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Abstract

Anthocyanins are the main polyphenolic dyes found in young red wines, which are transformed into 
more stable structures such as pyranoanthocyanins, during wine ageing and maturation. While 
anthocyanins practically lose their red color between pH 1 and 5, as a result of the formation of 
colorless hemiketals, pyranoanthocyanins practically do not change their color intensity. For that 
they constitute a photosensitizer family with great potential for bio-inspired dye-sensitized solar 
cells (DSSCs). In this work, a series of pyranoanthocyanin derivatives were designed, synthesized 
and applied for the first time as dye sensitizers in DSSCs. A relation was established between dye 
structure and cell efficiency. Specifically, the influence of different linker units, carboxyl and 
catechol, was studied in terms of their influence in the various parameters related to DSSC 
efficiency. The presence of the catechol unit was shown to be essential for efficient electron 
injection of the dye into the TiO2 semiconductor, since carboxylic units showed a deleterious effect 
in electron injection due to their electron withdrawing character. An overall efficiency of 1.15% 
was obtained for the best performing compound, 10-catecholpyrano-3’,4’,5,7-
tetrahydroxyplavylium, with no further optimization. 

Introduction

Dye-Sensitized Solar Cells (DSSC), as described by Brian O’Regan and Michael Grätzel1, are 
photovoltaic devices based on the sensitization of wide band-gap semiconductor electrodes with 
dyes absorbing visible light. These devices have attracted a lot of attention since they display a 
large flexibility in shape, colour and transparency, compatibility with flexible substrates and a large 
variety of designs to facilitate market entry.1–3 Following the pioneering work of Grätzel, the 
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fundamentals of the working principles of DSSCs are basically understood using several types of 
dyes such as the original ruthenium dyes,4–6 but also porphyrins,6–10 anthocyanins6–8,11,12 and, in 
recent years, perovskite materials.13–15 Until recent years, DSSCs exhibiting higher energy 
conversion yields were based on functional ruthenium or osmium(II)–polypyridyl complexes, 
which are expensive and toxic.16 In the last years, however, porphyrin dyes and perovskites 
challenged these compounds in terms of performance, demonstrating the importance of exploring 
systematically other types of dyes. To this regard, natural anthocyanin dyes and their synthetic 
derivatives were shown to have promising properties as efficient photosensitizers for DSSCs.6,7,11,17–

20 Kay and Grätzel were probably the first to elucidate the photoelectrochemical behaviour of 
natural chlorophylls,9 while Tennakone and co-workers were the first to use cyanidin (cyanin 
without the sugar moieties) in a dye sensitized nanocrystalline solar cell.21 Grätzel and co-workers 
applied, for the first time, anthocyanin dyes extracted from blackberries (cyanidin-3-glucoside) in a 
DSSC displaying a conversion yield of 0.56%.12

Flavylium compounds represent a family of natural , which includes anthocyanins, anthocyanidins 
and 3-deoxyanthocyanins, responsible for the colours seen in a broad variety of flowers, fruits, 
vegetables and roots.22 From pink to red, violet and blue, anthocyanins present themselves as 
versatile compounds that can change their colour (by means of structural variations) depending on 
external stimuli such as pH, temperature and light. In fact, they share in common the same chemical 
equilibrium network in acid to neutral medium (Figure 1). In the case of anthocyanins, flavylium 
cation (AH+) is the only species present in very acidic medium. Once the pH is raised two parallel 
reactions can take place: deprotonation of phenol groups in the flavylium structure to form the blue 
quinoidal base (A) and/or hydration to form a colorless hemiketal (B). Since hemiketal formation 
occurs from the hydration of the flavylium cation and not from the quinoidal base, these two 
reactions are competitive. Consequently, upon pH increase, A appears as a kinetic product, but 
since it is fairly unstable at equilibrium, it gradually disappears with time to form hemiketal through 
the flavylium cation. The hemiketal undergoes tautomerization which leads to the formation of the 
pale yellow cis-chalcone (Cc), and finally (in a longer timescale) cis-chalcone isomerizes and gives 
the trans-chalcone (Ct).22

Figure 1 - Flavylium network of chemical reactions exemplified from 4’-hydroxyflavylium.

Anthocyanins are, as well, the main polyphenolic dyes found in young red wines, which can be 
transformed into more stable structures such as pyranoanthocyanins, during wine ageing and 
maturation. Pyranoanthocyanins display different chromatic hues with a wide range of colors from 
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yellow to blue. Furthermore, pyranoanthocyanins have been shown to display higher color intensity 
and stability at a wider pH range comparatively to their anthocyanin precursors.23,24 In fact, while 
anthocyanins practically lose their red color between pH 1 and 5, as a result of the formation of 
colorless hemiketals, pyranoanthocyanins practically do not change their color intensity.23,24 For 
these reasons, these dyes are interesting for a wide range of potential applications namely as food 
colorants, hair dyes, laser dyes, as well as photosensitizers for medical applications namely in 
photodynamic therapy and for energy applications such as DSSCs.25,26

However, these natural occurring dyes develop through Nature’s evolution process, optimizing and 
rearranging according to its needs. In fact, some natural flavylium derivatives, such as cyanidin, 
delphinidin and petunidin, can anchor efficiently to TiO2 through the catechol unit in the B ring, but 
do not have the donor-acceptor pattern optimized for electron transfer. So, for DSSC purposes, for 
example, it is possible to follow a bio-inspired strategy and with the adequate structural 
modifications prepare quasi-natural biomimetic compounds. With simple, non-toxic and 
environmentally safe synthetic procedures it is possible to design and prepare compounds with 
similar properties of natural occurring anthocyanins while tailoring desired energy levels, 
absorption properties and linker units. In fact, recently a yield of 2.2% was obtained with the 
compound 7-diethylamino-3’,4’-dihydroxyflavylium (and upon device assembly optimization an 
efficiency of 3.0% was achieved, using the same compound).17,27 Anchoring to TiO2 is one of such 
traits that can be optimized and can greatly influence the overall cell efficiency. In flavylium 
derivatives, TiO2 anchoring is expected to happen through the quinoidal base form.17,27,28 But 
different linker units have different impacts on dye adsorption and electron injection.

In this work, a series of pyranoanthocyanin derivatives were designed, synthesized and applied as 
dye sensitizers in DSSCs, Figure 2. The spectral response and current vs. potential properties of 
photoanodes using these dyes were measured. A relation was established between dye structure and 
cell efficiency. Specifically, the influence of different linker units, carboxyl and catechol, was 
studied in terms of their influence in the various parameters related to DSSC efficiency.
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Figure 2 – Chemical structures of the six pyranoflavylium dyes studied in this work.

Experimental

General information and instruments
All solvents and chemicals employed for synthesis and for preparation of samples were of reagent 
or spectrophotometric grade and were used as received.

Synthesis – The syntheses of compounds a and d23, b and f24 and e29 were previously described. 

Pyrano-4’-carboxy-7-hydroxyflavylium-10-catechol (c) Caffeic acid (1.6 mmol,10 eq.) was added 
to a solution of 4’-carboxy-5,7-dihydroxyflavylium (0.132 mmol, 50 mg) previously obtained,23 in a 
mixture of H2O/EtOH (60:40) (v/v) (50 mL) and pH was set to 3.5. The reaction mixture was left at 
60 °C for 5 days. Then, the ethanol was evaporated, and the crude product was pre-purified in a 
Buchner funnel loaded with C18 silica gel and eluted with acidified aqueous solution containing 
30–60% of MeOH. The product was isolated by column chromatography using C18 silica gel with 
50% of acidified MeOH. A dark orange powder was obtained with 8% yield.

1H NMR (600 MHz, DMSO-d6/TFA 9:1) δ 8.26 (d, J = 8.4 Hz, 2H, H2’ and H6’), 8.16 (d, J = 8.4 
Hz, 2H, H3’ and H5’), 7.82 (s, 1H, H3), 7.68 (dd, J = 8.5, 2.1 Hz, 1H, H6’’), 7.63 (s, 1H, H9), 7.61 
(d, J = 2.2 Hz, 1H, H2’’), 7.25 – 7.21 (m, 2H, H6 and H8), 7.01 (d, J = 8.5 Hz, 1H, H5’’). 13C NMR 
(151 MHz, DMSO-d6/TFA 9:1) δ 168.77 (C10), 167.62 (C7), 166.83 (4’-COOH), 164.58 (C2), 
153.80 (C5 or C8a or C4’’), 153.70 (C5 or C8a or C4’’), 153.44 (C5 or C8a or C4’’), 151.04 (C4), 
146.91 (C3’’), 135.25 (C4’), 133.92 (C1’), 130.57 (C3’ and C5’), 127.75 (C2’ and C6’), 122.41 
(C6’’), 120.82 (C1’’), 117.08 (C5’’), 114.90 (C2’’), 108.17 (C4a), 104.12 (C3), 101.97 (C9), 
100.99 (C6 or C8), 100.88 (C6 or C8). LC-DAD/ESI-MS: [M]+ m/z 415, calculated for C24H15O7

+: 
415.1.
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Physico-chemical characterization of the compounds – Optical measurements: The UV-Vis 
absorption spectra of the solutions and the dyes adsorbed to TiO2 in transmittance mode were 
recorded by a Varian Cary 5000. All the spectra were collected at room temperature. 

Electrochemical measurements: Cyclic voltammetry (CV) and differential pulse voltammetry 
(DPV) measurements were performed on a µAutolab Type III potentiostat/galvanostat, controlled 
with GPES software version 4.9 (Eco-Chemie), using a cylindrical 5 mL three-electrode cell. A Pt 
wire was used as counter-electrode. To perform the measurements on the I-/I3

- system, a glassy 
carbon electrode (MF-2013, f=1.6 mm, BAS inc.) was used as the working electrode. Prior to use, 
the working electrode was polished in aqueous suspensions of 1.0 and 0.3 mm alumina (Beuhler) 
over 2–7/’’ micro-cloth (Beuhler) polishing pads, then rinsed with water and ethanol. This cleaning 
procedure was always applied before any electrochemical measurements. The electrolyte 
composition was 0.1 M tetrabutylammonium tetrafluoroborate, 10 mM LiI in 
acetonitrile:valeronitrile (85:15, % v/v). To perform the measurements on the dye-coated TiO2 
films, the films themselves were used as working electrode. A fresh sample was used for each scan 
to avoid uncertainty due to degradation between scans. The electrolyte composition was 0.1M 
tetrabutylammonium tetrafluoroborate in acetonitrile:valeronitrile (85:15, % v/v). All potentials 
refer to an SCE (Saturated KCl) reference electrode (Metrohm). CV measurements were performed 
between 0 and +1V, with a scan rate of 50 mV/s. DPV measurements were performed between 0 
and +1V, using scan rate 5 and 10 mV/s and a pulse amplitude of 50 mV. The samples in the 
electrochemical cell were de-aerated by purging with nitrogen for 10 minutes prior to, and during, 
the electrochemical measurements. 

Photoelectrochemical Measurements – Current-Voltage curves were recorded by a digital Keithley 
SourceMeter multimeter (PVIV-1A) connected to a PC. Simulated sunlight irradiation was provided 
by an Oriel solar simulator (Model LCS-100 Small Area Sol1A, 300 W Xe Arc lamp equipped with 
AM 1.5 filter, 100 mW/cm2). 
The thickness of the oxide film deposited on the photoanodes and the oxide film used for UV-Vis 
absorption experiments were measured using an Alpha-Step D600 Stylus Profiler (KLA-Tencor).

DSSCs fabrication and photovoltaic characterization
The conductive FTO-glass (TEC7, Greatcell Solar) used for the preparation of the transparent 
electrodes was first cleaned with detergent and then washed with water and ethanol. To prepare the 
anodes, the conductive glass plates were immersed in a TiCl4/water solution (40 mM) at 70 °C for 
30 min, washed with water and ethanol and sintered at 500°C for 30 minutes. The TiO2 
nanocrystalline layers were deposited on the FTO plates by screen-printing the transparent titania 
paste (18NR-T, Greatcell Solar) using a frame with polyester fibres having 43.80 mesh per cm2. 
This procedure, involving two steps (coating and drying at 125 °C), was repeated two times. The 
TiO2 coated plates were gradually heated up to 325 °C, then the temperature was increased to 375 
°C in 5 minutes, and afterwards to 500 °C. The plates were sintered at this temperature for 15 min, 
and finally cooled down to room temperature. Afterwards the TiO2 film was treated with the same 
TiCl4/water solution (40 mM), following the procedure previously described. A coating of reflector 
titania paste (WER2-O, Greatcell Solar) was deposited by screen-printing and sintered at 500 °C. 
Each anode was cut into rectangular pieces (area: 2 cm × 1.5 cm) having a spot area of 0.196 cm2 
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with a thickness of 15 µm. The titanium oxide film employed for UV-Vis absorption experiments 
was prepared by doctor blade: two edges of the glass plate were covered with stripes of an adhesive 
tape (3 M Magic) in order to obtain a transparent ultrathin TiO2 film with an estimated thickness of 
about 6 µm. Dye solutions of the pyranoflavylium salts (0.5 mM) were prepared in ethanol. The 
photoanodes were prepared by soaking the screen-printed glasses overnight (~17h) in the different 
dye solutions, at room temperature in the dark. The excess dye was removed by rinsing the 
photoanodes with the same solvent as that employed in the dye solution.
Each counter-electrode consisted of an FTO-glass plate (area: 2 cm × 2 cm) in which a hole (1.5 
mm diameter) was drilled. The perforated substrates were washed and cleaned with water and 
ethanol in order to remove any residual glass powder and organic contaminants. The Pt transparent 
catalyst (PT1, Grealcell Solar) was deposited on the conductive face of the FTO-glass by doctor 
blade: one edge of the glass plate was covered with a stripe of an adhesive tape (3 M Magic) both to 
control the thickness of the film and to mask an electric contact strip. The Pt paste was spread 
uniformly on the substrate by sliding a glass rod along the tape spacer. The adhesive tape stripe was 
removed, and the glasses heated at 550 °C for 30 min.  The photoanode and the Pt counter-electrode 
were assembled into a sandwich type arrangement and sealed (using a thermopress) with a hot melt 
gasket made of Surlyn ionomer (Meltonix 1170-25, Solaronix SA).
The electrolyte was prepared by dissolving the redox couple, I−/I2 (0.8 M LiI and 0.05 M I2), in 
acetonitrile/valeronitrile (85:15, % v/v) mixture. The electrolyte was introduced in to the cell via 
backfilling under vacuum through a hole in the back of the cathode. Finally, the hole was sealed 
with adhesive tape.
For each compound, three cells were assembled under the same conditions, and the efficiencies 
were measured 10 times for each one resulting in 30 measurements per compound, in order to 
calculate average and standard deviation values.

Results and Discussion

UV-Vis absorption

Dye sensitization plays a crucial role in DSSCs. A dye for DSSC should ideally absorb solar 
radiation strongly with absorption bands in the visible and NIR region, preferably covering a wide 
range of wavelengths. The absorption spectra of compounds a - f in ethanol (0.05 mM) are shown 
in Figure 3. Compound d has the most blue-shifted absorption maximum (458 nm) followed by 
compounds f (476 nm), a (495 nm), b (503 nm) and c (504 nm). Compound e exhibits an absorption 
maximum at lower energies (582 nm) when compared with the other compounds, reflecting the 
effect of extending the conjugation through a styryl unit to the catechol groups. In addition, since it 
has a broader band, absorbing a wider range of visible frequencies, it gives rise to a darker colored 
solution and film (see insets in Figures 3 and 4, respectively). Since these solutions were prepared 
in ethanol, with no addition of acid, some of these absorption maxima may already have a 
contribution from the presence of quinoidal base species. Upon adsorption onto TiO2 (Figure 4) all 
compounds show red-shifted absorption maxima (between 8 and 27 nm for compounds e and a, 
respectively), maintaining however the same qualitative behaviour. This is an indication that TiO2 
adsorption involves coordination to the Ti(IV) via a quinoidal base formed upon deprotonation of 
the flavylium cation. The interaction of flavylium cations with some metal ions such as aluminium, 
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iron and titanium, is known to involve deprotonation and formation of metal complexes with the 
quinoidal bases, displacing the flavylium-quinoidal equilibrium toward the complexing quinoidal 
form.12,30,31 Five of the six studied compounds (a, b, c, e, f) exhibited strong absorptions in the 
Visible region and this characteristic makes them potential candidates for light harvesting in 
DSSCs. 

Figure 3 - UV-Vis absorption spectra of compounds a - f 0.05 mM in ethanol. Inset: solutions of the 
compounds.

Figure 4 - UV-Vis absorption spectra of compounds a - f 0.5 mM in ethanol, adsorbed on a thin (ca. 6 µm) 
TiO2 film on FTO glass. Inset: picture of the films.

Electrochemical properties
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Cyclic and Differential Pulse Voltammetry were used to characterize the compounds 
electrochemically (see Supplementary Information for full CV and DPV voltammograms). The 
anodic oxidation peaks obtained from DPV data are presented in Table 1. The minimum value of 
Epa=0.332 V was obtained for compound e containing two styryl moieties and two catechol groups, 
one in each styryl unit. Compound b comes next with two catechol units and Epa= 0.366 V. 
Compounds a, c and f, containing only one catechol group and carboxylic acid or methyl groups, 
are characterized by higher Epa values. These results are a consequence of the electron-
donor/acceptor character of the substituents on the pyranoflavylium core. Compounds possessing 
catechol units, which are electron-donating substituents, and extended conjugation (styryl moieties) 
are easier to oxidize, resulting in lower oxidation potentials. The presence of the methyl group, a 
mild electron-donor through hyperconjugation, or of electron-withdrawing carboxylic acid groups 
contribute to increase the oxidation potential.

Table 1 – First anodic oxidation potentials of dyes a - f adsorbed to TiO2, obtained through Differential Pulse 
Voltammetry (E vs. SCE) in acetonitrile:valeronitrile (85:15, % v/v).

Dye Epa (V)
a 0.527
b 0.366
c 0.645
d ~ 0.6 a
e 0.332
f 0.508

a The low intensity of the signal prevents a better definition of Epa.

An important thermodynamic requirement for dyes to be used in DSSC technology is that electron 
transfer from the excited state of the dye to TiO2 must be faster than the decay to the ground state. 
The LUMO of the dye must then be sufficiently high in energy for efficient charge injection into the 
TiO2 conduction band (-4.24 eV)2. Also, the HOMO level of the sensitizer must be sufficiently low 
in energy for efficient regeneration of the oxidized dye by the redox couple.1,2,17 To experimentally 
determine the HOMO and LUMO energy levels of the dyes, the first oxidation and reduction 
potentials obtained from CV experiments may, respectively, be used. Alternatively, the LUMO 
energy can be obtained by adding the optical absorption energy to the HOMO value.32 In here, we 
considered the first anodic oxidation peak obtained from DPV performed on the dyes adsorbed on 
TiO2, hence determining the HOMO of the dye-TiO2 complex (HOMOdye@TiO2) (Eq. 1). Addition of 
the optical absorption energy obtained from the spectra in Figure 4 allowed to obtain the LUMO 
energy for the dye-TiO2 complex (LUMOdye@TiO2) (Eq. 2). These results are presented in Table 2.

E(HOMOdye@TiO2) = – (Epa (vs. SCE) + 4.44) eV (Eq. 1)

E(LUMOdye@TiO2) = E(HOMOdye@TiO2) + Eabsorption edge eV (Eq. 2)
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Table 2 – HOMO and LUMO energy levels of the dye-TiO2 complex calculated from optical and 
electrochemical data.

Dye Absorption 
edge (nm)

Energy 
(eV)

HOMOdye@TiO2 vs. 
SCE (V)

HOMOdye@TiO2 vs. 
Vacuum (eV)

LUMOdye@TiO2 vs. 
Vacuum (eV)

a 522 2.375 0.527 -4.967 -2.592
b 518 2.394 0.366 -4.806 -2.412
c 525 2.361 0.645 -5.085 -2.724
d 470 2.638 - - -
e 590 2.101 0.332 -4.772 -2.671
f 499 2.485 0.508 -4.948 -2.463

E(HOMOdye@TiO2) = – (Epa (vs. SCE) + 4.44) eV (Eq. 1)

E(LUMOdye@TiO2) = E(HOMOdye@TiO2) + Eabsorption edge eV (Eq. 2)

Table 2Since we are determining the HOMO and LUMO energies of the dye-TiO2 complex, we will 
consider electron injection into the Fermi level potential of the FTO (-4.4 eV)32, instead of the TiO2 
conduction band  (-4.24 eV), when evaluating electron injection ability.32 A schematic 
representation of the energy levels of the dyes adsorbed onto TiO2 versus the Fermi level potential 
of the FTO (-4.4 eV) and the calculated redox potential of the redox couple I-/I3

- (-4.718 eV) is 
represented in Figure 5. All the studied pyranoflavylium dye-TiO2 complexes should be able to 
inject electrons into the FTO band, given that for every case the difference between the LUMO and 
the potential of the FTO is ~2 eV. In the case of the HOMO level, it is possible to identify two 
distinct groups. Although all the pyranoflavylium compounds possess a HOMO energy level below 
the potential of I-/I3

-, thus being able to be reduced by the electrolyte, for dyes b and e this 
difference is quite small (0.088 and 0.054 eV, respectively). This fact can result in inefficient 
regeneration of the compounds by the electrolyte, affecting the performance of the cell. In the case 
of dyes a, c and f, this difference is higher than 0.2 eV, rendering these compounds easy to 
regenerate by the electrolyte, thus resulting in well-functioning devices.
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Figure 5 - Schematic representation of the energy level diagram (HOMOdye@TiO2 and LUMOdye@TiO2) of the 
pyranoflavylium dyes adsorbed onto the TiO2 film vs. the FTO and I-/I3

- redox potentials.

DSSCs photovoltaic performance

The photocurrent–voltage plots for DSSCs assembled with pyranoflavylium dyes a - f are shown in 
Figure 6. Analysis of these data allowed to determine the short circuit current density (JSC), open 
circuit voltage (VOC), fill factor (FF) and overall conversion efficiency (η), summarized in Table 3.

Figure 6 - J–V curves of DSSCs based on dyes a - f measured under AM 1.5 solar light (100 mW cm−2), 
using 0.8 M LiI and 0.05 M I2 in acetonitrile:valeronitrile (85:15, % v/v) as electrolyte.
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Table 3 - Photovoltaic performance parameters of DSSCs based on pyranoflavylium dyes a - f, under 100 
mW cm−2 simulated AM 1.5 illumination. λmax / Amax refers to the absorption maxima and respective 
absorbance measured in transmission mode for each dye upon adsorption over TiO2. The results presented are 
for the best performing cell.

Dye λmax / Amax JSC (mA cm-2) VOC (mV) FF Jmax (mA cm-2) Vmax (mV) η (%)

a 522 / 1.18 1.68 274 0.54 1.28 194 0.25

b 518 / 3.16 6.43 338 0.53 5.02 229 1.15

c 525 / 1.78 2.63 279 0.56 2.06 199 0.41

d 483 / 0.36 0.31 191 0.46 0.21 129 0.03

e 590 / 1.42 2.03 252 0.51 1.53 172 0.26

f 499 / 1.83 5.26 332 0.56 4.16 233 0.97

Lithium is known to act as a TiO2 Fermi level stabilizer, thus moving TiO2 conduction band 
towards more positive potentials, favouring the photocurrent over the potential.33 Since the 
photovoltage generated by the cell under illumination corresponds to the difference between the 
Fermi level of the electron in the semiconductor and the redox potential of the electrolyte,3 the 
electrolyte composition is determinant to the VOC values obtained. 
Nevertheless, the structural features of the compounds also affect significantly the values obtained. 
The most relevant observation is that the presence of acidic groups such as -COOH, contributes to 
the decrease of VOC, as shown in the literature for N3 vs. N719.34 This effect is notorious on the VOC 
of a (274 mV) and c (279 mV), possessing one carboxylic group each, when compared with d (191 
mV) possessing two carboxylic groups or b (338 mV) and f (332 mV) which have no carboxylic 
units.
Compound e, containing two styryl groups, does not follow this pattern. In this case, a decrease in 
VOC from 338 to 252 mV with respect to the b analogue is observed due to a change in the direction 
of dipolar moment, as previously shown for ruthenium derivatives.35

On the other hand, for a comparison of the overall performances, we have to take into consideration 
that JSC is strongly affected by the amount of absorbed light, which is significantly different among 
the several dyes. A plot of the absorbance at the absorption maximum for each dye (Figure 4) 
against the short circuit current, yields a straight line (Figure 7), which means that the absorption 
corrected JSC values would be comparable for the series. Dyes b and f, possessing only hydroxyl 
groups, present JSC values slightly higher than the linear correlation defined by the other dyes. This 
suggests that carboxylates (a, c, d) decrease electron injection and/or increase recombination, 
conveying them as poorer anchoring groups in these family of dyes.
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Figure 7 - Relation between the absorbance at �max for a - f dye-TiO2 complexes and the respective JSC 
measured for the best efficiency performance. The error bars correspond to the JSC results obtained for 3 
DSSCs assembled for each compound, measured 10 times each.

Despite the evident difference in absorbance, with that of a being almost 3-fold higher than that for 
d (1.18 vs. 0.36, respectively, as measured by the absorbance at �max) this difference by itself is not 
sufficient to account for the ~ 9-fold decrease in overall DSSC efficiency (0.25% vs. 0.03%, 
respectively). This difference is however mostly justified by the ~ 6-fold decrease in JSC (1.68 
vs.0.31, for a and d respectively). So, the photocurrent must also reflect, additionally to the higher 
amount of absorbed light, a better electron injection on the TiO2 conduction band for compound a.
Compound b is the best performing dye with an efficiency of 1.15%, under the present (non-
optimized) conditions, and the highest VOC and JSC, 338 mV and 6.43 mA.cm-2, respectively. This is 
also the compound with the highest absorbance at �max (3.16) and the highest LUMO energy (-2.412 
eV). Compound b not only is the dye with the highest absorption, but also the compound with the 
better adjusted LUMO for improved electron injection into the TiO2 conduction band. Comparing 
these results with compound e (its styryl catechol analogue) we see for the latter an overall worse 
performance. Despite of the broader and red-shifted absorption band, compound e has lower 
absorbance (1.42), which corresponds to a lower light absorption under the same conditions, with 
direct impact in JSC (2.03 mA.cm-2). Additionally, a reduction of ~100 mV in VOC further reduces 
the performance of dye e. This difference can as well be attributed to the lower LUMO energy of 
this compound (-2.671 eV), resulting in lower JSC. This can be due to the presence of cis- and trans- 
isomers in the styryl units anchored to TiO2. Probably, for different isomers, molecular orbitals may 
not always be optimized for electron charge transfer resulting in less effective electron injection.

Compounds c and f display an interesting “couple” since despite the almost insignificant difference 
in absorbance (1.78 and 1.83, respectively), the JSC measured (Figure 7) and, consequently the 
efficiencies, are quite different. Compound f has twice the value of JSC (5.26 vs. 2.63 mA.cm-2, 
respectively) resulting in twice the efficiency (0.97% vs. 0.41%, respectively). This can be due to 
the significant difference in LUMO energies between the compounds, with that of compound f 
being higher than that of compound c (-2.463 vs. -2.724 eV). Once again, the compound with the 
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higher LUMO is the one with a better JSC performance due to the higher driving force for electron 
injection into the TiO2 conduction band. Once more, the main difference between c and f is the 
presence of a carboxylic group in c which is absent in f. In fact, a closer inspection of Figure 7 
shows that also b, which lacks a carboxylic group, yields a slightly higher photocurrent than 
expected from the linear correlation with absorption. 

In summary, the overall performance of these compounds in DSSCs is clearly dominated by light 
aborption of the dyes. We can further correlate the resulting efficiency with the nature of the linker 
units and their electron-donor/acceptor character. In this class of dyes, carboxylic groups seem to 
have a deleterious effect in electron injection due to their electron withdrawing character. 
Moreover, this same characteristic reflects in lower JSC results and, consequently, in lower cell 
efficiencies.

Conclusions

Pyranoanthocyanins display great potential as photosensitizers in bio-inspired DSSCs. The best 
known efficiency reported so far using this family of compounds is 0.006 % for cyanidin-3-O-
glucoside-pyruvic acid adduct.36 In this work, for the first time, six pyranoflavylium salts were 
synthesized following a bio-mimetic approach, and successfully applied, as light harvesters in 
DSSCs. An overall efficiency of 1.15% was obtained for the best performing compound, 10-
catecholpyrano-5,7,3’,4’-tetrahydroxyplavylium (b), with no further optimization. When 
considering naturally occurring dyes, betalains which contain carboxylates as anchoring groups 
consistently show higher efficiencies compared to anthocyanins.8,11,37,38 This led to the idea that 
carboxylic linkage was essential in order to have strong electronic coupling and rapid forward and 
reverse electron transfer reactions between the dye and the DSSC.8,11 In this work, where both 
anchoring groups are compared within closely related molecules with the same pyranoflavylium 
core, it became clear that the presence of catechol unit increases electron injection to the TiO2 
semiconductor. The electron withdrawing carboxylic units showed, on the other hand, a deleterious 
effect in electron injection reflected in lower JSC and, consequently, in lower cell efficiencies. In 
summary, the overall performance of these compounds in DSSCs is clearly dominated by the nature 
of the linker units and their electron-donor/acceptor character.
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