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Abstract  

Significant advances have been made to control the iridescence and the selective reflection of 

left circularly polarised (LCP) light, and transmission of right circularly polarised (RCP) light 

of solid films prepared from cellulose nanocrystals (CNCs). However the manipulation of the 

photonic properties of the CNCs films, which reflect both RCP and LCP light is less 

investigated. Solid films prepare from natural sources as CNCs have advantageous 

characteristics that are absent in other synthetic structures, such as wide availability and 

renewability. Here we review and compare recent research activity involving the production 

and characterization of photonic band gap structures resulting from an anisotropic layer 

inserted between two cholesteric layers with different helical pitches but the same 

handedness. We make connections between systems existing in Nature and synthetic ones 

with the hope of advancing in the production and manipulation of CNCs-based photonic 

structures.  
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1. Introduction  

Anisotropic structures, mainly shaped from cellulose micro/nano rods, are often found 

outside the cells of plants. At the genesis of these solid structures can be a liquid crystalline 

phase that subsequently solidifies due to chemical reactions of crosslinking and 

mineralization [1]. The main liquid crystalline organization of cellulose-based structures, also 

existing in plant tissues, corresponds to different arrangements of a cholesteric liquid 

crystalline phase. In this sense the first part of the work will be dedicated to a brief 

introduction to liquid crystals, namely to cholesteric and nematic structures [2].  

A common characteristic of liquid crystals (LCs) is that they are formed by anisometric 

entities with one or two characteristic dimensions much larger than the third. These objects, 

with synthetic or natural origin, can be molecules, nano- and microparticles, which are 

organized and exhibit the optical anisotropy of crystals and the mechanical properties 

(fluidity) of liquids. 

In order to describe the cholesteric arrangements found for cellulose nanocrystals (CNCs) 

rods it is useful to briefly address the main characteristics of the nematic LC structure. The 

nematic phase, of a material formed by rods of nanoparticles, presents the centres of gravity 



 3 

of the nanorods randomly distributed, with no positional order, such as in an isotropic liquid, 

but with orientational order for long distances compared to the dimensions of the nanorods.  

In order to specify the orientation of the nanorods at a given point of the nematic phase a unit 

vector, n, named director [3, 4] is used. As the orientation of the anisometric particles is not 

perfect, due to fluctuations, a degree of order, < 𝑆 >, is defined by 

 < 𝑆 >=
1

2
< 3 cos2 𝜃 − 1 >        (1)  

where  specifies the angle that the major axis of a generic rod makes with the director and <

⋯ >, takes into account the average value of the expression in parenthesis for a large number 

of rods. The value of S varies between 0 and 1 in the nematic phase [3-5], being zero in the 

isotropic fluid and equal to one in the crystalline phase. 

A cholesteric phase can be described as a nematic with a uniform natural twist around a 

normal axis to the director as schematically shown in Fig. 1, with the pitch, P, of the structure 

greater than the length of the rods [6]. The planes usually used in literature to represent the 

nematic chiral structure [7] only help to better visualize the helical structure of the medium 

but do not correspond to any discontinuity in the arrangement of the rods.  
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Fig. 1. Scheme of the cholesteric arrangement of the nano rods, in blue, (the helical structure of the medium has 

no discontinuity). In a distance P (measured along the optical axis) the main axis of the nano rods, in the 

pseudo-nematic layers, rotate by an angle of 2. From [6] Reprinted by permission of Taylor & Francis Ltd.  

 

The natural twisting of the cholesteric phase is usually attributed to the chirality of the 

constituent particles [1, 8], which modifies the intermolecular forces responsible for the 

orientational order and produces the helical distortion. The origin of the formation of a helical 

arrangement for CNCs is still under debate. However, the helical cellulose-based 

configuration results in remarkable optical and mechanical properties, which gives the 

material multiple possibilities of practical applications. 

For example, in plants the helicoidal cellulose structures promote the mechanical resistance 

of the walls of the cells allowing long cells to be flexible but resistant to bending forces [1]. 

In addition, the cholesteric arrangements in the solid state are responsible for the brilliant 

colours observed, for example, in the fruit of Pollia genus plants [9]. The wavelength 

reflected by the structure, 𝜆𝑜, its colouration, varies upon the value of the pitch, the view 

angle and the average refraction index of the material, �̅� =
𝑛𝑒+𝑛𝑜

2
 (𝑛𝑒, extraordinary and 𝑛𝑜, 

ordinary refraction indexes of the medium), according to the expression, 

𝜆𝑜 = �̅� 𝑃𝑠𝑖𝑛 𝜃          (2) 

where θ is the angle between the incident light and the cholesteric layers [2, 7]. 

The rotatory power of the cholesteric structure changes with the wavelength of the incident 

light. Let us consider the value of θ equal to 
𝜋

2
, which means that the wavelength is reflected 

by the structure along its helical axis.  The incident circularly polarised (CP) light, with the 

same handedness as the cholesteric structure, behaves similar to a periodic media. When the 

values of the wavelengths are in the width of the reflection band according to Δλ = ΔnP 

around 𝜆𝑜, the cholesteric structure reflects the circular component of the polarised light of 

the same handedness of the helical structure and transmits the other component. This 
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reflection is similar to the Bragg reflection observed for the X-rays, in a periodic structure 

with a distance equal to P/2. If 𝜆𝑜 is in the visible region of the spectrum and the cholesteric 

is illuminated with white light, 50% of the light intensity in the Δλ band will be reflected, 

whereas outside this band gap the light will be transmitted. As the band is relatively narrow 

the cholesteric will then present a bright coloration. Higher-order reflections appear and the 

reflection band shifts when the values of θ deviate from 
𝜋

2
.  

This brief review is mainly dedicated to summarise the work involved with the optical 

properties of CNCs-based solid iridescent films with selective reflection and transmission of 

circularly polarised light. Special emphasis will be given to bio inspired materials with 

photonic properties that are manipulated by external fields, which add additional features to 

the systems found in animals and plants. 

 

2. Circularly polarised light  

In nature, most of the cholesteric structural colours have its origin in left-handed helical 

cholesteric arrangements [1, 10-14]. Beautiful examples are the exocuticles of some beetles, 

as in Cetonia aurata (Linnaeus, 1758) (Fig. 2 a-c). Chitin nanorods that can be seen in the 

scanning electron microscopy (SEM) photo, Fig. 2 d, are the structural units of the cholesteric 

arrangement. In addition to the brilliant colours that the cholesteric structure can offer to the 

materials the right- or left- handed helical arrangement translates to different responses of the 

material when observed with CP filters. The left-handed helical structure present in C. aurata 

beetle is responsible for the extinction of colour when observed with a right circularly 

polariser (RCP) as shown in Fig. 2 c. 
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Fig. 2. Photographs of the beetle C. aurata a) and b) bright yellow and green colours as seen in unpolarised light 

or with a left circular polariser, respectively. c) Extinction of colours when observed with a right circular 

polariser. d) Reflectance spectra of the exocuticle of the C. aurata beetle for both LCP and RCP light channels 

(a-d: unpublished work). e) Scanning electron microscopy (SEM) micrograph of a section cut vertically through 

the cuticle of the beetle showing the lamellar organization in the exocuticle responsible for its bright coloration 

[15]. © 2013 Optical Society of America. Scale bars represent a) 0.5 cm, inset in b, c) 100 m.  

 

However, reflections on left circularly polariser (LCP) and RCP channels were also observed 

in natural systems, such as in the exocuticle of the species Chrysina resplendens (Boucard, 

1875) (Fig. 3 a -c) and in the outer cellulosic layers of the fruit of Pollia condensata C.B. 

Clarke [9]. The similar photonic response of the cholesteric structures of Pollia and C. 

resplendens is associated to the presence of a helical arrangement of nanorods either from 

cellulose or chitin respectively, but the response in the RCP channel has different origins. 

While P. condensata. produces cellulose-based left- and right-handed helicoidal 

arrangements that coexist in neighbouring cells, the exocuticle of C. resplendens presents 

only left-handed helical structures.  
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The optical reflection characteristics of the C. resplendens exocuticle are due to a sandwich 

structure in which an anisotropic layer is confined between two left solid cholesteric 

arrangements, as show in Fig. 3 (a-d). The anisotropic layer plays the role of a half-wave 

phase retarder. While the colour reflected by the exocuticle depends on the pitch of the 

helicoidal structures, the average refraction of the medium and view angle, the anisotropic 

layer plays a crucial role to the RCP light channel response [2]. 

The scheme shown in Fig. 3 d) illustrates the effect of the λ/2 retardation plate between two 

different left cholesteric structures. Circular polarisers were used to observe the sample with 

incident light perpendicular to the film cholesteric layers (Fig. 3 b-c). The light with left-

handed circular polarisation is reflected by the cholesteric structure at the top of the film (Fig. 

3 b), while the right-handed circular polarisation is transmitted (Fig. 3 c). The right-handed 

circular polarisation changes into left-handed due to the anisotropic layer that acts as a λ/2 

retardation plate promoting a phase shift: 

∆𝜙 = 2𝜋
∆𝑛ℎ

𝜆
           (3) 

where h is the anisotropic layer thickness and ∆𝑛 = 𝑛𝑒 − 𝑛𝑜 its birefringence. Then, the 

converted left-handed CP light travels along the anisotropic layer until reaching the surface of 

the second cholesteric left-handed structure that reflects left circular polarised light, which is 

again converted by the retardation plate into right-handed polarised light and transmitted by 

the cholesteric existing at the top surface of the film. Therefore, both LCP and RCP light are 

reflected by the material [2, 7, 10, 16]. The reflected wavelengths on LCP and RCP light 

channels depend on the values of the pitches of the two cholesteric arrangements.  
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Fig. 3. Photographs of the C. resplendens beetle a) Bright yellow and greenish colours as seen in unpolarised 

light. b) Yellow and a more evident green colours seen with a left circular polariser. c) Yellow and orange 

colours observed with a right circular polariser. d) Transmission electron microscopy (TEM) micrograph of a 

section cut vertically through the cuticle of the beetle showing two lamellar organizations (1 and 3) separated by 

an anisotropic layer (2). e) Reflectance spectra of the exocuticle of the C. resplendens exocuticle for both LCP 

and RCP light channels (a-d: unpublished work). f) Scheme of the sandwiched structure (an anisotropic layer 

(yellow) between two cholesteric structures with the same handedness but different values of the pitch (in green 

and red)), reflectance and transmittance optical characteristics of a film with the anisotropic layer acting as a /2 

plate. Panel f adapted with permission [7]. Copyright 201, Wiley-VCH. Scale bars represent: a) 0.5cm, inset in 

a,b) 50 m, d) 1 m. 

 

Structural colours in insects have many perceived functions, such as crypsis, aposematism 

and mate signalling [17-21]. The function of circular polarised (CP) light reflected by insects 

is not yet understood. Some authors published interesting but hypothetical work. It was 

proposed that selective circular polarised light reflection can be a way to enhance the contrast 

between objects and their background [22], providing a secret communication channel, for 

example, to conspecific sexual signalling, that could not be perceived by their vertebrate 

predators [23, 24].  
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This idea was reinforced by the observation [25] that stomatopod crustaceans are able to 

detect and discriminate the handedness of CP light. Furthermore these authors have been able 

to associate a behavioural response with this capacity. They hypothesise this to be a sexual 

signalling feature, since these species reflect CP light in the visible spectrum region usually 

used for sexual display and are present only in males.  

In insects, several specimens of scarab beetles (Coleoptera, Scarabaeidae) are well known to 

reflect LCP light, while LCP and RCP light were found to be reflected in the case of C. 

resplendens [26]. Whether or not these insects are able to discriminate CP light is still to be 

proved.  

Recently, behavioural response to CP light has been detected in Chrysina gloriosa (LeConte, 

1854) suggesting that they are capable of distinguishing CP light [23]. However, another 

behavioural study [27], was unable to detect a response to CP light stimuli in 4 species of 

scarab beetles (Anomala dubia (Scopoli, 1763), Anomala vitis Fabricius, 1775, Cetonia 

aurata (Linnaeus, 1758), Protaetia cuprea (Fabricius, 1775)). Together with the fact that CP 

light reflection is similar in both male and female, led the authors to hypothesize that CP light 

reflection is just a by-product of the cholesteric arrangement in the beetle cuticle and that its 

main function is more probably a mechanical or chemical one, conferring the cuticle 

resistance against mechanical or chemical stress. 

These two studies were done with insect species with different distribution (North America 

and Europe, respectively) and distinct habitats. C. resplendens inhabits a further distinct 

habitat, living in tropical areas in Central America. It is possible that according with habitat 

and lifestyle CP light reflection may have different effects in intraspecific communication. 

Even if the main sexual attractant in beetles are pheromones, being able to discriminate CP 

light signals may further help to contrast their mates from the circularly unpolarised foliage 

environment.  
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3. Mimicking the optical response of natural structures  

 

3.1. Left-circularly polarised light response 

Circularly polarised filters are used to detect the handedness of the cholesterics and it was 

found that iridescent cellulosic films, prepared from CNCs, reflect LCP light and transmit 

RCP light when illuminated with white light (Fig. 4 a and b). SEM pictures revealed a 

periodic structure along the films’ cross section (Fig. 4) indicating the presence of a 

cholesteric structure. The distance between two successive layers corresponds to P/2. This 

value can be compared with the maximum wavelength reflected by the material with incident 

light perpendicular to the cholesteric layers (spectra given in Fig. 4). 

 

 

Fig. 4. Photographs of a CNC film. a) Extinction of colours when observed with a right circular polariser. b) 

Bright colours as seen with a left circular polariser. c) Reflectance spectra of the film for both LCP and RCP 

light channels. d) Scanning electron microscopy (SEM) micrograph of the cross section of the film showing the 

cholesteric organization responsible for its bright coloration when illuminated by white light and seen in the 
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LCP channel. Scale bars represent: a) and d) 200nm. Panel c adapted with permission [7]. Copyright 2016, 

Wiley-VCH. 

 

The study of the remarkable optical properties, as the iridescent colours, observed in Fig. 4, 

which arises from the CNC hierarchically self-assembled, when the solvent of the cholesteric 

liquid crystalline CNCs suspension is slowly evaporated, has been widely explored in the 

past decade by the scientific community. Nonetheless, the full control of this LC phase is far 

from being totally established. The interesting results obtained so far confirmed that the 

cholesteric structure retained in the solid state is influenced by a myriad experimental 

conditions. Among these are the source of cellulose, its type and concentration of acid, time 

and temperature of the hydrolysis process, which translate in the ionic strength and size of the 

resultant CNCs. The concentration of CNCs in the suspension, as well as the energy given to 

the system by the ultrasonic treatment and the solvent evaporation rate are other factors that 

one has to have in mind when producing such cholesteric structures from CNCs/water 

suspension. Several works have been published where these issues are addressed [1, 6, 28-

36]. The control of the optical properties and mainly the maximum wavelength reflection by 

adjusting the cholesteric pitch value has been widely investigated and several approaches 

have been tested. For instance, it is possible to induce changes in the pitch values by adding 

electrolytes (such as sodium chloride), glucose, compatible polymers, or by applying electric 

or magnetic fields to the CNC suspension [37-42]. Whilst the CNCs properties have been 

substantially investigated, their use in the preparation of well-aligned cholesteric structures 

and their selective reflection to CP light are still far from being fully explored.  

In the past six years, CNCs liquid crystalline phase has been used as cholesteric templating of 

inorganic compounds, such as silica, and/or metallic nanoparticles, through a process named 

by the authors as evaporation induced self-assembly (EISA), followed by thermal removal of 

the CNC [43-48]. With this technique, new applications for the mesoporous cholesteric 
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materials with strong structural coloration started to be surveyed. For instance, the same 

methodology allowed Shopsowithz et al. [49] to produce a refractive index sensor, by 

exploiting the loss of iridescence verified on porous cholesteric silica film while it was 

submersed in water. The use of inorganic materials as part of the matrix of the film could 

even give rise to interesting chiral nematic mesoporous cellulose films if instead of the CNC 

the silica is removed, thus enabling the researchers to use them in stabilizing gold 

nanoparticles suspensions [50]. 

Composite systems where the authors combine polymers or surfactants with cholesteric CNC 

have been the subject of some recent works. In these, the chiral optical properties of the CNC 

films are maintained while coupled with the properties of such organic compounds, 

conferring the final structure with enhanced functionalities, such as thermo-responsiveness, 

flexibility, or conductivity [42, 51-53]. For instance, Espinha et al. were able to produce a 

shape memory photonic reflector while coupling the CNC with an elastomer, the 

polydiociltrate [51]. The photonic reflectors produced from the infiltration of iridescent CNC 

films with the elastomer presented a shift of the reflected wavelength to red or infrared 

regions of the electromagnetic spectrum. After curing the material, the authors could observe 

that the CNC film was totally encased by elastomer layers. Despite this fact the composite 

system maintained the circular polarisation properties by reflecting LCP light and 

transmitting RCP light. The presence of the elastomer allows for the production of a shape 

memory system by programming its shape above the melting transition of the polymer 

(~30 ºC). 

Another interesting type of transparent depolarising optical filter was also produced from 

CNCs solid films. It was shown that iridescent CNCs films, with response in the left channel, 

can not only depolarise incident light but also the optical response cab be manipulated 

rendering them transparent when illuminated with white light [54]. A scheme illustrating the 
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mechanism behind this observation is given in Fig. 5. While a cholesteric iridescent film, 

prepared from CNCs (CF1), reflects the LCP light and transmits the RCP light (Fig. 5 a) a 

completely different response is obtained when transparent films with no cholesteric 

arrangements (quasinematic) (CF5 and CF6) are placed in the pathway of the light, between 

the observer and the sample CF1. The CF5 and CF6 films convert RCP and LCP light into 

unpolarised light acting as depolarising filters (Fig. 5).  

 

 

Fig. 5. a) Schematic representation of RCP and LCP light reflection and transmission, a) through an iridescent 

CNC film (CF1) and in b) for a layered sample consisting of a film with a quasinematic organization (CF5 and 

CF6) and CF1. Adapted with permission [54]. Copyright 2017, Wiley-VCH. 

 

The previous examples do not take into account the existence of a polydomain cholesteric 

structure, translated into a width of the reflection band of ~100 nm (Fig. 4 c), far from the 

expected width observed for an ideal well organized helically modulated structure. However, 

the width of the reflection band of these films produce until is not large enough for them to be 

considered as broadband reflectors.  

Cao et al. took advantage of these features and cleverly engineered a system were by adding a 

specific amount of sub-micrometric micellar surfactant, into CNCs cholesteric suspensions 

(Fig. 6 a), it was possible to produce a solid structure with broadband circular polarisation 

[55]. By SEM observations, the authors demonstrated the existence of the aforementioned 

characteristic CNCs left-handed cholesteric arrangement characteristic of the CNC, but with a 



 14 

highly dispersed distance between layers (from 120nm to 400 nm) along the cross-section of 

the films. The white scattering film produced (Fig. 6 b) enables the reflection of LCP light 

(Fig. 6 c) and the transmission of RCP light (Fig. 6 d). These results were also confirmed by 

the transmission circular dichroism (CD) and UV-Vis spectroscopy, where the positive signal 

(indicative of the left-handedness helicity) and a wide range of wavelength reflection 

confirms the production of a broadband left circular polarising film (Fig. 6 e). This work 

opened the opportunity for using this type of cholesteric arrangements to produce optical 

filters, polarisers and coatings.[55] 

 

 

Fig. 6. a) Schematic process of the distortion of the cholesteric arrangement of the CNC aqueous suspension as 

the solvent evaporates due to the presence of micelles of C18-L-Glu. b-d) Photographs of the produced solid 

CNC film observed b) with natural light, where the strong white structural colouration can be seen, the same 

reflection of light is seen c) with a LCP polariser, however when the film is viewed with a RCP filter d) a dark 

appearance is observed due to the transmission of light. e) CD and UV-Vis spectra for the CNC film confirming 

the production of a broadband LCP film. Adapted with permission [55]. Copyright 2018, Wiley-VCH. 

 

3.2. Right and Left circularly polarised light response 

The cholesteric solid films produced from CNCs described until now present a CP optical 
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response mechanism similar to the one observed for the cuticle of the C. aurata beetle. 

Exploring this material to produce new photonic structures that mimic the diverse CP optical 

response of C. resplendens is still challenging, however some promising results have been 

obtained. 

In fact, photonic structures, which simultaneously reflect LCP and RCP light have been 

produced from synthetic materials, and more recently from cellulose-based materials. To be 

able to produce materials with such optical characteristics one can develop a system 

composed of an anisotropic layer, which acts as a half wave retardation plate, sandwiched 

between two self-assembled cholesteric liquid crystalline layers with the same handedness, 

similar to the exocuticle of C. resplendens, or prepare the photonic material from cholesteric 

films where both helicity senses coexist, as observed in the case of the P. condensate fruit.  

An interesting example of a synthetic system can be found in the work of Matranga et al. 

[56]. The authors were able to mimic the golden structural colouration of the C. resplendes 

with LCP and RCP light reflection by combining different self-organised and self-aligned 

synthetic liquid crystal polymers, Fig. 7. In a skilful way, they were able to produce a 

freestanding system that consists of layers of UV photo-crosslinked reactive mesogens (RM), 

which present LC phases, coated on the top of each other. Each layer promotes the 

appropriate alignment for the following layer confirmed by the transmittance spectra 

presented in Fig. 7 a. The several spectra depict the evolution of the transmittance along the 

producing process, consisting of a sequence of depositions on a rubbed polyimide layer 

starting with a cured nematic layer, which follows the alignment of the rubbing. Followed by 

a single cholesteric (Ch) layer that aligns wells leading to a good reflector (Fig. 7 a, Ch 

spectrum). Then a deposition of an untwisted nematic layer that acts as a half-wave retarder 

(Fig. 7 a, Ch + HW spectrum), and after that a second cholesteric layer (Fig. 7 a, Ch + HW 

spectrum). The transmittance of this self-aligned system is comparable to the one obtained 
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when two separate Ch layers are joined together (Fig. 7 a, Ch + HW + Ch separate spectrum), 

proving the principle of self-organisation raised by the alignment of the underneath layer. 

The colouration observed from the cuticle of the C. resplendens was remarkable reproduced 

using this process, as can be seen in the photograph presented in Fig. 7 b. However, instead 

of just one cholesteric layer they align two, with different pitch values (of 639 nm and 

562 nm for the first and second layer, respectively). The retardation plate, subsequently 

deposited, was designed to work at a wavelength of 595 nm, and was followed by another 

two cholesteric layers (at 562 nm and 639 nm). In a cross-section SEM image of this 

structure one can observe this multilayer system (Fig. 7 c) [56]. The deposition of cholesteric 

layers with different pitches was the authors’ solution to increase the width of the selective 

reflection band of these layers, and increase the similarity with the beetle reflections. 

However this also leads to an increase of the complexity of the multilayered system. Other 

systems derived from synthetic organic mesogens can be found in the literature where both 

left-handed and right-handed cholesteric arrangements coexist [8, 57]. Nevertheless, these 

systems are greatly dependent on synthetic costly materials. The preparation of these types of 

photonic structures based on natural materials, and specifically on the self-assembly of CNCs 

onto an aqueous liquid crystalline phase, is very attractive due to the affordable sample cost 

and myriad potential applications, such as in anti-counterfeit security systems and optical 

sensors. 
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Fig. 7. Transmittance spectra evolution of the multilayer system of self-organising and self-aligned liquid 

crystal polymers consisting of a sequence of depositions: cured nematic layer onto polyimide rubbed layer, 

followed by a single cholesteric (Ch). Second deposition of a nematic layer that acts as a half-wave retarder 

(HW), and after second cholesteric layer (Ch+Hw+Ch composite), with transmittance comparable to that of two 

separate Ch layers plus a HW layer stacked together (Ch+Hw+Ch separate). b) Reflector obtained from the RM 

polymeric liquid crystals that mimics the C. resplendens structural coloration. c) SEM cross-section image of 

the film shown in b where it is possible to see the two Ch regions (1 and 3, composed by two different 

cholesteric sub-layers of 562 and 639 nm), the half wave retardation layer (2) and the nematic alignment layer 

(4). Adapted with permission [56]. Copyright 2012, Wiley-VCH. 

 

Recently, Wu et al. were able to mimic the optical CP reflection that arises from the 

exocuticle of the C. resplendens beetle with a system based on a composite material 

consisting of two CNCs cholesteric films and a polyethylene glycol diacrylate (PEGDA) film 

sandwiching a uniaxial oriented 25 m polyamide-nylon 6 (PA-6) layer [16]. In this system, 

the authors deposit a layer of CNCs/PEGDA composite suspension on one side of the PA-6 

film allowing the cellulosic composite to self-assemble into a cholesteric structure while the 

solvent slowly evaporates in a control environment. After complete solvent evaporation, the 
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process was repeated on the other side of the PA-6 layer. The obtained cholesteric layers 

were then photo-crosslinked. The resultant flexible structure presents a green metallic 

coloration that could be seen with both left-handed and right-handed circular polarisers, 

analogous to what is described by Kinoshita et al. [2]. The authors succeeded in tuning the 

maximum wavelength reflection of the cholesteric structures from the blue to the red region 

of the visible electromagnetic spectrum, by increasing the quantity of the PEGDA in the 

composite system, from 30 to 60 % (wt./wt.). The same effect was achieved later by Zao et 

al. [42] with the composite system CNCs/polyethylene glycol (PEG). The appearance of the 

material is attributed to the increase of the pitch value of the cholesteric arrangement due to 

the presence of the polymer. Wu et al. were also able to demonstrate that the presence of this 

/2 retarder in this type of device more than doubled the intensity of the reflected light, when 

compared with a bilayer cholesteric film system. 

On another work an iridescent cholesteric CNCs film was impregnated with a nematic liquid 

crystal at room temperature giving rise to a composite material with LCP and RCP light 

reflections (Fig. 8 a,b) [7], being the nematic liquid crystal used the 4-cyano-4′-

pentylbiphenyl (5CB). To obtain such a composite system, the authors took advantage of a 

micro-gap existing between two top cholesteric layers along the cross-section of the CNC 

film, and filled it with a nematic liquid crystal (Fig. 8 c). 

 



 19 

 

Fig. 8. Photographs of the CNC/5CB composite system taken under CP light showing reflection in both a) LCP 

and b) RCP light channels, mimicking the C. Resplendens optical response (silhouette). SEM image of a cross-

section of a CNC film filled with an anisotropic layer of 4CB (2) between two cholesteric layers (1 and 2) with 

different pitch values. Reflection spectra from LCP and RCP channels d) obtained experimentally that are in 

good agreement to what was e) simulated with a 4x4 Berreman´s Matrix for this composite system. The scale 

bars in a-d represent 20 m. Adapted with permission [7]. Copyright 2016, Wiley-VCH  

 

A possible explanation for the observed result is the following: the cellulose matrix induces 

planar alignment on the nematic liquid crystal and this anisotropic layer acts as a /2 wave 

retardation plate. The phase shift due to the nematic LC material was found responsible for 

the RCP reflection optical response. The optical characteristics of the CNC film, namely the 

values of the pitches along the cross section, were tuned in order to fulfil the requirements of 

equation (3). Fig. 8 d,e) shows the reflection spectra obtained with LCP and RCP polarisers, 

with the maximum reflection centred at 518 nm 610 nm, respectively, and with a spectral 

width higher than 140 nm. 

 

4. Manipulation of LCP and RCP light response of CNCs-based photonic films 

In the last composite system referred to above, made from iridescent CNC film with the 5CB, 

and taking into account that the half-wave retarder is a liquid crystal, the authors were able to 
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tune the reflected LCP and RCP light optical response by changing the orientation and the 

birefringence of the nematic LC phase, which were achieved by varying the temperature of 

the system above the nematic to isotropic (N-I) transition temperature, or by applying an 

electric field [7]. The use of temperature was previously employed by Manning et al. in an 

iridescent cholesteric glass, templated from the EISA liquid crystalline CNC suspension, and 

impregnated with the nematic liquid crystal 4’-n-octyl-4-cyanobiphenyl (8CB). In this work, 

the authors were able to control, in an on/off manner, the iridescence of the glass when the 

temperature of the composite was above the LC N-I transition temperature [58]. This result is 

due to the change in the index refraction of the LC phase in the composite system, equation 2, 

giving rise to an increase in the cholesteric pitch value, and in this example, resulting in a loss 

of the macroscopically observed structural colouration. In the CNC/5CB composite the use of 

temperature generates a decrease of the order parameter, ≤S>, and a shift to higher pitch 

values of the reflected wavelength when observed with LCP channel above the N-I transition 

(Fig. 9 a to b) shown in the reflection spectra depicted in Fig. 9 g). Above the 5CB N-I 

transition temperature the composite system transmits light when observed with the RCP 

polariser (Fig. 9 c to d) and a loss of the iridescence is observed, confirmed by the low 

reflectivity value obtained (Fig. 9 h). The schemes presented in Fig. 9 e,f) gives the reader a 

better understanding of the effect of the increase in temperature of the retardation layer, and 

the authors attributed this behaviour to the 5CB planar anchoring on the cellulose matrix [7]. 
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Fig. 9. a-b) LCP and c-d) RCP light reflection microphotographs of CNC/5CB composite system when 

submitted to a temperature rise above the 5CB N-I transition (b,d; T=34.5ºC). Schemes showing the cross-

section of the system with the half wave retardation layer below e) and above f) the N-I temperature transition. 

g) LCP and h) RCP light spectra obtained at the two temperatures. The spectra confirming that that above the N-

I temperature transition of the 5CB the composite system does not reflect the light in the RCP light channel. The 

scale bars in a-d represent 100 m. Adapted with permission [7]. Copyright 2016, Wiley-VCH.  

 

 

When mounted between two conductive indium tin oxide (ITO) coated glasses and 

supplemented with the proper electric contacts, the authors were able to apply an electric 

field and change the birefringence of 5CB. When this stimulus was applied the optical 

response of the second cholesteric layer (below the /2 retarder) was seen, by observation of 

the colour variation from green to red in the LCP (Fig. 10 a- b) channel. If the device is 

observed with the RCP channel while the stimulus is applied the light transmission was 

achieved (Fig. 10 c- d). The optical response of the device is reversible and the change in the 

birefringence of the /2 layer occurs in just a few milliseconds. The cross-section schemes of 

the device in OFF and ON states (Fig. 10 e and f, respectively) presented by the authors, 

suggested that the 5CB will align in the direction of the electric field due to its positive 

dielectric anisotropy. The numerical simulation, by means of a 4x4 Berreman’s Matrix, of the 

reflection spectra when changing the 5CB birefringence while the electric field is applied 

(Fig. 10 g) is in concordance with the experimental results obtained (Fig. 10 h) above a 

threshold value of 0.6 Vm-1 [7]. This work demonstrated that using this system, besides 
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being able to tune the CP optical response, one can also adjust the reflectivity by applying an 

electric field.  

 

 

Fig. 10. a-b) LCP and c-d) RCP light reflection microphotographs of CNC/5CB composite when submitted to 

an electric field (b,d; E=1.5 Vm-1) perpendicular to the 5CB positive dielectric layer. Schemes showing the 

anisotropic layer (/2) e) without and f) with the application of the electric field. Variation of the reflectivity of 

CNC/5CB composite g) in function of the 5CB birefringence simulated by 4x4 Berreman´s Matrix h) in 

function of the applied electric field obtained experimentally for both LCP and RCP light channels. The inset in 

h depicts the electro-optical cell (1- composite system; 2- glass substrate; 3- ITO and alignment layer; 4-electric 

contacts; 5-spacers. The scale bars in a-d represent 20 m. Adapted with permission [7]. Copyright 2016, 

Wiley-VCH. 

 

Having in mind the water-responsive behaviour of the cellulose nanocrystals-based systems 

previous observed by the MacLachlan group [59-61], Wu et al. studied the impact of relative 

humidity on the optical properties of the sandwiched structure of CNC/PEGDA/PA-6 

mention above [16] (schematic diagram of production shown in Fig. 11 a). A remarkable 

bending deformation away from the direction of the applied external stimulus (80 % relative 

humidity at 25 ºC) was noted (Fig. 11 b, initial and intermediate state), which was fully 

restored when the stimulus is removed. Accompanying this asymmetrical expansion, justified 

by the presence of the hydrophobic PA-6 layer between the two cholesteric layers, a change 

in the reflected structural colouration from green to red was observed (Fig. 11 b, intermediate 

state). Taking advantage of this hydrophobic film between the cholesteric layers the authors 

were able to obtain a system with different colouration on each side, as long as the stimulus 
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was applied or even the same colouration on both sides of the structure (if the stimulus is 

applied on both sides) (Fig. 11 b, final state). This sequence of humidity application was 

followed by spectroscopy, and from the experimental reflection spectra (Fig. 11 c) it is 

possible to infer that the swelled states do not present RCP light reflection.  

 

 

Fig. 11. Representation of the multi-step process to produce the hyper-reflective structure of two cholesteric 

CNC/PEGDA layers separated by a uniaxially oriented PA-6 film. b) Water-vapour induced bending 

deformation (upper photographs) and colour change (bottom row) of the system: initial state no stimulus; 

intermediate state with application of humidity on one side of the device; final state with both sides exposed to 

humidity. When the external stimulus is removed the system unbends and the colour and shape change to their 

initial state. c) Reflectance spectra of the sequence depicted in b) where it is noticeable that when the stimulus is 

applied the device does not reflect light on the RCP channels. Reproduced from [16] with permission from the 

Royal Society of Chemistry, Copyright 2016. 

 

According to the author this is due to the fact that the PA-6 layer only acts as a half-wave 

retardation plate at the green region of the spectrum. Although not referred to in the article, 
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one can notice that the application of humidity as an external stimulus led to a dynamic 

control of the CP reflection response of this system, which goes from presenting both LCP 

and RCP light reflection without the stimulus, to just LCP when the stimulus is applied. This 

system is very promising as a moisture photonic sensor. 

 

5. Conclusions 

In recent years a growing interest among the scientific community has been observed on the 

use of cellulose nanocrystals based materials, derived from its self-assembly into cholesteric 

liquid crystalline phases that can be frozen into iridescent solid structures. The optical 

characteristics of the films mimicked several structures found in Nature, namely those in 

some exocuticles of the beetles. A multitude of methods to control and optimize the photonic 

behaviour of the solid film have been reported. Special attention has been given to their 

feature of selective reflection, reflecting LCP light and transmitting RCP light. Some authors 

were even capable of producing broadband reflectors from CNCs films by inducing disorder 

in the cholesteric arrangements (quasinematic structures). However, all of these structures are 

only capable of reflecting LCP light, since the helical sense is ruled by the cholesteric liquid 

crystalline phase derived from the CNCs self-assembly. Nonetheless recently, interest in the 

production of CNC systems/devices that are able to reflect both LCP and RCP light channels 

has been emerging, mainly those mimicking the optical response observed for the bright C. 

resplendens beetle. Also of significance are the studies done so far showing that optical 

response of the iridescent CNCs films, produced by combination of polymer networks and 

LCs, can be controlled by application of an external stimuli. 

These bioinspired materials, with additional functionalities, open the possibility of creating 

devices with tailor-made optical properties. The manipulation of the circularly polarised light 

optical response enables their use in a broader range of precise optical applications. 
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