
Usability Heuristics for Domain-Specific Languages (DSLs)
Eduardo Mosqueira-Rey

University of A Coruña
A Coruña, Spain
eduardo@udc.es

David Alonso-Ríos
University of A Coruña

A Coruña, Spain
dalonso@udc.es

ABSTRACT
The usability of Domain-Specific Languages (DSLs) has been at-
tracting considerable interest from researchers lately. In particular,
our literature review found many usability studies that make use
of subjective and empirical methods. However, we noted a lack
of heuristic methods in the literature. In comparison, there exist
several usability studies of Application Programming Interfaces
(APIs) that have used heuristics with success, so we argue that
this approach would be also useful for DSLs. Therefore, this paper
proposes a set of usability heuristics for DSLs and illustrates the
approach with a case study. We show how our heuristics helped us
identify many actual usability problems, even for a simple DSL.

CCS CONCEPTS
• Human-centered computing → HCI theory, concepts and
models; • Software and its engineering → Designing soft-
ware.

KEYWORDS
Domain-Specific Languages, DSL, Heuristic Evaluation, Usability,
Heuristics, Usability Taxonomy
ACM Reference Format:
Eduardo Mosqueira-Rey and David Alonso-Ríos. 2020. Usability Heuristics
for Domain-Specific Languages (DSLs). In The 35th ACM/SIGAPP Symposium
on Applied Computing (SAC ’20), March 30-April 3, 2020, Brno, Czech Republic.
ACM, NewYork, NY, USA, Article 4, 4 pages. https://doi.org/10.1145/3341105.
3374234

1 INTRODUCTION
A Domain-Specific Language (DSL) is expressly aimed at a par-
ticular domain and its expressiveness is typically limited. DSLs
are usually classified as either external or internal [5]. An exter-
nal DSL is a language that is entirely independent from the core
language used in the application. An internal DSL is, in fact, a
subset of the core language that has very specific goals and offers a
restricted set of functionalities.

It could be argued that the distinction between an internal DSL
and a typical API (Application Programming Interface) based on
commands and queries is somewhat fuzzy. According to Fowler [5],
the difference lies in the nature of the language. Command-query
APIs specify a vocabulary for a domain, while internal DSLs also

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SAC ’20, March 30-April 3, 2020, Brno, Czech Republic
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6866-7/20/03.
https://doi.org/10.1145/3341105.3374234

include an internal grammar. While API methods usually stand
on their own, so to speak, internal DSL methods are often better
understood as part of a larger expression. Internal DSLs lead us
to the concept of fluent interfaces, which use method chaining to
make the syntax closer to natural language.

Since there is more literature on API usability than on DSL
usability, we decided to use the previously existing research on
API usability as a springboard to identify usability heuristics for
DSLs. Moreover, we aimed to follow a systematic methodology that
explicitly connected our heuristics to established usability criteria
from the literature.

2 BACKGROUND
A great number of methods exist for studying usability in general,
and the same is true for the more specialized field of DSL usabil-
ity. We conducted a literature review of DSL usability studies and
found that many kinds of traditional usability methods are typically
employed, such as user tests, performance measurements, surveys,
questionnaires, interviews, and so on. This diversity of techniques
is summarized in the Usa-DSL Framework for DSL usability [10].
There is also a noticeable lack of consensus regarding which us-
ability definition (e.g., ISO 9241-11, Jakob Nielsen’s, some subset of
these, etc.) is to be followed in order to establish usability criteria,
metrics, and measures. Moreover, we could not find any actual
studies that made use of expert methods like heuristic evaluation
or guideline review. Heuristic evaluation can be defined as “expert
identifies violations of heuristics”, and guideline review as “expert
checks guideline conformance” [7].

As far as we know, no actual lists of usability heuristics or guide-
lines have ever been proposed for the field of DSLs. This contrasts
with usability studies of computer applications, where expert meth-
ods are extensively used and popular checklists of guidelines and
heuristics exist. One possible explanation for this could be that “the
Usability evaluation of a UI is typically superficial when compared
to the required usability evaluation of DSLs” [4, p. 345]. This means
that DSLs require more specific usability heuristics and guidelines.

3 METHODOLOGY
Our work is based in the usability taxonomy proposed by Alonso-
Ríos et al. [2]. This model aims to synthesize the existing definitions
of usability and organize their attributes into a hierarchy. Figure 1
shows the usability taxonomy in a simplified version with, at the
highest level, the attributes of Knowability, Operability, Efficiency,
Robustness, Safety and Subjective Satisfaction.

This usability taxonomy has been further used by these authors
as the basis of a more systematic and generalizable approach to
heuristic evaluation [1]. The rationale is as follows: Heuristic eval-
uation has traditionally been a quick and cheap usability technique,
based on a generic set of rules of thumb, such as Jakob Nielsen’s

1340

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio da Universidade da Coruña

https://core.ac.uk/display/322902539?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3341105.3374234
https://doi.org/10.1145/3341105.3374234
https://doi.org/10.1145/3341105.3374234


Figure 1: Usability taxonomy

heuristics [9]. This is enough in some contexts but, in others, heuris-
tics are inevitably complemented by ad hoc judgments or deep
knowledge of guidelines. In the field of DSL usability in particular,
researchers such as Barišić et al., found that heuristic evaluation
is “often regarded as not being capable to encompass all usability
attributes” [3, p. 123 ]. This is why we argue that a more compre-
hensive and systematic view of usability is needed here.

After reviewing the literature, we could not find any heuristics
expressly made for DSLs. However, DSLs and APIs are closely
related, so we used the usability heuristics for APIs proposed by
Mosqueira-Rey et al. [8] to create our own. This was done taking
into account the differences and similarities between APIs and DSLs.
Finally, we mapped the resulting usability heuristics for DSLs into
the usability taxonomy. The goal of this step was to validate the
former and try to identify unaddressed usability aspects.

4 PROPOSED DSL HEURISTICS
Tables 1 to 9 show our proposed heuristics for DSL usability. As
mentioned above, they are derived and adapted from the heuristics
for API usability by Mosqueira-Rey et al. [8].

5 CASE STUDY
We tested our heuristics with a case study. We chose the IEC 61131-
7 standard [6] that defines a simple DSL for the programming of
fuzzy control applications used by programmable controllers. This
DSL includes the following elements:

• Function block: A block that represents functions and fol-
lows the definition previously given in the standard IEC
61131-3.

• Input and output parameters: Parameters that are passed
into and out of the function block. The data types of these
parameters shall be defined according to IEC 61131-3.

Table 1: Heuristics for Knowability (part 1: Clarity)

Code Heuristics
K-1 Elements (keywords, operators, etc.) should be self-

explanatory.
K-2 When reading code, it should be easy to understand

what that code does.
K-3 The elements of the DSL should be loosely coupled.
K-4 Elements should focus on doing one thing.
K-5 When writing code it should be easy to know what

elements of the DSL to use.
K-6 When writing code it should be easy to know where

you are at any point.

Table 2: Heuristics for Knowability (part 2: Consistency)

Code Heuristics
K-7 The syntax for the DSL elements should be self-

consistent.
K-8 The semantics of the DSL elements should be self-

consistent.
K-9 The syntax of the terminology used for the DSL ele-

ments should be consistent with standard conventions.
K-10 The semantics of the terminology used for the DSL ele-

ments should be consistent with standard conventions.
K-11 The syntax of the structures of the DSL should be self-

consistent.
K-12 The semantics of the structures of the DSL should be

self-consistent.

Table 3: Heuristics for Knowability (part 3: Memorability)

Code Heuristics
K-13 The syntax of DSL elements should be easy to remember.
K-14 The semantics of DSL elements should be easy to re-

member.
K-15 The syntax of DSL structures should be easy to remem-

ber.
K-16 The semantics of DSL structures should be easy to re-

member.

Table 4: Heuristics for Knowability (part 4: Helpfulness)

Code Heuristics
K-17 Every DSL element should be documented.
K-18 Documentation and comments should not include inap-

propriate information.
K-19 The DSL should properly identify deprecated elements

(if any).
K-20 The DSL should provide helpful information in case of

error and suggest solutions (if possible).
K-21 The documentation should include code samples for the

most common scenarios.

1341



Table 5: Heuristics for Operability

Code Heuristic
O-1 The DSL should provide the necessary functionalities

for domain tasks.
O-2 Data types should be as precise as necessary.
O-3 The DSL should avoid using elements (units, formats,

spellings, etc.) that are not universally recognized.
O-4 The DSL should be open to extension.
O-5 The DSL should be flexible enough to allow changing

code segments rather than whole modules.

Table 6: Heuristics for Efficiency

Code Heuristics
E-1 The level of abstraction of the DSL should be adequate

for the users and the domain.
E-2 The DSL should require as little typing as possible.
E-3 For complex DSLs, establish layers of complexity based

on expertise.
E-4 The DSL should allow writing code that is efficient in

terms of execution time.
E-5 The DSL should allow writing code that is efficient in

terms of occupied resources.
E-6 The economic costs derived from using the DSL (if any)

should be reasonable.

Table 7: Heuristics for Robustness

Code Heuristics
R-1 The DSL should not have bugs in its functioning.
R-2 Runtime errors should be detected and, if possible, re-

covered from.
R-3 The DSL should not expose error-prone vulnerabilities.

Table 8: Heuristics for Safety

Code Heuristics
S-1 The DSL should not get the user in legal trouble.
S-2 The DSL should clearly state its license of use.
S-3 The DSL should not compromise the confidentiality of

users’ personal information.
S-4 The DSL should not compromise the safety of users’

assets.

Table 9: Heuristics for Subjective Satisfaction

Code Heuristics
SS-1 Using the DSL should be satisfying.

• Fuzzy variable: Describes a fuzzy concept that has a name
(e.g. age) and is composed of a series of fuzzy terms.

• Fuzzy term: Describes a particular fuzzy concept for a fuzzy
variable (e.g. old and young are fuzzy terms in the age fuzzy
variable). Each fuzzy term has an associated fuzzy set.

• Fuzzy set: A fuzzy set is a mapping of a set of numbers onto
membership values that lie in the range [0, 1].

• Fuzzification process: The conversion of a numerical value
into some degrees of membership of some fuzzy terms de-
fined in a fuzzy variable.

• Defuzzification process: The conversion of some fuzzy
terms and their corresponding membership degrees into a
numerical value.

• Fuzzy rule: A typical IF-THEN rule in which the condition,
the conclusion, or both, are fuzzy variables.

• Fuzzy rule block: A block comprising several fuzzy rules.
• Weighting factor: A value in the range [0, 1] that states
the degree of importance, credibility or confidence of a fuzzy
rule.

In Figure 2 we can see a code example of a fuzzy function block
that includes all the elements defined above. In this case a fuzzy
water controller is being simulated. We have two input variables
that represent the temperature and the pressure of the water and
one output variable that defines the position of a valve. Finally, the
rules used by the controller are included, written with fuzzy terms
and that are easy for humans to read and understand.

6 HEURISTIC EVALUATION OF THE CASE
STUDY

We conducted a heuristic evaluation of the DSL using our own
heuristics, and identified the following usability problems:

• Some identifiers have no clear meaning. For example,
the defuzzification method uses constants to define a type
of defuzzification: CoG (Centre of Gravity), CoGS (Centre of
Gravity for Singletons), CoA (Centre of Area), LM (Left Most
Maximum) and RM (Right Most Maximum). Some of these
acronyms have no obvious meaning. In other words, some el-
ements are not self-explanatory, which fails to meet heuristic
K-1 from Table 1.

• Some identifiers are difficult to remember. Usability prob-
lems are often interrelated so, for example, the lack of clarity
mentioned above also makes the DSL elements difficult to
remember (heuristic K-14).

• Lack of consistency in the identifiers. Similarly, there is
a lack of consistency in letter case and abbreviations. For
example, CoGS (Centre of Gravity for Singletons) mixes upper
case and lower case, and abbreviates the “of” but omits the
“f” in “for” (heuristic K-13).

• Use of verbs to represent entities. When programming,
we use verbs to represent actions, and nouns (or noun phrases)
to represent objects and attributes. The IEC standard uses
verbs like FUZZIFY to define fuzzy variables, but it would
be better to use a noun, such as FUZZY_VAR. This is again a
problem of clarity (heuristic K-1), and a problem of consis-
tency (heuristic K-9) in that the semantics are not consistent
with standard conventions.

1342



FUNCTION_BLOCK Fuzzy_FB
VAR_INPUT

temp: REAL;
pressure: REAL;

END_VAR
VAR_OUTPUT

valve: REAL;
END_VAR
FUZZIFY temp

TERM cold := (3, 1) (27, 0);
TERM hot := (3, 0) (27, 1);

END_FUZZIFY
FUZZIFY temp

TERM low := (55, 1) (95, 0);
TERM high := (55, 0) (95, 1);

END_FUZZIFY
DEFUZZIFY temp

TERM drainage := -100;
TERM closed := 0;
TERM inlet := 100;
METHOD: CoGS;
DEFAULT := 0;

END_DEFUZZIFY
RULEBLOCK No1

AND: MIN;
ACCU: MAX;
RULE 1: IF temp IS cold AND pressure IS low

THEN valve IS inlet;
RULE 2: IF temp IS cold AND pressure IS high

THEN valve IS closed WITH 0.8;
RULE 3: IF temp IS hot AND pressure IS low

THEN valve IS closed;
RULE 4: IF temp IS hot AND pressure IS high

THEN valve IS drainage;
END_RULEBLOCK
END_FUNCTION_BLOCK

Figure 2: Example of a fuzzy function block taken from
IEC61131-7

• Use of the same keyword to do two different things.
The DEFUZZIFY keyword is declaring a fuzzy variable but is
also defining the defuzzify process over that variable. Con-
flating use and declaration fails to meet heuristic K-4, as
elements should focus on doing one thing.

• Use of different keywords to represent the same ele-
ments. As a consequence of conflating the declaration of
fuzzy variables and the fuzzify and defuzzify processes we
found another usability problem: the IEC standard uses two
different keywords (FUZZIFY and DEFUZZIFY ) to declare
fuzzy variables. Having completely opposite keywords for
overlapping semantics is a problem of consistency (K-8).

• The fuzzy terms can only use linear fuzzy sets. In the
standard, a membership function is defined as a piece-wise
linear function by means of a table of points. It is not al-
lowed to use non-linear functions such as Gaussian func-
tions, which are typically used to define fuzzy sets. This is a
problem of completeness, in that the DSL does not provide
all the necessary functionalities (heuristic O-1).

• There is only one fuzzification method. We can choose
between some defuzzification methods but there is only one
way to fuzzify numerical values – which is implicitly the
Mandani method – leaving out other methods such as the
Larsen method. This is the same problem as above (O-1).

7 CONCLUSIONS
The main contribution of this paper is to propose new heuristics for
analyzing DSL usability. In our literature review we found several
works that include subjective and empirical methods of analysis,
but we could not find any studies that made use of expert methods
like heuristic evaluation or guideline review.

Since DSLs are very similar to APIs, especially the internal DSLs
that some authors identify as fluent APIs, we can use API heuristics
as a basis for developing DSL heuristics. Thus, the API heuristics
proposed by Mosqueira-Rey et al. [8] are connected with an ex-
tended model of usability [2], which is something that helps us
check if we are addressing actual usability problems.

We use the extended model of usability and the API heuristics to
derive our own DSL heuristics. In order to test if the heuristics can
identify usability problems in DSLs (whether internal of external)
we choose a case study of an external DSL and apply the developed
heuristics to it.

In the case study we were able to identify several usability prob-
lems during the heuristic evaluation even though the case study
was a simple and relatively straightforward DSL. This means that
our heuristics helped us find some usability problems or issues
in the definition of DSLs and are a promising approach to expert
usability evaluation for DSLs.

Moreover, since our heuristics are explicitly connected to a com-
prehensive usability model, we can categorize each usability issue
into a particular usability criterion (clarity, consistency, etc.). This is
something that helps to better identify the problems we are dealing
with and how to solve them.

As a future work, we plan to refine the heuristics into detailed
guidelines to perform also a guideline review. The idea is to apply
heuristics and guidelines to both external and internal DSLs.

ACKNOWLEDGMENTS
This work has been supported partially by Xunta de Galicia (Spain)
under projects GRC2014/035 and ED431G/01.

REFERENCES
[1] David Alonso-Ríos, Eduardo Mosqueira-Rey, and Vicente Moret-Bonillo. 2018.

A Systematic and Generalizable Approach to the Heuristic Evaluation of User
Interfaces. International Journal of Human–Computer Interaction 34, 12 (2018),
1169–1182. https://doi.org/10.1080/10447318.2018.1424101

[2] David Alonso-Ríos, Ana Vázquez-García, Eduardo Mosqueira-Rey, and Vicente
Moret-Bonillo. 2009. Usability: a critical analysis and a taxonomy. International
Journal of Human-Computer Interaction 26, 1 (2009), 53–74.

[3] Ankica Barišić, Vasco Amaral, and Miguel Goulão. 2018. Usability driven DSL
development with USE-ME. Comp. Lang., Systems & Structures 51 (2018), 118–157.

[4] Ankica Barišić, Vasco Amaral, and Miguel Goulao. 2012. Usability Evaluation of
Domain-Specific Languages. In 2012 8th Int. Conf. on the Quality of Information
and Comm. Technology. 342–347. https://doi.org/10.1109/QUATIC.2012.63

[5] Martin Fowler. 2010. Domain-specific languages. Pearson Education.
[6] IEC 61131-7 2000. Programmable Controllers - Part 7: Fuzzy Control Programming.

Standard. International Electrotechnical Commission (IEC), Geneva, CH.
[7] Melody Y Ivory and Marti A Hearst. 2001. The state of the art in automating

usability evaluation of user interfaces. Comput. Surveys 33, 4 (2001), 470–516.
[8] Eduardo Mosqueira-Rey, David Alonso-Ríos, Vicente Moret-Bonillo, Isaac

Fernández-Varela, and Diego Álvarez-Estévez. 2018. A systematic approach
to API usability: Taxonomy-derived criteria and a case study. Information and
Software Technology 97 (2018), 46 – 63. https://doi.org/10.1016/j.infsof.2017.12.010

[9] Jakob Nielsen. 1995. 10 usability heuristics for user interface design. https:
//www.nngroup.com/articles/ten-usability-heuristics/. (1995). Acc.: 2018-09-01.

[10] Ildevana Poltronieri, Avelino Francisco Zorzo, Maicon Bernardino, and Marcia
de Borba Campos. 2018. Usa-DSL: usability evaluation framework for domain-
specific languages. In 33rd Annual ACM Sym. on App. Comp. ACM, 2013–2021.

1343

https://doi.org/10.1080/10447318.2018.1424101
https://doi.org/10.1109/QUATIC.2012.63
https://doi.org/10.1016/j.infsof.2017.12.010
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/

	MAIN MENU
	Go to Previous View
	Help
	Search
	Print
	Author Index
	Keyword Index
	Table of Contents

