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Abstract

Background: Epistasis is defined as the interaction between different genes when expressing a specific phenotype.
The most common way to characterize an epistatic relationship is using a penetrance table, which contains the
probability of expressing the phenotype under study given a particular allele combination. Available simulators can
only create penetrance tables for well-known epistasis models involving a small number of genes and under a large
number of limitations.

Results: Toxo is a MATLAB library designed to calculate penetrance tables of epistasis models of any interaction
order which resemble real data more closely. The user specifies the desired heritability (or prevalence) and the
program maximizes the table’s prevalence (or heritability) according to the input epistatic model boundaries.

Conclusions: Toxo extends the capabilities of existing simulators that define epistasis using penetrance tables. These
tables can be directly used as input for software simulators such as GAMETES so that they are able to generate data
samples with larger interactions and more realistic prevalences/heritabilities.
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Background
The interaction among different genes when expressing
a specific phenotype is called epistasis. Its importance
in phenotype-genotype associations is well established
[1], but traditional GWASs (Genome-Wide Association
Study) have only focused on single gene importance or
pairwise interactions. However, more recent studies have
shown that high-order interactions, those in which more
than two loci are involved, may be behind complex traits
[2–6].
Epistasis can be defined from different perspectives [1].

Here we focus on statistical epistasis, which refers to the
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departure from additivity whenmappingmultilocus geno-
types to phenotypic variation. In this context, data set
simulations are essential for studying and developing new
algorithms ormethods for epistasis detection. Simulations
offer a controlled environment for testing the accuracy
of new methods where the expected results are known
beforehand. In contrast, real world data are more costly to
acquire and provide no direct way of knowing which result
is correct.
The most common way to characterize an epistatic rela-

tionship is using a penetrance table, one that contains the
probability of expressing the phenotype given each par-
ticular allele combination. Although it is quite common
for simulators to use them, not all of them allow us to
generate the penetrance table. SimuPOP [7], HapSample
[8], or SBVB [9], for example, can simulate synthetic data
sets employing penetrance tables, but they cannot create
them.
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Three general approaches are used to create the pene-
trance tables. The first and most simple approach consists
in using an epistasis model. Epistasis models are math-
ematical relationships that define the penetrance value
for each genotype combination as a function of one or
more variables, each one usually representing a statistical
parameter of the interaction. We can take as examples the
well-known models proposed by Marchini et al. in [10]. In
these models, the parameters are the baseline effect (α),
the genetic effect present at every locus independently of
the actual allele combination, and the genotypic effect (θ ),
the increase in the odds of the disease beyond the base-
line level due to genetic interaction. From these models,
a penetrance table can be obtained by giving values to
every parameter. However, since penetrances are proba-
bility values, they can only take values inside the interval
[ 0, 1] and, therefore, there are some restrictions on how
the parameter values can be combined. An example of the
usage of epistasis models to generate penetrance tables as
described can be found in [11].
The second approach is to impose a set of characteris-

tics that should be fulfilled by the simulated population
under study and find a penetrance table that complies with
these requirements. Parameters model certain character-
istics of the population, and the most common are the
prevalence P(D) (representing the proportion of individ-
uals in a population carrying the phenotype of study) and
the heritability h2 (representing the amount of phenotypic
variation that corresponds to genetic variation). Finding
a table with such requirements is a more complex pro-
cess than using an epistatic model, therefore a software
tool is needed. In this regard, GAMETES [12] is an epis-
tasis simulation software that uses a stochastic method
to find a penetrance table with the desired prevalence
and heritability levels. It is also able to generate popu-
lation samples from these tables. GenomeSIMLA [13] is
another simulator capable of finding a penetrance table
under prevalence and heritability constraints. In this case,
it uses a genetic algorithm to reach a solution.
The third and last approach consists in combining

the two previous methods: the use of epistasis mod-
els together with a set of parametric restrictions. This
approach has the advantage of modeling the interaction
using the model variables, while also modeling some pop-
ulation characteristics using the parametric restrictions.
Consequently, finding a penetrance table is a significantly
more complex task. EpiSIM [14] and gs [15] are simu-
lators that fall into this hybrid approach. gs offers the
ability to create penetrance tables for nine embedded
second-order models, based on the genotype odds ratio(s)
for each locus and the prevalence of the desired phe-
notype. The usability of gs is especially limited due to
its restricted set of models. EpiSIM, on the other hand,
can create penetrance tables of up to fourth-order and

simulate population samples from them. It allows us to
specify penetrance values as a function of two variables
(i.e., it uses bivariate penetrance functions) and it also
permtis specifying the desired values of prevalence and
heritability. The EpiSIM implementation attempts to find
a value for themodel variables by solving the equation sys-
tem made of the prevalence and heritability expressions,
respectively defined as:

P(D) =
∑

i
P(D|gi)P(gi) (1)

h2 =
∑

i
(
P(D|gi) − P(D)

)2P(gi)
P(D)

(
1 − P(D)

) (2)

where P(D|gi) = fi(x, y) is the proportion of individu-
als showing trait D when having the genotype gi, P(gi) is
the population frequency of the genotype gi and fi(x, y)
is the function of two variables that defines the epista-
sis model. EpiSIM seeks to find the penetrance table or
tables that meet certain prevalence and heritability con-
straints by solving an equation system made of the two
previous expressions. This results in a system with two
equations and two unknowns: the two variables of the
epistasis model (x and y).
Although this approach can work for second-order

models and low prevalence and heritability values, EpiSIM
can barely find solutions to higher-order models or more
realistic parameter values. In this paper we present Toxo,
a MATLAB library for calculating penetrance tables from
models containing bivariate penetrance functions with no
limitation on the interaction order. Toxo allows the user
to create penetrance tables for a specified epistasis model
maximizing the prevalence or heritability when one of
the two is constrained. These tables can be used by other
simulation packages to generate the data set with the
embedded epistasis model and the parametric restriction
specified.

Implementation
Overview of toxo
Toxo is a MATLAB library designed for calculating pen-
etrance tables using epistasis models containing bivariate
penetrance functions, maximizing the prevalence or heri-
tability when one of the two is set. It finds the combination
of the two variables from the model that results in a pen-
etrance table where the prevalence is maximum if the
heritability was constrained, or the heritability is max-
imum if the prevalence was the constraint. Toxo does
not generate population samples from the tables; instead,
it relies on other programs, such as GAMETES [12], to
simulate the samples using these tables.
The library consists of two classes, Model and PTable,

which encapsulate all the functionality, as represented in
Fig. 1. Model class constructor reads the model (provided
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Fig. 1 Class diagram of Toxo, representing its two classes Model and PTable, as well as all their attributes and methods. Class Model represents
an epistasis model containing bivariate penetrance expressions and offers methods for calculating penetrance tables according to its definition.
Class PTable represents a penetrance table and offers methods for calculating parameters from the table and writing it into a file. Both classes use
functions provided in the MATLAB Symbolic Math Toolbox

as a text file) and creates an object representing it. The
Model instance offers methods for calculating the pene-
trance table with the maximum heritability for a certain
prevalence, or the table with the maximum prevalence for
the specified heritability. These methods return instances
of PTable, representing the calculated penetrance table
and offering methods for, among other things, writing the
table to a file using different formats. In the event of not
finding a penetrance table with the desired characteristics,
an exception will be raised.
Toxo uses the Symbolic Math Toolbox of MATLAB [16]

to represent the models and to calculate the resulting pen-
etrance table. This allows the user to control the precision
of the results by changing the precision on all the oper-
ations computed within Toxo. If the target prevalence or
heritability is a number close to 0 or 1 (the minimum
and maximum values, respectively), it may be necessary
to increase the number of digits to reduce the error in
precision (using the MATLAB function digits).

Calculating the penetrance tables
An epistasis model establishes relationships among the
phenotype expression frequencies for the different geno-
type combinations. Table 1 shows the additive model
proposed in [10], where the odds increase multiplica-
tively with genotype both within and between loci. These
relationships limit the possible prevalence (Eq. 1) and her-
itability (Eq. 2) combinations achievable by the model.

Figure 2 represents the prevalence and the heritability as
functions of the two variables from the second-order addi-
tive model shown in Table 1, using a MAF (Minor Allele
Frequency) of 0.25 for both loci. This figure illustrates
this limitation, as not every combination is present, e.g.
there is no common point (α, θ) to both graphs where
P(D) = 0.8 and h2 = 0.2 and therefore it is not possible
to reach both these values for the parameters using this
model.
Previous methods for calculating penetrance tables

establish a desired prevalence and heritability and obtain
the penetrance table as the solution to the system of
equations formed by expressions (1) and (2) [14]. How-
ever, as not all combinations of heritability and prevalence
are possible, these methods are prone to result in an
incompatible equation system. Furthermore, since pen-
etrances are probability values, they must be inside the
interval [ 0, 1]. Hence, the solution to the equation system
needs to satisfy this condition as well.

Table 1 Second-order additive model from [10], using the same
genotypic effects for every loci

BB Bb bb

AA α α(1 + θ) α(1 + θ)2

Aa α(1 + θ) α(1 + θ)2 α(1 + θ)3

aa α(1 + θ)2 α(1 + θ)3 α(1 + θ)4



Ponte-Fernández et al. BMC Bioinformatics          (2020) 21:138 Page 4 of 9

Fig. 2 Prevalence and heritability as functions of α and θ for the second-order additive model shown in Table 1, usingMAF = 0.25, α ∈[ 0, 1] and
θ ∈[ 0, 2]. Note that prevalence values closer to 0 and heritability values higher than 0.15 can be achieved for values of θ higher than two, outside of
the area represented in the figure

To overcome these limitations, instead of finding a spe-
cific combination, the Toxo library maximizes one of
the two parameters (prevalence or heritability) when the
other is fixed. Once the maximum is calculated, the inter-
val of achievable values is perfectly defined as the interval
between 0 and themaximum. Following this approach, the
likelihood of formulating an incompatible system when
no information of the model is known is significantly
reduced, since most of the models achieve all prevalences
and heritabilities individually at some point. Toxo also
considers the valid range of penetrance values as con-
straints to the equation system to be solved. Depending on
the parameter to maximize (prevalence or heritability) the
method slightly varies, so both will be explained in detail.
Taking into account Eq. 1, maximizing the prevalence

means maximizing the sum:
∑

i

(
P(D|gi)P(gi)

)
(3)

where P(D|gi) is a function of the model variables (gener-
ally referred to as x and y) and P(gi) is constant for fixed
MAFs, assuming Hardy-Weinberg equilibrium between
the three genotypes at each locus and linkage equilibrium
among the loci [14, 17]. To simplify the maximization
process, we impose two restrictions to the input model:

1 All model expressions must be monotonically
non-decreasing when x and y are real positive
numbers.

2 The penetrance expressions must be sortable when x
and y are real positive numbers.

These restrictions include the vast majority of mod-
els used in the literature, as will be discussed in
“Model restrictions and existing epistasis models” section.
If the penetrance expressions are monotonically non-

decreasing and sortable, all expressions will increment

proportionally when increasing their variables. Conse-
quently, their sum will reach its maximum value when the
largest P(D|gi) expression also takes its maximum. Since
penetrances are probabilities, their maximum value is 1.
Therefore, we can obtain the maximum prevalence for a
model, given a heritability value, by solving an equation
system made of this heritability constraint and the condi-
tion of maximum prevalence:

∑
i
(
P(D|gi) − P(D)

)
P(gi)

P(D)
(
1 − P(D)

) = h2

max
(
P(D|gi)

) = 1
(4)

The last step is to discard any solution with negative val-
ues for any of the variables of the model. The restrictions
on the models are only true for real positive numbers and,
as a result, there is no guarantee that negative solutions
represent a maximum on the model.
An analogous process is followed to maximize the her-

itability when fixing the prevalence. On the heritability
expression (Eq. 2), the only variable term is the sum in
the numerator, since the prevalence and MAFs are fixed.
Therefore, to maximize it we need to maximize the sum:

∑

i

(
P(D|gi) − P(D)

)
P(gi) (5)

Using the same two restrictions as before, the sum
will be maximum when the largest penetrance expression
takes its maximum value since all expressions are mono-
tonically non-decreasing. Again, we can obtain the max-
imum heritability for a model given its prevalence value
by solving an equation system made of the prevalence
expression and the condition of maximum heritability:

∑

i

(
P(D|gi)P(gi)

) = P(D)

max
(
P(D|gi)

) = 1
(6)
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A complete numerical example of the method for the
second-order additive model of Table 1 can be found in
“Numerical example” section.

Integration with other software
Toxo only calculates penetrance tables and it is intended
to be used together with other software to complete the
simulation of the data samples whose interactions corre-
spond to those of the considered model. The design of
Toxo is consequently focused on the integrability with
third-party software. To accomplish this, Toxo relies on
text files to communicate with other software.
An example of this integration is included with the

source code [18] of the tool. In this case, GAMETES is
used to simulate data using the penetrance tables gener-
ated by Toxo. The models are read by Toxo and its outputs
(the calculated penetrance tables) are written following
the GAMETES’ format. GAMETES then directly reads the
file written by Toxo, a file comprised of all penetrances
for the different allele combinations, and generates popu-
lation samples using its own simulation method. Once it
finishes, the result is a data file which segregates individu-
als as cases and controls, and for each individual the same
genotype markers are specified.
Toxo offers complete flexibility on the output format

of the table thanks to its object-oriented implementation,
and it can be easily extended to support any other format
required by a simulator.

Results and discussion
Model restrictions and existing epistasis models
As explained in “Calculating the penetrance tables”
section, Toxo only admits models that meet two condi-
tions:

• All model expressions are monotonically
non-decreasing when the two model variables take
real positive numbers.

• The penetrance expressions are sortable when the
two penetrance variables take real positive numbers.

Nevertheless, these two conditions are met by several
epistasis models that are currently actively used in the
literature. These include Marchini’s second-order models
[10] as well as their nth-order generalizations, the epista-
sis models proposed in experimental evaluation of BEAM
[11], and the heterogeneitymodels introduced byNeuman
and Rice [17].
The only example that we could find of a bivariate

model that does not comply with the required conditions
is Model 3 of [19], whose penetrance table is shown in
Table 2. In this model the expression α/f is not mono-
tonically increasing since it increases for f ∈[ 0, 1] and
decreases for f ∈[ 1,∞). Furthermore, the expressions of

Table 2 Example of an incompatible model with Toxo, as shown
in [19]

BB Bb bb

AA α α α

Aa αf α/f α/f

aa αf α/f α/f

the model cannot be sorted for the real positive number
space, as α is greater or equal than α/f for f ∈[ 0, 1] but
lower for f ∈ (1,∞).
Recent studies that include simulations based on epista-

sis models to generate their evaluation data [20–22] settle
on low-order models whose heritability values are worry-
ingly moderate. However, real-world diseases are usually
determined by a higher number of genes [1] and a higher
heritability [23, 24]. Our assumption is that previous
works needed to use non-realistic low-order models and
non-realistic heritability values due to limitations of state-
of-the-art simulators, which are incapable of generating
synthetic data with high heritability levels for high-order
models. Toxo, together with current simulators, can facili-
tate current studies to overcome this limitation by finding
appropriate penetrance tables and creating samples that
resemble real-world data more closely.

Numerical example
Assume that we work with the second-order additive
model shown in Table 1. Our objective is to maximize the
prevalence for a fixed MAF and heritability (in this exam-
ple, 0.25 and 0.2, respectively). The first step consists in
verifying that the model meets the specified criteria:

• Non-decreasing monotone expressions in the real
positive number space: model expressions are
monotonic in the real positive number space when its
partial derivatives show no change in the sign for
x > 0 and y > 0. The partial derivatives of all
polynomial expressions for the second-order model
are:

∂

∂x
(
x
) = 1

∂

∂y
(
x
) = 0

∂

∂x
(
x(1 + y)

) = 1 + y

∂

∂y
(
x(1 + y)

) = x

∂

∂x
(
x(1 + y)2

) = (1 + y)2
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∂

∂y
(
x(1 + y)2

) = x(2y + 2)

∂

∂x
(
x(1 + y)3

) = (1 + y)3

∂

∂y
(
x(1 + y)3

) = x(3y2 + 6y + 3)

∂

∂x
(
x(1 + y)4

) = (1 + y)4

∂

∂y
(
x(1 + y)4

) = x(4y3 + 12y2 + 12y + 4)

All these derivatives are positive when x > 0 and
y > 0.

• Sortable expressions in the real positive number
space: all polynomial expressions can be sorted
unequivocally:

x ≤ x(1+ y) ≤ x(1+ y)2 ≤ x(1+ y)3 ≤ x(1+ y)4,
∀x, y ∈ R, x, y ≥ 0

After verifying that the model is appropriate for this
method, the next step is to calculate the probability asso-
ciated with each combination of two genotypes. Assuming
linkage equilibrium between the two loci, and under the
Hardy-Weinberg principle, the probability of a genotype
can be calculated as the product of the probabilities of
each allele [17]. This can be extended to any order of inter-
action by including the probabilities of each intervening
allele in the product, provided that the same assumptions
hold true. Thus, for an associated MAF of 0.25 for the
two loci, the probabilities of each allele are p = 1

4 and
q = 1 − p = 3

4 , and the resulting allele combination
probabilities are those shown in Table 3.
Equations 4 have to be used in order to find the maxi-

mum prevalence for a fixed heritability value. The result-
ing equation system after replacing P(D|gi)with themodel
expressions from Table 1, and max(P(D|gi)) with the
maximum expression, x(1 + y)4, is:

3xy2
(
85y6 + 672y5 + 3264y4 + 9728y3+19968y2 + 24576y + 16384

)

(y + 4)4
(
256 − xy4 − 16xy3−96xy2 − 256xy − 256x

) = 0.2

x(1 + y)4 = 1

(7)

Table 3 Genotype probabilities of two loci combinations with
the same MAF = 0.25

BB Bb bb

AA 81
256

27
128

9
256

Aa 27
128

9
64

3
128

aa 9
256

3
128

1
256

Table 4 Penetrance table of a second-order additive model with
MAF = 0.25, heritability = 0.2 and maximum prevalence

BB Bb bb

AA 0.0019 0.0092 0.0439

Aa 0.0092 0.0439 0.2096

aa 0.0439 0.2096 1

The solution to the system, for x ≥ 0 and y ≥ 0, is
x = 0.0019 and y = 3.7714. Table 4 shows the resulting
penetrance table, which has an associated prevalence and
heritability of 0.0275 and 0.2 respectively.

Usage example
For the simple reason that Toxo is a programming library,
it does not offer a graphical interface. Instead, it offers an
API (Application Programming Interface) to its users so
that any of its functions and methods can be used within
any script or program. In order to describe the usage of
Toxo, this section will exemplify how to generate a pen-
etrance table for the second-order model of Table 1 with
MAF = 0.25 for both loci that can be loaded directly into
GAMETES [12] to generate data samples.
The first step to create a penetrance table is to define the

epistasismodel to be used. It must be written to a file using
CSV (Comma-Separated Values) format, where rows cor-
respond to the different genotypes and two columns
define the genotype and its associated penetrance expres-
sion. The two variables are arbitrarily named x and y (Toxo
interprets any alphabetic characters in the penetrance
expressions column as variable names). To define the
second-order additive model, a file named model.csv is
created containing the following information:

AABB, x
AABb, x*(1+y)
AAbb, x*(1+y)^2
AaBB, x*(1+y)
AaBb, x*(1+y)^2
Aabb, x*(1+y)^3
aaBB, x*(1+y)^2
aaBb, x*(1+y)^3
aabb, x*(1+y)^4

Once the model file is created, an instance of the class
Model can be created by reading it:

m = toxo.Model(’model.csv’)

From this Model instance, the penetrance table
with maximum prevalence can be found using the
method find_max_prevalence. The parameters of
this method are the MAF for each of the two loci of the
model given as a vector and the heritability constraint.
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Following the example, the function call to create a pen-
etrance table for the model with MAFs 0.25 and target
heritability 0.2 is:

pt = m.find_max_prevalence(
[0.25, 0.25], 0.2

)

In the case of looking for the table with maxi-
mum heritability, the method to be called instead is
find_max_heritability. The parameters of this
method are, again, the MAF for each of the two locus of
the model given as a vector and the prevalence constraint
of 0.1 instead of the heritability:

pt = m.find_max_heritability(
[0.25, 0.25], 0.1

)

Finally, the calculated penetrance table can be written to
a file so that a simulator canmake use of it to generate data
sets, which can be done using the method write of the
class PTable. The output format is chosen using differ-
ent constants statically declared inside class PTable. In
our example, to use GAMETES we have to introduce the
format_gametes constant:

pt.write(
’table.txt’,
toxo.PTable.format_gametes,
[0.25, 0.25]

)

The resulting file table.txt can be loaded as a model
inside GAMETES, and data can be simulated from it.
The code included in this example is also available at the
Github repository [18], which can be executed line by line
to further comprehend the usage of Toxo.

Evaluation
Evaluation of Toxo focuses on two different aspects of the
library: the precision of the results and the runtime. All
the tests were run on a 64-bit Linux machine with two
eight-core Intel Xeon E5-2660 CPUs and 64 GB of RAM,
using the command line interface of MATLAB version
R2018a (9.4.0.813654).
A battery of tests was developed to evaluate the preci-

sion of the results (the difference between the requested
and the observed heritability) and the runtime. All execu-
tions were repeated five times and their runtimes averaged
to avoid outliers. Table 5 shows the results for the addi-
tive, multiplicative and threshold models [10], generalized
for third and fourth-order, and for a variety of MAF and
heritability values. The evaluation is focused on the her-
itability since it is the parameter with the most interest
in case-control studies, whereas the prevalence is not as
important because having a fixed number of cases and

Table 5 Precision error of the heritability obtained for the
penetrance table and execution time, calculated under several
model, MAF and heritability configurations

Model Order MAF h2 Error Time (s)

Additive 3 0.1 0.1 0 7.06

Additive 3 0.1 0.8 1.31E-05 7.08

Additive 3 0.4 0.1 0 6.89

Additive 3 0.4 0.8 9.99E-16 6.95

Additive 4 0.1 0.1 1.58E-12 14.17

Additive 4 0.1 0.8 4.04E-12 13.14

Additive 4 0.4 0.1 0 13.59

Additive 4 0.4 0.8 3.92E-03 13.61

Multiplicative 3 0.1 0.1 0 8.60

Multiplicative 3 0.1 0.8 0 8.51

Multiplicative 3 0.4 0.1 0 8.03

Multiplicative 3 0.4 0.8 0 7.82

Multiplicative 4 0.1 0.1 0 142.32

Multiplicative 4 0.1 0.8 0 145.94

Multiplicative 4 0.4 0.1 0 90.05

Multiplicative 4 0.4 0.8 0 85.42

Threshold 3 0.1 0.1 0 2.55

Threshold 3 0.1 0.8 0 2.54

Threshold 3 0.4 0.1 0 2.50

Threshold 3 0.4 0.8 0 2.50

Threshold 4 0.1 0.1 0 3.57

Threshold 4 0.1 0.8 0 3.57

Threshold 4 0.4 0.1 0 3.59

Threshold 4 0.4 0.8 0 3.58

controls negates the effect of phenotype frequency in
a non-controlled environment. The selection of models
ranges from a very simple model like the threshold (where
all the polynomials inside the model are of first degree)
to a more complex one like the multiplicative (where
the degree is generally higher). The MAF and heritability
combinations were also chosen to show a wide spectrum
of values. Results show that the precision error is almost
nonexistent for every test. As for the runtimes, all the
tables were able to be calculated in under a quarter of a
minute, with the only exception being the fourth-order
multiplicative model, which took a little more than two
minutes.
To compare these results with state-of-the-art competi-

tors, the same table configurations were attempted in
EpiSIM [14]. Although gs [15] can also calculate pene-
trance tables from epistasis models containing bivariate
functions, it is not included in the comparison as it does
not allow modifying the second-order embedded models
included within the program. EpiSIM, on the other hand,
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requires both the prevalence and heritability to obtain a
penetrance table. Tomake a fair comparison, two different
cases were tested for each of the configurations defined:
one with the exact same prevalence and heritability com-
bination obtained by Toxo, and a second one with the
former heritability and a fixed prevalence value (1E-20),
supposedly easier to find since it is below the maximum.
Despite this, EpiSIM could not find a single table for any
of the tests.

Conclusions
The main contribution of this work is the creation of
a library, Toxo, capable of calculating penetrance tables
from models containing bivariate penetrance functions
with no limitations on the interaction order. It allows the
user to maximize the prevalence of the resulting table
when the heritability is constrained and vice versa. In
addition, Toxo can be easily integrated with other existing
simulators to generate data sets that include the epistasis
relationships described in the penetrance table.
Thanks to the mathematical method used underneath,

Toxo can calculate penetrance tables with prevalence and
heritability values much higher than those observed in
the state of the art. The majority, if not all, of the works
in the literature use heritabilities under 0.2 for high-
order penetrance tables. However, it is believed that real
world diseases present higher heritabilities. Toxo pro-
vides researchers with a library to generate penetrance
tables and, in consequence, data samples that resemble
characteristics from real world diseases more closely.
Empirical results show that Toxo is capable of calculat-

ing penetrance tables for high-order models according to
the specified parameters with barely any precision error.
Third-order tables can be obtained in under 10 seconds,
and fourth-order tables in about 2 minutes.
The current implementation, however, also comes with

its own limitations. The maximum interaction order that
Toxo can handle is determined by MALTAB equation
solvers. When using polynomials of sufficient degree,
MATLAB is unable to solve the proposed equation.
For example, using the additive model, the implementa-
tion can obtain penetrance tables of up to 10th order.
Ease of use is also an aspect that can be improved.
Users unfamiliar with command-line interfaces or with
little programming background may find Toxo difficult
to use. Output formats for the penetrance tables are
also limited, currently only supporting GAMETES format
natively.
Future work will be focused on improving Toxo usability

following two lines: natively supporting a larger number of
output formats, and providing Toxo with a graphical inter-
face. These changes aim to simplify its usage, allowing
Toxo to reach a larger community of users.

Availability and requirements
Project name: Toxo
Project home page: https://github.com/chponte/toxo
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