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Abstract

Silicones which possess, amongst others, remarkable mechanical properties, thermal stability over a
wide range of temperatures and processability, and rare earth oxides (REO), known for their unique
optic, magnetic and catalytic properties can be coupled into multifunctional composite materials (S-
REO:s). In addition, the intrinsic hydrophobicity of REO and polysiloxanes makes them easily
compatible without the need for surface treatments of the former. Thus, europium oxide (Eu,03),
gadolinium oxide (Gd,O3) and dysprosium oxide (Dy,03) in amounts of 20 pph are incorporated as
fillers into silicone matrices, followed by processing mixture as thin films and crosslinking at room
temperature. The analysis of the obtained films reveals the changes induced by these fillers in the
thermal, mechanical, dielectric and optical properties, as well as the hydrophobicity of the silicones.
The luminescence properties of S-REO composites were investigated by fluorescence spectra and
lifetime - resolved measurements with a multiemission peaks from blue to greenish register. The
thermogravimetrical analysis indicates an increasing of thermal stability of the composites that
contain REO, compared to pure silicone. As expected, the dielectric permittivity significantly
increased due to nature of the fillers, while the dielectric loss values are relatively low for all samples,
indicating a minimal conversion of electrical energy in the form of heat within bulk composites. The
presence of rare earth oxides into the silicone matrix facilitates the motions of long-range charge
carriers through the network resulting in higher values of conductivity of the composite films. The
stress-strain measurements revealed the reinforcing effect of the rare earth metal oxides on a silicone
matrix, leading to a significant increase of Young modulus. The known hydrophobicity of silicones is
further enhanced by the presence of REO.

1. Introduction

The scientific and technological interest of rare earths is based on their special physical (optical, electrical,
magnetic) or chemical (e.g., catalytic, anti-corrosive) properties that are caused by their particular electronic
structure (4f orbitals with parallel-spin unpaired electrons, being paramagnetic) [1, 2]. The optical materials
doped with rare earths are of interest for light sources in optoelectronics, for optical amplification and other
elements of photonics [3]. Rare earths can extend the life of the free radicals, by rapidly catching electrons on
orbital 4f [3]. X-ray shielding studies at different tube voltages, with polymer composites of different thicknesses,
especially based on natural rubber incorporating varying amounts of modified rare earth oxides (REO), indicate
the latter as promising materials for medical imaging [4]. The results of some researches also suggest the
applicative potential of REO as additives to polymers for the attenuation of ionizing radiation [5]. REO are
capable of absorbing strongly in the near-UV spectrum (300 nm), thus being useful in coating technologies as
UV absorbers [6].

These materials are generally prohibitively expensive to be widely used due to resource poverty, some
sources indicating a production of about 18,000 tons annually, of which about 85% are used in the production of
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catalysts and glass manufacturing [5], although new technology trends are developing [ 7]. However, achieving
the desired performance could justify their use, especially where there is a maximum benefit with low
consumption of such materials.

Silicones, organic-inorganic materials mainly based on polydimethylsiloxanes are materials with high
application potential thanks to special properties, such as uniform physical characteristics over a wide
temperature range, resistance to weathering and ageing, good electrical properties, water repellency and,
especially, environmental compatibility during manufacture and use, which makes them accepted by the wide
public. They are used in almost all industry areas, thus being present in most of the things that we are using in our
daily life [8]. The variety of silicone applicability domains, as well as the growing demands and exigencies in
terms of performance, motivate the intensification of studies for the continuous upgrading of these materials.
Among the approaches, along with those in principle consisting of chemical modification, a path that offers
many design opportunities is the incorporation of suitable active fillers to induce or enhance certain properties.
Itis known that the incorporation of a small amount of REO into polymers induces significant improvements in
their properties, such as thermal stability, conductivity, hydrophobicity, surface or texture properties, etc [9].

Several studies revealed the benefits of adding REOs to a polymer matrix. For example, poly(o-
aminophenol) (POAP) containing Eu,O; nanoparticles was found to have larger specific capacitance, lower
charge-transfer resistance, higher density of active centres, better performance compared to pure POAP, thus
being more efficient for application in supercapacitors [ 10]. Using of Eu,0O5; as filler for urethane dimethacrylate
(UDMA) based composites lead to increasing of fluorescence intensity, while the change in the composite colour
was quite small. Clear fluorescence was observed when Dy, O3 and Tb,O, were used as fillers for UDMA based
composites [11]. Incorporation of Eu,0j3 into polypyrrole/CuO results in increasing of their capacitive
performances [12]. In another study, it was demonstrated that adding Dy2O3 to the polyetheretherketone based
composites increase their x-ray shielding properties [13]. REOs were used as flame retardants for thermoplastic
polyolefins based on polypropylene/poly(octylene-co-ethylene) blends [14] or Nylon 1010/ ethylene-vinyl-
acetate rubber thermoplastic elastomers [15]. Polymers with REO nanocrystals are indicated to be useful for
luminescent solar concentrators [16]. It is reported that an addition of 1 wt% CeQO, to polypropylene increases
its resistance to photodegradation, as well as its thermal stability [2, 6]. In fact, REOs have been used as thermal
stabilizers for PVC since the 1990s [7]. Sm,O3 was used as cocatalyst and nucleating agent in the reactive
extrusion of cardanol-grafted polypropylene to improve the mechanical properties and processability [2]. CeO,
proved to be an efficient reinforcing agent for natural rubber [17]. As additives to silicones, generally, in studies
reported in literature [9, 18], REO have been used together with silica (Ceria/Silica [9] or Ceria—Zirconia—
Silica@PDMS [18]). There isa reportin 1974 [19] about the thermostabilizing effect of rare-earth metal oxides
on methylvinylsilicone rubbers.

In the context of our preoccupations for the improvement of silicone performance for specific applications,
especially as active elements in electromechanical devices, different fillers: organic (polyazometines) [20],
inorganic (iron oxides [21, 22], silver [23, 24], barium titanate, [25, 26] titanium dioxide [27, 28],), organic-
inorganic (organosilesquioxanes [29, 30]), etc were incorporated in silicone derivatives. In this paper, the effect
of three REOs (Eu,03, Gd,0; and Dy,05) as single fillers on the silicone behaviour was studied. The intrinsic
hydrophobicity of REO and polysiloxanes creates the premises for better compatibility, without the need for
additional actions for this [31]. To simplify the study, we used the same polymeric matrix based on a PDMS of
molecular weight M = 60,000 g mol " cross-linked by condensation with TEOS, and the REO were
incorporated in the same percentage (20 pph) in all cases. Mechanical, dielectric, thermal, photoluminescent
propertie, as well as moisture behaviour of the resulted composites, have been studied in comparison to the
simple matrix considered as a reference in order to evaluate the effects of rare earth oxide addition on silicones.
While the thermal degradation pattern of simple polysiloxane systems is relatively well studied and understood,
the identification of chemical reactions occurring during the decomposition of polymers filled with
nanoparticles is more complicated [9]. Therefore, the pyrolysis products of PDMS- REO composites prepared in
this work were studied by TGA coupled with FTIR.

2. Experimental

2.1. Materials

Polydimethylsiloxane-c, w-diol (PDMS) of molecular mass M,, = 60,000 g-mor1 (determined by GPCin
chloroform) was synthesized by cationic ring-opening polymerization following the procedure described in
reference [32]. Eu,03, Gd,0; or Dy,05 (commercial reagents) were ultrasonicated in toluene for 5 min before
adding to the composite reaction mixture. Dibutyltin dilaurate (DBTDL), tetraethoxysilane (TEOS) and toluene
were high-purity reagents purchased from Sigma-Aldrich.
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2.2.Methods

The morphology of the prepared nanocomposites films was studied using a scanning electron microscope (SEM,
Quanta 200) in cryo-fractured section. The SEM is operating at 20 kV with secondary and backscattering
electrons in low-vacuum mode. Thermal degradation of polydimethylsiloxane (PDMS) thin films containing
rare earth metal oxides and evolved gas analysis were performed using a TG-DTA/FTIR system. The system was
equipped with a thermobalance model STA 449 F1 Jupiter (Netzsch-Germany) and a FTIR spectrophotometer,
model Vertex-70 (Bruker-Germany). The sample weight varied from 10 to 15 mg. The samples were scanned
from 30 °C to 650 °C, at a heating rate of 10 °C min~ ' and a nitrogen gas flow rate of 40 ml min~'. The samples
were heated in open aluminium crucibles and an aluminium crucible as reference material was utilized. The
evolved gases were transferred in a TGA-IR external modulus of the spectrometer. The infrared absorption
spectra were recorded over the wavenumber range of 600-4000 cm ' with a resolution of 4 cm~'. TGA-IR
modulus contains alow volume gas cell (V = 8.7 ml) of 123 mm length and it was heated at 190°C to avoid the
condensation of the gaseous compounds. The acquisition of FTIR spectra in 3D size was carried out with OPUS
6.5 software. Dielectric permittivity analyses were carried out with a broadband dielectric spectrometer
(Novocontrol Technologies, Germany) equipped with an Alpha-A high performance frequency analyzer. The
film nanocomposites are sandwiched between two cylindrical gold coated plate electrodes as a sandwich
capacitor and further integrated into the BDS1200 standard sample cell. Mechanical tests were performed on
dumbbell-shaped cut samples from thin films on a TIRA test 2161 apparatus, Maschinenbau GmbH Ravenstein,
Germany. Measurements were run at an extension rate of 20 mm min~ ', atambient temperature. Fluorescence
spectra of thin films were obtained on a Perkin Elmer LS55 luminescence spectrometer with a xenon lamp as the
light source. Fluorescence lifetimes measurements were performed with an Edinburgh Instruments FSL 980
photoluminescence spectrometer using time-correlated single photon counting technique. A microsecond
lamp was used as an excitation source. Decay data analysis was made using a deconvolution procedure with a
multiexponential decay model. The quality of the data fits was evaluated by chi-squared (x?) parameter. Water
vapour sorption capacity of the samples have been measured in dynamic regime by using the fully automated
gravimetric analyzer IGAsorp produced by Hiden Analytical, Warrington (UK).

2.3.Preparation of PDMS—rare earth oxide composites

PDMS-rare earth oxide composites were prepared by the following procedure: 0.75 g of polydimethylsiloxane-
a,w-diol (M, = 60,000 g-mol ') were dissolved in 10 ml of toluene and mixed with 0.15 g (20 pph, parts per
hundred) of Eu,03, Gd,O5 or Dy,O; in order to prepare composites S-Eu,03, S-Gd,0; or S-Dy, O3,
respectively. The reaction mixture was stirred for 15 min using magnetic stirring and then mixed with 0.07 ml of
TEOS (crosslinking agent) and stirred for 30 min, followed by adding 10 pl of DBTDL (catalyst). After another

5 min of stirring, the reaction mixture was poured as a film on a Teflon substrate using Dr Blade and aged for
about two weeks in the laboratory environment. The reference sample prepared without the addition of rare
earth oxide and encoded as PDMS.

2.4.Results and discussion

A series of silicone-rare earth oxide (S-REO) composites were prepared by physical mixing in bulk and stabilized
by room temperature vulcanization. Firstly, the components were mixed under magnetic stirring.
Polydimethylsiloxane-a,w-diol (M, = 60,000 g~m0171) was used as the polymeric matrix, REOs as fillers,
toluene as solvent, tetraethyl orthosilicate as a crosslinker and dibutyltin dilaurate as a catalyst. Further, the
reaction mixture was poured onto a Teflon substrate and left for two weeks in order for crosslinking and ageing.
The prepared composites were labelled as S-Eu,03, S-Gd,03 and S-Dy,Oj; for the composites containing 20
pph of Eu,03, Gd,0; and Dy, 05 respectively, while the reference sample without filler is designated PDMS.

The morphology of the prepared film composites was studied using SEM in cryo-fractured section (figure 1).
In order to avoid the migration of siloxane polymer chains to the surface of composite material, the samples
were frozen in liquid nitrogen and immediately fractured before analysing. Compared to the reference sample, it
can be observed that in all composites the REO filler is uniformly dispersed in the polymer matrix as
micrometres sized agglomerates.

The thermal stability of unfilled silicone (PDMS) and their composites containing REOs (Eu,03, Gd,05 and
Dy,05) was investigated by thermogravimetric analysis coupled with FTIR under inert atmosphere (nitrogen).
The thermal decomposition behaviour of PDMS - REO composites at a heating rate of 10 °C min ™' are shown
graphically in figure 2 in terms of TG and DTG curves, while the main parameter extracted from them are
summarized in table 1.

The TG curve of PDMS shows two stages of degradation. The first decomposition stage occurs between 220
and 360 °C with an onset temperature of 283 °C, a weight loss of 11.63% and a degradation rate of 1.87% /min.
The second stage span over 360 °C-580 °C and the corresponding weight loss was 81.15% with a much higher
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Figure 1. SEM images of composites.
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Figure 2. TGA (a) and DTG curves (b) of crosslinked PDMS and PDMS-REO composites.

degradation rate of 7.30%,/min. The thermal degradation of PDMS-REO composites takes place in two
(5-Gd, 03, S-Dy,03) or three (S-Eu,0;) stages with a minor weight loss, between 4.83 and 5.95%, in the first
stage.

The temperature corresponding to 10% weight loss (T;) was considered as a criterion for thermal stability
of metal composites. The 10% weight loss temperatures were over 440 °C as compared with 335 °C for PDMS
suggesting that the incorporation of REOs in PDMS matrix results in composites with increased thermal
stability as compared with unfilled silicone. The hierarchy of samples, according to their thermal stability, is the
following: PDMS < S-Dy,0; < S-Gd,03 < S-Eu,03. Also, an inspection on DTG data (figure 2(b)) showed
that the maximum degradation temperature (T ,,,) was found out at much higher temperatures, over 550 °C,
for S-REO as compared to PDMS reference.

The increase of the temperature over 360 °C leads to major degradation of the S-REO samples occurring the
breaking of some C-Siand Si-O bonds from PDMS matrix and the formation of some cyclic oligosiloxanes with
alow polymerization degree, between 3 and 12 [33, 34]. Compared to the degradation pattern of PDMS or
S-Gd,0; and S-Dy, 03, the degradation of S-Eu,O; involves a second process ranged between 358 and 552 °C
with a corresponding weight loss of up to 19.31% (table 1). In this stage, the formation and elimination of some
cyclosiloxane oligomers having low molecular weight can occur. Major degradation stage spans over 450 and
520 °C depending on the rare earth metal nature. The weight losses in the main degradation process are higher
and varied between 70.97 and 75.02%. The increase of the temperature up to 650 °C determines the breaking of
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Table 1. Summary of thermal data for PDMS and PDMS-REO composites.

Sample Degradation stage Tonset Tmax DTG W T Tao R
°C °C Wt% °C °C (700°C)
%)
PDMS 1 283 335 11.63 353 410 3.22
11 391 489 85.15
S-Gd, 03 1 327 361 5.95 452 507 19.03
11 476 553 75.02
S-Eu,05 1 272 358 4.83 453 503 19.31
1I 417 451 4.89
111 480 552 70.97
S-Dy,05 1 302 350 591 442 487 19.11
I 448 555 74.98

Tonset - the temperature at which the thermal degradation begins.
T max- the temperature of maximum decomposition rate.

T,o- temperature corresponding to 10% weight loss.

T»o- temperature corresponding to 20% weight loss.

W- weight loss.

R- residual weight at 700 °C.

a
o 1.0{ a) g4
C
ﬁ 0.6 g 1.0
o $ 0.6
302 600 £ 0.2
400
3000
1000~ TeMP-°C 20004060 Temp.°C
Wavenumber, cm-1 Wavenumber, cm=1
Figure 3. 3D-FTIR spectra of PDMS (a) and PDMS-Eu,0O; (b) thin films.

C-Siand Si-O bonds leading to the PDMS depolymerization as well as to the splitting of cyclosiloxane oligomers
with higher molecular weights.

The metal oxide content can be determined by thermogravimetric analysis. The residue at 650 °C can be
estimated by the difference between the residue of S-REO composite (table 1) and char yield of PDMS (3.22%).
The residue values of metal oxide in S-REO composites are as follows: S-Gd,O3: 15.81%; S-Dy,05: 16.09%;
S-Eu,03:15.89%.

The composition of gaseous products in the thermal degradation of S-REO composites was analysed by
FTIR absorption spectroscopy. The evolved gases were monitored for PDMS and S-Eu,0; composite because all
the polymer films exhibit the same degradation pattern. The 3D-FTIR spectra of PDMS and S-Eu,Oj5 thin films
are illustrated in figure 3. The FTIR spectra exhibited practically the same evolution as a function of temperature
since only the polymer matrix undergoes the thermal degradation. The presence of evolved gases was remarked
after 350 °C—400 °C when the degradation process begins according to TG/DTG diagrams.

In figure S1 is available online at stacks.iop.org/MRX/7 /035703 /mmedia, the FTIR spectra corresponding
to temperatures close to DTG peaks are depicted for PDMS (335 °C) and S-Eu,O; composite (358 °C). The
characteristic absorption bands at about 3587-3980 cm 'and 1419-1791 cm ™! are due to vOH vibrations,
while those at 2342, 2360 cm ™' are assigned to evolved CO,. The profiles of the IR absorption spectra of
S-Me, O3 composites at different degradation temperatures are practically similar (figure S1), water, methane,
carbon dioxide being the main decomposition products. Thus, the absorption bands located at 2896, 2970 cm™
are specific to asymmetric CH stretching vibrations in CHj; groups and methane, arising in the thermal
degradation of PDMS. The strong absorption bands at 1028 and 1068 cm ™' can be provided by Si-O-Si
stretching vibrations. The absorption bands around 1265 cm ™" and 816 cm ™ 'can be assigned to CH;
deformation vibration in Si-CHj and to the Si-C stretching vibrations in Si-CHj; [34, 35]

1
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Figure 4. Dielectric properties for S-REO composites: dielectric constant (a), dielectric loss (b) and conductivity values as a function of
frequency (c).

Table 2. Dielectric data of the prepared composites.

! " 1

€ 5 Conductivity, Secm
Sample
0.1Hz 10°Hz 0.1Hz 10°Hz 0.1Hz 10° Hz
PDMS 2.9 2.8 1.07 1.5:107 54107 6.8-107"
S-Eu,05 43 3.3 9.6 3.2:1072 53.1071° 1.8-1071
$-Gd,05 3.7 3.1 2.5 1.5-1072 1.4-1071 8.2-10712
S-Dy,0; 45 3.0 10.3 8.7.107° 5.7.107 " 4810712

The principles of dielectric spectroscopy are widely used to gain insight into the storage and dissipation of
energy in a variety of different materials. The dielectric dispersion is achieved by placing a material in contact
with two electrodes and applying an alternating electric field over a broad range of frequency. In this study, the
dielectric response, in terms of dielectric constant (¢') and dielectric loss (") parameters, was recorded at room
temperature, within 0.1 Hz 1.0 MHz electric field frequency range in order to evaluate the influence of some
REOs on the dielectric behaviour of a polymeric matrix based on PDMS. The conductivity of charge carriers (o)
was further estimated from the dielectric loss with the relation:

o = 2mey fe” ey

where ¢ is the permittivity of free space and fis the frequency of the alternating electric field [36].

As generally known, the dielectric constant is related to the ability of dipoles to orient in the direction of an
applied alternative field [37]. It depends, thus, by the frequency of the alternating field and can follow the
chemical changes in analysed materials. The evolution of dielectric constant, dielectric loss and conductivity of
the S-REO composites as a function of frequency are presented in figure 4 and table 2. According to figure 4(a), ¢’
value decreases gradually towards increasing frequency since the polarizable units need a longer time than the
oscillations of the applied alternative field. According to literature, the intensive decline of ¢’ within the low
frequency region might be caused by an electrode polarization-type effect [38, 39]. However, the decline seems
to be more pronounced for S-REO composites, as compared with that of the reference sample, revealing an
intense dipolar activity. The electrode polarization is an effect of charges accumulation at the electrodes and
overlaps with the dipolar-type signal. At higher frequencies, the electrode-polarization-type signal is reduced
and the intrinsic dipolar activity of the samples is revealed.

The dielectric constant values retrieved in the electrode polarization region (0.1 Hz) and the ‘real’ dipolar
activity region (10> Hz) are presented in table 2. The lowest values of ¢’ are retrieved for PDMS reference, being
comparable with other silicone composites, e.g. containing TiO, nanoparticles that provide dielectric constants
between 2.97 and 4.4 [40]. An increase of £/ (for f = 10° Hz, from ¢/(PDMS) = 2.8 to £/(S-Eu,05) = 3.3)is
furnished by composite materials, due to the high dielectric constant of REOs.

The dielectric loss is correlated to the dissipation of electromagnetic energy, required for molecular motions
and present a similar behaviour with frequency as dielectric constant (figure 4(b)). It can be seen that the
dielectric loss values are relatively low in the whole frequency range, indicating a minimal conversion of
electrical energy in the form of heat within bulk composites. Considering conductivity data (figure 4(c)), it can
be deduced that all the materials analysed are electrical insulators. Moreover, the o(f) dependences exhibit two
different regimes: at low frequencies, the conductivity is related to long-range electrical charges of direct current
conductivity (o4.), while at high frequencies, the conductivity signal is attributed only to bound charges of the
alternating current conductivity (o). In other words, the movements of charge carriers are retrieved from the
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Figure 5. Stress-strain curves for S-PDMS composites.

Table 3. Mechanical parameters estimated on the basis of stress-strain
curves.

Strain at Stress at break, Young modulus,”
Sample break, €, % o, MPa MPa
PDMS 1020 0.18 0.035
S-Eu,0; 422 0.17 0.28
S-Gd,05 580 0.29 0.14
S-Dy,05 874 0.29 0.09

* Young’s modulus calculated at 10% strain.

frequency-independent plateau of o4, and the dipolar behaviour is displayed on the linear increase of
conductivity with the frequency. On the other hand, the higher values of conductivity for composite films reveal
that the presence of REOs facilitates the motions of long-range charge carriers through the network.

The mechanical properties of the S-REO composites were studied based on stress-strain curves (figure 5,
table 3). As can be seen, all samples show nonlinear behaviour in stress-strain relation, of sigmoidal type,
characteristic for highly deformable elastomers [41, 42], similar with those obtained by Carpi et al on silicones
having dispersed 10 vol% lead magnesium niobate—lead titanate (PMN-PT) [43]. As expected, REO filler hasa
reinforcing effect on silicone matrix, leading to increasing of Young modulus from 0.035 MPa for pure silicone
t00.28,0.14 and 0.09 for S-Eu,03, S-Gd, 05 and S-Dy, 05 respectively. As the polarity increases from europium
oxide to dysprosium oxide, their compatibility with the silicone matrix and consequently the strengthening
effect decrease in the same order.

Although composites are stiffer compared to pure PDMS, Young’s modulus remains low for all analyzed
samples. Strain at break is 1020, 420, 580 and 874% for PDMS, S-Eu,03, S-Gd,O3 and S-Dy, 05 respectively.

The rare earth metals such as Eu, Dy, Nd are visible luminescence centres and their incorporation into a host
matrix can open some channels for efficient visible light emission [44]. The emission spectra of metal oxide/
REO films excited at 280 nm are shown in figure 6(a). The emission spectra of prepared composites present
practically very similar profiles with dominating emission bands located around 420, 460, 480 and 520 nm,
respectively. As can be verified, the intensity of the emission bands was affected by the employed excitation
wavelength, suggesting that the energy transfer process was influenced by the siloxane matrix. The highest
intensity of the emission was obtained for excitation at 280 nm, while for other wavelengths the fluorescence
intensity decreases as the excitation energy decreases (figure 6(b)). Also, the shape and the position of the
emission bands are not dependent on the excitation energy, they are mainly influenced by the nature of rare
earth metal. This means that the effect of the local rare earth metal surrounding distribution is practically
negligible indicating a good dispersion of the emission centres in the polymer matrix, as it seems from the SEM
images (figure 1).
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Figure 6. Photoluminescence spectra (a), of S-REO composites, emission spectra at different excitation wavelengths for S-Dy, 05 films
(b) and decay profiles of the S-REO films (A\ex = 360 nm) and A, = 410 nm).

Table 4. Values of lifetimes and their relative contributions for

S-REO films.

Sample T 1S To, S ap, % ay, % X
S-Gd,0; 1.10 9.47 70.77 29.23 0.99
S-Eu, 05 0.96 7.82 71.32 26.68 0.99
S-Dy,0; 1.08 10.12 73.44 26.56 0.996

The fluorescence decay measurements can reveal some details on the interaction nature between
fluorophore and polymer matrix. The emission decay curves are given in figure 6(c) and the corresponding
lifetime’s values are reported in table 4.

The fluorescence decay profiles observed at 410 nm were satisfactorily fitted to a sum of two exponentials
given by the following relation:

I(t) = ajexp (_—t) + a, exp (_—t) 2)

Ti T2

where I(t) is the fluorescence intensity, 7, 7, represent the lifetimes and a;, a, are the pre-exponential factors
denoting the fractional contribution to time-resolved decay of the components with lifetimes 7, and 7,, tis the
time. This biexponential decay consists of a main component with a short lifetime around 1 usand a
contribution between 70.77 and 73.44% and a second component with alonger lifetime from 7.82 to 10.12 ps
and the contributions vary between 26.56 and 29.23% (table 4). This biexponential behaviour with a shorter and
longer lifetime could suggest that at least two coordination position of the rare metal oxide ion can occur in the
polymer matrix. However the lifetime values obtained for S-REO composites are quite low as compared to
reported values for Eu doped Y,05 nanoparticles incorporated in a siloxane polymer (7 = 1.05 ms) or Eu”"
doped siloxane networks (300-500 ps) [45, 46].

Knowing the moisture sorption in polymers is very important for a variety of industries ranging from
microelectronics to adhesives and coatings [47]. For further applications in electronic devices, the elastomer
should ensure a stable operation. This implies, among others, the stability of the characteristics of interest in
different conditions of moisture and temperature [48]. To verify this, the moisture sorption-desorption
isotherms were registered in dynamic regime (DVS) for the crosslinked composite films. Unlike the contact
angle, which is a measure of the hydrophobicity of the surfaces, the DVS determine the moisture sorption
capacity in the mass of the material. The water vapour sorption-desorption isotherms at room temperature
recorded are shown in figure 7. The moisture sorption capacity values at 90% relative humidity (RH) are shown
in table 5.

All samples show water sorption isotherms with a similar pattern: isotherms of I1I type characteristic for
hydrophobic materials with hysteresis. The moisture sorption values estimated on their basis indicate that the
known hydrophobicity of the silicone matrix (0.72 wt% in this case) is not affected by the incorporation of
REOs, recording even a very slight increase of this in all three cases. Given that the values of the dipole moment
(the measure of the electrical polarity of a system) for the three oxides increase in the order:

Eu,05; < Gd,05 < Dy,0;[49], it would be expected that the moisture sorption will increase in the same order,
which it happens in the case of the first and the last. However, the values are very small, so the slight deviation of
S-Gd,O; from this hierarchy could be due to experimental errors (such as, for weighing).
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Figure 7. Water vapour sorption (s) -desorption (d) isotherms recorded on the prepared composites in the humidity range 0-90%
RH. The humidity was increased in steps of 10%, the samples were maintained for 20 min at each humidity value.

Table 5. The moisture sorption capacity at 90% RH reached by the samples.

Sample PDMS S-Eu,03 $-Gd,05 S-Dy,0s3

Weight gained (wt% d.b.") 0.72 0.46 0.39 0.57

* d.b.-dry basis.

3. Conclusions

The intrinsic hydrophobic nature of both the silicone used as the matrix and the rare metal oxides (in this case
Eu,03, Gd,05 or Dy,03) has made it possible to obtain highly dispersed composites of the latter without the
need for prior compatibility treatments. The incorporation of rare earth oxides, in silicones leads to the
modification of the studied properties, namely to increase the thermal stability, the dielectric permittivity,
modulus and hydrophobicity. The fluorescence decay measurements reveal a biexponential behaviour with a
shorter and longer lifetime suggesting that at least two coordination position of the rare metal oxide ion can take
place in the polymer matrix.
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