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Abstract: This paper presents a three-parameter family of distributions which includes the common
exponential and the Marshall–Olkin exponential as special cases. This distribution exhibits a
monotone failure rate function, which makes it appealing for practitioners interested in reliability,
and means it can be included in the catalogue of appropriate non-symmetric distributions to
model these issues, such as the gamma and Weibull three-parameter families. Given the lack of
symmetry of this kind of distribution, various statistical and reliability properties of this model are
examined. Numerical examples based on real data reflect the suitable behaviour of this distribution
for modelling purposes.

Keywords: exponential distribution; generalised gamma and Weibull distributions; hazard rate
function; Marshall–Olkin procedure
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1. Introduction

Several recent attempts have been made to extend the exponential distribution in order to
increase its versatility for modelling purposes. Among others, the two-parameter exponentiated
exponential distribution ([1–3] and references therein), and the three-parameter generalised exponential
distribution [4] have been presented as feasible alternatives to the gamma, Weibull and lognormal
distributions, although both standard and extended distributions are known to present drawbacks.
The latter have been used to analyse lifetime data that present a monotonic (increasing or decreasing)
hazard rate function (also known as failure rate function). These distributions are popular among
researchers interested in areas such as reliability engineering and software reliability [5,6]. Interesting,
thorough reviews of the exponential distribution along with its applications may be found in a recent
book by Balakrishnan (2019) [7]. References on extensions of the exponential distribution include
Johnson et al. (2019) [8] and references therein.

The Marshall–Olkin (MO) scheme was originally designed to extend the exponential and Weibull
families, and has recently been adapted to obtain new families of distributions; see e.g., Ghitany et al.
(2007) [9], García et al. (2010) [10], Gómez–Déniz (2010) [11], Krishna et al. (2013) [12], Cordeiro et al.
(2014) [13] and García et al. (2016) [14]. In this respect, Caroni [15] studied likelihood-based tests for
the additional parameter on both families of distributions. An economic reliability test plan for the
MO–exponential family has also been studied, in [16]. Other studies, using diverse methods, have also
been undertaken to generalise the Marshall–Olkin scheme [17].
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Inspired by the seminal paper of Marshall and Olkin (1997) [18], in this paper we introduce a
family of three-parameter univariate distributions presenting both decreasing and increasing hazard
rates, and include the exponential distribution as a particular case.

Let Xn be a random sequence given by

Xn =

{
ε1

n, with probability δ,
min

{
ε2

n, Xn−1
}

with probability 1− δ,

where ε1
n, ε2

n are random sequences of exponential i.i.d. variables with parameters λ1 and λ2,
respectively, and 0 < δ < 1.

Let Sn(x) be the survival function of Xn; i.e., Sn (x) = Pr (Xn > x). Then,

Sn (x) = δ Pr
(

ε1
n > x

)
+ (1− δ)Pr

(
ε2

n > x
)

Sn−1 (x) . (1)

Assuming stability for Sn (x) = S (x|λ1, λ2, δ),

S (x|λ1, λ2, δ) =
δ Pr

(
ε1

n > x|λ1
)

1− (1− δ)Pr (ε2
n > x|λ2)

, (2)

Observe that (2) yields a mechanism to extend a distribution.
The rest of this paper is organised as follows: Section 2 presents and discusses general conditions

for generalised Marshall–Olkin exponential (GMOE) distributions. Section 3 then shows some
interesting properties of the GMOE distributions. For instance, we show that their hazard rate
function is related to the constant hazard rate function of an exponential distribution with parameter
λ1 according to the value of δ. Secondly, a closed expression for the moments is obtained. Consequently,
the mean, variance, skewness coefficient, etc., are easily obtained. Finally, a brief study of the
mode location is conducted in Section 3. Section 4 presents the expressions for model parameter
estimation, and a simulation study is performed to determine the performance of the maximum
likelihood estimators with respect to certain sample sizes. Some real-world applications are presented
in Section 5. Finally, Sections 6 and 7 present some extensions of the proposed methodology and the
main conclusions drawn, respectively.

2. The Generalised Marshall–Olkin Exponential Distribution

In this section, we introduce the three-parameter generalised Marshall–Olkin exponential (GMOE)
distribution, using the mechanism described by (2).

In order to reach stability in (2), some initial considerations are needed. Let us denote by Si (x)
and Fi (x) the respective survival and cumulative distribution functions (cdfs) of εi

n, i = 1, 2. For x ≥ 0,
we have

S (x|λ1, λ2, δ) =
δS1 (x)

1− (1− δ) S2 (x)
=

δ exp (−λ1x)
1− (1− δ) exp (−λ2x)

. (3)

Thus, its associated cdf is given by

G (x|λ1, λ2, δ) = 1− δS1 (x)
1− (1− δ) S2 (x)

= 1− δe−λ1x

1− (1− δ) e−λ2x , (4)

Clearly for any λ1, λ2 > 0 and δ, we have

G (0|λ1, λ2, δ) = 0 and lim
x→∞

G (x|λ1, λ2, δ) = 1.
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Thus, for G (x|λ1, λ2, δ) to be a cdf, it is only required that

g (x|λ1, λ2, δ) =
d G (x|λ1, λ2, δ)

dx
≥ 0,

or equivalently,
(1− δ) (λ2 − λ1) e−λ2x + λ1 ≥ 0, ∀x ≥ 0. (5)

Expression (5) is non-negative for all x, when 0 < δ < 1. However, if we wish to extend this
scheme to cases where δ > 1, as in the Marshall–Olkin scheme, then it is required that

λ1 ≥
δ− 1

δ
λ2, (6)

which is a constraint when δ > 1 and is true for any 0 < δ ≤ 1.

Definition 1. A random variable X has the generalised Marshall–Olkin exponential distribution with three
parameters λ1, λ2, δ > 0, denoted by GMOE(λ1, λ2, δ), if its cumulative distribution function (cdf) is given by:

G(x|λ1, λ2, δ) = 1− δ exp (−λ1x)
1− (1− δ) exp (−λ2x)

, x > 0. (7)

The probability density function (pdf) corresponding to Equation (7) reduces to

g(x|λ1, λ2, δ) =
δ(1− δ)(λ2 − λ1) exp (−(λ1 + λ2)x) + δλ1 exp (−λ1x)

(1− (1− δ) exp (−λ2x))2 , x > 0, (8)

which is defined for any set of positive parameters λ1, λ2, δ > 0 such that δλ1 ≥ (δ− 1) λ2.

Remark 1. For δ = 1, we obtain the exponential distribution with parameter λ1. In other words, with the
GMO scheme the original family, F1, can be generalised by the insertion of an additional parameter δ and by the
effect of an auxiliary distribution F2 (λ2).

Remark 2. If λ1 = λ2, then (8) reduces to the Marsall–Olkin exponential distribution with parameters λ1

and δ.

For several values of the parameters λ1, λ2 and δ, the plots of the density function of GMOE
distributions are shown in Figure 1.
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Figure 1. Some probability density function (pdf) plots of generalised Marshall–Olkin exponential
(GMOE) distributions for several values of δ parameter, 0 < δ ≤ 1 (left panel) and δ ≥ 1 (right panel).
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3. Some Properties of the GMO–Exponential Distribution

Some important properties of the GMOE (λ1, λ2, δ) distributions are shown in this section.
From expression (3) and given q ∈ (0, 1) we can obtain the qth quantile xq of the GMOE distribution as
follows. Let q = G

(
xq|λ1, λ2, δ

)
, that is,

q = 1− δe−λ1xq

1− (1− δ) e−λ2xq
.

Then, we rewrite this expression as

(1− δ) (1− q) e−λ2xq + δe−λ1xq = (1− q) ,

or equivalently
(1− δ) (1− q) tλ2

q + δtλ1
q = (1− q) , (9)

where tq = e−xq . Given the real solution of this equation, t?q , xq = − log
(

t?q
)

is the qth quantile
of a GMOE (λ1, λ2, δ) distributed variable. Notice that Equation (9) has only one positive solution.
Additionally, observe that this procedure is useful to obtain the quantile function of the GMOE
distribution which is given by Q(u) = − log(t(u)), where, when replacing q by u, t(u) is the unique
solution to (9). Therefore, if U is a uniform variate on the interval (0, 1), then the random variable
X = Q(U) has pdf (8).

3.1. Moments

The moments of a GMO–exponential distribution can be written in a closed form with the help of
the well-known Hurwitz–Lerch transcendent function, Φ (z, s, a), which is defined by the expression

Φ (z, n, a) =
∞

∑
k=0

zk

(k + a)n ,

and which can also be expressed in an integral form as follows:

Φ (z, n, a) =
1

Γ (n)

∫ ∞

0

tn−1e−at

1− ze−t dt. (10)

Symbolic and numerical evaluations of this function are easily obtained with Mathematica c©

software using the command HurwitzLerchPhi.

Proposition 1. The nth moment of the GMOE distribution is given by

µn = E (Xn) =
δ n!
λn

2
Φ
(

1− δ, n,
λ1

λ2

)
. (11)

Proof. Using expressions (8) and (10) and letting t = λ2x,

µn = δ
∫ ∞

0

tn

λn
2

(1− δ) e−te−
λ1
λ2

t

[1− (1− δ) e−t]2
dt + δ

∫ ∞

0

λ1tn

λn+1
2

e−
λ1
λ2

t

1− (1− δ) e−t dt,

=
δ

λn
2

∫ ∞

0
tn (1− δ) e−te−

λ1
λ2

t

[1− (1− δ) e−t]2
dt +

λ1δΓ (n + 1)
λn+1

2

Φ
(

1− δ, n + 1,
λ1

λ2

)
. (12)
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Now observe that
∫ ∞

0

tn

λn
2

(1− δ) e−te−
λ1
λ2

t

[1− (1− δ) e−t]2
dt can be obtained by parts with

u = tne−
λ1
λ2

t and dv =
(1− δ) e−t

[1− (1− δ) e−t]2
dt,

and then

δ

λn
2

∫ ∞

0
tn (1− δ) e−te−

λ1
λ2

t

[1− (1− δ) e−t]2
dt =

Γ (n + 1) δ

λn
2

Φ
(

1− δ, n,
λ1

λ2

)
− δλ1Γ (n + 1)

λn+1
2

Φ
(

1− δ, n + 1,
λ1

λ2

)
.

Substituting in (12) then gives

µn =
Γ (n + 1) δ

λn
2

Φ
(

1− δ, n,
λ1

λ2

)
,

and the proof is completed.

Corollary 1. Let X be a GMOE distribution with parameters λ1, λ2 and δ. Then,

(i) µn = n!δ
∞

∑
k=0

(1− δ)k

(λ1 + kλ2)
n .

(ii) In particular,

E(X|λ1, λ2, δ) =
δ

λ2
Φ(1− δ, 1,

λ1

λ2
), (13)

Var(X|λ1, λ2, δ) =
δ2Φ(1− δ, 1, λ1

λ2
)2 + 2δΦ(1− δ, 2, λ1

λ2
)

λ2
2

(14)

κ3 =
2δ3Φ(1− δ, 1, λ1

λ2
)3 − 6δ2Φ(1− δ, 1, λ1

λ2
)Φ(1− δ, 2, λ1

λ2
) + 6δΦ(1− δ, 3, λ1

λ2
)

λ3
2

, (15)

where κ3 = E
(
(X− µ)3|λ1, λ2, δ

)
.

(iii) For a fixed value of δ > 0, the value of its kth moment decreases with λ1 and with λ2.

Proof. The proof is immediate and (ii) follows from the identity E((X − µ)k) =

∑k
r=0 (

k
r)E(Xr)(−µ)k−r.

Using (13)–(15), the coefficient of variation (CV) and the skewness (γ1) of X are given by

CV =

√√√√1 +
2
δ

Φ(1− δ, 2, λ1
λ2
)

Φ(1− δ, 1, λ1
λ2
)2

, (16)

γ1 =
2δ3Φ(1− δ, 1, λ1

λ2
)3 − 6δ2Φ(1− δ, 1, λ1

λ2
)Φ(1− δ, 2, λ1

λ2
) + 6δΦ(1− δ, 3, λ1

λ2
)(

δ2Φ(1− δ, 1, λ1
λ2
)2 + 2δΦ(1− δ, 2, λ1

λ2
)
)3/2 . (17)

Observe that in GMOE distributions with a constant λ1/λ2 ratio, the CV and γ1 only depend
on δ.
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3.2. The Hazard Rate: Reliability Properties

The hazard rate of a GMOExp (λ1, λ2, δ) distribution, r (x|λ1, λ2, δ), is given by

r (x|λ1, λ2, δ) =
(1− δ) (λ2 − λ1) e−λ2x + λ1

1− (1− δ) e−λ2x . (18)

As Figure 2 shows, the hazard rate function of the GMOE distribution can take monotonic and
quasi-bathtub shapes for different values of the parameters λ1, λ2 and δ.

δ=1
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λ1�1, λ�	1, δ
0.25

0 1 2 3 4 5

0.5
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Figure 2. Some hazard rate plots of GMOE distributions for several values of δ parameter, 0 < δ ≤ 1
(left panel) and δ ≥ 1 (right panel).

If we denote by rE (x|λ) the hazard rate of an Exp (λ) distribution, the following results can be
obtained immediately:

Proposition 2.

(i) For all λ2 > 0,
r (x|λ1, λ2, δ) > rE (x|λ1) iff 0 < δ < 1.

(ii) For x > 0,

r (x|λ1, λ2, δ) > rE (x|λ2) iff λ1

[
1− (1− δ) e−λ1x

]
> λ2

[
1− 2 (1− δ) e−λ2x

]
,

(iii) r (x|λ1, λ2, δ) is a strictly decreasing function for 0 < δ < 1, constant for δ = 1 and strictly increasing for
δ > 1.

Proof. (i) and (ii) are immediate. For (iii), the result follows by observing that the sign of the first
derivative of the hazard rate function in (9) with respect to x is the opposite to the sign of 1− δ.

Furthermore, r(·|λ1, λ2, δ) is increasing in λ1 and in δ. Thus, the GMOE distribution is positively
ordered with respect to λ1 according to the hazard rate ordering, and analogously, with respect to δ.

In contrast with the ordinary families of gamma and Weibull distributions, observe that

lim
x→0

r(x|λ1, λ2, δ) =
(1− δ)(λ2 − λ1) + λ1

δ
, and that at the origin the hazard rate varies continuously

with the parameters. Moreover, for the GMOE distribution, lim
x→∞

r(x|λ1, λ2, δ) = λ1, is bounded and

continuous in the parameters.
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Finally, the residual life distribution of the random variable X—distributed as a GMOE
distribution with the parameters λ1, λ2 and δ—provided there is no failure prior to time t > 0,
has the survival function

St(x|λ1, λ2, δ) = Pr (X > x + t|X > t) = e−λ1x 1− (1− δ)e−λ2t

1− (1− δ)e−λ2(x+t)

=
β(t)e−λ1x

1− (1− β(t))e−λ2x = S(x|λ1, λ2, β(t)),

where β(t) = 1− (1− δ)e−λ2t. Thus, the residual life distribution of a random variable X distributed
as GMOE(λ1, λ2, δ) at time t is another GMOE distribution with the third parameter depending upon
time t.

Henceforth, from (12) the mean residual life function, i.e., the mean of the residual life distribution,
is given by

m(t|λ1, λ2, δ) =
β(t)
λ2

Φ(1− β(t), 1,
λ1

λ2
). (19)

It is then easy to see that

lim
t→∞

m(t|λ1, λ2, δ) =
1

λ1
= E(X|λ1, λ2, 1) if δ < 1,

and
lim
t→0

m(t|λ1, λ2, δ) =
δ

λ2
Φ(1− δ, 1,

λ1

λ2
) = E(X|λ1, λ2, δ).

3.3. The Mode

From Remarks 1 and 2 in Section 2, we now focus on the values of δ > 0 and δ 6= 1. The GMOE
distribution can present its unique mode either at M = 0 or at M > 0.

Let us define the function
h (x) =

1
δ

g (x|λ1, λ2, δ) , (20)

such that

h′ (x) =
dh (x)

dx
=

h1(x) + h2(x)(
1− (1− δ) e−λ2x

)3 ,

where
h1(x) =

(
− (1− δ)

(
λ2

2 − λ2
1

)
e−λ2x−λ1x − λ2

1e−λ1x
) (

1− (1− δ) e−λ2x
)

and
h2(x) = −2

(
(1− δ) (λ2 − λ1) e−λ2x−λ1x + λ1e−λ1x

)
(1− δ) λ2e−λ2x.

Now, to determine whether there exists a positive mode we need merely decide whether h′ (0) > 0:

h′ (0) =
−δ2λ2

1 − (δ− 1) (δ− 2) λ2
2 + 2δ (δ− 1) λ2λ1

δ3 > 0,

or equivalently,
−δ2λ2

1 − (δ− 1) (δ− 2) λ2
2 + 2δ (δ− 1) λ2λ1 > 0.

Assuming t = λ2/λ1, we define the auxiliary function as

N (t, δ) = − (δ− 1) (δ− 2) t2 − 2δ (1− δ) t− δ2, (21)

Hence, in order to find the mode of GMOE distribution we need only decide whether N(t, δ) > 0.
The solution to this question depends on the range of values for δ.
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(Case a) If 0 < δ < 1, N (t, δ) < 0 for any t ≥ 0, and therefore the mode of distribution
GMOE (λ1, λ2, δ) is reached at M = 0

(Case b) If 1 < δ < 2,
N (t, δ) = (δ− 1) (2− δ) t2 + 2δ (δ− 1) t− δ2 > 0,

implies one of the following two cases. On the one hand,

t < s1 =
−δ (δ− 1)− δ

√
δ− 1

(δ− 1) (2− δ)
< 0,

which is contradictory, and on the other hand,

t > s2 =
−δ (δ− 1) + δ

√
δ− 1

(δ− 1) (2− δ)
> 0;

that is,
δ
√

δ− 1− δ (δ− 1)
(δ− 1) (2− δ)

λ1 < λ2.

However, for 1 < δ < 2, the inequality

δ
√

δ− 1− δ (δ− 1)
(δ− 1) (2− δ)

>
δ

δ− 1

never holds. In summary, we conclude that the mode is reached at M = 0 in this case.
(Case c) If δ = 2, the condition reduces to t > 1, or equivalently λ1 < λ2 ≤ 2λ1.
(Case d) Finally, if δ > 2, N (t, δ) = − (δ− 1) (δ− 2) t2 + 2δ (δ− 1) t− δ2 > 0 implies

0 < s1 =
δ (δ− 1)− δ

√
(δ− 1)

(δ− 1) (δ− 2)
< t < s2 =

δ (δ− 1) + δ
√
(δ− 1)

(δ− 1) (δ− 2)
.

Notice that, for any δ > 2,

s1 <
δ

δ− 1
< s2,

so we conclude that, in this case, M > 0 if and only if

δ (δ− 1)− δ
√
(δ− 1)

(δ− 1) (δ− 2)
λ1 < λ2 ≤

δ

δ− 1
λ1.

3.4. Order Statistics

Let X1, . . . , Xn be a random sample of size n from the GMOE distribution in (8). Then, the density
of the jth order statistics Xj:n, for j = 1, . . . , n, is given by

gj:n(x|λ1, λ2, δ) =
n!

(j− 1)!(n− j)!
k j:n(x|λ1, λ2, δ)(

1− (1− δ)e−λ2x
)n+1 , (22)

where

k j:n(x|λ1, λ2, δ) =
(

1− (1− δ)e−λ2x − δe−λ1x
)j−1 (

δe−λ1x
)n−j

×
(

δ(1− δ)(λ2 − λ1)e−(λ2+λ1)x + δλ1e−λ1x
)

In particular, the sample distributions of the minimum X1:n and maximum Xn:n are easily obtained
by (22) replacing j by 1 and n, respectively.
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4. Estimation

In this section, we estimate the unknown parameters of the GMOE distribution.
Let x = (x1, . . . , xn) be a sample of size n from the GMOE distribution in (8). The log-likelihood
function for the parameters (λ1, λ2, δ) is expressed as

l (x|α) = n log δ +
n

∑
i=1

log
(
(1− δ) (λ2 − λ1) e−(λ2+λ1)xi + λ1e−λ1xi

)
−2

n

∑
i=1

log
(

1− (1− δ) e−λ2xi
)

,

where α = (λ1, λ2, δ). By differentiating with respect to λ1, λ2 and δ and then equating to zero,
we obtain the normal equations needed to estiate the maximum likelihood.

∂l (x|α)
∂δ

=
n
δ
+

n

∑
i=1

λ1 − λ2

(1− δ) λ2 −
(
1− δ− eλ2xi

)
λ1

+
n

∑
i=1

2
1− δ− eλ2xi

, (23)

∂l (x|α)
∂λ1

= −
n

∑
i=1

(1− δ) [1− (λ1 − λ2) xi]− (1− λ1xi) eλ2xi

(1− δ) λ2 −
(
1− δ− eλ2xi

)
λ1

, (24)

∂l (x|α)
∂λ2

=
n

∑
i=1

(1− δ) [1 + (λ1 − λ2) xi]

(1− δ) λ2 −
(
1− δ− eλ2xi

)
λ1

+
n

∑
i=1

2 (1− δ) xi

1− δ− eλ2xi
. (25)

These non–linear equations do not have a closed expression, but require numerical methods,
available in standard software such as Mathematica.

The pdf of the GMOE distribution in (8) satisfies all the regularity conditions, and thus from the
usual, large sample approximation, the MLE (λ̂1, λ̂2, δ̂) treated as being approximately multivariate
normal with a mean vector (λ1, λ2, δ) and variance–covariance matrix I−1, and where the elements are
provided by the inverse Fisher information matrix, the expected values of the second order derivatives
are as shown in Appendix A.

4.1. Simulation Study

In this section, we evaluate the performance of the MLEs and Bayesian estimators using Monte
Carlo simulation, for certain sample sizes and parameter values. The simulation study is repeated
N = 1000 times with sample sizes n = 25, 50, 100. Table 1 shows the results obtained for different
parameter combinations, together with the estimated bias and root mean squared error (RMSE) for
each estimated parameter given a simulated sample of size n, using the common expressions

Bias =
1
N

N

∑
i=1

(α̂i − α) and RMSE =

√√√√ 1
N

N

∑
i=1

(α̂i − α)2.

Table 1 shows that the parameter estimators perform very badly, mainly due to the nonlinearity
and instability of the solutions to Equations (23)–(25), even for large values of n. The above three
likelihood equations are very complicated, and the Newton–Raphson method is a gradient procedure
whose stability depends on the selection of the initial solutions. It is not easy to set up good initial
solutions to these three equations. An alternative procedure to obtain stable MLE consists of developing
a non-informative Bayesian estimation approach. Doing so, we employ the MCMC method to generate
samples from the posterior distributions of the parameters λ1, λ2 and δ from independent, uniform
vague priors and then compute the corresponding Bayes estimators using the common squared errors
loss function. From Table 2 it is clear that MCMC samples can be used to estimate the parameters in
GMOE distributions and that this method obtains better results than solving the normal equations
directly by maximum likelihood. A simple code implemented using OpenBUGS is given in Appendix B.
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The summary statistics shown in Table 2 are based on N = 1000 simulations with 50,000 iterations
following a burn-in stage of 5000 iterations.

Table 1. MLEs and MCMC results. Scenario I: λ1 = 0.5, λ2 = 1, δ = 0.5.

n Parameter Mean Bias RMSE

25
λ1 0.56 0.19 0.63
λ2 0.98 6.76 61.96
δ 0.58 6908.21 >105

50
λ1 0.54 0.07 0.37
λ2 1.01 2.18 9.74
δ 0.55 3814.02 >105

100
λ1 0.51 0.016 0.19
λ2 1.003 1.11 5.25
δ 0.52 221.236 >103

Table 2. MCMC Bayesian estimation.

n Parameter Mean Bias RMSE StD

Scenario I : λ1 = 0.5, λ2 = 1, δ = 0.5

25
λ1 0.60 0.10 0.62 0.13
λ2 0.99 -0.01 0.99 0.15
δ 0.57 0.06 0.57 0.10

50
λ1 0.58 0.08 0.59 0.13
λ2 1.02 -0.01 1.03 0.17
δ 0.55 0.05 0.56 0.10

100
λ1 0.54 0.07 0.55 0.10
λ2 1.007 -0.01 1.08 0.18
δ 0.53 0.05 0.53 0.08

Scenario II : λ1 = 1.5, λ2 = 2.0, δ = 0.5

25
λ1 1.79 9.29 1.83 0.39
λ2 1.92 -0.08 1.93 0.26
δ 0.58 0.07 0.58 0.10

50
λ1 1.74 0.24 1.78 0.37
λ2 1.96 -0.03 1.98 0.28
δ 0.57 0.07 0.58 0.10

100
λ1 1.65 0.16 1.68 0.31
λ2 2.07 0.07 2.09 0.27
δ 0.55 0.05 0.56 0.09

5. Numerical Illustrations

5.1. Example 1

Here, we revisit the real dataset from [4] representing the number of revolutions before failure for
each of the 23 bearings in the life test described in Table 3.

Table 3. Dataset in Gupta and Kundu [4].

17.88 45.60 55.56 84.12 127.92
28.92 48.40 67.80 93.12 128.04
33.00 51.84 68.64 98.64 173.40
41.52 51.96 68.64 105.12
42.12 54.12 68.88 105.84



Symmetry 2020, 12, 464 11 of 15

Table 4 shows the fits to the dataset obtained from the three-parameter gamma, Weibull and
GMOE models, whose probability density functions are given as follows.

5.1.1. Four (Three)-Parameter Gamma Distribution

g(x|α, β, γ, µ) =
1

βΓ(α)
· γ ·

(
x− µ

β

)α·γ−1
exp

{
−
(

x− µ

β

)γ}
, x > µ,

with shape parameters α and γ, scale parameter β, and location parameter µ. This gamma distribution
allows α, β and γ to be any positive real numbers, and µ to be any real number. The three-parameter
gamma distribution g(x|α, β, γ) is equivalent to g(x|α, β, γ, 0).

5.1.2. Three-Parameter Weibull Distribution

g(x|α, β, µ) =
1
β
· α ·

(
x− µ

β

)α−1
exp

{
−
(

x− µ

β

)α}
, x > µ.

This pdf represents a three-parameter Weibull distribution with shape parameter α,
scale parameter β, and location parameter µ, where α and β are positive real numbers and µ is
any real number.

Table 4. Estimated parameters, log-likelihood, K-S statistics, p-values, AIC and BIC for Example 1.

Models

Gamma Weibull 4–Parameters Gamma GMOE

(α̂, β̂, γ̂) (α̂, β̂, µ̂) (α̂, β̂, γ̂, µ̂) (λ̂1, λ̂2, δ̂)
Estimation (10.5669, 1.3796, 0.6032) (1.59, 63.8723, 14.8783) (0.7038, 79.1267, 1.8884, 16.3264) (0.0359, 0.0412, 7.8156)

Loglikelihood −112.97 −112.85 −112.847 −113.42

χ2(d.f.) 5.1739 (2) 3.7826 (2) 3.782 (3) 3.00 (2)
p-value 0.6387 0.8044 0.804 0.223

BIC 235.345 235.107 238.224 236.26

AIC 231.938 231.70 283.682 232.85

For comparative and illustrative purposes, all the usual measures, such as p-value, log-likelihood,
AIC and BIC, are used to compare the estimated models. As is well known, a model with a
minimum BIC value is to be preferred. From Table 4, the log-likelihood and BIC quantities show that,
excluding the four-parameter gamma distribution, the remaining three models are almost identical.
Table 4 shows that the GMOE distribution performs well in fitting the data distribution when there is a
decreasing hazard rate function, and provides a fit as good as that of the three-parameter common
distribution. Thus, GMOE distributions could be included in the catalogue of sampling distributions
for this kind of dataset.

5.2. Example 2

The data for this example were compiled by the Swedish Committee on the Analysis of
Risk Premium in Motor Insurance, summarised in Hallin and Ingenbleek [19] and Andrews and
Herzberg [20]. The data correspond to third party automobile insurance claims for the year 1977,
and are available at the url [21]. We consider the sums of payments (the severity), in Swedish krona.

The histogram and the empirical hazard function for the data are shown in Figure 3. Observe that
the monotonic decreasing of the hazard function suggests that a generalised exponential distribution
fits the data well.
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Figure 3. Ordinary histogram (left panel) and empirical hazard function (right panel) of data in
Example 2.

We fitted three models to these data: exponential (E), Marshall and Olkin exponential (MOE) and
GMOE. Table 5 shows the fit of each of these models to the data set. For comparison, log-likelihood,
BIC and AIC values are also presented, together with the estimation of the parameters by the maximum
likelihood method. In the GMOE model, the stability of the MLE was confirmed by the non-informative
Bayesian procedure described in Section 4.1 using uniform vague priors centred at the MLE obtained
and solving (23)–(25). For the data set considered, all of the BIC and AIC values indicate that the
GMOE model is better.

Table 5. Estimated parameters, Loglikelihood, AIC and BIC for Example 2.

Models

Exponential MOE GMOE

α̂ (λ̂, δ̂) (λ̂1, λ̂2, δ̂)
Estimation 3.80153× 10−6 (1.96183× 10−7, 0.003135) (3.12557× 10−6, 4286.3, 0.783562)

Loglikelihood −29, 022.7 −26, 638.8 −21, 927.9

BIC 58,053.1 53,292.9 43,878.8

AIC 58,047.4 53,281.6 43,861.8

6. Extensions of the GMO Scheme

In this Section, we show some general properties of the GMO scheme applied to any absolutely
continuous distribution. Consider a pair of absolutely continuous distributions, denoted by Fi (x) ,
Si (x) and fi (x), for i = 1, 2, their respective cdfs, survival and pdfs’ functions. We assume that each
Fi (x) depends on its parameter θi, i = 1, 2. We then define the survival function of the GMO with
respect to (F1, F2) as the function

S (x|θ1, θ2, δ) =
δS1 (x)

1− (1− δ) S2 (x)
,

The corresponding cdf is then given by

G (x|θ1, θ2, δ) = 1− δS1 (x)
1− (1− δ) S2 (x)

=
δF1 (x) + (1− δ) F2 (x)

δ + (1− δ) F2 (x)
.

and the corresponding pdf, by

g (x|θ1, θ2, δ) =
δ (1− δ) f2 (x) S1 (x) + δ2 f1 (x) + δ (1− δ) F2 (x) f1 (x)

[δ + (1− δ) F2 (x)]2
,
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We require that g (x|θ1, θ2, δ) ≥ 0 for all x. Clearly, in the case 0 < δ ≤ 1, this condition is always
met. On the other hand, when δ > 1, the required condition reduces to

f1 (x) ≥ (δ− 1) ( f2 (x) S1 (x)− S2 (x) f1 (x)) .

7. Conclusions

In this paper, we propose an extension of the Marshall–Olkin procedure to obtain a new
three-parameter distribution with a monotone hazard rate function and describe some interesting
properties that could be used in reliability scenarios. We show that the proposed distribution can be
considered a valid alternative to well-known distributions, such as the Marsall–Olkin exponential
and generalised gamma and Weibull distributions, among many others. The cumulative distribution
function (cdf) and the hazard rate function present great flexibility. The nth moment is derived and
particular values for the mean, variance and kurtosis are easily obtained. The non-linear equations
for deriving the MLE and the elements of the observed information matrix are also presented. It can
be seen that the maximum-likelihood method can be applied by running a MCMC procedure with
non–informative uniform priors. This approach can also be applied to other distributions, although
not to exponential ones. An application of the GMOE distribution to two real data sets is provided to
demonstrate that this distribution provides a suitable alternative to the standard models.
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Appendix A

The elements of the 3× 3 observed information matrix are given by

∂2l (x|α)
∂δ2 = = − n

δ2 −
n

∑
i=1

(λ1 − λ2)
2[

(1− δ) λ2 −
(
1− δ− eλ2xi

)
λ1
]2 +

n

∑
i=1

2(
1− δ− eλ2xi

)2 ,

∂2l (x|α)
∂δ∂λ1

=
n

∑
i=1

λ2eλ2xi[
(1− δ) λ2 −

(
1− δ− eλ2xi

)
λ1
]2 ,

∂2l (x|α)
∂δ∂λ2

= −
n

∑
i=1

[1 + (λ1 − λ2) xi] λ1eλ2xi[
(1− δ) λ2 −

(
1− δ− eλ2xi

)
λ1
]2 +

n

∑
i=1

2xieλ2xi(
1− δ− eλ2xi

)2 ,

∂2l (x|α)
∂λ2

1
= −

n

∑
i=1

(
1− δ− eλ2xi

)2[
(1− δ) λ2 −

(
1− δ− eλ2xi

)
λ1
]2 ,

∂2l (x|α)
∂λ1∂λ2

=
n

∑
i=1

(1− δ)
[
1− δ− (1− λ2xi) eλ2xi

][
(1− δ) λ2 −

(
1− δ− eλ2xi

)
λ1
]2 ,

∂2l (x|α)
∂λ2

2
= −

n

∑
i=1

(1− δ)
[
1− δ + (2 + λ1xi − λ2xi) λ1xieλ2xi

][
(1− δ) λ2 −

(
1− δ− eλ2xi

)
λ1
]2 +

n

∑
i=1

2 (1− δ) x2
i eλ2xi(

1− δ− eλ2xi
)2 .
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Appendix B

OpenBUGS code for the parameter estimation in GMOE distributions.

model{
for (i in 1:n) {

dummy[i] <- 0
dummy[i] ~ dloglik(logLike[i]) # likelihood is exp(logLike[i])
# log(likelihood)
logLike[i] <- -2*log(1-(1-delta)*exp(- lambda2*x[i])) +

log(lambda1*delta*exp(-lambda1*x[i])+
(lambda2-lambda1)*(1-delta)*delta*exp(-(lambda1+lambda2)*x[i]))

}
lambda1 ~ dunif(0,a)
lambda2 ~ dunif(0,b)
delta ~ dunif(0,c)

}
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