-FETs is described. The previously presented structures were 

electronically and TEM-characterized, main results are summarized here. 

 δ-doped diamond FETS 

 MOSFET electrical properties 

V.5 Conclusions: Final consideration about the several attempts of fabricating 

operative diamond-based δ-FET devices 

 Conclusions on δ-layers characterization 

 δ-FET fabrication 

 General conclusions 

V.1 Introduction 

Doping distributions with high peak concentrations and narrow distribution widths are 

advantageous for many device applications. A δ-like function in doping distributions 

minimizes potential fluctuations originated from random doping atom distributions, 
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resulting in a significant improvement of the optical properties of doping supperlatices. 

Quantum confined interband transitions have been widely observed in absorption 

measurements and luminescence emission experiments [120]. 

The free-carrier distribution in semiconductors depends on the distribution of ionized 

impurities. The free-carrier distribution is instrumental for many properties of 

semiconductors, including recombination and transport properties. In semiconductors with 

“smooth” changes of doping concentration, the free-carrier profile follows the doping 

profile with a good approximation.  

However, in δ-doped semiconductors which exhibit abrupt doping concentration variations 

along short distances, the free-carrier distribution is spread out much further than the doping 

distribution in the quantum-mechanical picture. These δ-like distribution is modelled by the 

Dirac δ-function, δ(z), which is a mathematical distribution whose width is infinitely 

narrow. The magnitude of δ(z) is zero for z ≠ 0 and infinite for z = 0. The integral of the 

function has a value of unity. The employment of the δ(z) for semiconductor doping profiles 

implies that the width of the one-dimensional profile is much narrower than all other 

relevant length scales.  

These relevant length scales includes the screening length, the free-carrier diffusion length 

and the De Broglie’s wavelength of a quantized carrier system. In the ideal situation, this 

implies a very thin doped layer (one atomic layer in the lattice), as schematically shown in 

Figure 62 (a). Figure 62 also shows a simplified δ-like distribution (b), whose simplified V-

shaped potential is presented in (c) by using grey line. 

Strictly speaking, the use of the δ(z) function for any real physical quantity is problematic. 

Thus, the Gaussian function can be alternatively used to describe very narrow 1D doping 

Figure 62: (a) Schematic illustration of a semiconductor substrate and an epitaxial film containing a δ-doped 

layer. A schematic lattice with the impurity atoms being confined to a single atomic plane is also shown. (b) 

Delta-like function doping distribution and (c) V-shaped potential well (grey line) created by a δ-function-

like charge distribution. Also shown are the energy levels (black-dashed line), wavefunctions (dashed, thick 

black line) and squared wavefunctions (squared modulus of the wavefunction means probability density of 

measuring a particle, thick black line) of a quantized free-carrier system in a V-shaped well. Dark arrow is 

used to highlight that probability of presence of charge carriers outside of the V-shaped potential is not zero. 
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distributions. Mathematically, the simplest way to model this distribution is to define a 2D 

dopant distribution (assuming that the dopant distribution depends on the z coordinate only): 

ND(z), that can be a δ-like or a Gaussian-like function.  

Next is to assume that all dopants are ionized (which is not entirely correct at room 

temperature, as kBT=0.0257eV  and EB=0.370eV [121, 122] at T = 300K). Then, the 

electrostatic potential created by the dopants can be calculated using the Poisson’s equation: 

∇2𝑉 = (
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2) 𝑉(𝑥, 𝑦, 𝑧) =
𝜌(𝑥, 𝑦, 𝑧)

𝜀
 Eq. 10 

where ∇2 is the Laplace operator in the Euclidean space, V(x,y,z) is the potential function, 

ρ(x,y,z) is the spatial distribution of the dopants and ε the electrostatic permittivity. In a 

rigorous calculation of the free-carrier distribution in δ-doped semiconductors, size-

quantization of the electron gas must be taken into account; that is, the Schrödinger and 

Poisson equations must be solved simultaneously. Ideally, the free-carrier density equals the 

ionized dopant concentration. The contribution of the free carriers to band-bending cannot 

be neglected and the potential well will not be strictly V-shaped. Whereas still V-shaped in 

the vicinity of the notch of the potential, the band edges become flat (horizontal) when far 

enough from the doping sheet. The entire dopant-free-carrier system is neutral and, as a 

consequence, the band edges are flat at large distances from the dopant sheet. 

A self-consistent solution of the spatial and energetic structures of δ-doped semiconductors 

requires simultaneous solutions of the Schrödinger’s and Poisson’s equations. The solution 

is usually obtained in an iterative way. Initially a “reasonable” free-carrier distribution is 

assumed, from which, using Poisson’s equation, a potential is deduced. A new set of 

wavefunctions is calculated from the potential using the Schrödinger’s equation. A second 

iteration of the potential is then calculated using the new free-carrier distribution. This 

procedure is continued until calculation converges, that is, wavefunctions and potential do 

not change with further iterations. Further information on efficient solutions of the 

Schrödinger-Poisson equations in semiconductor device simulations can be found in 

literature [123]. 

Thick black line in Figure 62 (c) shows that wavefunction amplitude is not zero outside of the 

V-shaped potential (see dark arrow). In Born’s statistical interpretation, the squared 

modulus of the wave function, |ψ|
2
, is a real number interpreted as the probability density of 

measuring a particle's being detected at a given place, or having a given momentum, at a 

given time, and possibly having definite values for discrete degrees of freedom. So, this 

waveform extension means that there is a probability of having charge-carriers outside of 

the δ layer; these are known as “delocalized carriers”.  
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Charge carrier confinement 

The striking diamond properties highlighted in the first chapter should allow developing 

new electric switches with low losses. FET channel conductance needs a certain carrier 

confinement obtained either by a surface band binding (MOSFETs) or a quantum well 

(MODFETs). Here, this effect is carried out by the incorporation of δ-doped layers.  

To improve switching velocity, high carrier mobilities are required, which is impossible in 

highly doped material [124]. Thus, a δ-doped configuration allows, on one hand, to have 

carriers and on the other one, to get them partially out of the doped region, allowing higher 

mobilities. 

However, because of the high energy of the p-type dopant (boron), the equilibrium carrier 

concentration is low at room temperature and the on-state resistivity is very high. This 

activation energy decreases with the doping level, but this trend is accompanied with a 

decrease in the hole mobility in the bulk crystal. 

One way to overcome this difficulty is to create free holes in a certain location of the device 

(the δ-layer) and to delocalize the charge carriers in order to allow current flow in a channel 

with a low ionized impurity concentration. This delocalization is induced by quantum 

confinement of a very thin δ layer (as previously explained).  

Then a bias on a gate on the surface parallel to the 2D hole gas will allow to cast out carriers 

(by modulating the delocalization), and more important, to switch the FET in ‘‘on’’ or 

‘‘off’’ state. A diamond field effect 

transistor (FET) based on this δ-

doping combines high speed 

commutation and low “on” 

resistance. The critical parameters 

to get such 2D hole gas in diamond, 

in particular the doping level and 

the δ-layer thickness, were reported 

by Fiori et al. [56]. 

In the case of an infinite structure 

(it means, a sufficiently large 

distance between the δ layer and 

the surface), the delta layer lies on a 

symmetry axis. This symmetry acts 

on the valence band and on the 

presence probability density of 

Figure 63: Heavy holes probability density (colored) for 

δ=0.36nm ([B]δ=5·1020 cm-3) in an infinite diamond structure 

(ground state and four excited states only). The vertical 

position of the energy level indicates its energy relative to the 

Fermi level, the horizontal position its spatial extension, and 

the color contrast its probability density. 
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holes, as shown in Figure 63. Such spread carrier distribution is shown in Figure 63, where red 

color intensity variation is used to illustrate the charge carrier distribution in a diamond δ-

layer [56]. 

In the semi-infinite diamond structure (Figure 64), a Schottky barrier (here located at 25nm 

from the delta layer) reproduces the effect of a gate on the diamond surface, as in the case of 

a FET. The Schottky contact induces a slight shift of wave-functions towards the bulk of the 

device; this spatial shift was accompanied by an energy shift toward lower energies. The 

latter is more deterious, as it will reduce the occupation density at a constant temperature. 

The fraction of delocalized holes was reduced by 3% (in this case of δ=2,5nm [56]).  

The calculations of the effect of quantum confinement of holes in diamond carried out by 

Fiori et al. [56] indicates that a 3nm-thick delta-layer would induce the delocalization of 

30% of the free holes outside of the doped region. For a 1nm-thick delta-layer, around 60% 

of holes are delocalized, meaning that the doping level is high enough to ensure metallic 

conductivity.  

The difference between the case of a delta-layer deeply buried into the diamond, and a 

delta-layer neat a Schottky barrier at the surface is a small reduction of the fraction of 

delocalized holes (conductivity should also be wakened). This study establish a value of 2-

3nm thick for the delta layer in diamond. 

Figure 64: (a) Heavy holes probability density for δ=2.52nm in an infinite (red) and semi-infinite (green) 

diamond. Peaks of heavy holes probability density are localized by wide arrows. Only the ground state and 

first excited state are represented to simplify the drawing. Schematic of the delta-boron-doped diamond 

stacks used in the calculations by Fiori et al. (b) and (c). 
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V.2 Boron concentration profiling (#5 & #6) 

For the fabrication of reliable δ-doped diamond devices, an accurate control of doping level 

and thickness is needed, together with specific characterization methods (both in terms of 

doping level and localization of boron acceptors). Although early secondary ion mass 

spectroscopy (SIMS) profiles did not meet such requirements [18], recently, Elastic Recoil 

Detection profiles have shown that the values obtained by SIMS could be measured over a 

wide area [125], probably due to beam-related effects. 

The large dynamical doping range is a key advantage of SIMS to characterize δ-doped 

layers; in turn it presents two important limitations [126]: 

 To avoid ion mixing inside diamond crystal during SIMS operation, a complicated 

DRF (depth resolution function) deconvolution analysis is required, which strongly 

depends on the species at stake. 

 The probed region extension averaged the deduced boron related profile. 

Doping level evaluation over micrometer-scale can also be carried out by optical methods as 

Raman and FTIR. Among these techniques, cathodoluminescence is clearly the most 

sensitive [106] while ensuring a high spatial resolution since cross sectional analysis can be 

also carried out on FIB preparations. However, the signal is too weak in heavily doped 

diamond to image the spatial distribution of dopants. The need of an imaging method able to 

quantify boron content and layer thickness becomes obvious when δ-doped devices are 

being developed. For this reason, high angle annular dark field (HAADF [127] or Z-contrast 

mode) in STEM mode is here applied to thin homoepitaxial multilayers in order to 

determine the thickness, interface sharpness, and boron content of these doped structures. 

Recently, boron doping was also observed using this technique(with different methodology) 

on nanocrystalline diamond [128].  

Here, a modified method is applied to the case of boron δ-doped layers in order to avoid 

FIB-lamella thickness effects. Comparison to SIMS experimental profile has demonstrated 

the power of the method and showed that such layers are now close to reach the 

requirements for carrier delocalization, as theoretically demonstrated in [56]. 

Experimental details 

Two samples were studied: one multilayer stacks including four thin (nominally 20–60 nm 

thick) and highly boron doped homoepitaxial diamond layers (labelled sample #5) to first 

show the method, and another one including only one boron δ-doped layer (labelled sample 



Chapter V: Diamond δ-FETs 

 

136 

 

#6) to evidence the ultimate doping level and thickness that can be reached. The samples 

have been grown by MPCVD in a vertical silica tube reactor as described elsewhere [63] on 

a (100)-oriented HPHT type Ib diamond substrate. After a 2 h cleaning with pure hydrogen 

plasma at 880ºC, undoped (p
-
) and heavily boron-doped (p

++
) epilayers have been grown 

alternatively from respectively H2/He/CH4/O2 and H2/He/CH4/B2H6 gas mixtures without 

turning off the plasma. For the purpose of this study, the p
++

 epilayers of sample A have 

been labelled from L1 to L4 according to the growth sequence (that is, from substrate to 

surface). 

After the growth of each heavily p
++

 layer, a specific etch-back procedure was performed 

during 3 min (L2), 6min (L3), and 10 min (L4) using a mixture of H2 and O2 in the plasma. 

The HAADF-STEM experiment was carried out in a Jeol 2010F microscope equipped with 

an annular dark field (ADF) detector.  To ensure high angle detection (HAADF), the camera 

length was fixed at 8 cm leading to minimum so that maximum detector collection angles of 

38.5 mrad and 99.8 mrad, corresponding to spatial frequencies s around 4 and 1.5Ǻ
-1

, 

respectively, are reached. The detector should be sensitive only above a smin=1.55Ǻ
-1

 

threshold to avoid Bragg scattering effects. Because diamond is the hardest known material, 

specimen preparation for cross-section TEM observation was undertaken using a Focused 

Ion Beam in a Dual Beam Scanning electron microscope (FIB-Dual Beam, lift-off method). 

Z-contrast for boron profiling of δ-doped layers (STEM-HAADF) 

The use of the Z-contrast or HAADF-STEM mode is well known to allow atomic resolution 

[129]. For example, individual atoms at interfaces as isolated boron atoms in carbon 

nanostructures or concentration profiles in nanostructures have been demonstrated [130]. So 

far, the method has yielded either concentrations in the alloying range or individual atoms 

identification at atomic resolution, but seemed insufficiently sensitive for doping level 

determination in Si or III-V compounds. The low Z-number of carbon and the difference 

between the scattering cross sections of C and B at higher angles (which depends on Z
2
 

[131] and is about 30% at 100 mrad in our setup) makes possible detecting and imaging 

boron in the heavy doping range as shown in the following. Moreover such layers are 

visible by diffraction contrast or even in bright field condition with some slight defocus, but 

boron quantification is then very difficult. 

Figure 65 (a) shows a HAADF-STEM micrograph with the four heavily boron doped p
++

 

layers embedded in an undoped (p
-
) diamond layer. The darker tone at the right hand of the 

micrograph is due to a gradual reduction in thickness of the FIB lamella preparation, which 

is more pronounced close to the right-hand side (surface). The convolution of thickness and 

chemical effects is well revealed in the intensity profile of Figure 65 (b), recorded along the 
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10 nm-wide line indicated on the micrograph. To separate both effects and to analyze only 

the chemical concentration-related variation of the HAADF-STEM current intensity I
HAADF

, 

an interpolation was performed using the data obtained only on the undoped region (in bold, 

i.e., taking off data of the heavily doped layers), and thus the ratio of the I
HAADF

(x) and 

I
HAADF

(0) where x is the boron content (i.e., current measured on the doped region and the 

corresponding current obtained by interpolation at the same position respectively) could be 

calculated at each position along the experimental profile.  

Then, at one specified position, the intensity difference between the doped (experimental 

value: I
HAADF

(x)) and undoped (interpolated value: I
HAADF

(0)) material was deduced 

independent of the sample preparation thickness, allowing determine the boron doping, 

thanks to the following simple modelization of I
HAADF

. 

According to the wave behavior of keV electrons across a thin solid lamella, the ratio of 

scattered electrons depends on the square of the atomic scattering factor. In addition, 

interaction with phonons reduces the coherent intensity, and incoherent electrons are 

diffracted at high angles. Low angle scattering is dominated by elastic scattering as it results 

from Bragg reflections in the crystal, “Bragg scattering (BS)”, while high angle scattering is 

dominated by inelastic scattering, i.e., incoherent scattering, which gives diffuse intensity 

distribution, “thermal diffuse scattering (TDS)”. Thus at sufficiently high angles there are 

no diffraction effects, and the scattered intensity depends directly on the square of the 

Figure 65: Sample #5 results: (a) HAADF-STEM micrograph recorded on four δ-doped layers. White, 

dashed lines are used to guide the eyes along the different boron doped diamond layers (b) Intensity profile 

recorded along the line indicated in the micrograph (black line) and the interpolation without taking into 

account the δ -doped layers (bold curve). Difference between experimental values and interpolated ones 

allow avoiding the lamella TEM preparation thickness effects. To reduce signal-noise, an average of 100 

profiles was carried out over the width of the line. 
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atomic scattering factor, f(θ), which gives the amplitude of the electron wave after scattering 

on one isolated atom.  Then, the angular dependence of the electron emission is presented in 

Figure 66, and writes: 

I𝐻𝐴𝐴𝐷𝐹(𝑠) = 𝐼0 [∑|𝑓𝑖(𝑠)|2

𝑖

] = 𝐼0 [ ∑ |𝑓𝑐𝑎𝑟𝑏𝑜𝑛(𝑠)|2

𝑐𝑎𝑟𝑏𝑜𝑛

+ ∑ |𝑓𝑏𝑜𝑟𝑜𝑛(𝑠)|2

𝑏𝑜𝑟𝑜𝑛

] Eq. 11 

where I0 is the incident electron beam intensity, fi(s) is the atomic scattering factor for the 

atom i that depends on the scattering angle θ (=s/2) and have units of Ǻ. For one species 

(i.e., sub index “carbon” or “boron” in Eq. 11), using the atomic scattering factor published 

by Kirkland [132] and integrating over the detector area in the reciprocal space (spatial 

frequencies s, units of Ǻ
-1

). 

Figure 66: Atomic scattering factors for Carbon and Boron atoms, as a function of the collection semiangle. 

Inset shows intensity values for collecting semiangles corresponding to g = 111, g =220 and g = 004 at 

120keV 
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𝐼𝑖
𝐻𝐴𝐴𝐷𝐹 = ∫ [𝐼𝑖

𝐻𝐴𝐴𝐷𝐹(𝑠)]𝑑𝑠

𝑆𝑚𝑎𝑥,𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟

𝑆𝑚𝑖𝑛,𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟

= 𝐼0𝑁 ∑ 𝑓𝑖,𝐾𝑖𝑟𝑘𝑙𝑎𝑛𝑑(𝑠)22𝜋𝑠∆𝑠

𝑆𝑚𝑎𝑥,𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟

𝑆𝑚𝑖𝑛,𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟

= 𝐷𝑖𝐼0𝑁 Eq. 12 

where N is the number of atoms irradiated by the incident electron beam. The dependence 

of 𝑓𝑖,𝐾𝑖𝑟𝑘𝑙𝑎𝑛𝑑(𝑠) over the range of the detector angle detection can be directly deduced from 

the values published by Kirkland [132] for either boron or carbon. In the case of the present 

experimental collection geometry, the calculation of sums labelled Di in Eq. 12 yielded for 

diamond and boron, values of Dcarbon=0.214 and Dboron=0.0153. This corresponds to the 

probability for one incident electron to be scattered in the direction of the annular detector 

when scattering occurs either by a carbon or boron atom respectively.  

Considering that here a boron doped layer is observed, the electronic current scattered in the 

direction of the annular detector by a doped layer (𝐼𝑥
𝐻𝐴𝐴𝐷𝐹, with x the boron content) is: 

𝐼𝑥
𝐻𝐴𝐴𝐷𝐹(𝑠) = 𝐼0𝑁[(1 − 𝑥)𝐷𝑐𝑎𝑟𝑏𝑜𝑛 + 𝑥𝐷𝑏𝑜𝑟𝑜𝑛] Eq. 13 

With x being the atomic proportion of boron in the diamond crystal. As the e-beam spot has 

a Gaussian shape, in addition to have a not easily measurable current, it is difficult to 

determine precisely I0N (tentatively a value around 10
4
 nA was estimated). To deduce x, the 

ratio, R, between the current in the doped and undoped regions is evaluated: 

𝑅 =
𝐼𝑥

𝐻𝐴𝐴𝐷𝐹

𝐼0
𝐻𝐴𝐴𝐷𝐹 = (1 − 𝑥) +

𝐷𝑏𝑜𝑟𝑜𝑛

𝐷𝑐𝑎𝑟𝑏𝑜𝑛
𝑥 Eq. 14 

Then, the relative boron content writes as: 

𝑥 =
1 − 𝑅

1 −
𝐷𝑏𝑜𝑟𝑜𝑛
𝐷𝑐𝑎𝑟𝑏𝑜𝑛

=
1 − 𝑅𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

1 −
𝐷𝑏𝑜𝑟𝑜𝑛
𝐷𝑐𝑎𝑟𝑏𝑜𝑛

𝐶 Eq. 15 

Therefore, the boron content can be determined by the ratio of electrons collected by the 

detector coming from doped and undoped regions. However, the factor R corresponds to the 

ratio of the electron currents scattered onto the detector and not on the current delivered by 

the detector (Rmeasured). In order to take into account this response, an experimental 

calibration of the used equipment has been carried out using a thick (4μm) diamond 

homoepitaxial single layer, with a well-known doping level (obtained from a previous 

calibrated SIMS measurements [127]) at different thicknesses (controlled by the FIB related 

sample preparation) and different condenser apertures to vary the electron beam current. 
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Brightness and contrast controls were kept at a fixed value (0 and 9, respectively) so that the 

correction factor C could be estimated for these experimental conditions. 

HAADF corrected profiles (#5 & #6) 

Figure 69 shows the result of applying Eq. 15 with this correction factor at each point of the 

profile shown in Figure 67 (b). The resulting doping profile indicates that boron is 

incorporated more easily close to undoped interfaces (see arrows). Since no extended 

defects could be detected by TEM on this preparation, this feature is tentatively attributed to 

the lattice strain gradient by the incorporation of boron. Indeed, a lattice expansion around 

0.1% has been measured for a boron doping level of 10
21

cm
-3

 [133].  

As the observed noise was in the range of 10
20

cm
-3

, the dynamical range was limited to 

about one order of magnitude, so that the trend to obtain sharper interfaces upon longer 

etch-back steps [63], although qualitatively confirmed, could not be interfered quantitatively 

from data shown in Figure 67. 

A more detailed comparison of the HAADF boron concentration profile of layers to SIMS 

profiles of the same sample confirmed the relevance of this (independent) calibration 

procedure for absolute 

concentrations, the 

agreement between SIMS 

and HAADF values being 

rather striking as shown in 

the inset for layer L1. Some 

local variations are revealed 

by the HAADF-STEM while 

SIMS averages the profile.  

Another result was that the 

typical exponential profiles 

observed by SIMS over 

various orders of magnitude 

at the interfaces of the 

multilayer under study were 

probably an artefact, 

resulting from the ion-mixing 

generally involved in SIMS 

measurements [134], leading 

Figure 67: #5 doping profile derived from Eq. 15 using the ratio 

between the measured and interpolated HAADF-STEM intensity 

along the experimental profile of Figure 63 (b). In the inset, 

comparison between the SIMS and HAADF-STEM profiles on layer 

L1 is represented. Note that the boron scale is logarithmic to show the 

sensitivity of SIMS. 
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to systematic overestimation 

of the real width. 

If this is the case, it is 

legitimate to ask how the 

layer thickness should be 

estimated from broadened 

SIMS profiles. Based on the 

comparison between the 

SIMS and HAADF-STEM 

profiles of several epilayers 

within various samples, the 

use of the extrema of the first 

derivative of the SIMS 

profile with respect to depth 

gives the layer thickness: the 

distance between these two 

extrema is usually within a 

few % of the thickness of the heavily doped epilayer as determined by HAADF-STEM.  

The fact that the latter profiles do not show any systematic broadening on one of the sides of 

the doped epilayers pointed to another probable consequence of ion mixing: the ubiquitous 

enhancement of the width of the interface analyzed after sputtering the p
++

 region, which is 

apparent in most of the published SIMS profiles, is independent of how the samples were 

grown or whether the plasma was interrupted or not. 

To illustrate the difference between both techniques on a very thin doped layer, HAADF-

STEM and SIMS profiles are compared in Figure 68 on a δ-doped layer (sample #6). 

Integration over a wider line allowed reducing the HAADF-STEM noise with respect to that 

in Figure 67. A logarithmic scale is used to show the high sensitivity of the SIMS, but, in 

contrast, ion-mixing is shown to broaden the recorded boron profile. Note that for thicker 

layers (L1, L2 and L3 layers in sample #5) the difference is not so critical in contrast to 

thinner layers (L4 in #5 and δ-layer of sample #6).  

Such behavior motivated other authors to use complementary techniques to improve the 

SIMS profile; Chicot et al.[135] calculated this broadening to correct the experimental data 

while Balmer et al. [136] complete the SIMS data with elastic recoil detection analysis 

(ERDA) to estimate boron-doping thickness.  

Figure 68: Boron profiles in logarithmic scale obtained from SIMS 

and HAADF-STEM techniques on sample #6. Ion-mixing is shown 

to broaden the SIMS profile. A 5 nm thick δ-doped layer is 

demonstrated by the HAADF-STEM profile. 
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Here, as a first result, a 5 nm-thick layer is demonstrated directly by the HAADF-STEM 

profile, showing that the growth technology is now close to reach quantum confinement 

enhancement of mobility. 

V.3 Diffraction contrast for boron doping profiling of 

δ-doped layers by TEM (#7, #8 & #9) 

Here, a methodology proposed by M. P. Alegre et al. [137] is used to evaluate the boron 

content in boron doped diamond layers. This iterative and auto-consistent methodology for 

the doping quantification of highly boron-doped diamond layers will consider two 

reflections “g”, and the dependency of the TEM contrast with the effective thickness of the 

sample. 

For this, the intensity quotient, attenuated by a factor seff will be evaluated among highly 

doped layers (p
++

) and low doped layers (p
--
). We will use dark field (DF) imaging in g= 004 

and g = 220 reflections on a FIB-prepared sample, which experimental thickness will be 

previously evaluated via SEM. The acquisition of the TEM imaging was carried out in a 

variety of TEM microscopes: JEOL 1200EX and JEOL 2100 LaB6, operating at 120 and 

200keV, respectively. 

Experimental details 

Three samples were studied: #7, a multilayer stacks including four “thick” boron doped 

layers; #8, single, thin boron doped diamond layer structure and #9, containing a δ-layer 

with ultimate thickness (expected to be suitable for developing FET devices). The 

characteristics of the growing procedure of samples #7, #8 and #9 were described in II.1 

Description of the samples. 

Contrast in TEM 

In conventional TEM (CTEM) using diffraction contrast mode, the registered intensity for a 

given reflection with Miller index “hkl” [131] is: 



V.3 Diffraction contrast for boron doping profiling of δ-doped layers by TEM (#7, #8 & #9) 

 

143 

 

𝐼ℎ𝑘𝑙 = 𝐴(𝑡)𝐵 (
𝜋𝑡

𝜉ℎ𝑘𝑙
)

2 𝑠𝑖𝑛2(𝜋𝑡𝑠𝑒𝑓𝑓)

(𝜋𝑡𝑠𝑒𝑓𝑓)2
 Eq. 16 

where t is the sample thickness, A(t) is a function used to track the attenuation of the wave 

intensity with the thickness variations (see Figure 69), B is a constant which depends on the 

detector gain, ξhkl the extinction distance and seff the effective excitation deviation, defined 

as:  

𝑠𝑒𝑓𝑓 = √𝑠2 +
1

𝜉ℎ𝑘𝑙
2  Eq. 17 

Where s is the deviation parameter (measured with respect to the Bragg conditions), ξhkl is 

the extinction distance for a given reflection and for a given doping (see Figure 71), defined 

in our system as: 

𝜉ℎ𝑘𝑙 =
𝜋𝑉𝐶cos (𝜃𝑏𝑟𝑎𝑔𝑔)

𝜆𝐹 (𝜃ℎ𝑘𝑙)
 Eq. 18 

VC is the unit cell volume in the studied system, θBragg is the Bragg angle, λ is the 

wavelength of the electron beam (λ=3.35·10
-12

m for a 120keV beam) and F(θhkl) is the 

structure factor of the system for a given reflection (main contribution to the compositional 

sensibility in dark field images 

obtained in high boron doped 

diamond). 

Methodology 

A FIB-prepared sample 

(350±20nm thick, determined by 

SEM) was obtained from a 

multilayer structure whose boron 

content reaches levels close to 

the 0.01% atomic percent. Once 

the FIB lamella is obtained, 

TEM micrographies are carried 

out in the conventional CTEM 

mode.  

Figure 67: Dependency of the transmitted and diffracted beams 

(in two-beam conditions) with respect to the thickness of a 

crystal with an specific absorption coefficient and for a given 

reflection. 
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In the zone axis [001̅], BF mode, the 

previously cited sample reveals a slight 

difference between layers L1 and L2 

(see Figure 70). An exhaustive analysis 

makes evident a layer thickness of 

48±5nm for L2 and 60±5 for layer L1 

(deviation evaluated over the CTEM 

micrography).  

The different contrast between highly 

doped regions vs low doped regions 

depends on the chemical composition of 

the system (it means: the boron doping 

level).  

However, to carry out an accurate 

evaluation of the boron content, it’s not 

enough with evaluating the difference 

between a high doped region and a low doped region by BF. We will take into account (i) 

DF conditions, (ii) two different reflections, (iii) the thickness dependency (see Figure 69) 

and (iv) the influence of the Seff parameter. Taking this into account, we carry out a DF 

study on the L2 layer. 

Micrographies of the two considered reflections (g = 004 and G = 220) are compared, an 

inversion of the associated contrast is appreciated. The p
++

 area presents a clear contrast in g 

= 004, while it becomes a dark contrast in g = 220. With respect to the low-doped regions 

Figure 68: Bright field micrography of the multilayer 

structure of #7. A slight variation in the contrast of both 

boron doped layers is observed. 

Figure 69: DF micrographies of L2 in (a) g = 004 and (b) g = 220 reflections. Both images were acquired 

with the same optimized conditions of bright-contrast which guaranties a lineal behavior. 



V.3 Diffraction contrast for boron doping profiling of δ-doped layers by TEM (#7, #8 & #9) 

 

145 

 

(p
--
), a reverse behavior is revealed: dark contrast on the first reflection and clear on the 

second one.  

To evaluate this fact, an intensity profile (100 lines over a 200nm-size area along the growth 

direction) is carried out for both reflections at the same place of the sample (see thick lines 

in Figure 71). 

An exhaustive analysis of these intensity profiles (here labelled as I004 and I220) highlights 

the variations in the specimen’s thickness along the profile. Grey line in Figure 72 is used to 

plot experimentally acquired CTEM intensity values (measured averaging 100 lines over 

200nm, as presented in Figure 71). Dark line in Figure 72 is used to plot the CTEM intensity 

profile once the effect of the different thickness along the specimen has been removed. Once 

the “normalized intensity profiles” were acquired, Eq. 19 (BDI or boron doping intensity) 

was used to determine the values of boron concentration and specimen thickness: 

𝐵𝐷𝐼ℎ𝑘𝑙(𝑧) =

(𝑓𝑒𝑓𝑓(𝑧))
2 𝑠𝑖𝑛2(𝜋 · 𝑡 · 𝑠𝑒𝑓𝑓𝑑𝑜𝑝𝑒𝑑)

(𝜋 · 𝑡 · 𝑠𝑒𝑓𝑓𝑑𝑜𝑝𝑒𝑑)2

(𝑓0)2
𝑠𝑖𝑛2(𝜋 · 𝑡 · 𝑠𝑒𝑓𝑓𝑢𝑛𝑑𝑜𝑝𝑒𝑑)

(𝜋 · 𝑡 · 𝑠𝑒𝑓𝑓𝑢𝑛𝑑𝑜𝑝𝑒𝑑)2

 Eq. 19 

Where feff is the effective scattering factor (that changes with the position (z), as the boron 

content also changes), Seff the effective deviation parameter (definition of both parameters 

can be consulted in literature [131]) and t the sample thickness.  

This procedure allows to overcome the problem of the wave intensity attenuation, because 

the A(t) parameter, already shown in Eq. 16, it’s discarded by making the ratio. On the other 

hand, feff is defined [131] as: 

𝑓𝑒𝑓𝑓 = 8[𝑥𝑓𝐵 + (1 − 𝑥)𝑓𝐶] Eq. 20 

where x is the atomic percentage of boron inside the doped layer, while fB and fC are the 

effective scattering factors of boron and carbon, respectively. Note that, as these factors are 

dependent on the specific reflection, their values will be a function of the semiangle, as was 

presented in Figure 66. Here, we are not deriving Eq. 19 nor Eq. 20, we instead refer the reader 

to the work of M.P. Alegre et al [137] for further information. 

Please note that, at this point, we have one equation (Eq. 19) with two unknown parameters 

(BDI and feff). To solve this problem we will use two different crystalline orientations ( that 

will be [004] and [220] for sample #7, as shown in Figure 71). 
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Iterative procedure 

Once these experimental profiles are acquired, and by means of Eq. 19, an iterative and auto-

consistent procedure is applied. For this, the theoretical BDIhkl values for g = 004 are plotted 

with respect to the boron values in the range of interest (0-0.4% atomic). BDI, for a given 

reflection, depends on two quantities that we aim to determine here: (i) the thickness of the 

lamella t and (ii) the boron content. 

To obtain a boron doping profile, the diffracted intensity should be considered at each 

position of the intensity profile of Figure 72. In Figure 72, black line corresponds to the 

original intensity profile while red line plots the corrected intensity profile. We will label the 

background intensity as I0 and the boron doped layer intensity as IC. 

For this, we will first consider positions 1 (corresponding with IC value) and 2 (I0 value) in 

Figure 72 (a): z = 99, 𝐼𝐶
004 = 84 and 𝐼0

004 = 78; then BDI(1)004 = 1.08. In the same way, in 

Figure 72 (b): z = 56, 𝐼𝐶
220 = 160 and 𝐼0

220 = 174; thus BDI(1)220 = 0.92. 

We introduce a mathmatic routine in which the SEM-measured sample thickess is taken into 

acount in the BDI theoretical values vs [B] plot. Both values were acquired from the 

intensity quotient of the values labelled as 1-4 in Figure 72. Then, the goal is to find a pair 

lamella thickness values tf and boron concentration xf that allows fitting the experimental 

values to BDI004 and BI220.  

Then, the values of concentration and thickness are sequentially calculated as shown in 

Figure 73. Indeed, Figure 73 (a) shows output figure of the theoretical calculation of BDI004, 

Figure 70: Sample #7, L2 experimentally acquired CTEM intensity profiles (averaging 150 lines over a 

150nm length as described in Figure 71) for (a) g = 004 and (b) g = 220. Black lines are used to plot original 

experimental profiles; red lines are used to plot experimental profiles once the effect of the sample’s 

thickness has been removed. 
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leading to a boron concentration of 0.0027%, which is used as input for the plot of Figure 73 

(b): BDI220 vs lamella thickness. 

So, the procedure consists in: 

1. Lamella thickness is measured by SEM/FIB, then, experimentally measured BDI is 

plotted vs [B] for an specific pole (for example 𝐵𝐷𝐼𝑐𝑎𝑙𝑐
004 ) 

2. [B] is deduced from BDIexp 

3. Using the latter [B] value 𝐵𝐷𝐼𝑐𝑎𝑙𝑐
220  is plotted vs thickness. 

4. Repeat the procedure till iteration converges 

After the first iteration, a new thickness of t2=366nm is obtained and used again till this 

procedure converges to an stable value. Following this procedure, boron content of L2 was 

found to be ≈ 0.1·10
21

at/cm
3
 and a lamella thickness value of 353 nm after 3 iterations. 

 By comparing this result with the corresponding SIMS measurements for the same 

structure, we observe several similarities: both profiles lead to thin highly doped diamond 

layers and with boron content that are compatible with the analyzed layer. Parameters used 

for this simulation were: 

 Wavelength of electron, taking into account the relativistic correction at 120kV: λ = 

0.00335nm 

 Carbon structure factor: fC = 0.1587802532 [131] 

 Boron structure factor: fB = 0.1446313502 [131] 

Figure 71: (a) Plot of the theoretical calculation of BDI004 for a 0<[B]<0.02% range. Dashed line mean 

lamella thickness of t1 = 350nm. (b) Theoretical plot of BDI220 (0.91) vs thickness range between 275 and 

400nm with a boron concentration of 0.0027% (value obtained from (a)). 
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 Diamond lattice parameter: a = 0.3567nm [138] 

To evaluate the applicability of this methodology, additional studies on thinner diamond δ 

structures were carried out. Same procedure on sample #8 (Figure 74) reveals a δ-layer 

thickness of 4.7 0±0.5nm and a experimental boron concentration of 1.2·10
20

at/cm
3
 

(2.0·10
20

at/cm
3
 was obtained by SIMS). 

 The resulting intensity profiles as well as the boron concentration profile (obtained by using 

the previously described methodology) are presented in Figure 74 (a) and (b). Secondary Ion 

Mass Spectroscopy (SIMS) provided a dopant depth profile for each sample, being the 

resultant average boron concentrations presented in Table 11. 

 

Finally, the previously described procedure is used on sample #9. In this case, by using both 

reflections (g = 004 and g = 220) on sample #9, TEM micrographies reveals the highly 

Table 11: Summary of boron doping levels, obtained by SIMS, on the studied 

structures. 

Sample Layer 
Layer thickness 

(nm) 

[B]exp [B]SIMS 

(·10
20

at/cm
3
) 

#7 

L1 60±5  0.02 

L2 48±5 0.1 0.3 

L3   1.8 

L4   4.5 

#8  4.7±0.5 1.2 2.0 

#9  1.4±0.2 5 --- 

 

 

 

Figure 72: (a) Bright field micrography of thin diamond boron-doped δ layer on sample #8. Contrast 

variations between the highly doped regions and the non-doped ones are observed. (b) Intensity profile of the 

delta layer (sample #8) for g = 220 reflection.  
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doped δ-layer, as presented in Figure 75, whit a layer thickness of ≈1.4nm. Simulations 

provided a value of [B] = 5·10
20

at/cm
3
. 

As can be appreciated, no SIMS measurements were done on #9, to preserve the specimen 

suitable for the δ-FET fabrication. 

δ-FET characterization (#9) 

Electrical properties of the δ-FET should depend, mainly, on the δ structure. For that, TEM 

studies of the related boron delta-doped layer were carried out, as shown in Figure 75 (a). 

Thickness of the delta-layer was estimated from the intensity profile shown in Figure 75 (b).  

Thickness of the boron delta-doped layer was measured to be 1.4nm once the contribution 

of the background and the specimen thickness were removed [139]. Figure 75 (a) shows 

TEM micrography of gate 2 in a δ3 structure from a CVD substrate (see Figure 78). A 15nm 

thick Al2O3 layer is observed over a 100nm thick Al layer. Boron delta-doped layer is 

located at 18nm from the oxygen-terminated surface. 

Such a layer is expected to be heavily boron doped ([B ]>10
20

cm
-3

), but, since Secondary 

Ion Mass Spectroscopy measurements were not carried out (because is a destructive 

technique) doping content was estimated from the fitting, presented in V.3 Diffraction 

contrast for boron doping profiling of δ-doped layers by TEM (#7, #8 & #9), resulting in a 

[B] ≈ 5·10
20

cm
-3

 for the delta layer. A [B] ≈ 1·10
16

cm
-3

 is expected for the buffer and cap 

layers (as obtained from Cathodoluminescence measurements). For ease of consult, key 

Figure 73: (a) BF micrography of thin diamond boron-doped δ layer on sample #9. Contrast variations 

between the highly doped regions and the non-doped ones are observed. (b) Intensity profile of the delta layer 

(sample #9) for g = 001 reflection. Thickness of the boron doped diamond layer of sample #9 shows a narrow 

doping profile, this sample will be used for the δ-FET device fabrication. 
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parameters of this device are summarized here: 

 δ-layer thickness: ≈ 1.4 nm 

 Al2O3 layer thickness: 15nm 

 [B]δ ≈ 5·10
20

cm
-3

 

Even when these conditions are the ideal ones for a diamond-based δ-FET, the 

corresponding device did not yield any improved performance, as will be shown in next 

section. Some authors have demonstrated that, even for delta layers only a couple of 

nanometers thick, the mobility enhancement expected if holes were quantum confined was 

not observed [135]. 

V.4 Diamond δ-FET [#9] 

The most evident limitations of Schottky diodes are the relatively low reverse voltage 

ratings for silicon-metal Schottky diodes (typically 50 V and below) and a relatively high 

reverse leakage current. Some higher-voltage designs are available; 200 V is considered a 

high reverse voltage. Reverse leakage current, because it increases with temperature, leads 

to thermal instability. This often limits the useful reverse voltage to well below the actual 

rating. While higher reverse voltages are achievable, higher forward voltage drops are 

registered, comparable to other types; such a Schottky diode would have no advantage 

unless great switching speed is required.  

 

Figure 74: (a) Schematic diagram of the architecture of a conventional MOSFET and (b) a δ-doped FET 

(sample #7 was used to fabricate this structure). 
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When less power dissipation is desired a MOSFET (Metal-Oxide-Semiconductor Field-

Effect Transistor) and a control circuit can be used instead of, in an operation mode known  

as active rectification. MOSFET is a more conventional semiconductor device whose 

conducting or insulating behavior is based on the electrostatic control of the band curvature 

at the oxide/semiconductor interface. The classic MOSFET structure consists in a 4-terminal 

device (as shown in Figure 76 (a)) composed by: 

 Gate and Source, ohmic contacts usually deposited over a doped region. 

 Bulk contact in the substrate semiconductor. 

 Gate contact, consisting in a semiconductor substrate, with a thin oxide layer and a 

top metal contact.  

δ-doped diamond FETS 

In order to fabricate well controlled thickness delta-layer, growth rates and etching rates 

must be known, so the recipe for the growing of diamond delta-layer structures presented by 

Chicot et al. [100] is here followed. A δ-FET in its simplest for was represented in Figure 76 

(b). In this architecture, the role of the channel is played by the delta layer. This delta layer 

is grown on a thick NiD (non-intentionally doped) layer called buffer layer and covered by a 

thinner NiD layer called cap layer. The drain and source are ohmic contacts which connect 

the delta layer channel through the cap layer.  

For matter of convenience, these contacts are directly deposited on the cap layer before 

being annealed to reduce the contact resistance by forming a titanium-carbide at the 

Figure 75: Different FET architectures deposited over δ-structures in (a) a 001-oriented 

HPHT substrate. (b) Detail of one of the FET architectures where gate, source and drain 

contacts are shown. Etched area, surrounding the FET structure is also presented in (b). 
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interface. Therefore, the drain and source are connected to the delta layer through the cap 

layer, but, thanks to the low thickness of the cap layer and macroscopic contact sizes, the 

induced access resistance is negligible with respect to the resistance of the channel.  

The conduction of the channel is controlled by a gate which is a Schottky contact deposited 

on NiD cap layer. If sufficiently thin delta layers are obtained, delta-FET combining high 

carrier concentration and high mobility could be achieved. Such a transistor would be on in 

the normal state when no voltage is applied on the gate and off for an applied positive 

voltage. 

 In fact, if the cap layer and the delta layer are depleted of charge carriers under the gate, the 

current should not flow anymore between the drain and source electrodes. This voltage must 

Figure 76: Picture of different FET architectures used in this work. δ1 structure shows an asymmetric design 

with different channel lengths and gate widths. δ2 structure shows a symmetric design with a constant 

channel length and gate width. An alternative δ3 structure was designed, by following the same channel 

lengths and gate widths, in order to test the effect of surrounding the source contact with the gate contact. 

Squares with thick-black lines are used to highlight the specific contacts that will be electrically 

characterized. 
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be high enough to completely deplete the channel in order to have a good off state. Even if 

the breakdown field in diamond is higher than in other semiconductors, the large amount of 

charges needed to create a metallic delta layer (with [B] > Ncrit(3D)=5·10
20

cm
−3

) 

counterbalances this high value. Therefore, the breakdown field of diamond will introduce a 

limitation for the sheet charge density that can be depleted in the channel. 

Once the delta-layer is grown, gate (made in Al/Al2O3), source and drain (made in Ti/Pt/Au) 

contacts are deposited following different architectures. The latter are shown in Figure 77, 

were the FET structures are presented. Finally, Figure 77 (b) shows a detail of a one of the 

structures, where the etching process, surrounding the FET area, can be appreciated (etching 

of the surrounding area of the FET is necessary to isolate the studied structure).  

A detailed schematic of the FET proposed architectures is presented in Figure 78. Such 

designs are labelled as δ1, δ2 and δ3 and they were designed for testing different MOSFET 

architectures and parameters: 

 δ1 structure shows an asymmetric drain-gate-source design. Different channel 

lengths and gate widths can be tested in this device. 

 δ2 is a symmetric drain-gate-source design. Single gate length. 

 δ3 gate contact is used to surround source contact; this can reduce channel leakage 

effects. Corners of the contacts are rounded, in order to avoid sharp corners that 

could induce bad electrical behavior at high voltages. Channel lengths and gate 

widths are those of δ1. 

MOSFET electrical properties 

There are many ways to categorize the versions of FETs. When channels are formed by 

electrons (n-type channel), it results on a more conductive channel with a more positive gate 

bias. That is, the source-drain current increases if the gate bias increases (positive bias). On 

the other hand, p-type channels are formed by holes and are more conductive with more 

negative gate bias; this occurs when the gate bias decreases in the negative range. 

Furthermore, it is important to describe the state of the transistor with zero gate bias. FETs 

are called enhancement-mode, or normally-off, if at zero gate bias the channel conductance 

is very low and a gate voltage to form a conductive channel must be applied.  

The counterpart is called depletion-mode, or normally-on, when the channel is conductive 

with zero gate bias and a gate voltage to turn the transistor off (see Figure 79) must be 

applied.  
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It is also important to point out the nature of the channel in more details. A channel can be 

formed by a surface inversion layer (as in conventional MOSFET) or a bulk buried layer 

(see Figure 80). The surface inversion channel is a two-dimensional charge sheet of thickness 

in the order of 5 nm. The buried channel is much thicker, comparable to the depletion width 

since when the transistor is turned off; the channel is totally consumed by the surface 

depletion layer. In the FET family, MESFETs and JFETs are always buried-channel 

Figure 77: VD vs ID for various gate voltages and VG vs ID in case of a MOSFET with p-channel in (a) 

enhancement-mode (normally-off) and depletion-mode (normally-on) 

Figure 78: FET channels: (a) surface inversion channel and (b) buried channel. Take into account that a 

common MOSFET is a four-terminal device that consists of a p-type semiconductor substrate into two n+-

regions (the source and drain) that are formed, usually, by ion implantation. 
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devices, while MODFETs are surface-channel devices. MOSFETs and MISFETs can have 

both kinds of channels in parallel, but in practice, they are mostly surface-channel devices.  

These two kinds of channels offer advantages of their own. Buried channels are based on 

bulk conduction and, thus, are free of surface effects such as scattering and surface defects, 

resulting in better carrier mobility. On the other hand, the physical distance between the gate 

and the channel is larger and also dependent on gate bias, leading to a lower and variable 

transconductance. 

Note that for depletion-mode devices, it is common to use buried channels, but theoretically, 

one can achieve the same goal by choosing a gate material with a proper work function to 

shift the threshold voltage to a desirable value. In our case, boron doped diamond delta 

layers are used to delocalize charge carriers; charge carriers can move through the undoped 

diamond lattice, where mobility is higher. This means that our transistor will be “normally 

on”, and we have to apply a gate voltage in order to reach the different operation regimes. 

Figure 79: Electric measurements carried out in δ3 structure of #5 showing (a) I(V) characteristic in gates 1 

and 2, (b) ohmic resistance vs frequency in gate 2, (c) capacitance vs frequency in gate 2 and (c) impedance 

vs frequency in gate 2. Measurements were carried out in vacuum at 300K. 
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Experimentally
23

, electrical properties of Gate, Source and Drain contacts were studied by 2 

probe measurements. Electric characteristics of such contacts are presented in Figure 81. 

Particularly Figure 81 (a) shows 2 probe measurements of a δ1-type structure. As can be 

observed, ALD-deposited oxide (T = 250ºC) seems to give good oxide in some structures, 

insofar that no leakage current through the gate is observed (Gate 1, blue signal in Figure 81 

(a)). However, some other structures are still showing leakages, as can be appreciated in red 

color of Figure 81 (a) (Gate 2). 

Moreover, current between the two ohmic contacts is at least two orders of magnitude 

higher than leakages. Higher leakages were observed in other structures, which mean that 

δ3-type structure is the most efficient among the whole sample. 

                                                      

23
 Electric characterization was carried out by J. Piñero, F. Lloret and A. Maréchal at Institut Néel 

(Grenoble, France) facilities. 

Figure 80: IDS vs VDS characteristics (for various gate voltages) of the δ-FET structures presented in Figure 

76 over (a) δ1 structure, (b) δ2 structure and (c) δ3 structure. 
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Once the contacts of the related device were characterized, 3 probe measurements were 

carried out to obtain IDS vs VDS features for a variety of gate voltages (VG). Comparing the 

experimental results shown in Figure 82, with the theoretically expected shape (see Figure 79), 

we found that 

 δ1 structure shows voltage shifts, and is not reaching saturation region. We just 

observe linear behavior. 

 δ2 structure shows bad electrical behavior, even in linear region. This may be 

caused to the device architecture, in which leakages can be produced. 

 δ3 structure also shows voltage shift (as in δ1 structure). Linear region is observed, 

and no saturation region is reached. 

We can conclude that no channel modulation is produced by modifying gate voltage. This 

could be explained by the fact of that, unfortunately, the Al/Al2O3/diamond capacitor is not 

reaching inversion regime, thus making impossible the modulation of the channel that is 

essential for the MOSFET behavior. Additionally, voltage shifts are appreciated in all 

structures.  

 Focusing in δ3 structure (the one showing better electrical behavior), we observe 

that, when increasing the gate voltage, the shape of the IDS(VDS) moves from top to 

bottom (see arrow in Figure 82). The latter is the opposite of the expected 

characteristic of a normally-ON device, based on a p-type channel (see Figure 79 

(b)). Several phenomena can explain this behavior: 

 Oxide-related leakages (as studied in Chapter IV).  

 Probably, no “normally ON” behavior is produced, which also means that no charge 

carrier delocalization occurs in the sample.  

We can conclude that, probably, no channel was formed during our experiments, and that 

ALD growth of the oxide is a parameter that has to be improved in order to get reliable 

structures. 

V.5 Conclusions 

Conclusions on δ-layers characterization 

In V.2 Boron concentration profiling (#5 & #6), boron content in-depth profiles of 

homoepitaxially grown heavily doped diamond epilayers were measured quantitatively by 

HAADF-STEM down to 10
20

 B/cm
3
 at nanometric resolution (layers of 48, 4.7 and 1 nm 



Chapter V: Diamond δ-FETs 

 

158 

 

thick were measured). Boron was shown to locate preferentially at undoped/doped interface, 

and the broader SIMS profile of the deeper interface of p
++

 layers is shown to be an artefact 

related to ion mixing processes. The experiments highlighted the potential of HAADF-

STEM for characterizing, with a nanometric resolution, the boron content of diamond based 

delta-doped layers. Extremely thin δ-doped layers down to 5 nm thick are demonstrated in 

boron concentration edges steep enough to expect that even slightly thinner epilayers would 

induce some carrier delocalization. 

δ-FET fabrication 

Beside the efforts in fabricating reliable δ-FET devices, no field effect or enhancement of 

the mobility was observed. This can be attributed to a variety of facts: 

1. δ-layer is not thin enough to induce carrier delocalization. 

2. Oxide of the MOS stack leads to leakages and shortcuts. 

3. No ohmic contact is produced between source, drain and the delta layer. 

1. δ-layer thickness: 

As said before, some authors have reported that δ-layers in boron doped diamond have to 

achieve a thickness value below 

2nm [56]. In fact, the working zone 

in which this kind of devices device 

can operate, can be obtained by 

considering a planar capacitance 

composed by gate/cap-layer/delta 

layer. Following this reasoning, 

Chicot et al. [100] summarizes the 

operating area in Figure 83 for a 

diamond breakdown voltage of 

10MV/cm [140]. The breakdown 

field is reached for a sheet hole 

density equal or later than 

3.2·10
13

cm
-2

.  

This diagram shows that the 

working zone where a diamond 

delta-doped FET channel can be 

closed without reaching the 

maximum breakdown field is very 

Figure 81: Boron concentration versus thickness map with 

diamond breakdown field. Triangle named “working zone” 

shoes the range of doping level and thickness eligible for a 

delta FET where the channel can be closed by applying a 

voltage without reaching the breakdown voltage. Red 

crosses are used to highlight the boron concentration and 

layer thickness of sample #9 (δ-FET device).  
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limited. In fact, in addition to the electric field limitations, low limitation in terms of 

thickness (by the lattice constant) and in term of doping (by the metal-to insulator transition 

MIT) will restrain further this working zone. 

However, the “working zone” of Figure 83 was calculated by making some assumptions (see 

[100] for details), so this “working zone” is useful to obtain an order of magnitude for the 

thickness and doping level of the delta layer to be incorporated in a delta FET for which the 

channel could be closed. 

In our case, the calculated boron content of ≈5·10
20

cm
-3

, seems to be sufficiently high to 

reach the metal-to-insulator transition. However, measured layer thickness of ≈1nm seems 

not to be thin enough to reach the theoretical working zone (even when this thickness is 

expected to be enough for inducing carrier delocalization). Working zone of our δ-FET 

device (sample #9) is presented in Figure 83 with a red mesh, it can be appreciated that our 

device is close to the theoretical working zone. 

To summarize, delta-layers thinner than 0.64nm and doped between 5·10
20

cm
-3

 and 

1·10
21

cm
-3

 have to be aimed at. A delta-layer theoretically suitable for these requirements 

was simulated, results can be seen in Figure 64, where it can be observed that an important 

part of the holes are delocalized out of the delta-layer, which would entail a significant 

improvement of the mobility if such a layer could be grown.  

Nevertheless, if a high mobility value can be achieved in such a structure, even if it is not 

possible to close the channel in the corresponding delta-FET, such a device could be used 

for radio-frequency applications. 

2. Oxide quality: 

In Chapter IV, we show the importance of an optimum oxide layer in the MOS behavior. 

Probably, MOS stacks of sample #9 are presenting oxide failures that couldn’t be 

appreciated by TEM (because a very reduced area of the sample is studied by TEM). 

 3. Contacting the δ: 

Probably, source and drain contacts can be improved by using boron implantation. In our 

experiment, we expect the δ to be electrically contacted with source and drain. However, the 

use of ion implantation of ≈ 20nm depth and rapid annealing could be used to create p
+
 

islands before depositing the ohmic contacts. 
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General conclusions 

A variety of δ-structures have been studied and characterized by a various TEM techniques, 

among them: 

 HAADF, used to characterize the thickness of the δ-layers 

 CTEM (in BF and DF modes), used to estimate the boron content of the specific δ-

layers  

Delta layers were fabricated aiming at obtaining abrupt interfaces, a sufficiently high boron 

doping level insuring a metallic conduction in the delta layer and low doped NiD cap and 

buffer layers suited for high mobility. Nanometer thick delta layers were obtained and 

characterized by TEM. The latter confirmed the nanometric thickness for metallic delta 

layers thinner than 2 nm, but showed no enhancement of mobility.  

Several indications of scattering mechanisms due to ionized impurity are pointed out in 

literature [135, 136], aiming to firstly though that two dimensional scattering mechanism 

must be responsible of the low mobility value measured in metallic delta-layers. 

These δ-FET structures have been recently studied and have attracted special interest [136], 

because of the expected high performance at high frequencies if the numerous carriers from 

the delta layer could effectively flow in a high mobility region. This transistor should be 

normally ON without applied bias, but this effect was not observed (meaning that no hole 

delocalization is achieved). 

This fact is confirmed by other authors [141], who didn’t observe the full activation of 

boron impurities, the presence of weak delocalization and verify the absence of any mobility 

enhancement. Chicot et al. [141] reports a constant mobility value of 3.6 ± 0.8 cm
2
/V·s, 

measured  independently of the thickness or substrate type.  

Within the usual approximations such as that of a parabolic valence band, the bulk mobility 

which was calculated by these authors, taking into account quantitatively the scattering by 

ionized impurities, was a factor four higher than the experimental mobility value. 

To summarize, a thin diamond-metallic layer was reported with growth conditions similar to 

that of [100]. Unfortunatelly, the related electrical behavior was not enough to consider that 

high frequency field effect transistors in diamond using delta-doped structures could be one 

day able to compete with the present AlGaN/GaN HEMTs (showing mobilities of 2200 

cm
2
/V·s), even when the measured thickness of the delta structure was below 1.5nm 

Furthermore, it seems challenging to grow thinner metallic diamond layers and even if 

achieved, there is no guarantee that such layers would exhibit a higher mobility than 
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reported in the previously cited literature. Therefore other architectures such as diamond 

MOSFET have to be investigated. However, even if the initially target of a delta-field effect 

transistor seems to not be promising due to the too low mobility measured in the delta-

structures, this investigation of the delta layer electrical properties allows us to understand 

and to progress a lot on both diamond growth and electrical characterization techniques. 

One of the important results of this work is to highlight that, with the present knowledge and 

with an optimum design (in terms of delta-layer thickness, delta-layer depth, gate design) 

and with different architectures, no field effect and no enhancement of the mobility are 

achieved. 
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Chapter VI: Conclusions 
and perspectives 

 

 

In this work, interfaces of zirconium, tungsten semicarbide and aluminium oxide with 

oxygenated diamond surfaces before and after a variety of thermal treatments anneal have 

been characterized on the one hand by TEM imaging and EELS spectroscopy at University 

of Cádiz (Spain), and on the other hand by through electrical measurements made on Institut 

Néel (France) and in the National Institute of Materials Science (NIMS – Japan). The 

knowledge accumulated through these studies was used to design a δ-doped diamond FET 

device, such device was also electrically and structurally characterized. 

Conclusions – Schottky barrier diodes 

In Chapter III: diamond-based Schottky barrier diodes, evidences of an oxide interlayer of 

approximately two atomic layers have been obtained in case of the oxygen-terminated 

diamond-based Schottky barrier diodes. Current-voltage characteristics, EELS mapping and 

TEM micrographies have been collected at several temperatures in some diodes and 

analyzed in order to investigate the detailed shape of the current density behavior with 

applied voltage. 

Existent physical models, taking the barrier height and current density inhomogeneities, 

have been applied and brought face to face with experimental results. From these 

comparisons, several physical phenomena have been revealed. Among them: 
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 the existence of a thin oxygen-content layer in oxygen terminated diamond-metal 

contacts 

 the evolution of such a layer with: 

o the thermal treatment 

o the Schottky metal 

 the possibility of direct diamond/metal bounds has been highlighted 

The effect of different shapes of barrier fluctuations has been spotted, this phenomena is 

here related with local barrier enhancements or local barrier lowering due to the variations 

in the interfacial oxygen content. This behavior has been related, by other authors [88], with 

fixed repulsive charges close to the interface.  

In the near future, barrier inhomogeneities would be characterized by a variety of TEM 

techniques. Concerning these characterization techniques, a procedure for the TEM 

evaluation of diamond interfaces has been established. 

Because of the known inhomogeneity of the oxygen terminations and enhancement of the 

electron affinity by also 1.4 eV on the initial oxygenated diamond surface, EELS data 

strongly suggests that these oxygen terminations vanished after high temperature annealing. 

Then, the more general issue of barrier height determination and Fermi level pinning has 

been addressed by means of an analysis of the experimental data collected in the present 

work and in recent literature, eventually reassessed with the help of the methods presented 

before.  

The test of other metals after annealing confirms the disappearance of oxygen terminations, 

irrespective of the presence of an oxide interlayer or not, and the electron affinity of the 

diamond surfaces as a relevant quantity for barrier height description. 

The next steps for developing reliable diamond Schottky diodes could be: 

Improving the total diamond surface covered by oxygen: As evidenced in 

Chapter III, dangling bonds are created because of the lack of oxygen termination in 

some points of the diamond surface. Indeed, large areas of the diamond surface 

could be not covered by oxygen. This lack of oxygen termination may not only be a 

consequence of the deposition process of the metal stack, but also related with the 

VUV-ozone treatment. Further investigations in this area may lead to a significant 

improvement of the oxygen-terminated diamond surface. 

The metal choice: Different metals were tested in order to build diamond-based 

Schottky diode, evidencing a different device behavior with the thermal operations. 

Searching an appropriate metal that manages to hold the oxygen termination at high 
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temperatures (more than 700K actually) is a key step in the performance 

improvement of these devices. 

Interface bandgap tracking: An accurate control of Schottky and MOS devices 

could be achieved if a deeper knowledge of the energy-band diagram configuration 

of the oxygen-terminated diamond/metal interface is reached (as recently 

highlighted in [142]). To do so, different techniques such as XPS or STEM-EELS 

may be used for future investigations of oxygen-terminated diamond interfaces. 

Conclusions - MOS 

In Chapter IV: diamond-MOS structures, we demonstrated the fabrication of metal oxide 

diamond structures where different regimes are controlled by the gate bias: accumulation of 

holes, depletion and deep depletion. In accumulation regime (negative voltage), a frequency 

dispersion of capacitance value was measured and attributed to the high series resistance of 

diamond but also to defects involved in non-ideal MOS structures. In the positive voltage 

range where the inversion or deep depletion (depending on measurement frequency) 

regimes are expected, a capacitance increase was observed and has been attributed to a 

possible inversion regimes allowed by electrons flowing through diamond layer defects. On 

the contrary, the observation of the capacitance decrease attributed to the deep depletion 

regime in the other samples is consistent with the high measurement frequency (and the fast 

sweeping rate) used, which does not allow generation of any minority carrier.  

UV illumination of a sample showing deep depletion, did not lead to the detection of 

minority carriers. The frequency measurement and the bias voltage sweeping rate are 

certainly still too high to create inversion, even if minority carriers are optically generated. 

Nevertheless, the observation of a deep depletion regime in sample #4 opens the route for 

the fabrication of diamond MOSFET. 

This requires that the gate insures the electrostatic control of the channel and so, the on state 

(inversion) and the off state of the device. Such a transistor would be normally in off state 

because of a channel in depletion regime when no bias is applied to the gate, since the flat 

band voltage is not strongly negative. This case is indeed achieved in sample #1 as it can be 

seen on band C(V) measurements in Figure 50, while the more negative flat band voltage in 

sample #4, which might induce weak inversion, deserves future investigations. 

Electrical measurements enabled us to investigate band offsets of the diamond MOS 

structures and show that for samples #1 and #4, only a small barrier for holes exists, which 

would be an issue during MOSFET operation. In fact, the oxide must be more insulating to 

avoid current flowing between source (or drain) and gate, otherwise the control of the 
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different states would not be effective. Therefore, future work on MOS structure has to 

focus on oxide improvement and defects (interface states and charges in the oxide) 

investigations.  

Some roads that can be followed to continue the investigations initiated in this work are: 

Oxide improvement: An improvement of the aluminum oxide is probably the next 

crucial step to avoid the possibility of C(V) hysteresis). This can be achieved by 

using active ozone instead of water precursor during the growth of the oxide [143], 

this would help for instance to reduce hydrogen contamination in the oxide. Another 

parameter which can be tuned is the temperature: using an approach in which the 

oxide is deposited on the whole surface of the sample and then patterned by an 

etching step (to avoid the limitation of the temperature resistance of the resistor). 

Oxide post annealing can be also an option, to desorb unused precursors (including 

water) which could be at the origin of mobile charges in the oxide or to crystallize 

the oxide itself. Finally, the use of other oxides has to be considered to obtain a 

larger barrier for holes in accumulation and to tune the flat band voltage in such a 

way that the MOS structure is in depletion at 0 V to yield a normally off-MOSFET. 

Interface states investigation: The fact that some MOS capacitors shows an almost 

inexistent frequency dependence, opens the way for more accurate and systematic 

interface states studies. Further measurements, especially using the conductance 

method, transient capacitance measurements and very low frequencies, must be 

performed in order to obtain more reliable quantification of interface states. A multi 

samples study, where oxide deposition, surface treatment or diamond growth 

parameters are varied could help to distinguish the contribution of interface states 

from the one of mobile charges in the oxide (or even defects from the diamond 

active layer). 

Conclusions δ – FETs 

In Chapter V, we demonstrate the fabrication of a thin, highly boron doped diamond layer. 

We introduce a variety of techniques to characterize its thickness and its doping content. 

Different FET designs over the diamond δ-structure were studied. Even when such a 

thickness and doping were the optimum values for a δ-FET architecture, no charge channel 

was formed in the FET. 

This could be due to inexistent charge carrier delocalization (even when the δ configuration 

is the optimum one). As the MOS-gate configuration is not able to work properly, this acts 

as a second bottleneck for this kind of devices. 
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The same evolution the oxygen-terminated surface is observed in oxygen-terminated 

diamond MOS structures, also showing the possibility of dangling bonds, thus altering the 

normal MOS behavior.  

Finally, a set of δ-FET architectures have been tested in order to check for transistor-like 

behavior. Here, we confirm the observation of a less than 1.5nm thick boron doped layer, 

which was insufficient to delocalize carriers. The impossibility to reach thicker delta-layers 

reaches to a dead way in which no improvement of the mobility was observed. 

However, improvements in this field could be achieved by solving the next problems: 

MOS stack improvement: as a key part of the FET device, MOS stack has to be 

controlled and oxide-related defects has to be fixed. 

Optimizing the deep of the δ-layer: here, we use a 1.5nm thick diamond boron 

doped layer, located at 20nm deep from the diamond surface. Ohmic contacts are 

expected to be electrically contacted with the δ-layer, but this possibility could not 

be confirmed. Alternative architectures, allowing a physical contact between the δ-

layer and the ohmic contacts may lead to significant improvements. 

Reaching thinnest δ-layers: Although this point is obvious, reaching δ-layer 

thickness of less than 1.4nm in diamond is a technological challenge. If diamond δ-

layers of less than 1nm could be reached, a well-designed device δ-FETs should be 

operative and competitive. 

Beside of these not positive results on diamond δ-FET development, promising results both 

in Schottky barrier diodes and diamond-based MOS structures have been obtained. All these 

concerns have been presented and discussed with the help of new experimental results, 

improved models and recent high quality experimental works in the purpose of fostering 

new advances in the old problem of potential barrier at metal-covalent semiconductor 

interfaces.  
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ANNEX I: Electron 
Microscopy techniques 

A.1 Scanning Electron microscopy (SEM) 

In a scanning electron microscope (SEM), an electron beam, with energy typically 

comprised between 1 and 30 keV, is focused by one or two condenser lenses to a spot about 

0.4 nm to 5 nm in diameter on the surface of a sample. The re-emitted secondary electrons 

are collected by an Everhart-Thornley detector, which roughly consists of an anode 

polarized with a potential of a few hundreds volts. 

Figure 82: Electron beam interaction diagram and brief resign of the types of signals produced by an SEM 
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Unlike the TEM, where electrons of the high voltage beam form the image of the specimen, 

the SEM produces images by detecting low energy secondary electrons which are emitted 

from the surface of the specimen due to excitation by the primary electron beam. The 

electrons interact with the atoms that make up the sample producing signals that contain 

information about the sample's surface topography, composition and other properties such 

as electrical conductivity. The types of signals produced by an SEM include secondary 

electrons, back scattered electrons (BSE), characteristic x-rays, light 

(cathodoluminescence), specimen current and transmitted electrons as shown in Figure 84. 

These types of signal all require specialized detectors for their detection that are not usually 

all present on a single machine.  

The SEM micrographs have a very large depth of field yielding a characteristic three-

dimensional appearance useful for understanding the surface structure of a sample. Because 

the SEM uses electromagnets rather than lenses, the researcher has much more control in the 

degree of magnification. 

For conventional imaging in the SEM, specimens must be electrically conductive, at least at 

the surface, and electrically grounded to prevent the accumulation of electrostatic charge at 

the surface. Metal objects require little special preparation for SEM except for cleaning and 

mounting on a specimen stub. Nonconductive specimens tend to charge when scanned by 

the electron beam, and especially in secondary electron imaging mode, this causes scanning 

faults and other image artifacts. They are therefore usually coated with an ultrathin coating 

of electrically-conducting material, commonly gold, deposited on the sample either by low 

vacuum sputter coating or by high vacuum evaporation. Conductive materials in current use 

for specimen coating include gold, gold/palladium alloy, platinum, osmium, iridium, 

tungsten, chromium and graphite. Coating prevents the accumulation of static electric 

charge on the specimen during electron irradiation. 

In a SEM, a beam of electrons is produced at the top of the microscope by an electron gun. 

The electron beam follows a vertical path through the microscope, which is held within a 

vacuum. The beam travels through electromagnetic fields and lenses, which focus the beam 

down toward the sample. Once the beam hits the sample, electrons and X-rays are ejected 

from the sample. Detectors collect these X-rays, backscattered electrons, and secondary 

electrons and convert them into a signal that is sent to a screen similar to a television screen. 

This produces the final image. 

Depending on the position of the detector with respect to the orientation of the sample 

surface, the number of collected electrons varies. In a naïve view, we therefore have access 

to the topography of the surface of a sample by scanning it with the electron beam and 

collecting in parallel the emitted secondary electrons. The spatial resolution of this 
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technique is given by the spatial extension of the volume emitting secondary electrons and 

is of the order of a few nm. 

Cathodoluminescence (CL) 

When an energetic (several keV) electron beam is delivered on a solid, the incident 

electrons are scattered, elastically or not, by the atoms of the solid and are then re-emitted. 

The emitted electrons presenting an energy comparable with the primary electrons are called 

backscattered electrons. On the contrary, electrons emitted after several inelastic scatterings 

and of energy of typically few eV are called secondary electrons. 

 The particles excited by an inelastic electron / atom scattering can cover a wide range of 

energies. When the energy of the incoming electron is sufficiently high, it can promote an 

electron of the atom from a deep energy level to a higher energy one (for instance from K to 

L orbital). The excited electron will then relax by emitting X-ray. When the energy loss of 

the incident electron is only of a few eV, it only excites an electron from the valence to the 

conduction band. In the case of semiconductors, the excited electron relaxes toward the 

bottom of the conduction band and then recombines. The light emission subsequent to the 

excitation by an electron beam is called cathodoluminescence (CL). 

In order to collect the cathodoluminescence signal, a parabolic mirror is introduced between 

the sample and the polar piece (objective lens) of the microscope. The two main drawbacks 

yielded by the presence of the mirror are: (i) reduction of the number of secondary electrons 

reaching the Everhart-Thornley detector, thus decreasing the signal-to-noise ratio of the 

Figure 83: Experimental CL setup diagram in a conventional system (a) and schematic process of the physic 

phenomena (b). Figure B shows a brief scheme of the process whereby an incoming electron (b1) promotes to 

to another one from the valence to the conduction band (b2), relaxation of this second electron allows the 

production of a photon (b3) of energy E= hυ  
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secondary electron mapping, (ii) increase in the working distance and therefore decreasing 

the spatial resolution of the set-up.  

The CL signal is then sent to a monochromator followed by a photomultiplier tube or a 

CCD. As is the case for SE mappings, CL mappings are obtained by scanning the electron 

beam on the surface of the sample while detecting in parallel the emitted CL.  

However, the spatial resolution of CL is more difficult to estimate, as one has to care not 

only for the extension of the generation volume, but also for the diffusion of charge carriers. 

Let us finally note that the penetration depth of the electron beam inside the material 

increases with the acceleration voltage. It is thus for instance possible to distinguish by 

depth-resolved CL the emission of near surface-states from that of the underlying material. 

As shown in Figure 85, CL signal is produced by an electron-hole recombination; it’s 

possible to estimate the density of electron-hole pairs generated in a semiconductor by an 

electron beam. It is usually admitted that, to create an electron hole pair of energy equal to 

the bandgap, an energy of the order of two times the bandgap is lost through different 

inelastic scattering mechanisms. Consequently, from the acceleration and the intensity of the 

incident electron beam, we know approximately the number of injected charge carriers.  

In order to access the density of charge carriers, we must determine the spatial extension of 

the volume in which electron-hole pairs are created, i.e. the generation volume. This can be 

done analytically or numerically by Monte- Carlo simulation, in this thesis we have used 

CASINO software for this purpose [144]. 

Figure 84: Experimental CL setup diagram in our home-made system (a) photography of our system in a 

FEI-Sirion SEM-FEG and (b) simple schematic of the whole experimental system including the refrigeration 

system (by liquid nitrogen), SEM, parabolic mirror and spectrometer. 
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A.2 Transmission Electron microscopy (TEM) 

Transmission electron microscopy (TEM) is a microscopy technique whereby a beam of 

electrons is transmitted through an ultra-thin specimen, interacting with the specimen as it 

passes through. An image is formed from the interaction of the electrons transmitted 

through the specimen; the image is magnified and focused onto an imaging device, such as a 

fluorescent screen, on a layer of photographic film, or to be detected by a sensor such as a 

CCD camera. 

TEMs are capable of imaging at a significantly higher resolution than light microscopes, 

owing to the small de Broglie wavelength of electrons. This enables the instrument's user to 

examine fine detail (even as small as a single column of atoms, which is thousands of times 

smaller than the smallest resolvable object in a light microscope). TEM forms a major 

analysis method in a wide range of scientific fields, in both physical and biological sciences. 

TEMs find application in cancer research, virology, materials science as well as pollution, 

nanotechnology, and semiconductor research.  

TEM image contrast is due to absorption and/or crystallographic diffraction of electrons in 

the material which vary with thickness and composition of the material. Alternate modes of 

use allow for the TEM operator to observe modulations in chemical identity, crystal 

orientation, electronic structure and sample induced electron phase shift as well as the 

regular absorption based imaging. 

From the top down, the TEM consists of an emission source, which may be a tungsten 

filament or a lanthanum hexaboride (LaB6) source. For tungsten, this will be of the form of 

either a hairpin-style filament, or a small spike-shaped filament. LaB6 sources utilize small 

single crystals. By connecting this gun to a high voltage source (typically ~100–300 kV) the 

gun will, given sufficient current, begin to emit electrons either by thermionic or field 

electron emission into the vacuum. This extraction is usually aided by the use of a Wehnelt 

cylinder. Once extracted, the upper lenses of the TEM allow for the formation of the 

electron probe to the desired size and location for later interaction with the sample.  

Other possibility is to use a Field Emission Gun (FEG) to produce an electron beam that is 

smaller in diameter, more coherent and with up to three orders of magnitude greater current 

density or brightness than can be achieved with conventional thermionic emitters such as 

tungsten or lanthanum hexaboride. A field emission gun is a type of electron gun in which a 

sharply pointed Müller-type emitter is held at several kilovolts negative potential relative to 

a nearby electrode, so that there is sufficient potential gradient at the emitter surface to 

cause field electron emission. Emitters are either of cold-cathode type, usually made of 

single crystal tungsten sharpened to a tip radius of about 100 nm, or of the Schottky type, in 
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which thermionic emission is enhanced by barrier lowering in the presence of a high electric 

field. Schottky emitters are made by coating a tungsten tip with a layer of zirconium oxide, 

which has the unusual property of increasing in electrical conductivity at high temperature. 

Manipulation of the electron beam is performed using two physical effects. The interaction 

of electrons with a magnetic field will cause electrons to move according to the right hand 

rule, thus allowing for electromagnets to manipulate the electron beam. The use of magnetic 

fields allows for the formation of a magnetic lens of variable focusing power, the lens shape 

originating due to the distribution of magnetic flux. Additionally, electrostatic fields can 

cause the electrons to be deflected through a constant angle. Coupling of two deflections in 

opposing directions with a small intermediate gap allows for the formation of a shift in the 

beam path, this being used in TEM for beam shifting, subsequently this is extremely 

important for STEM. From these two effects, as well as the use of an electron imaging 

system, sufficient control over the beam path is possible for TEM operation
. 
 The optical 

configuration of a TEM can be rapidly changed, unlike that for an optical microscope, as 

lenses in the beam path can be enabled, have their strength changed, or be disabled entirely 

simply via rapid electrical switching, the speed of which is limited by effects such as the 

magnetic hysteresis of the lenses. 

The lenses of a TEM allow for beam convergence, with the angle of convergence as a 

variable parameter, giving the TEM the ability to change magnification simply by 

modifying the amount of current that flows through the coil, quadrupole or hexapole lenses. 

The quadrupole lens is an arrangement of electromagnetic coils at the vertices of the square, 

enabling the generation of a lensing magnetic fields, the hexapole configuration simply 

enhances the lens symmetry by using six, rather than four coils. 

Typically a TEM consists of three stages of lensing. The stages are the condensor lenses, the 

objective lenses, and the projector lenses. The condensor lenses are responsible for primary 

beam formation, whilst the objective lenses focus the beam that comes through the sample 

itself (in STEM scanning mode, there are also objective lenses above the sample to make 

the incident electron beam convergent). The projector lenses are used to expand the beam 

onto the phosphor screen or other imaging device, such as film. The magnification of the 

TEM is due to the ratio of the distances between the specimen and the objective lens' image 

plane.
 
 Additional quad or hexapole lenses allow for the correction of asymmetrical beam 

distortions, known as astigmatism.  

It is noted that TEM optical configurations differ significantly with implementation, with 

manufacturers using custom lens configurations, such as in spherical aberration corrected 

instruments, or TEMs utilizing energy filtering to correct electron chromatic aberration. 

Much deeper understanding of all the knowledge and phenomena associated with TEM can 
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be obtained in literature, we do strongly recommend reading the textbook of D.B. Williams 

& C.B. Carter [131]. 

In this work, we will extensively use TEM-related techniques for the nano-structural and 

chemical analysis of diamond interfaces in a variety of devices. A brief introduction of the 

previously mentioned TEM-related techniques will be presented by following the next 

index: 

TEM is a tool that provides a wide variety of techniques; this field is so extensive that we 

decide to present just a few key ideas. We refer to the previously mentioned literature [131] 

to expand knowledge in each specific technique. 

High Resolution Electron Microscopy (HREM) 

HREM is a TEM imaging mode that allows for direct imaging of the atomic structure of the 

sample consisting, mainly, in the imaging of an object by recording the 2D spatial wave 

amplitude distribution in the image plane (in analogy to a “classic” light microscope), the 

technique is also known as phase contrast TEM. At present, the highest point resolution 

realized in phase contrast TEM is around 0.05nm. At these small scales, individual atoms of 

a crystal and its defects can be resolved.  

One of the difficulties with HRTEM is that image formation relies on phase contrast. In 

phase-contrast imaging, contrast is not necessarily intuitively interpretable, as the image is 

influenced by aberrations of the imaging lenses in the microscope. The largest contributions 

for uncorrected instruments typically come from defocus and astigmatism. The latter can be 

estimated from the so-called Thon ring pattern appearing in the Fourier transform modulus 

Figure 85: Diagram of the procedure for filtering HREM images from the original micrography (here, a 

diamond/Zr diode, directly obtained in a FEI Titan S/TEM). Fourier transform of image and inverse Fourier 

transform of spots labeled as 1 and 2 are also shown. 
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of an image of a thin amorphous film.  

HREM images are formed by the confluence of 

electron beams scattered in different directions. 

To illustrate this, Figure 87 shows an HREM 

image “as acquired” in a TEM. Fourier 

transform (an expression the image as a “sum” 

of frequencies; is the frequency-domain 

representation of the image) also show in Figure 

87. If we do select the spots that are 

corresponding with an specific plane and we do 

the inverse Fourier transform, we obtain images 

that are consisting in an array of lines (that 

matches with the crystallographic planes we 

previously selected by choosing a pair of spots). 

To illustrate this, Figure 87 shows inverse 

Fourier transforms of different couples of diffraction spots. Finally, if we select all the spots 

of the diffraction pattern (and proceed with the inverse Fourier transform) we obtain the 

HREM-filtered image as shown in Figure 88. This image is said to be filtered because white 

background that appears in Figure 87 has been removed. 

The contrast of a HRTEM image arises from the interference in the image plane of the 

electron wave with itself. Due to our inability to record the phase of an electron wave, only 

the amplitude in the image plane is recorded.  

However, a large part of the structure information of the sample is contained in the phase of 

the electron wave. In order to detect it, the aberrations of the microscope (like defocus) have 

to be tuned in a way that converts the phase of the wave at the specimen exit plane into 

amplitudes in the image plane. 

The interaction of the electron wave with the crystallographic structure of the sample is 

complex, but a qualitative idea of the interaction can readily be obtained. Each imaging 

electron interacts independently with the sample. Above the sample, the wave of an electron 

can be approximated as a plane wave incident on the sample surface. As it penetrates the 

sample, it is attracted by the positive atomic potentials of the atom cores, and channels along 

the atom columns of the crystallographic lattice. At the same time, the interaction between 

the electron wave in different atom columns leads to Bragg diffraction.  

The exact description of dynamical scattering of electrons in a sample not satisfying the 

weak phase object approximation (WPOA), which is almost all real samples, still remains 

the holy grail of electron microscopy. However, the physics of electron scattering and 

Figure 86: HREM-filtered image of Figure 

85. The resulting final image is less noisy. 
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electron microscope image 

formation are sufficiently well 

known to allow accurate 

simulation of electron microscope 

images. 

Scanning Transmission Electron 

Microscopy (STEM) 

STEM is a TEM imaging mode 

distinguished from conventional 

transmission electron microscopes 

(CTEM) by focusing the electron 

beam into a narrow spot which is 

scanned over the sample in a 

raster. The rastering of the beam 

across the sample makes these 

microscopes suitable for analysis 

techniques such as mapping by  

energy dispersive X-ray (EDX) 

spectroscopy, electron energy loss 

spectroscopy (EELS) and annular 

dark-field imaging (ADF). These 

signals can be obtained 

simultaneously, allowing direct correlation of image and quantitative data.  

By using a STEM and a high-angle detector (see Figure 89) it is possible to form atomic 

resolution images where the contrast is directly related to the atomic number (z-contrast 

image). This is in contrast to the conventional high resolution electron microscopy 

technique, which uses phase-contrast, and therefore produces results which need 

interpretation by simulation.  

Annular Dark Field & High Angle Annular Dark Field (ADF-HAADF) 

An annular dark field detector collects electrons from an annulus around the beam, sampling 

far more scattered electrons than can pass through an objective aperture. This gives an 

advantage in terms of signal collection efficiency and allows the main beam to pass to an 

EELS detector, allowing both types of measurement to be performed simultaneously. 

Annular dark field imaging is also commonly performed in parallel with Energy-dispersive 

X-ray spectroscopy acquisition, and can be also done in parallel to bright-field (STEM) 

imaging. 

Figure 87: Scheme of the procedure for TEM-based ADF, 

HAADF and energy-loss spectroscopy in scanning-

transmission (STEM). 
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An annular dark field image formed only by very high angle, incoherently scattered 

electrons — as opposed to Bragg scattered electrons — is highly sensitive to variations in 

the atomic number of atoms in the sample (Z-contrast images). 

Electron Energy Loss Spectroscopy (EELS) 

In electron energy loss spectroscopy (EELS) a material is exposed to a beam of electrons 

with a known, narrow range of kinetic energies. Some of the electrons will undergo inelastic 

scattering, which means that they lose energy and have their paths slightly and randomly 

deflected. The amount of energy loss can be measured via an electron spectrometer and 

interpreted in terms of what caused the energy loss.  

Inelastic interactions include phonon excitations, inter and intra band transitions, plasmon 

excitations, inner shell ionizations, and Cherenkov radiation. The inner-shell ionizations are 

particularly useful for detecting the elemental components of a material (see Figure 90 (c)). 

For example, one might find that a larger-than-expected number of electrons comes through 

the material with 285 eV less energy than they had when they entered the material. This is 

approximately the amount of energy needed to remove an inner-shell electron from a carbon 

Figure 88: Dispersive and focusing properties of a magnetic prism (a) in a plane perpendicular to the 

magnetic field and (b) parallel to the field. Solid lines represent zero-loss electrons (E=0); dashed lines 

represent those that have lost energy during transmission. (c) Basic diagram of the physical nature of EELS 

spectra. (d) EELS spectra of diamond, used to compare the intensity of the EELS signal near the zero loss 

peak (left) with respect to the core loss region (right) 
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atom, which can be taken as evidence that there is a significant amount of carbon present in 

the sample. With some care, and looking at a wide range of energy losses, one can 

determine the types of atoms, and the numbers of atoms of each type, being struck by the 

beam.  

The scattering angle (that is, the amount that the electron's path is deflected) can also be 

measured, giving information about the dispersion relation of whatever material  excitation 

caused the inelastic scattering. 

Figure 90 (a) and (b) shows schematic diagram of dispersive and focusing properties of a 

magnetic prism, here used to illustrate EELS experiments. A typical electron energy loss 

spectrum is shown in Figure 92 (d), it consists of three parts: 

 Zero-loss peak at 0 eV: It mainly contains electrons that still have the original 

beam energy E0, i.e., they have only interacted elastically or not at all with the 

specimen. In thin specimens, the intensity of the zero-loss beam is high, so that 

damage of the CCD chip can occur. Since there is no useful information in it, the 

zero-loss beam is often omitted during spectrum collection. 

 Low-loss region (< 100eV): Here, the electrons that have induced plasmon 

oscillations occur. Since the plasmon generation is the most frequent inelastic 

interaction of electron with the sample, the intensity in this region is relatively high. 

Intensity and number of plasmon peaks increases with specimen thickness.  

 High-loss or core loss region (> 100eV): For the ionization of atoms, a specific 

minimum energy, the critical ionization energy EC or ionization threshold, must be 

transferred from the incident electron to the expelled inner-shell electron, which 

leads to ionization edges in the spectrum at energy losses that are characteristic for 

an element. Thus, EELS is complementary to X-ray spectroscopy, and it can be 

utilized for qualitative and quantitative element analysis as well. In particular, the 

detection of light elements is a main task of EELS. 

Compared to the plasmon generation, the inner-shell ionization is a much less probable 

process, leading to a low intensity of the peaks. In the high-loss region, the amount of 

inelastically scattered electrons drastically decreases with increasing energy loss, thus small 

peaks are superimposed on a strongly decreasing background (s. spectrum). Because of the 

low intensity, the representation of the high-loss region is often strongly enhanced (here: 

intensity gap at about 220 eV).  

The critical ionization energy EC is sensitive to the chemical situation of the element: e.g., 

dashed-squared area on Figure 90 (d) shows amorphous C shape, whose peaks are shifted in 

respect to that of graphite. Moreover, the ionization process may take more energy than EC, 

and therefore there also is intensity located after the corresponding edge. Actually, this 
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region, designated as ELNES (Energy-Loss Near-Edge Structure), mirrors the DOS and 

provides information about the bonding situation. Modulations further away from the 

ionization edge contain information about interatomic distances and coordination (EXELFS, 

Extended Energy-Loss Fine Structure). 

A lot of information is present in EELS spectrum. The energy resolution (below 1 eV) is 

much better than in X-ray spectroscopy, and as a result more structural information can be 

obtained from the fine structure in EELS. For many questions, it is important to get this 

information with a high local resolution. Such mappings can be done with two different 

methods: 

1. STEM with EELS 

In STEM mode, a region of the sample is selected, and an EELS is measured on each spot 

of the defined grid (serial measurement). 

2. EFTEM using an energy filter 

An energy range is selected, and an energy-filtered image is recorded with electrons of this 

energy (parallel measurement). 

Some EEL spectra are available in [145].   
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ANNEX II: 
Semiconductor interfaces 

A.I Metal – Semiconductor interfaces 

When metal makes contact with a semiconductor, a potential barrier is generated at the 

metal-semiconductor interface (see Figure 91). In Figure 91, the “metal work function” q·ϕm is 

the energy difference between the vacuum level and the Fermi level EF. This quantity is 

equal to q·(χ+ϕsc) in the semiconductor, where qχ is the electron affinity
24

 measured from 

the bottom of the conduction band EC to the vacuum level and q ϕsc is the energy difference 

between EC and the Fermi level (note that this value can change with doping). The potential 

difference between two work functions is called the “contact potential” ϕm - (χ + ϕn,p).  

As the gap distance decreases, the electric field in the gap increases and an increasing 

charge is built up at the metal surface. An equal and opposite charge must exist in the 

semiconductor depletion region (this is similar to the academic case of a p-n junction). 

When the gap is small enough to be comparable to interatomic distances, it becomes 

transparent to electrons and we obtain the limiting case.  The barrier height is simply the 

difference between the metal work function and the electron affinity of the semiconductor.  

The shape of this barrier is responsible for controlling the current conduction as well as its 

capacitance behavior. Because of their importance in direct current and microwave 

applications and as intricate parts of other semiconductor devices, metal-semiconductor 

                                                      

24
 In solid state, electron affinity is defined as the energy obtained by moving an electron from the 

vacuum just outside the semiconductor to the bottom of the conduction band just inside the 

semiconductor. Electron does depend on the surface termination (crystal face, surface chemistry, etc) 

and, in certain circumstances, may become negative. This means that the material is an efficient 

cathode that can supply electrons to the vacuum with little energy loss. 
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contacts have been studied extensively. Specifically, they have been used as photodetectors, 

solar cells, gate electrode for MESFET, etc. Specially, the metal contact on heavily doped 

semiconductors forms an ohmic contact that is required for every semiconductor and device 

in order to pass current in and out of the device. 

In practice, simple expressions for barrier heights, like q·ϕBp0=Eg- q(ϕm-χ), are never 

realized experimentally. This is mostly because the electron affinity of the semiconductor 

and the work function of the metal have to be established; additionally the values of qϕm are 

generally very sensitive to surface contamination. 

According to the difference of work functions, a Metal-Semiconductor (MS) junction will 

be an ohmic contact or a Schottky contact (acting as rectifier). In the case of a p-type 

semiconductor (boron-doped diamond), an ohmic contact is formed when the metal work 

function is higher than the semiconductor one, whereas a Schottky contact is obtained when 

the metal work function is lower. This is well explained by the Schottky-Mott theory stating 

that the band alignment of a MS junction is related to a charge transfer from one side to 

other aiming to force the Fermi levels to coincide. 

To simplify the discussion, we will assume that the metal work function is equal to the 

semiconductor work function (the flat band condition is satisfied for a zero bias voltage). 

We will also assume that the semiconductor is p-type, as we will work only with p-type 

diamond. It will not be the case for low doped  diamond. Finally, the voltage V is positive 

when the gate metal is positively biased using the ohmic contact as a reference. 

The band alignment of a metal/semiconductor (p-type in our case) interface will depend on 

the relative height of ϕm and ϕsc as follows: 

Figure 89: Energy-band diagrams of metal-semiconductors contacts. Metal and semiconductor in electrically 

isolated systems for an intrinsic semiconductor, (a) metal and n-type semiconductor, (b) Metal and p-type 

(dashed line means reverse bias) 
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 ϕm>ϕsc: in this case, the band alignment at thermal equilibrium leads to an upward 

semiconductor band bending at the interface (related to a hole accumulation). If 

such junction is biased (V) so that holes flow from the semiconductor to the metal, 

they encounter no barrier. Moreover, in reverse direction, the upward band bending 

related to hole accumulation in the interface, behaves like an anode (holes source), 

which will provide a copious supply of holes. The resistance (R) of the 

semiconductor will therefore determine the electrical current via the ohmic law V = 

I·R, thus conforming an ohmic contact. 

 ϕm<ϕsc: here, the band alignment gives rise to a build-in potential barrier, the so-

called “Schottky barrier” ϕb at the interface and a downward semiconductor band 

bending. So, that when a metal is brought into full contact with a semiconductor, the 

conduction and valence bands of the semiconductor at the surface are brought into a 

definite energy relationship with the Fermi level in the metal. This is similar to the 

depletion layer of a metal-semiconductor contact that of the one-sided abrupt p-n 

junction. 

Once this relationship is established, it serves as a boundary condition to the solution of the 

Poisson equation (Eq. 25) in the semiconductor, which proceeds in exactly the same manner 

as in a p-n junction.  

∇2𝜑 = −
𝜌

𝜀
 Eq. 21 

Figure 94 shows the energy-band diagrams for metal on p-type material under different 

biasing conditions. In this case, and as stated by the Schottky-Mott theory, the potential 

barrier arises because of a charges transfer from the semiconductor (higher Fermi level) to 

the metal. The charges transferred (holes, in boron-doped diamond) leave behind 

uncompensated acceptor atoms and furthermore a positive charges accumulation on the 

surface of the metal (extra conduction carrier contained within a Thomas-Fermi screening 

distance of around 0.5Å [85]), the band alignment involves a downward semiconductor 

band bending (diffusion potential Vd0) related to the negatively charged acceptor atoms in 

the depletion region and an abrupt barrier in the metal side ϕb.Vd0 is the potential barrier that 

encounters free carrier diffusing towards the metal whereas ϕb inhibits carrier injection from 

the metal to the semiconductor. The ideal Schottky Barrier Height (SBH) is defined by the 

Mott equation as ϕb=Eg/ q-(ϕm-χ): 

 Under zero bias and for a slightly doped semiconductor (Fermi level close to 

acceptor level), qVd0 ≈ q ϕb-Ea, where Ea is the acceptor ionization energy (Figure 92 

(a)) 
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 Under applied bias V, this potential becomes qVd = qVd0 +qV. Accordingly, the 

barrier Vd is lower under forward bias, thus favoring a carrier injection from the 

semiconductor to the metal (Figure 92 (b)) 

 Reverse situation occurs when diffusion potential increases versus reverse bias Vr. 

The electrical current in this case is induced by a carrier injection from the metal to 

the semiconductor (Figure 92 (c)). 

The Schottky effect 

A simple analytic model for the metal-semiconductor junction is based on the full depletion 

approximation, obtained by assuming that the semiconductor is full depleted over a distance 

W (called the depletion region). Such depletion width can be expressed as a function of the 

applied voltage. As the semiconductor is depleted of mobile carriers within the depletion 

region, the charge density in that region is due to ionized impurities, this yield to a charge 

density in the semiconductor that has to be balanced by the charge in the metal (QM). We 

can assume full ionization, so that the ionized impurities density equals the acceptor density 

NA (please, take into account that we are focusing in p-type diamond). So, if charges in the 

semiconductor are exactly balanced by charges in the metal, no electric field exists except 

around the metal-semiconductor interface (it is limited to the depletion region). 

If we now assume that the density of free carriers is very high in a metal, the thickness of 

the charge layer in the metal is very thin. Therefore, the potential across the metal is several 

orders of magnitude smaller than across the semiconductor (even though the total amount of 

charges is the same in both regions). The total potential difference across the semiconductor 

equals the built-in potential in thermal equilibrium and is further reduced or increased by the 

applied voltage. This provides the following expression for the depletion layer width: 

Figure 90: Energy-band diagrams of metal-semiconductors contacts (for p-type semiconductor). Metal and 

semiconductor (a) in thermal equilibrium (b) forward bias (decrease the barrier) and (c) reverse bias (increase 

the barrier). 
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𝑊 = √
2𝜀𝑠(𝜓𝑏𝑖 − 𝑉)

𝑞𝑁𝐴
 Eq. 22 

This kind of structure also has an associated capacitance that can be calculated by taking the 

derivative of the charge with respect of the applied voltage. 

This picture implies that image charges builds up in the metal electrode of a M-S junction as 

carriers approach the M-S interface. The potential associated with these charges reduces the 

effective barrier height. This barrier reduction tends to be rather small compared to the 

barrier height itself. Nevertheless this barrier reduction is of interest since it depends on the 

applied voltage and leads to a voltage dependence of the reverse bias current. Note that this 

barrier lowering is only experienced by a carrier while approaching the interface and will 

therefore not be noticeable in a capacitance-voltage measurement. If we include the barrier 

lowering in a n-type semiconductor, the plot of Figure 93 is obtained. 

Figure 93 shows the energy band diagram obtained using the full-depletion approximation, 

the potential reduction experienced by electrons, which approach the interface and the 

resulting conduction band edge. A rounding of the conduction band edge can be observed at 

the metal semiconductor interface as well as a reduction of the height of the barrier. 

The calculation of the barrier reduction assumes that the charge of an electron close to the 

metal-semiconductor interface attracts an opposite surface charge, which exactly balances 

Figure 91: Energy band diagram for a metal/n-type semiconductor contact including the barrier lowering (a) 

and detail of the M-S interface for a p-type semiconductor. 
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the electron's charge so that the electric field surrounding the electron does not penetrate 

beyond this surface charge. The time to build-up the surface charge and the time to polarize 

the semiconductor around the moving electron are assumed to be much shorter than the 

transit time of the electron. This scenario is based on the assumption that there are no 

mobile or fixed charges around the electron as it approaches the metal-semiconductor 

interface. 

Schottky barrier height and ideality factor 

As previously spotted, when metal makes contact with a semiconductor, a barrier is formed 

at the metal-semiconductor interface. The barrier heights of a metal-semiconductor system 

are, in general, determined by both: the metal work function and the interface states. A 

general expression of the barrier height can be obtained by following two assumptions: 

(1) with intimate contact between the metal and the semiconductor, and with an 

interfacial layer of atomic dimensions, this layer will be transparent to electrons but 

can withstand potential across it.  

(2) the interface states per unit area per energy at the interface are property of the 

semiconductor surface and are independent of the metal. 

The interfacial layer will be assumed to have a thickness of a few angstroms and, therefore, 

will be essentially transparent to electrons. 

With these assumptions, and with the requirement that the electric field in a metal-

semiconductor interface must be perpendicular to the metal, since its surface is an 

equipotential, the “Schottky effect” appears as a consequence. Let’s consider Coulomb 

interaction (force attraction) between a charge carrier located at a distance x in 

semiconductor and its mirror image charge at –x. This consideration affects the carrier 

injection from one side to the other by inducing a barrier variation and, accordingly, the 

SBH is reduced even at zero bias.  Then, the Schottky barrier height (SBH) changes once a 

bias voltage is applied (even for an ideal junction) because of intrinsic mechanisms such as 

the image-force and furthermore due to the influence of imperfections in the junction area. 

Following the latter assumptions, the zero bias SBH ϕ
0
b is given by [68]: 

𝜙𝑏
0 = 𝜙𝑏0 − 𝛥𝜙𝑖𝑚

0 ≈ 𝜙𝑏0 − (
2𝑞3𝑁𝐴

(4𝜋)2𝜖𝑠
3 𝑉𝑑0)

1/4

 Eq. 23 

On the other hand, when the electric field increase in the junction area i.e. under a reverse 

bias, the built-in potential barrier is reduced thus favoring the carrier injection from the 

metal to the semiconductor. Note that in this situation, the carrier injection from the 
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semiconductor to the metal is inhibited by a high potential barrier (diffusion potential). 

Under forward bias Vf, the SBH is still bias-dependent and conversely to reverse case, it is 

higher than ϕ
0
b and the electrical current is defined by a carrier emission from the 

semiconductor to the metal. The bias dependence of SBH in the forward state is generally 

expressed as: 

𝜙𝑏(𝑉𝑓) = 𝜙𝑏0 + (1 − 1/𝑛𝑖𝑓)𝑉𝑓 
Eq. 24 

Where Vf is the voltage drop across the depletion layer, and 𝑛𝑖𝑓 is a bias-independent 

parameter called “ideality factor” related to the Schottky effect only: 

𝑛𝑖𝑓 = (1 −
𝛥𝜙𝑖𝑚

0

4𝑞𝑉𝑑0
)

−1

≈ [1 −
1

4𝑞
(

2𝑞3𝑁𝐴

(4𝜋)2𝜖𝑠
3)

1/4

(𝑉𝑑0)−3/4]

−1

 Eq. 25 

The ideality factor tends towards unity for a high zero-bias diffusion potential and so for a 

high SBH. It has to be noticed that even for a low SBH, 𝑛𝑖𝑓  is generally close to 1 for most 

of semiconductors. As example, for a p-type diamond doped at 10
16

cm
-3

,  𝑛𝑖𝑓 is expected to 

be 1.005, 1.008, and 1.009 for respectively 2 eV, 1 eV, and 0.9 eV zero-bias barrier heights. 

Thus, the SBH should be less sensible (quasi constant barrier) to forward applied bias 

voltage if the image force is only considered. 

However, the image force effect is generally not enough to explain the bias dependence of 

SBH. Indeed, the static dipoles and the states linked to the imperfections at MS interface 

also contribute to lower the SBH. The forward state is still described by the linear bias 

dependence mentioned above but the ideality factor is no longer related to the Schottky 

effect only. Under reverse bias, the SBH lowering is generally defined using the empirical 

expression: 

𝜙𝑏(𝑉𝑟) = 𝜙𝑏
0 − 𝛥𝜙𝑖𝑚 − 𝛼𝐸𝑚 = 

= 𝜙𝑏
0 − [

2𝑞3𝑁𝐴

(4𝜋)2𝜖𝑠
3

(𝑉𝑑0 + 𝑉𝑟)]

1
4

− 𝛼 [
2𝑞𝑁𝐴

𝜖𝑠

(𝑉𝑑0 + 𝑉𝑟)]
1/2

 

 

Eq. 26 

Where 𝛼 is a constant supposed to be related to the density and depth of interface states. The 

bias dependence of the SBH mainly alters the reverse state since it increases the reverse 

current by continuously reducing the Schottky barrier height. However, a high reverse 

electric field in junction area induces carrier tunneling in the semiconductor, which can be 

the limiting transport mechanism and then define the electrical current. 
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A.2 Metal – Oxide – Semiconductor interfaces 

As its name implies, a metal-insulator-semiconductor (MIS) structure is composed of a 

stack of a metal, an insulator (generally, an oxide) and a semiconductor. An ohmic contact 

acting as a reference is necessary for applying a voltage on the metal gate. 

The Figure 95 shows the band diagram of an ideal MIS structure with a 0V applied voltage. 

As specified above, metal and semiconductor have been chosen in order that the bands are 

flat. The different regimes of this ideal MIS capacitor can be described as a function of the 

applied bias voltage:  

 When a negative voltage (V < 0) is applied to the metal gate, the bands (valence and 

conduction bands) of the semiconductor bend upward at the edge of the 

semiconductor. At this interface, the valence band is now closer to the Fermi level 

(see Figure 95 (b)) than further in the semiconductor when the bands are flat. This 

band bending causes an accumulation of majority carriers (here holes) in the 

semiconductor near the SC/oxide interface, giving its name to the regime called 

accumulation. 

 When a positive voltage (V > 0) is applied, the bands bend downward (see Figure 95 

(c)), a space charge region appears where the majority carriers are depleted. This is 

the depletion regime. 

 When a larger positive voltage is applied, the bands bend downward more and 

Figure 92: Band diagram of an ideal MOS capacitor under strong inversion. 
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more, until the Fermi level EF reaches the intrinsic Fermi level Ei (Ei is the Fermi 

level for an intrinsic semiconductor, it lies at  ̴ Eg/2 in the gap far from the 

oxide/semiconductor interface). Conduction at the SC/oxide interface is no longer 

carried out by the holes but by the electrons which are more numerous than the 

holes in this region. The semiconductor is said locally inverted and this regime is 

called the weak inversion. 

 By increasing further the voltage, the strong inversion regime is reached (see Figure 

95 (d)). The sheet density of electrons in the inversion layer is now larger than the 

density of holes in the neutral part of the semiconductor. Usually, no distinction is 

made between weak and strong inversion regime and what is often called inversion 

regime corresponds to strong inversion case defined here. 

Here, we use energy-band diagram to introduce and highlighting the capacitance behavior of 

these structures under different bias. We have described different operations regimes, 

depending on the applied bias: 

 V < 0 Accumulation 

 V = 0 Flat band 

Figure 93: (a) Ideal metal-insulator energy band diagram in flat condition (0V applied voltage) for a p-type 

semiconductor. Same energy-band diagram under different operation regimes: (b) accumulation, (c) 

depletion) and (d) strong inversion. 
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 V > 0 Depletion 

 V >> 0 Weak inversion of charge carriers 

 V >>> 0 Strong inversion 

A detail of the ideal band-diagram of a p-type semiconductor under strong inversion regime 

is presented in Figure 94. However, this is a simplified picture.  

For a deep understanding of these interfaces, we have to introduce additional concepts (the 

surface space-charge region and the surface potential). 

We also have to introduce the real phenomena that affects to the C(V) properties of MOS 

structures. Among them, the most critical are the interface traps and the oxide charges. 

Surface space-charge region 

For the sake of the simplicity, let’s assume that the difference between the metal work 

function and the semiconductor work function is zero, 𝜙𝑚𝑠 = 0 In the particular case of Al 

metal and low-doped diamond substrate, this assumption is close to the real (ϕAl = 4.28eV, 

ϕdiam = 3,9eV [146]), this is the case in previous chapters of this PhD dissertation. 

With this condition, for a diamond Metal-Oxide-Semiconductor configuration, the following 

relation can be stablished with the help of Figure 94: 

𝜙𝑚𝑠 ≡ 𝜙𝑚 − (χ +
𝐸𝑔

𝑞
− 𝜙𝑝) = 0 Eq. 27 

Being χ the diamond electron affinity and ϕp the Fermi potential with respect to the midgap 

and band edges. Now, by following the diagram of Figure 95, the hole concentration is given 

by: 

𝑝𝑝(𝑥) = 𝑝𝑝0𝑒
−𝑞𝜓𝑝

𝑘𝑇  Eq. 28 

To simplify, let’s take 𝛽 =
𝑞

𝑘𝑇
. The potential ψp(x) can be obtained by solving the one-

dimensional Poisson equation 𝑑2𝜓𝑝 𝑑𝑥2⁄ = −𝜌(𝑥)/𝜀 where the total space-charge density 

is given by: 𝜌(𝑥) = 𝑞(𝑁𝐷
+ − 𝑁𝐴

− + 𝑝𝑝 − 𝑛𝑝) far from the surface, the charge neutrality must 

exist and: 𝑁𝐷
+ − 𝑁𝐴

− = −𝑝𝑝0 + 𝑛𝑝0 The resultant Poisson equation to be solved can be 

integrated, thus giving the relation between the electric field and the ψp potential. 
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𝐸2 = (
2𝑘𝑇

𝑞
) (

𝑞𝑝𝑝0𝛽

2𝜀𝑠
) {[𝑒−𝛽𝜓𝑝 + 𝛽𝜓𝑝 − 1] +

𝑛𝑝0

𝑝𝑝0
[𝑒𝛽𝜓𝑝 − 𝛽𝜓𝑝 − 1]} Eq. 29 

To simplify, we define the following abbreviations: 

Figure 94: Charge distribution (a), electric-field distribution (b) and potential distribution relative to the bulk 

(c) of an ideal MOS capacitor (d) Schematic of the variation of space-charge density in a semiconductor as 

function of the surface potential for a p-type low-doped semiconductor 
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𝐹 = √[𝑒−𝛽𝜓𝑝 + 𝛽𝜓𝑝 − 1] +
𝑛𝑝0

𝑝𝑝0
[𝑒𝛽𝜓𝑝 − 𝛽𝜓𝑝 − 1] ≥ 0 Eq. 30 

And the Debye length of holes, defined as 𝐿𝐷 = √𝜀𝑠 𝑞𝑝𝑝0𝛽⁄ . Thus, the electric field at the 

surface is: 

𝐸 = ±
√2𝑘𝑇

𝑞𝐿𝐷
𝐹 Eq. 31 

From this surface field, we can deduce the total space charge per unit area by applying 

Gauss law: 𝑄𝑠 = −𝜀𝐸, the resulting curve is plotted in Figure 96, where a typical variation of 

the space-charge density Qs as a function of the surface potential ψs for a low doped p-type 

semiconductor at room temperature is shown. Note that, for negative ψs, Qs is positive and it 

corresponds to the accumulation region. The function F is dominated by first term of Eq. 30, 

that is, 𝑄𝑠 ∝ 𝑒𝑞|𝜓𝑠|/2𝑘𝑇. For ψs = 0, we have the flat-band condition and Qs = 0. For 

increasing ψs, Qs is negative and we have depletion and weak-inversion cases. The function 

F is now dominated by the second term, that is 𝑄𝑠 ∝ √𝜓𝑠. For higher values, we have the 

strong inversion case with the function F dominated by the fourth term, that is𝑄𝑠 ∝

𝑒𝑞|𝜓𝑠|/2𝑘𝑇.  

Surface potential and C(V) regimes on MOS structures 

Several parameters are involved in the MOS structure operating, such as doping and 

thickness of the semiconductor, thickness, permittivity and charge of the oxide, as well as 

temperature. We will use the approach proposed by Gilbert Vicent [147], very useful to 

understand MOS operation as well as the influence of each fore-mentioned parameter on the 

MOS polarization, more details and fundamentals of the qψ theory can be found in literature 

[148]. 

Figure 97 (a) summarizes the mentioned MOS parameters and shows the energy-band 

diagram at the interface of a p-type semiconductor/insulator. The potential qψp(x) is 

measured with respect to the intrinsic Fermi level in the bulk at a distance x from the 

insulator-semiconductor interface. The surface potential ψs=ψp(0) is the potential at the 

interface, corresponding to the band curvature. 

As the metal/oxide/semiconductor (MOS) structure acts as a capacitor, the C(V) 

characteristic reveals the operating regimes that can be reached. An overview of the general 

trend of capacitance versus gate voltage characteristic of a perfect MOS structure is shown 

in Figure 97 (b). When applying a negative voltage, the MOS structure is under accumulation 
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regime and can be compared to a planar capacitor composed of metal/oxide/accumulation 

layer. In this regime, the capacitance is almost flat and equal to the oxide capacitance: C = 

Cox = εoxS/dox, where S is the MOS capacitor area. 

When applying a small positive voltage, a depleted region starts to appear in the SC from 

the oxide interface: the structure is in the depletion regime. While the voltage is increasing, 

the width of the space charge region (WSCR) of the depleted region increases and so, the 

corresponding capacitance CD decreases. The resultant capacitance of the whole structure is 

composed of the oxide capacitance Cox in series with the depleted region capacitance CD 

such as: 1/C(V) = 1/Cox + 1/CD(V). 

Consequently, as Cox is a constant value, the total capacitance C(V ) decreases as the voltage 

bias increases. If a larger positive voltage is applied, the structure should be theoretically in 

weak inversion and then in strong inversion. Three cases can be distinguished: 

 Low frequency case of inversion:  In strong inversion regime (called usually 

inversion), the measured capacitance versus bias voltage increases until reaching the 

oxide capacitance value due to the presence of minority carriers at the interface. In 

fact, the structure is again comparable to a planar capacitance composed of the 

metal/oxide/inversion layer. For a MOS capacitor, this regime needs a minority 

carriers (here, electrons) generation mechanism to be present. This can be provided 

by thermal (or optical) generation of electron-hole pairs in the neutral part of the 

Figure 95: (a) qψ diagram for a real insulator-semiconductor (p-type) contact and (b) theoretical MOS 

capacitor C(V) characteristic showing the different operating regimes.  
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semiconductor by intrinsic level or by mid gap deep level. Besides, thermal 

generation depends on the band gap value (which is large for diamond). The 

measurement frequency must therefore be very low, typically lower than 1 Hz for 

silicon (which is a small band gap SC compared to diamond), in order that the 

charges could follow the a.c signal. This is the low frequency case. 

 High frequency case of inversion: If the frequency is too high, the recombination- 

generation rates of minority carriers can not follow the a.c signal variation and lead 

to charge exchange with the inversion layer. This last stays unchanged and no 

increase of the capacitance is observed. Instead the capacitance measured stays 

constant: this is the high frequency case of inversion. 

 Deep depletion: If a high measurement frequency is combined with a quick VG 

sweeping rate (it is commonly admitted that 1 hour, to sweep from accumulation to 

inversion, can be quick for a good semiconductor), the inversion layer cannot be 

formed and instead, the depletion layer continues to extend in the semiconductor 

(even if ψs is larger than 2ψb). In this case, the capacitance will continue to decrease. 

This regime is a non-equilibrium state. 

Thus, particular attention has to be paid to the measurement frequency depending on the 

semiconductor used. In the case of diamond, due to its wide band gap, very low frequency 

(<<< 1Hz) will be necessary to observe low frequency inversion, if no other minority carrier 

generation source is used. Therefore, only deep depletion is expected in diamond. Finally, 

charges and interfaces states affects experimental C(V) characteristics: 

 Difference between the work function of metal/SC and fixed charges in the oxide 

will shift the C(V) characteristic. 

 Mobile charges in the oxide are responsible for an hysteresis behavior. 

 Interface states can affect C(V) characteristic in several ways, depending on the 

interface state density. 

Further details of the C(V) regimes and MOS characterization techniques employed during 

this thesis can be consulted in literature [100]. 

A.3 MOS Field Effect Transistors 

A metal–oxide–semiconductor field-effect transistor (MOSFET) is based on the modulation 

of charge concentration by a MOS capacitance between a body electrode and a gate 

electrode located above the body and insulated from all other device regions by a gate 

dielectric layer which in the case of a MOSFET is an oxide, such as silicon dioxide. If 
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dielectrics other than an oxide such as silicon dioxide (often referred to as oxide) are 

employed the device may be referred to as a metal–insulator–semiconductor FET 

(MISFET). Compared to the MOS capacitor, the MOSFET includes two additional 

terminals (source and drain), each connected to individual highly doped regions that are 

separated by the body region. These regions can be either p or n type, but they must both be 

of the same type, and of opposite type to the body region. The source and drain (unlike the 

body) are highly doped as signified by a "+" sign after the type of doping. 

Structure and channel formation 

If the MOSFET is an n-channel or nMOS FET, then the source and drain are "n
+
" regions 

and the body is a "p" region. If the MOSFET is a p-channel or pMOS FET, then the source 

and drain are "p
+
" regions and the body is a "n" region.  The source is so named because it is 

the source of the charge carriers (electrons for n-channel, holes for p-channel) that flow 

through the channel; similarly, the drain is where the charge carriers leave the channel. 

The occupancy of the energy bands in a semiconductor is set by the position of the Fermi 

level relative to the semiconductor energy-band edges. As described above, and shown in 

the figure, with sufficient gate voltage, the valence band edge is driven far from the Fermi 

level, and holes from the body are driven away from the gate. At larger gate bias still, near 

the semiconductor surface the conduction band edge is brought close to the Fermi level, 

populating the surface with electrons in an inversion layer or n-channel at the interface 

between the p region and the oxide. This conducting channel extends between the source 

and the drain, and current is conducted through it when a voltage is applied between the two 

electrodes. Increasing the voltage on the gate leads to a higher electron density in the 

inversion layer and therefore increases the current flow between the source and drain. 

 For gate voltages below the threshold value, the channel is lightly populated, and only a 

very small subthreshold leakage current can flow between the source and the drain. 

Modes of operation 

When a negative gate-source voltage (positive source-gate) is applied, it creates a p-channel 

at the surface of the n region, analogous to the n-channel case, but with opposite polarities 

of charges and voltages. When a voltage less negative than the threshold value (a negative 

voltage for p-channel) is applied between gate and source, the channel disappears and only a 

very small subthreshold current can flow between the source and the drain. 
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The device may comprise a Silicon On Insulator (SOI) device in which a buried oxide 

(BOX) is formed below a thin semiconductor layer. If the channel region between the gate 

dielectric and a BOX region is very thin, the very thin channel region is referred to as an 

ultrathin channel (UTC) region with the source and drain regions formed on either side 

thereof in and/or above the thin semiconductor layer. Alternatively, the device may 

comprise a semiconductor on insulator (SEMOI) device in which semiconductors other than 

silicon are employed. Many alternative semiconductor materials may be employed. 

When the source and drain regions are formed above the channel in whole or in part, they 

are referred to as raised source/drain (RSD) regions. 

The gate contact is, in fact, a MOS capacitor that shows three different operation regimes 

depending on the Gate-to-Bulk voltage (VGB). In the conventional case of p-type substrate 

(n-type conductivity), these regimes are known as: 

Accumulation (VGB<0): Accumulation occurs when one applies a voltage less than 

the flat-band voltage (VGB=0). The negative charge on the gate attracts holes from 

the substrate to the oxide-semiconductor interface. Only a small amount of band 

Figure 96: Schematic diagram of the architecture of a conventional MOSFET. In the particular case of 

diamond, Source and Drain are p++ doped while substrate is p- doped. This schematic is also showing two 

channel cases: conventional lineal channel and pinch-off channel. 



A.3 MOS Field Effect Transistors 

 

197 

 

bending is needed to build up the accumulation charge so that almost all of the 

potential variation is within the oxide. 

Depletion (VGB>0): As a more positive voltage than the flat-band voltage is 

applied, a negative charge builds up in the semiconductor (but it was p-type 

semiconductor!). Initially this charge is due to the depletion of the semiconductor 

starting from the oxide-semiconductor interface. The depletion layer width further 

increases with increasing gate voltage. 

Inversion (VGB>>0): As the potential across the semiconductor increases beyond 

twice the bulk potential, another type of negative charge emerges at the oxide-

semiconductor interface: this charge is due to minority carriers, which form a so-

called inversion layer. As one further increases the gate voltage, the depletion layer 

width barely increases further since the charge in the inversion layer increases 

exponentially with the surface potential. 

The electronic channel created by using this structure can be controlled with source and 

drain contacts, thus conforming a classic MOSFET structure. The MOSFET is by far the 

most common transistor in both digital and analog circuits, though the bipolar junction 

transistor was at one time much more common. The channel can contain electrons (called an 

nMOSFET or nMOS), or holes (called a pMOSFET or pMOS), opposite in type to the 

substrate, so nMOS is made with a p-type substrate, and pMOS with an n-type substrate. In 

Figure 97: Shape of typical ID-VDS curves in a MOSFET for different VGS-Vth values (a) and schematic of a 

MOSFET in cut-off (b), linear (c) and saturation region (d). 
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the less common depletion mode MOSFET, the channel consists of carriers in a surface 

impurity layer of opposite type to the substrate, and conductivity is decreased by application 

of a field that depletes carriers from this surface layer. 

For now, let’s assume the channel carriers are electrons (n-channel device). A common 

MOSFET is a four-terminal device that consists of a p-type semiconductor substrate into 

which two n
+
-regions, the source and drain, are formed, usually by ion implantation. The 

gate dielectric is formed by thermal oxidation and the metal contact on the insulator is called 

gate. The basic device parameters are the channel length L (which is the distance between 

the two metallurgical junctions), the channel width Z, the insulator thickness d, the junction 

depth rj, and the substrate doping NA (ND if p-doping). 

The source contact will be used as the voltage reference throughout this thesis. When 

ground or a low voltage is applied to the gate, the main channel is shut off, and the source-

to-drain electrodes correspond to two p-n junctions connected back to back. When a 

sufficiently large positive bias is applied to the gate so that a surface inversion layer (or 

channel) is formed between the two n
+
-regions, the source and the drain are then connected 

by a conducting surface n-channel through which a large current can flow. The conductance 

of this channel can be modulated by varying the gate voltage. The back-surface contact (or 

surface contact) can be at the reference voltage or reverse biased; this substrate voltage will 

also affect the channel conductance. 

When a voltage is applied across the source-drain contacts, the MOS structure is in a 

nonequilibrium condition; that is, the minority-carrier (electron in this case) quasi-Fermi 

level EF is lowered from the equilibrium Fermi level, which leads the MOSFET to operate 

various regions:  

Linear region: in which the channel acts as a resistor, so drain current is 

proportional to drain voltage. Strong inversion of the substrate. 

Nonlinear region: by increasing the drain voltage, the current deviates from a 

linear relationship, it eventually reaches to a point at which the inversion charge at 

the drain is reduced to nearly zero (this location is called the “pinch-off” point). 

Saturation region/active mode: beyond the previously discussed drain bias, the 

drain current remains essentially the same. Charge carriers are strongly attracted, 

which provokes channel deformation. 

Concerning the bulk semiconductor, physical properties of Si do not allow building efficient 

MOSFET for power electronics applications (generally insulated gate bipolar transistor is 

preferred but also limited to 4 kV). MOSFET based on other semiconductors, like III-V 

compounds or SiC, are progressing but the performances of such devices are not 



A.3 MOS Field Effect Transistors 

 

199 

 

competitive with Si devices and anyway will be always lower than that expected for 

diamond based MOSFET [94]. The main problem to fabricate a MOS structure is to achieve 

the semiconductor oxide interface with a sufficiently low interface states density. In that 

case, the different regimes of the MOS can be controlled: accumulation of majority carriers, 

depletion, deep depletion, or inversion of carrier (minority carrier density larger than 

majority carrier density at the interface).  
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