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Resumo 

A malária é uma doença infecciosa transmitida por mosquitos que continua a ser 

uma das doenças infecciosas mais impactantes do mundo, matando milhares de pessoas 

todos os anos. Apesar de todos os esforços para controlar esta doença, como 

quimioprofilaxia e medidas de controlo de vetores, a falta de conhecimento sobre as 

respostas imunes desencadeadas pelo parasita Plasmodium dificulta o desenvolvimento 

de uma vacina eficaz contra a malária, que é necessária com urgência. 

A natureza assintomática e altamente imunogénica do estadio hepático da infecção 

por Plasmodium torna-o num alvo ideal para o desenvolvimento da vacina contra a 

malária. Prudêncio lab do Instituto de Medicina Molecular (IMM) desenvolveu um novo 

candidato a vacina contra a malária de esporozoito inteiro que tem como alvo o estágio 

hepático, a PbVAC. Na qual o parasita roedor P. berghei expressa a proteína 

circunsporozoítica de superfície do P. falciparum (PfCSP), altamente imunogénica, de 

modo a promover respostas imunitárias específicas para PfCSP, assim como respostas 

cruzadas entre espécies, que podem proteger contra uma infecção subsequente por P. 

falciparum. 

Estudos pré-clínicos em modelos de infecção em murganhos e coelhos mostraram 

que PbVac é capaz de infectar e desenvolver-se em hepatócitos sem estabelecer uma 

infecção no estadio sanguíneo. Para imitar o que acontece no fígado humano, os macacos 

rhesus  (Macaca mulatta) foram usados para um teste pré-clínico de P. berghei wild-type 

(WT) e esporozoítos PbVac geneticamente modificados, como estratégia para induzir 

imunidade contra P. falciparum. Este estudo tem como objetivo investigar e comparar as 

respostas imunes humorais e celulares entre animais imunizados e não imunizados. 

Primeiro, confirmamos que os esporozoítos do PbWT são capazes de infectar 

hepatócitos do macaco rhesus in vivo. Posteriormente, os macacos rhesus foram 

imunizados por picada de mosquito com PbVac ou PbWT e seguidos por 21 semanas, 

em paralelo com animais não imunizados. Células mononucleares do sangue periférico 

(PBMCs) e plama foram coletadas periodicamente e células do fígado e esplenócitos 

foram coletados na eutanásia. Foi realizada uma comparação do plasma pré e pós 3 

imunizações para analisar as respostas humorais quantificando IgGs específicas para 

esporozoítos. As composições dos compartimentos imunes do sangue periférico, fígado 

e baço foram analisadas por imunofenotipagem e respostas imunes celulares específicas 

contra esporozoítos PbVAC, PbWT e Pf foram avaliadas em PBMCs e células hepáticas 

utilizando um ensaio intracelular de citocinas. 

As imunizações foram seguras, sem alterações relevantes nos parâmetros de 

segurança avaliados, e nenhuma infecção relevante foi encontrada. Mostramos que as 

imunizações contra PbWT e PbVac são capazes de provocar uma resposta humoral contra 

o antigénio em macacos. É importante ressaltar que a geração de anticorpos anti-

esporozoítos Pf observados em animais imunizados com PbVac- mas não com PbWT 

indica que a PfCS pode desempenhar um papel significativo nas respostas humorais à 

vacina. 

Quanto ao papel da imunidade celular desencadeada por essas imunizações, nem o 

perfil fenotípico geral, nem a magnitude e especificidade das respostas celulares aos 

agentes de imunização ou a Pf foram significativamente alteradas após a imunização. Em 
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contraste com o que alguns ensaios em humanos relataram, não encontramos expansão 

da população de células T γδ após a imunização. No entanto, encontramos alterações 

fenotípicas nas células linfóides inatas (ILCs), que diminuíram significativamente, e um 

aumento nas células T CD4+ nos PBMCs. 

No geral, os nossos resultados indicam que a imunização com PbVac representa 

uma plataforma de vacinação segura que gera respostas imunes humorais a Pf. 

Manipulação adicional da estratégia de imunização com PbVac, como dose ou modo de 

administração, pode melhorar significativamente as suas respostas imunológicas 

humorais e celulares, contribuindo assim para o desenvolvimento de uma vacina eficiente 

contra a malária. 

 

Palavras-chave: PbVac; vacina; reação de espécies cruzada; immunização; 

imunidade humoral; imunidade celular. 
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Abstract 

Malaria is a mosquito-borne infectious disease that remains one of the most 

impactful infectious diseases globally, killing thousands of people every year.  Despite 

all efforts to control this disease, such as chemoprophylaxis and vector control measures, 

the lack of knowledge about the immune responses triggered by the Plasmodium parasite 

hinders the development of an urgently needed efective malaria vaccine. 

The asymptomatic and highly immunogenic nature of the liver stage of Plasmodium 

infection makes it an ideal target for malaria vaccine development. The Instituto de 

Medicina Molecular (IMM)’s Prudêncio lab has developed a new pre-erythrocytic whole-

sporozoite malaria vaccine candidate, PbVac, in which the rodent P. berghei parasite 

expresses the highly immunogenic P. falciparum surface circumsporozoite protein (PfCS 

in order to promote PfCS-specific and cross-species immune responses that may protect 

against a subsequent P. falciparum infection.  

Pre-clinical studies in mouse and rabbit models of infection have shown that PbVac 

is able to infect and develop in hepatocytes without establishing a blood stage infection. 

In order to mimic what happens in the human liver, rhesus macaques (Macaca mulatta) 

were used for a pre-clinical analysis of P. berghei wild-type (WT) and genetically 

modified PbVac sporozoites, as a strategy to induce immunity to P. falciparum. This 

study aims to investigate and compare the humoral and cellular-associated immune 

responses between immunized and non-immunized animals. 

First, the ability of PbWT sporozoites to infect rhesus macaque hepatocytes in vivo was 

confirmed. Subsequently, rhesus macaques were immunized by mosquito bite with 

PbVAC or PbWT and followed for 21 weeks, in parallel with non-immunized animals. 

Peripheral blood mononuclear cells (PBMCs) and plasma were collected periodically, 

and liver cells and splenocytes were collected at euthanasia. A comparison between 

plasma pre- and post- 3 immunizations was performed to analyze humoral responses 

through quantification of specific IgGs for sporozoites. The compositions of the 

peripheral blood, liver and spleen immune compartments were analyzed by 

immunophenotyping, and specific cellular immune responses against PbVAC, PbWT and 

Pf sporozoites were assessed in PBMCs and liver cells by an intracellular cytokine 

assay.Immunizations were safe, with no relevant changes in the safety parameters 

evaluated, and no breakthrough infections were found. We show that both PbWT and 

PbVac immunizations are capable of eliciting a humoral response against the immunogen 

in monkeys. Importantly, the generation of anti-Pf sporozoites antibodies observed in 

PbVac- but not PbWT-immunized animals indicates that PfCS may play a significant role 

in humoral responses to the vaccine. 

As for the role of cellular immunity elicited by these immunizations, neither the 

overall phenotypic profile nor the magnitude and specificity of cellular responses to the 

immunization agents or to Pf were significanty altered upon immunization. In contrast to 

what some human trials have reported, we found no expansion of the γδ T cell population 

upon immunization. However we found phenotypic changes in innate lymphoid cells 

ILCs, which decreased significantly, and an increase in CD4+ T cells in PBMCs.  

Overall, our results indicate that PbVac immunization represents a safe vaccination 

platform that generates humoral immune responses to Pf.  Additional manipulation of the 
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PbVac immunization strategy, such as dose or mode of administration, may significantly 

enhance its humoral as well as cellular immune responses, thus contributing to the 

development of an efficient malaria vaccine. 

 

Keywords: PbVac; vaccine; cross-species immunization; humoral immunity; 

cellular immunity. 
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Introduction 

1.1. Malaria  

Malaria is one of the most impacting infectious diseases worldwide, especially in 

tropical and subtropical regions of the world. According to estimates from the World 

Health Organization (WHO), 219 million cases of malaria occurred worldwide in 2017, 

compared with 216 million in 2016. Of these cases, 92% were registered in the WHO 

African region. In that same year, 435 000 deaths were estimated from malaria globally, 

and 61% of them occurred in children under 5 years of age1.  

Malaria is a mosquito-borne parasitic disease, caused by a protozoan parasite, 

phylum Apicomplexa and gender Plasmodium (P.) and transmitted through the bite of a 

female Anopheles mosquito2. The species capable of causing infection in humans are: P. 

falciparum, the major responsible for sub-Saharan Africa cases, complicated malaria and 

mortality; P. vivax, the most prevalent in America WHO regions; P. ovale; P. malariae; 

and P. knowlesi, primarily known as a primate parasite, but recently identified in humans 

in Southeast Asia3,4. Other Plasmodium species are able to infect different hosts, such as 

P. berghei and P.yoelii in rodents and P. knowlesi3 and P. simium in non-human 

primates5. Their ability to mimic the human infection renders them important for malaria 

research. 

 

1.1.1 Plasmodium life cycle. 
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The malaria parasite presents a very complex, multistage life cycle involving a 

mosquito and a mammalian host (Fig. 1). After their entry into the host via mosquito bite, 

Plasmodium parasites enter the circulation and reach the liver. The liver stage is 

obligatory, asymptomatic, and induces a strong immune response, thus constituting an 

ideal target for anti-malarial vaccines and prophylactic drug development6.  Parasites 

released into the bloodstream subsequently infect red blood cells (RBC) and massive 

replication occurs, initiating the stage responsible for malaria symptoms and 

transmission.  

Figure 1- Plasmodium spp. Life cycle. (1) An infected female Anopheles mosquito injects sporozoites into 

a mammalian host. This liver-infective parasite forms will travel until reaching the liver. (2) Once in the liver, the 
parasite transverses several hepatocytes until establishing a productive infective in one, where a PV is formed. (3) 

Intense asexual reproduction by schizogony occurs to form thousands of merozoites inside vesicles. (4) These 
merosomes bud off from the hepatocyte and are released into the bloodstream. (5) In the RBC the parasite performs 
successive cycles of invasion, intracellular growth, proliferation and re-invasion. (6) Some parasites are sexually 
committed merozoites, that develop into gametocytes that are able to develop within the mosquito when a new blood 
meal takes place. (7) Inside the vector, the parasite undergoes several transformations, formation of diploid zygotes, 
division and maturation into motile ookinetes, which are able to penetrate the midgut wall and transform into oocysts. 
The sporozoite formation initiates, and the accumulation of thousands of mature sporozoites causes the disruption of 
the oocysts and the release of sporozoites that invade salivary glands. (8) The sporozoites attached to the salivary glands 

are ready to be injected in the dermis of a new mammalian host. 

The Plasmodium life cycle is initiated when an infected mosquito bites the 

mammalian host to take a blood meal and injects hundreds of sporozoites, the liver-

infective forms, into the host’s skin7. Once in the skin, the parasite starts moving 

5 
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randomly, in a gliding motility through the cells and tissues of the host8, to reach the 

blood vessels9,10. Most of these Plasmodium parasites actively target the liver (Fig. 1.1),  

possible due to the recognition and binding of the circumsporozoite protein (CSP), which 

covers the surface of the parasite, to the negatively charged heparan sulphate 

proteoglycans (HSPGs) expressed on the surface of the hepatocytes6. Due to its 

involvement in sporozoite motility as well as hepatocyte invasion and infection, CSP is 

an important target for drugs and prophylaxis in a pre-erythrocytic phase11,12. Once 

sporozoites reach the liver, they circulate freely along the sinusoidal epithelium, and 

transverse endothelial and Kupffer cells and several hepatocytes. Sporozoite protein 

essential for cell traversal (SPECT) and SPECT2 are two sporozoite proteins of 

micronemes identified in rodent parasite models that play a crucial role in cell transversal 

activity and liver infection13.  

After migrating through several hepatocytes, the sporozoite establishes a productive 

infection in one14, where a  parasitophorous vacuole (PV) is formed (Fig. 1.2),  and 

asexual reproduction (schizogony) and maturation takes place (Fig. 1.3). Three rodent PV 

proteins, Upregulated in infective sporozoites (UIS)3, UIS4 and Pb36p, have been 

identified as being essential for parasite liver stage development within the PV6,12.  The 

end of the exoerythrocytic phase is marked by the formation of thousands of merozoites 

that are released into the bloodstream inside vesicles, termed merosomes, derived from 

the host cell to deceive the immune system (Fig. 1.4)15. This exoerythrocytic stage is 

characteristic of each species and takes a minimum of 6 days in case of infection by P. 

falciparum and until a maximum of 16 days for P. malariae 2, and only 2 days for the 

rodent-infective parasites (P. berghei and P.yoelii)16 

Merozoites have the capacity to infect RBCs and perform successive cycles of 

invasion, intracellular growth, proliferation and re-invasion. The invasion step occurs 

quickly and involves multiple recognitions and interactions17, from connection of the 

merozoite to the RBC to its reorientation, which are mediated by the large merozoite 

surface protein (MSP) and the apical membrane antigen 1 (AMA-1), respectively. Then, 

merozoite penetration occurs by different parasite transmembrane protein families and at 

the same time a parasitophorous vacuole membrane (PVM) is formed with its own plasma 

membrane17,18. 
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The initial form of the erythrocytic cycle is the ring stage, when the parasite begins 

to feed on the surrounding RBC19, and develops to trophozoite stage, when the synthesis 

of molecules needed for cell division occurs20,21. During this stage, P. falciparum-infected 

RBC have the capacity to adhere to the endothelium of capillaries and venules and to non-

infected RBC22. This sequestration is suggested to be a parasite defence mechanism to 

avoid splenic depuration and can lead to serious problems, such as cerebral malaria23. 

Lastly, a replicative intra-erythrocytic plasmodium stage, termed schizont, leads to the 

formation of around 16 nuclei that constitute a merozoite. The rupture of the PV and RBC 

membranes allows the merozoites to be released into the bloodstream and enables them 

to invade a new RBC and restart the intra-erythrocytic cycle (Fig. 1.5)20. The erythrocyte 

burst and parasites release is the cause of fever spikes that differ in the number of days 

according the infective species. For example, P. falciparum peaks occur every third day24.  

Parasites can also develop into sexual stages, named gametocytes. These are a sexually 

committed merozoites that invade the RBC following the ring stage and subsequently 

grow and develop over five stages until becoming sexually differentiated gametocytes25. 

Only mature sexual stages are able to survive and continue the Plasmodium life cycle in 

the mosquito host, known as the sporogonic cycle, upon the blood meal of a female 

anopheles (Fig. 2.6)26. Ingestion of gametocytes stimulates gametogenesis that starts with 

gametes formation and transformation into fertile female macrogametes and male 

microgametes. Microgamete exflagellation initiates the fertilization process, which  

includes fusion of the two gametes27. Fertilization gives rise to a zygote, and meiosis and 

genetic recombination transform the zygote into a motile ookinete able to penetrate and 

attach in the midgut wall and develop into oocysts, where occur the CSP formation. Once 

the oocyst is full of mature sporozoites, it ruptures and release sporozoites into the 

haemolymph circulation to reach and attach in the salivary glands (Fig. 1.7). At this point, 

the parasites are infectious and able to be inoculated in the skin of the next mammalian 

host and reinitiate the cycle (Fig. 1.8)12. 

 

1.1.2. Clinical presentation and treatment 

Malaria may have different clinical presentations, since absence of symptoms or 

very mild symptoms, to severe disease or even death. Therefore, malaria disease is 
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classified as uncomplicated or severe, and its severity may be dependent of the infecting 

species and on the host’s immune status28. 

The gold-standard diagnosis of malaria are  rapid diagnostic tests (RDT), which 

detect parasite antigens in the blood, or microscopy, that allows the quantification and 

identification of Plasmodium Spp. 29. 

The initial symptom of the disease is usually fever due the merozoite bursting 

during RBC reinfection cycle and can appear 7 days after the infection30. Other symptoms 

include chills, sweats, headaches, nausea and vomiting, mild jaundice, body aches and 

general malaise, which can be confused with many other diseases, principally in non-

endemic countries30,31. The progress of the symptoms is normally quick and, according 

to WHO, patients with one or more established clinical or laboratory features are 

considered to have severe malaria, and therefore treated as such30. Severe malaria has 

quite an extensive list of manifestations, the most common being cerebral malaria (CM), 

caused by sequestration of trophozoite-infected RBC into the blood vessels, and severe 

anaemia, due to the destruction of RBCs. Other clinical manifestations include coma, 

neurologic abnormalities, haemoglobinuria, acute respiratory distress syndrome (ARDS), 

blood coagulation abnormalities, low blood pressure, acute kidney injury and 

hyperparasitemia (more than 5% of RBCs infected by malaria parasites), metabolic 

acidosis, hypoglycaemia and death31.  

The WHO provides some guidelines for malaria control relative to vector control 

trough the indoor residual spraying (IRS) and sleeping under insecticide treated bed-nets 

(ITN), and chemoprevention in pregnant women, children and travellers from non-

endemic countries. However, an effective malaria vaccine would be most efficient way 

to control this infectious disease.1 

Despite the significant work done towards reducing the burden of malaria, with 

much progress made, millions of malaria cases occur every year worldwide and need to 

be treated to prevent the progression of the disease, transmission and the resistance of 

antimalarial drugs1. According to WHO guidelines, artemisinin-based combination 

therapy (ACT) is the best treatment for P. falciparum infection in adults and children. 

ACT combines a rapidly active artemisinin derivative, that rapidly clears the major 

parasites of the blood, with a longer-acting compound, that clears the remaining parasite 
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and protects against development of artemisinin resistance forms. For the treatment of 

uncomplicated malaria caused by the remaining species, the recommended treatment is 

ACT or chloroquine, depending on the resistance profile of the area.  P. ovale and P. 

vivax infection have the particularity to form dormant liver stage forms and relapse 

following the cure of the primary infection. Some sporozoites do not initiate their 

development in hepatocytes at the same time and remain quiescent in the liver for long 

periods (a form known as hypnozoites), eventually developing and causing recurrent 

infection32.To prevent P. vivax and P. ovale relapses, the treatment is accompanied with 

primaquine. For severe malaria, the treatment is intravenous or intramuscular artesunate 

for at least 24h, and when the patient can tolerate oral therapy, switches to ACT 

treatment29. 

 

1.2. Malaria Immunology 

1.2.1. Basic concepts in immunology 

Immunology is the branch of biology that studies the immune system, including 

host defence against external and internal aggressions, elimination of pathological 

microbes and toxic or allergenic proteins and discrimination between self and nonself33. 

The immune system is composed of molecules and cells and essentially involves two 

components, the innate and the adaptative immune system. The innate immune system, 

although not pathogen-specific, constitutes the first line of defence against external insults 

and is characterized by a very quick response (minutes to hours). The adaptative immune 

system comprises a slow response, that can take days or longer, and forms immunological 

memory, in order to develop a specific and faster response against reinfection by the same 

pathogen34.  

The innate immune system includes physical barriers, defence mechanisms and 

general immune responses that aim to keep pathogens and foreign particles out of the 

body and are activated by the presence of antigens. Among the main functions of the 

innate system are the discrimination between self and nonself, recruitment of immune 

cells to the site of infection by producing chemical mediators, promoting the elimination 

of dead cells or antibody complexes, identification and removal of foreign elements by 

specialized white blood cells and activation of the adaptive immune system through 
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antigen presentation35. Some cells that are part of the innate immune system are 

phagocytic cells, including dendritic cells, as well as natural killer (NK) cells and natural 

killer T (NKT) cells. Pathogens are recognized by conserved molecular structures known 

as pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors 

(PRRs), which are expressed on innate immune cells35. 

Monocytes, macrophages and dendritic cells (DCs) are phagocytic cells, which can 

function to ingest and eliminate pathogens and apoptotic cells, as well as to present 

antigen (antigen-presenting cells, APC), leading to T cell activation and cytokine 

production36. They express human leukocyte antigen DR (HLA-DR), a major 

histocompatible complex (MHC) class II cell surface receptor, to present peptide antigens 

from extracellular proteins. In humans, monocytes express CD14 (“classical” 

monocytes), a lipopolysaccharide (LPS)-binding protein, which functions as an endotoxin 

receptor anchored to the cell surface, and can express the Fcγ receptor III (FcγRIII or 

CD16; “non-classical” monocytes)37,38. Immature dendritic cells reside in the peripheral 

tissues and, upon antigen encounter, migrate to primary and secondary lymphoid organs 

to present antigens to naïve T cells.  This is mainly performed by myeloid DCs (mDCs), 

which express CD11c (integrin alpha X), a transmembrane protein that induces cellular 

activation. Another type of DCs, the plasmacytoid DCs (pDCs), are also known as natural 

type-I-interferon-producing cells and express interleukin-3 receptor (CD123)39. 

Innate lymphoid cells (ILCs) are a recently discovered immune population that 

presents a quick response to infection and secrete inflammation mediators similarly to T 

lymphocytes. This type of cells don’t express antigen receptors and can be divided based 

on the cytokines that they can produce, and the transcription factors that regulate their 

development and function40. ILCs are usually defined by the absence of lineage markers, 

as well as the expression of the leucocyte common antigen CD45 and of the interleukin-

7 receptor subunit alpha (CD127)41.  

NK cells, which are classified as group 1 ILCs, mature in the bone marrow and in 

secondary lymphoid organs and are essential for the innate immune response, since they 

recognize infected cells bearing low levels of of MHC. NK cells can directly lyse infected 

cells or can produce inflammatory cytokines and mediate regulatory functions of other 

https://www.sciencedirect.com/topics/medicine-and-dentistry/lymphoid-organ
https://www.sciencedirect.com/topics/medicine-and-dentistry/t-cell
https://en.wikipedia.org/wiki/Cluster_of_differentiation
https://en.wikipedia.org/wiki/Cytokines
https://en.wikipedia.org/wiki/Transcription_factor
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cell types42. In rhesus monkey NK cells present CD16 on their surface, which 

mediates antibody-dependent cellular cytotoxicity (ADCC) 37.  

NKT cells are an immune cell population that compise features of both NK and T 

cells, which express an invariant  T cell receptor  (TCRβ)  and recognize lipid 

antigens. This type of cells bridges the innate and the adaptive immune responses through 

secretion of large amounts of pre-formed cytokines upon activation, leading to 

downstream recruitment and activation of DCs, NK, CD4+ and CD8+ T cells43,37. 

Professional APCs presenting peptides through their MHC class I or II promote 

antigen recognition by the TCR and lead to proliferation, maturation and 

differentiation of naïve CD8+ or CD4+ T (TN) cells, respectively, into memory cells44. 

Memory cells can recirculate through lymphoid (central memory cells, T CM) or non-

lympoid (effector memory cells, T EM) tissues, or they may reside in tissues and monitor 

perturbations in homeostasis, such as infection (tissue-resident memory T cells, TRM)45. 

Naïve and memory cells can be broadly identified by the expression of chemokine 

receptor 7 (CCR7) and CD95  the apoptosis antigen 1 or  Fas, respectively46. TRM express 

the early activation marker CD69 and produce pro-inflammatory cytokines such as 

interferon-γ (IFN-γ), tumor necrosis factor- (TNF-) and interleukin 2 (IL-2) upon 

reactivation45.  

Upon activation, CD8 T cells differentiate into cytotoxic T cells, which kill infected 

cells47,48. CD4 T cells may develop into distinct sub-populations that are key mediators 

of the immune response, such as: helper T (Th) cells, regulatory T cells (Treg), follicular 

helper T cells (Tfh) or follicular regulatory T cells (Tfr). Each CD4+ Th subset releases 

specific cytokines that can have either pro- or anti-inflammatory functions, survival or 

protective functions. For example, Th1 cells produce IFN-γ, TNF- and IL-2, while TH2 

cells produce IL-4, IL-5 and IL-1349. Treg supress proliferation of other lymphocytes and 

thus modulate immune homeostasis, including autoimmune reactions and chronic 

infections. They are characterized by high IL-2 receptor α-chain (CD25) and CD127 

expression, and rely on IL-2 generated by T cells during an immune response to perform 

their immune regulatory functions50,51. Tfh express the chemokine receptor type 

5 (CXCR5),  which enables them to migrate to lymphoid follicles, but not CD2552, and 

provide help to B cells53. They are essential for germinal centre formation and for 

https://en.wikipedia.org/wiki/Antibody-dependent_cell-mediated_cytotoxicity
https://www.sciencedirect.com/topics/immunology-and-microbiology/il-2-receptor
https://www.sciencedirect.com/topics/medicine-and-dentistry/alpha-chain
https://www.sciencedirect.com/topics/medicine-and-dentistry/t-cell
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antibody affinity maturation and isotype switching, and thus for the generation of high 

affinity antibodies involved in protective immunity against pathogens53. Tfr share 

characteristics with Tfh and Treg cells and participate in the regulation of GC reactions54. 

CD8+ follicular cytotoxic T cells (Tfc) constitute a CXCR5+ cytotoxic subpopulation 

located in, or proximal to B cell follicles in secondary lymphoid tissues that have been 

associated with elimination of virus-infected B cells and regulation of antibody 

responses55. 

A small but important subset of unconventional T cells expresses TCRγδ instead 

of TCR. These so called γδ T cells respond to a variety of microbial pathogens and 

transformed/tumor cells in an MHC-independent manner, acting directly through their 

cytotoxic activity or indirectly through cytokine production56.  

Humoral immunity concerns the protection of extracellular spaces, which includes 

the  antibody-mediated neutralization or opsonization of microbial molecules as well as  

the triggering of complement system activation57. Antibodies (or immunoglobulins, Ig) 

are produced by B cells, a type of lymphocyte that matures in the bone marrow and is 

activated in secondary lymphoid tissues. Once activated, naïve B cells form germinal 

centers where they proliferate, differentiate and undergo class-switch recombination, 

somatic hypermutation and affinity maturation in order to differentiate into antibody-

producing plasma B cells and memory B cells58,59. Memory B cells recirculate through 

the body as resting lymphocytes until reactivation, in which case they develop a faster, 

stronger and more specific response to the antigen. B cells are generally identified by the 

B-lymphocyte antigen CD20, and naïve B cells feature membrane-bound IgD as well as 

CD21, the complement receptor type 2. Memory B cells can be identified by the 

expression of CD27, a member of the tumor necrosis factor (TNF) receptor that plays a 

key role in regulation and activation of B cells and contributes to immunoglobulin 

synthesis, and subdivided in terms of Ig expression into non-switched or switched 

(expressing IgG, IgA, or IgE) memory B cells58.  

 

https://en.wikipedia.org/wiki/Antibody
https://en.wikipedia.org/wiki/Germinal_center
https://en.wikipedia.org/wiki/Germinal_center
https://en.wikipedia.org/wiki/Tumor_necrosis_factor_receptor
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1.2.2. Immunology in malaria infection 

Liver stage infection 

Innate immunity plays a critical role against the malaria pathogen, being the host's 

first line of defence. Studies in mice reveal that the innate immune response to 

Plasmodium developed at this stage is mediated by interferon type I (group of structurally 

similar cytokines including IFNα and IFNß) and type II (composed only by IFNγ, 

produced by activated lymphocytes)60,61.  Plasmodium is known to induce a potent 

response mediated by IFN- γ whose main functions can influence destruction 

of Plasmodium-infected cells due to increasing cytotoxicity of CD8+ T cells, induction 

of B cells to produce cytophilic antibodies and enhancing phagocytic functions of 

immune cells such as macrophages62The IFN-mediated host resistance to reinfection 

explains the fact that in regions of malaria hyperendemicity, where people face regular 

and repeated reinfections, many of them do not translate into disease63.Type-I interferon 

acts paracrinally to recruit lymphocytes to the liver, such as CD8+ cells, NKT and NK 

cells, and they are often found surrounding the infected hepatocytes64. NKT and NK are 

responsible for initiating cell-mediated immunity64. NKT cells contribute to avoid the 

parasite development in hepatocytes, NK control the parasite burden trough IFN-γ 

production, and CD8+ produce IFN-γ to limit parasite growth.64 The role of NKT 

population in malaria infection was demonstrated by the inhibition of liver stage parasite 

development in mice that were administerated with α-galactosylceramide (α-GalCer), a 

glycolipid known to activate CD1d-restricted NKT cells, and infected with Plasmodium 

sporozoites. This inhibition was shown to be mediated through IFN-γ produced by the α-

GalCer-activated NKT cells65. 

When the malarial antigens are presented to CD8+ or CD4+ T cells, CD8+ T cells 

induce the death of the infected hepatocyte via a perforin/granzyme B- or Fas-dependent 

mechanism66. In the mouse model, activated/memory T cells are important for protective 

immunity since in the short time the parasite is in the liver naïve CD8+ T cell proliferation 

and generation of effector functions is limited67. In humans, however, naïve parasite-

specific T cells could contribute to the anti-parasite immune response, since they have 

sufficient time to be primed, expand and acquire effector functions68. Naïve CD8+ T cells 

will differentiate into short-lived effectors or memory precursor effector cells depending 

on several aspects, such as localization and transcription factors expressed by the cell. 
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The latter produce less effector proteins and can be observed throughout and after the 

infection and will develop into true memory T cells that provide long-term protection 

against their cognate antigen and rapidly gain effector functions upon reencounter69. 

TRM  in malaria infection reside and patrol especially in the liver sinusoids and act as 

guards against pathogens and are poised to respond to an immediate threat70. After P. 

falciparum sporozoite immunization suppressing hepatic infection but also recruiting 

other effector cells to the liver71 This type of  cells express increased amounts of the 

effector molecules granzyme B, IFN-γ, and TNF-α, and despite their high importance in 

the liver, especially CD8+ TRM cells, they are also present in the spleen after sporozoite 

vaccination70.  

γδ T cells are one of the populations in the first line of defence against malaria 

infection capable of stimulating or suppressing immune responses to Plasmodium 

infection by inducing different immune cells. Their functions involve stimulation or 

repression of immune responses through distinct natural or induced cell subsets and help 

control primary Plasmodium infections in humans through the production of various 

immune mediators, such as IFN-γ, TNF- or granzyme B. In humans this population 

appears to expand during acute, primary malaria infections and contract upon each 

reinfection, which may indeed help to control clinical malaria in endemic regions after 

several reinfections. It is hypothesized that this may be due to the decrease in the major 

γδ T cell subfamily, Vγ9Vδ2, with age and since in endemic regions most humans have 

been exposed to Plasmodium infection since childhood. Importantly, the severity of the 

primary disease increases with age, which may be due to the natural increase in γδ T 

cells72. It has also been suggested from vaccination experiments that γδ T cell depletion 

in mice prevents DC influx into the liver and prevents the existence of an effective CD8+ 

T cell response and consequent immunity to challenge however if this depletion occurs 

just prior to challenge there is no decrease in protection, suggesting the importance of 

  cells in facilitating the immune response in the CD8+ T cell-mediated liver phase.72 

Experiments with γδ T cell-deficient C57BL/6 mice showed increased liver parasite (P. 

yoelii) burden, suggesting their contribution in the inhibition of the early intrahepatic 

parasite development73. On the other hand, γδ T cell-deficient C57BL/6 mice were 

reported not to develop experimental cerebral malaria upon infection with PbANKA, a 
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widely used model for cerebral malaria research, and this was likely due to the decrease 

in IFN- levels74. 

The role of antibodies produced by B cells is reflected from the moment that the 

sporozoites penetrate the skin. They are fit to inhibit sporozoite motility in both dermis 

and liver, improve phagocytosis in the spleen or liver by monocytes or macrophages, 

prevent connection between sporozoite ligand and hepatocyte receptor, and inhibit the 

development of the parasite inside the hepatocyte75. Antibodies can detect infected 

hepatocytes through specific proteins expressed on their surface and induce liver parasite 

killing 75. Helper CD4 T cells help to stimulate the production of high levels of antibodies 

during natural infection75. 

Blood stage infection 

Parasitized erythrocytes do not present parasite antigens by MHC expression. 

Instead, parasites express antigens at the surface of iRBC erythrocytes and are indirectly 

target by CD4+ helper T cells and possibly γδ T cells that may orchestrate secreted 

antibody responses72,76,75. Parasite-specific antibodies potentially function to block 

merozoite invasion of RBCs, opsonize parasitized RBCs to enhance their phagocytosis 

and to target merozoites and infected RBCs for antibody-dependent cellular 

cytotoxicity72,76,75.  

CD8+ T cells play a less relevant role in blood-stage immunity, probably owing to 

the lack of MHC class I on erythrocytes, and there is no evidence that this population can 

inhibit blood-stage infection75. Despite its limited role at this phase, CD8+ T cells’ 

response against Plasmodium erythrocytic stage antigens are primed primarily in the 

spleen, and according to mice studies, are involved in the pathogenesis of cerebral 

malaria72. This role is mediated directly by perforin and granzyme B and indirectly by the 

accumulation of parasitized RBC in the brain driven by IFN-γ72. Targeting of CD8+ T 

cells in an antigen-specific manner in cerebrovascular endothelial cells it is associated to 

blood–brain barrier dysfunction, subsequent vascular leakage and neuronal death72. 
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1.3. Malaria vaccines 

Vaccines are used to generate immunity against disease. They can contain the entire 

agent of the disease, attenuated or killed, or its toxins or surface proteins. The vaccine 

will promote the recognition of the antigen as foreign by the immune system and the 

generation of memory immune responses, for an easier and faster recognition and 

destruction of the pathogen upon a reencounter77.  

 

1.3.1. Overview of malaria vaccines 

Vaccination is the most effective method to prevent infectious diseases, and the 

necessity of an efficient vaccine to control malaria is consensual. The complexity of the 

malaria parasite makes the creation of a vaccine a very complicated process. Despite all 

the efforts, there is no licenced antimalarial vaccine against the human-infective 

Plasmodium parasites78.  

Plasmodium’s complex life cycle allows the development of vaccines targeting 

different stages79, such as: transmission-blocking vaccines (MSTBV) targeting the sexual 

stages, that impact on the parasite’s life cycle in the mosquito vector aiming to prevent 

sporozoite development and onward transmission; pre-erythrocytic vaccines (PEV), 

inhibiting sporozoites infection, killing infected hepatocytes or inhibiting merozoites 

invasion; blood-stage vaccines (BSV), preventing RBC-mediated pathology and 

combined vaccines80. Most vaccines under pre-clinical or clinical development are for P. 

falciparum infection, but there are some liver stage vaccines in clinical trials for P. vivax 

infection79. Malaria vaccines can also be divided in whole sporozoite or subunit vaccines. 

Subunit vaccines consist in the delivery of a specific parasite antigen, normally with the 

use of an adjuvant to elicit immune protection against the parasite81.  

RTS,S/AS01 is the most advanced subunit malaria vaccine candidate to date. It uses 

PfCSP fused with hepatitis B surface antigen (HBsAg). It is a PEV malaria vaccine that 

aims to prevent liver invasion or development of malaria parasites in the liver82. This 

vaccine shows 36% reduction in number of infections in children aged 5–17 months who 

receive three doses of the vaccine and then a booster at 20 months of age83. Therefore in 

2016 WHO created a Malaria Vaccine Implementation Programme (MVIP) to introduce 



 

17 

 

 

this vaccine in three pilot countries (Ghana, Kenya and Malawi) and evaluate its impact 

and safety. After all this process, including evaluations and ethics approval, the vaccine, 

with the trade name Mosquirix, will be introduced in these three countries84.  

 

1.3.2. Whole organism pre-erythrocytic malaria vaccines 

The liver stage is an ideal target for malaria vaccination and have shown the best 

results in antimalarial vaccines development. This stage is asymptomatic, present a low 

number of parasites, and it’s metabolically and immunologically very active15. Whole 

organism vaccines consist in administering the entire organism, in this case the liver- 

infective form, sporozoites, to induce sterile immunity to the same species or a related 

specie85. The main whole sporozoite liver stage vaccines approaches are radiation-

attenuated sporozoites (RAS), genetically attenuated sporozoites (GAS) and chloroquine 

sensitive sporozoites86.  

RAS causes a damage in the parasite DNA that blocks sporozoite replication87. The 

strategy of attenuating sporozoites by radiation as a malaria vaccine began when it was 

shown that it successfully elicited protection in mice against P. berghei through repeated 

intravenous injection or mosquito bite of X-irradiated sporozoites of the same species. 

Thereafter, in the 70's, the first clinical studies that showed that it is possible to achieve 

sterile immunity against P. falciparum and P. vivax with X-ray-attenuated sporozoites 

administrated by infected mosquito bites were performed. However, a very large number 

of mosquitoes was required to inoculate enough sporozoites to elicit protection, what was 

considered unsuitable for many years88,89.  

Hoffman et al. introduced a new concept of malaria vaccination consisting of 

immunization with gamma-attenuated sporozoites. The optimal radiation of sporozoite 

exposure was identified as 15.000 rad, with lower radiation being associated with 

breakthrough infections, and higher radiation with an over-attenuation of sporozoites. 

Protection was conferred with more than 1000 mosquito bites and lasted 9 weeks after 

last exposure against a primary controlled human malaria infection (CHMI) with P. 

falciparum and after rechallenge for at least 23–42 weeks90. To overcome the large 

number of mosquito bites involved, different administration routes were tested. The 

administration of aseptic, purified, cryopreserved whole-parasite malaria vaccine, termed 
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PfSPZ (P. falciparum sporozoite), was performed intradermally (id) in the forearm or 

subcutaneously (sc) in the upper arm to optimize the immunogenicity and protective 

efficacy of the method. In a dose-escalation study 7500, 30000 or 135000 PfSPZ were 

administered in 4 or 6 doses, but only in  2 out of 80 volunteers revealed protection when 

challenged and all the immune response levels were low showing that the 

immunogenicity and protective efficacy of the vaccine were suboptimal, probably related 

to the administration route. Studies carried out in rhesus monkey led to a new clinical 

study with intravenous injection (iv) immunization to improve immunity and protection91. 

Another study in human volunteers showed the importance of the number of sporozoites, 

dose per volunteer and route of administration for an efficient malaria vaccine92. In this 

study lower immunization doses failed to establish a significant level of protection, while 

higher immunization doses showed efficient protection in of 6 out of 9 of the subjects of 

the 4-dose group and all of the volunteers of the 5-dose group92. In a recent clinical trial, 

three administrations of 900000 PfSPZ conferred protection  in 9 out of 14 volunteers 

against homologous CHMI93. Six of these 9 protected volunteers proceeded to a second 

CHMI with an heterologous parasite, and 5 of them remained without parasitaemia 33 

weeks after the last immunization. In all the volunteers PfSPZ-specific antibodies and T-

cell responses were detected93.  

Recently, malaria vaccine candidates have been developed based on GAS, 

generated by removing some strategic genes upregulated in sporozoites and essential in 

the liver stage of the parasite94,95. However, some safety problems were reported for this 

approach. For example, the first human clinical trial with P. falciparum (genetically 

attenuated parasite) GAP PfΔp52Δp36,generated by depletion of p52 and p36 (involved 

in the formation of the parasitophorous vacuole membrane) and administered by 

mosquito bite, had to be interrupted because of breakthrough infections in one volunteer 

during immunization96. This led to the creation of a triple gene deleted parasite by 

additionally removing the sap1 gene (Pf p52−/p36−/sap1−GAP), a cytoplasmic protein 

involved in regulating RNA stability and sporozoite gene expression. This triple knock 

out (KO) sporozoites are viable, infectious, don’t develop completely in the liver stage 

and don’t transit to blood stage infection97. 

Other GAS vaccine candidates, PbΔb9Δslarp and the orthologue with equivalent 

Pf genes, have a depletion of two critical genes in the liver stage development identified 
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in P. berghei. B9 gene also belongs to 6-Cys family of Plasmodium, like p35 and p52, 

and SLARP/sap1 gene. The safety and efficacy evaluation of this GAS showed no 

breakthrough infections in P. berghei, and the human PbΔb9Δslarp parasite was able to 

infect human hepatocytes in vitro as well humanized mice without developing, thus 

providing support for clinical development of a PfΔb9Δslarp PfSPZ vaccine95.  

Chloroquine sensitive sporozoites are another approach to achieve an efficient 

whole sporozoite pre-erythrocytic malaria vaccine. Chloroquine chemoprophylaxis 

with Pf sporozoites (CPS) consists in inoculating Plasmodium sporozoites while a 

treatment regimen is administered to which the parasite is susceptible. Chloroquine 

allows the development of the parasite in the liver, but kills the parasite's sexual forms 

when they are released into the bloodstream98. Pre-clinical evaluation has shown that this 

kind of immunization exposes the host to antigens from liver and blood stages of 

infection, and immunity against both stages was reported in a clinical trial99. Ten 

volunteers were exposed to Pf mosquito bite once a month for 3 months while receiving 

chloroquine prophylaxis. One month after the discontinuation of chloroquine, the 

volunteers were challenged with five mosquitoes of homologous Pf, and all 10 volunteers 

were protected99. Recent studies have shown that the CPS protocol didn’t induce sterile 

protection against the erythrocytic Pf stages, demonstrated upon blood stage challenge. 

This strategy, although efficient, is difficult to implement due to prophylaxis routine ant 

the use of live and non-attenuated infected mosquitoes, but encourages a continued 

development of an effective preerythrocytic malaria vaccine98. 

 

1.3.3. PbVac vaccine 

IMM’s Prudêncio Lab proposed a new vaccination platform against human malaria, 

PbVac, in which the rodent parasite, P. berghei, expresses human Pf antigens as a safe, 

“naturally attenuated”, whole-sporozoite (Wsp) vaccine. PfCSP insertion into Pb is 

expected to generate humoral immunity against Pf, as well as cross species cellular 

immune responses, which may protect against a subsequent Pf infection. The candidate 

antigen was transfected to its delivery platform using ‘gene insertion/marker out’ (GIMO) 

methods of transfection.The gene encoding PfCS was inserted into the neutral 230p locus 

of the Pb genome under the control of the 5′-and 3′ regulatory sequences of Pb’s uis4 
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gene (Fig. 2), which is expressed exclusively in sporozoites and developing liver stages. 

The GIMO transfection method employed ensures the stable insertion of the gene 

encoding the heterologous PfCS and flanking regions in the Pb genome, resulting in a 

drug-selectable marker-free transgenic parasite. Genotyping of PbVac showed correct 

integration of the PfCS expression”100.  

 

 

Figure 2- Generation of PbVac. Schematic representation of the transgenic line PbVac line (Pb(PfCS@UIS4) 

where the GIMO 199 insertion-construct (pL1988) replaces the selectable marker (SM; hdhfr::yfcu) in the GIMO 200 
PbANKA mother line with the PfCS coding sequence (CDS) after negative selection using 5- 201 fluorocytosine (5-
FC). Construct pL1988 integrates by double cross-over homologous 202 recombination (DXO) using 5’ and 3’ 
targeting sequences (TR) for the neutral 230p locus, resulting 203 in the introduction of the PfCS CDS under the 
control of the PbUIS4 gene promoter (5’-UTR) and 204 Pbuis4 transcriptional terminator sequence (3’- UTR) and 
removal of the SM. Black arrows: 205 location of primers used for diagnostic PCR; 2018, Mendes M. A., A Plasmodium 
berghei Sporozoite-Based Vaccination Platform Against  Human Malaria 

This genetically modified WSp vaccine can infect human hepatocytes but cannot 

continue to a blood stage infection, degenerating into unviable cryptic forms, which 

means that it may be non-pathogenic to humans. This evidence was further supported by 

studies in human hepatocytes cell lines, in liver and blood humanized mice and in New 

Zealand White (NZW) rabbits100. The PbVac parasite has been shown to display similar 

fitness to the wild type Pb parasite in terms of sporogonic development; formation of 

oocysts in the mosquito mid gut and of sporozoites in salivary glands; yield of exo-

erythrocytic forms (EEFs); and hepatic load in infected mice and a higher human 

hepatocyte infectivity than Pf sporozoites in vivo100.  

Studies in NZW rabbits have shown that PbVac is not able to develop a blood stage 

infection, and that 10 days after administration the parasite has been eliminated from the 

liver and all the organs101. Notwithstanding this, as a safety measure, the capacity of 

Malarone® to eliminate hepatic PbVac parasites, and Malarone® and Coartem® to 

eliminate PbVac blood stage parasitemia from infected mice has been confirmed. In 
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addition, toxicological and humoral responses have been assessed in rabbits immunized 

5 times via bite of 75 PbVac-infected Anopheles stephensi mosquitoes per administration. 

This study has shown that PbVac administration can trigger increased IgG titers anti-

PfCS and anti-PbCS101. 

All these studies demonstrated the safety and immunogenicity of PbVac vaccine 

candidate, prompting its evaluation in non-human primates and subsequently in a Phase 

I/IIa clinical trial101.  

 

1.3.4. Immune response against vaccines 

The complexity of the Plasmodium life cycle allows the conception of malaria 

vaccines that target different stages, and which may promote immunity by recognizing 

the parasite as a whole or of specific proteins. For blood-stage and transmission-blocking 

vaccine candidates immunity is mostly mediated by antibodies, whereas for pre-

erythrocytic vaccines the type of immunity generated can vary, and involve both 

antibodies and CD4 T cells, such as in RTSs 102, as well as other T cells (CD8+, CD4+ 

and γδ T cells) such as in PfSPZ102.  

Liver-stage vaccine candidates aim to prevent the progression of the parasite’s life 

cycle to the blood stage through induction of potent liver-stage immune responses. This 

protective immunity is largely mediated by CD8+ T cells due to their robust parasite-

induced responses and their capacity to eliminate the parasite. In rodents, CD8+ T cell 

responses were shown to be an efficient anti-parasite mechanism that eliminates malaria 

liver stages103 and the depletion of IFN-γ or CD8+ T cells blocked RAS-mediated sterile 

immunity104.  

Protection mechanisms behind RAS protection starts with antibodies that aim to 

inhibit sporozoites from reaching the liver and infecting hepatocytes, and the efficacy of 

this humoral response depends on the anti-sporozoite antibody titers105. Injected 

sporozoites when entering in the lymph nodes are presented by DC to prime specific 

CD8+ T cells that migrate to the liver and aim to eliminate the parasites and generate 

immunity105. CD4+ T cells can contribute positively to the proliferation and survival of 

CD8+ T cells, or with IFN-γ production, aiming to increase this response and its 
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durability105. Some of the circulating CD8+ memory T cells migrate to the liver, where 

they become tissue resident memory T cells106. CD8+ T cells surround these hepatocytes 

in order to eliminate them by IFN- production or through direct contact by cytolytic 

perforin and granzyme release106. Moreover, CD8+ T cells can induce RAS-protective 

immunity through the role of interleukins, nitric oxide (NO), and NK cells106. Iv PfSPZ 

vaccination was shown to increase the levels of CD8+ T cells that produced effector 

cytokine molecules, such as IFN-γ, IL-2 and TNF-α, compared to pre-vaccination, as well 

as anti-CSP and anti-PfSPZ antibody levels92.  

In GAS vaccine studies in mice, the protection conferred appears to depend on the 

time point at which the parasites arrest during liver-stage development107. Protective 

immunity was reported to be IFNγ-secreting CD8+ T cell-mediated, and long term 

protection was associated with CD8+ effector memory T cells. Protection studies in mice 

show that the immune response does not appear to be dependent on antibodies, and CD4+ 

T cell help is not essential to mount CD8+ T cell immune responses107. This immunization 

trigger antibody and B cell responses, but when B cells are depleted the mice were 

completely protected against a sporozoite challenge108. This study show that the immune 

response and protection are mainly mediated by CD8+ cells108.   

CPS immunization response is primarily mediated by parasite-specific antibodies 

that can interfere with sporozoite motility, hepatocyte invasion and development and by 

long-lasting-memory B cells. Besides that, cellular immune responses represent key 

effector mechanisms leading to parasite elimination109. Once again, IFN-γ CD8+ T cells 

elicit a crucial immune response through the increase in granzyme B, but Th1 are also 

important for this response as shown by the increase in transcription factors after CPS110. 

Partially and fully protective CPS volunteers show alterations in cytokine-producing γδ 

T cells by CD4+ and CD8+ effector memory T cells111.  

The immunity triggered by RTS,S is carried out by CSP-specific cell-mediated 

immunity complemented with CSP-specific antibody-mediated immunity. RTS,S cellular 

immune responses are essentially dependent on CD4+ T cells and IL-2 production, 

although other cytokines, including IFN- and TNF- have also been reported to be 

involved112.  
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1.3.5. Rhesus monkeys as malaria vaccine trial models 

The main animal model used in biomedical research in the world is the rodent 

model. However, although it has many advantages, it is not ideal for accurately 

mimicking the cellular and molecular mechanisms of the immune response and the 

response to infection in humans. Nonhuman primates (NHP), are able to bridge many 

shortcomings of other animal models, due to their significant genetic, physiological and 

behavioural homology, and are thus critical to understand pathogenesis, immunity and 

vaccine development in humans. However, some differences exist regarding markers of 

immune populations, namely NK, NKT cells and memory T cells113.  

Several studies evaluating malaria vaccines have been performed in rhesus monkey, 

such as studies on RTS,S vaccine adjuvants114, IFNγ responses and antibody titers of 

RTS,S of adenovirus serotype-35 CSP prime and RTS,S boost115. CD8+ T cell responses 

were correlated with protection against a challenge of P. knowlesi on rhesus inoculated 

with irradiated P. knowlesi sporozoites, which has been replicated in CHMI model with 

irradiated Plasmodium falciparum sporozoite vaccine116. NHP studies using PfSPZ have 

shown that iv immunization triggers higher cellular immune responses than sc, especially 

with regard to PfSPZ-specific IFN- TNF- and IL-2-producing CD8+ T cells. Analysis 

of the liver cells’ immune responses  3 to 4 months after the last immunization showed 

that, while iv-immunized animals revealed a prevalence in magnitude of PfSPZ-specific 

T cell responses, sc immunization resulted in low to undetectable T cell responses 117.  
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2. Aims 

The asymptomatic and highly immunogenic nature of the Plasmodium liver stage 

makes it an ideal target for malaria vaccination development. IMM’s MPrudêncio lab has 

developed PbVac, a new malaria vaccine candidate, in which the rodent parasite P. 

berghei expresses the human P. falciparum antigen PfCSP in order to promote PfCS-

specific and cross-species immune responses that may protect against a subsequent P. 

falciparum infection. The pre-clinical phase of the vaccine candidate included 

experiments in mice, NZW rabbits and rhesus monkeys. Here we report the pre-clinical 

testing in rhesus monkeys of P. berghei WT and genetically modified sporozoites, as a 

strategy to induce immunity to P. falciparum. 

 

The objectives established for this thesis are as follows: 

- To confirm that the P. berghei (Pb) parasite infects rhesus hepatocytes in vivo. 

- To analyse the humoral responses generated by specific immunization with PbWT and 

PbVAC sporozoites.  

- To characterize the immune population dynamics in the liver, spleen and peripheral 

blood cells in response to immunization. 

- To study the specific immune responses of PBMC and liver cells to PbWT, PbVac and 

Pf. 
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3. Material and methods 

All the experiments involving rhesus monkeys (Macaca mulatta)including 

immunizations, organ and blood collection, and cell isolation and processing were 

performed at the Biomedical Primate Research Centre (BPRC), Netherlands.  

 

3.1. Animals 

A total of 13 adult male rhesus macaques (Macaca mulatta) were infected at BPRC. 

One animal was used to confirm that PbWT was capable of invading rhesus hepatocytes 

in vivo. Safety and immunogenicity were determined in twelve animals, randomised over 

three treatment groups: control (uninfected mosquitoes), PbWT- and Pb (PfCSP)@UIS4-

infected mosquitoes (Table 1).  

. 

Table 1- Characteristics of the animals used in the study. Weight and age mean, and respective 

standard deviations of the animals of each experimental group. 

Group N Weight SD Age (years) SD 

Infection test 1 8,6 - 6,2 - 

Control 4 10,2 1,6 8,2 3,9 

PbWT 4 10,4 1,4 6,8 1,3 

Pb (PfCSP) @ UIS4 4 10,2 1,7 7,1 1,0 

 

 

3.2. Mosquito bite 

Fifty mosquitoes were placed per cup and allowed to take a blood meal in the 

respective animal using an interrupted feeding schedule of 2, 3 and 10 minutes. For the 

in vivo confirmation, 150 mosquitoes infected with transgenic P. berghei parasites were 

used to infect each rhesus macaque. For immunisation assessments, 100 mosquitoes were 

used to immunize each animal with the respective parasite (see Table 1).  
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3.3. Study schedule 

Schedule of the experiment is illustrated in fugure 3. Immunizations were 

performed on days 0, 28, 56 and 112. On days 0, 3 and 7 after the first three 

immunizations, blood samples were collected, to anesthetized monkeys, to perform safety 

evaluations, to analyse haematological andclinical chemistry parameters and guarantee 

that the immunizations is safe and do not alter blood composition. On days 0, 14, 28, 42, 

56, 63, 70, 112, 126 and 140 large bleeds were performed in order to access 

immunological parameters. 

 

3.4. In vivo invasion 

Following in vitro confirmation that Pb sporozoites invade rhesus hepatocytes, was 

performed a pilot experiment in one rhesus monkey to confirm liver infection in vivo. 

Two days after mosquito bite with Pb sporozoites, the animal was euthanized, the liver 

harvested and histological sections and staining were performed at BPRC. Liver schizonts 

were detected in liver slices by using Hoeschst to label DNA, as well as antibodies anti 

UIS4 or anti-heat shock protein 70 (HSP70) to label the parasite  

3.5. Tissue collection and processing 

After the animals were euthanized, livers were processed to extract and isolate 

viable mononuclear cells. Succinctly, the liver was perfused, the major vessels were 

clamped with a haemostat and cold phosphate-buffered saline (PBS) was used to elute 

the mononuclear cells. 

Day   0    3    7    14    28    31    35    42    56    59    63    70    112    126    140 

100 Mosquito-bite immunization 

per condition: PbWT; Pb 

(PfCSP@UIS4); without sporozoites 

(Control); 

blood collection for safety 

acessments 

large blood colection for PBMCs 

and serum isolation  

Death and organ collection 

Figure 3- Schedule of parasite administration, sample collection, and death in rhesus monkeys subjected to the bites of 
100 non-infected, 4 with Pb WT and 4 with PbVac. 
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After the liver was removed, it was placed in Roswell Park Memorial Institute 1640  

(RPMI) (RPMI-1640 supplemented with 10% Pen-Strep-Glutamine and 10% heat 

inactivated fetal calf serum) (RPMI 10) on wet ice. The liver was perfused using cold 

PBS(1,5– 2 L) through the hepatic vein and collected through the portal vein in a 500mL 

centrifuge tube, and centrifuged (3000 rpm, 20 minutes, Temp 20C). The supernatant 

was aspirated, and the cell suspensions were passed through -a 70 m filter to a new 

50mL vials to which 35 mL of PBS were added. 13mL of ficoll were added to the bottom 

of the cell suspension vials and centrifuged (2000 rpm, 30 minutes, Temp 20C). The 

supernatant was discarded, and the buffy layer transferred to a new vial to which PBS 

was added and centrifuged (1200 rpm, 10 minutes, Accel 9, Brake 9, Temp 20°C), and 

this procedure was performed twice. Again, the supernatant was collected, but this 

resuspended in 25mL of pre-warmed RPMI10. The viable cells were counted and, 

centrifuged (1200 rpm, 10 minutes, Temp 20°C). The pellet was resuspended in freezing 

media (with a cellular concentration between 10 and 50 million cells per mL) and 1mL 

of suspension was pipette to cryovials to be  immediately frozen.  

The spleen was collected into RPMI10 medium on ice, cut into pieces of roughly 

0.5cm3, and transferred to nylon filters in 50mL conical vials where it was compressed 

using the end of the plunger from a 6 ml syringe. The filter was washed with PBS to allow 

cells to run through, and this procedure was repeated until entire the spleen was processed. 

Splenic suspension was re-filtered through a clean 70μm filter into a new 50mL vial. Then 

the same ficoll separation procedures were applied as for the liver, except that at the end 

the pellet was resuspended in 50 mL of pre-warmed RPMI10. Then the cells were equally 

counted, centrifuged, and resuspended at a cellular concentration of 10 to 50 million cells 

per ml in freezing media constituted by heat inactivated fetal calf serum with 10% of 

dimethyl sulfoxide (DMSO) and 1 ml of suspension were pipetted to cryovials to be 

frozen immediately. DMSO prevents that during the freezing process ice crystals are 

created that will induce cell death. 

 

3.6. Collection and isolation of mononuclear cells 

Blood samples from the large bleed collection (15-20 mL) were processed to extract 

viable mononuclear cells. This was performed in a Class II Biological Safety cabinet 
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using sterile technique. Whole blood was collected in acid-citrate-dextrose (ACD) or 

Ethylenediamine tetraacetic acid (EDTA) tubes and centrifuged (2500 rpm, 30 minutes, 

Temp 20°C). The plasma fraction was removed,  and the remaining cellular suspension 

was diluted 1:1 with sterile PBS) Blood-PBS mixture was added to Ficoll and the same 

procedure as previously described for the organs was performed, followed by immediate 

cell freezing. 

The cryopreserved cells were sent to the IMM, where they were kept at -80ºC. 

 

3.7. Cell thawing  

Samples were thawed at 37ºC in a water bath, shaking gently until only a small 

piece of ice was left. One ml of complete RPMI (cRPMI: RPMI 1640 (Gibco) 

supplemented with 1% (v/v) glutamine (Gibco), 1% (v/v) non-essential amino acids 

(Gibco), 1% (v/v) penicillin/streptomycin (Gibco), 10% (v/v) fetal bovine serum (FBS; 

Alfagene) and 1% (v/v) HEPES pH 7 (Alfagene)) was added drop by drop to the sample, 

which was then transferred, also drop by drop, to a falcon tube containing 8mL of cRPMI. 

The initial cell vial was washed with 1mL of cRPMI and cells were added to the falcon. 

Cells were centrifuged (1200 rpm, 10 min), the supernatant was discarded and the pellet 

was resuspended in 5 mL cRPMI. Cells were staied with 0,1% of Trypan Blue 25% (v/v) 

in PBS, a dye that stains dead cells blue, and counted on a Neubauer chamber.  

Cells used for phenotyping were placed in the incubator at 37ºC and 5% C02 until 

the next day, when they were filtered using a 70µM filter, counted, centrifuged again and 

resuspended at a concentration of 1M/ 100µL in cRPMI. Cells used for intracellular 

cytokine assay were resuspended in cRPMI at a concentration of 1M/ 100µL and kept at 

37ºC 1-2h until further use.  

 

3.8. Sporozoites 

For the quantification of antibody titers and for analysing the specific response were 

used PbANKA, PbVac and Pf NF54 sporozoites were obtained from dissection of the 

salivary glands of infected female Anopheles stephensi mosquitoes in non-supplemented 
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RPMI 1640 (Gibco) medium. Salivary glands were mechanically homogenized, filtered 

through a 40 μm strainer to a 50mL falcon to be centrifuged (1 minutes, 1200 RPM). 

Up to 1mL of clear sporozoites was carefully added to 3 mL of  17% (v/v) Accudenz 

solution in MiliQ H2O. Sporozoites were  centrifuged (20minutes; 2500xg), and the top 

layer transferred to a 1,5 mL tubes and centrifuged again (15 minutes; 13000rpm; Temp. 

4ºC). Supernatant was carefully removed and the pelleted sporozoites resuspended in a 

10% (v/v) DMEM dilution to be counted in a in a Neubauer chamber using an 

OlympusCKX41 inverted microscope to be thawed in cryovials with 8*105 sporozoites 

in each.  

 

3.9. Quantification of antibody titers in the plasma by enzyme-linked 

immunosorbent assay (ELISA) 

An ELISA was used to quantify total sporozoite-specific IgG in the plasma of 

immunized or non-immunized animals pre- (day 0) and post- (day 70) vaccination. This 

technique allows the detection of an antigen by the specific antibody linked to an enzyme, 

whose activity translates the amount of antibody bound, and once incubated with a 

substrate give rise to a measurable product118.  

A sporozoite extract was prepared by adding to 1M of cryopreserved sporozoites 

(PbWT or PbVac) 100µL of extraction buffer (150mM NaCl; 20mM Tris-HCl; 1% triton; 

1mM EDTA; Ph= 7,5) and 1µL of protease inhibitor and incubating 15 minutes on ice. 

The mixture was centrifuged (13000 rpm; 15 minutes), the supernatant diluted 1/160 in 

PBS and 50µL were used per well for coating the plates (ELISA MAX Uncoated plates- 

Biolegend), which were left overnight at 4ºC. On the next day, plates were washed with 

PBS and 150µL of blocking solution (5 % milk/ PBS + 0.05 % tween) was added for 1h 

at room temperature (RT). Post immunization samples were pooled to create a standard 

curve of 2-fold serial dilutions in 1% milk/ PBST (PBS 0.05% tween). All samples were 

diluted 1:50 in 1% milk/ PBST, and subsequently 1:2 and 1:4. The blocking solution was 

removed by washing 3x with PBST and 50µL of sample was added to the respective plate 

well. The plates were incubated for 3h at RT, washed 3 times with PBST and incubated 

with 100 µl of goat-anti-human IgG 1:1000 conjugated with horseradish peroxidase 
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(HRP) (Sigma - Aldrich) for 1h at RT. Plates were washed 3 times with PBST and 3 times 

with PBS and 100 L of TMB (3,3’,5,5’-Tetramethylbenzidine) (BD bioscience 

OptEIA), a substrate for HRP, were added to the well. The combination of HRP and 

hydrogen peroxide causes the oxidation of TMB and a colour change. The reaction was 

stopped by adding 50 uL of H2S04, and the plate was read on a Tecan-M200 microplate 

reader at 450 nm. 

To analyse total IgG titers against PbWT or PbVac sporozoites, a standard curve 

was generated with serial dilutions of a mix of rhesus plasma from day 70. Absorbance 

from the control without plasma (background) was subtracted from all data points, and 

net absorbance was used to calculate antibody titers (in arbitrary units) by reporting to the 

line adjusted to the standard curve.   

 

3.10. Quantification of plasma antibody titers by flow cytometry  

Total sporozoite-specific IgG titers were further quantified by flow cytometry. This 

technique relies on the use of median fluorescence intensity (MFI) to determine the 

amount of antibody attached to a cellular antigen. Plasma samples from days 0 and 70 

were tested against cryopreserved sporozoites, which were labelled with a red fluorescent 

cell-permeant nucleic acid stained SYTO61 dye (Invitrogen). Two types of controls were 

used, “SYTO only” without anti-IgG antibody, to guarantee the identification of the 

sporozoites only, and “no plasma” to ensure that there is no background and false positive 

IgGs. 

Sporozoites were thawed in a 37ºC bath, 200µL of cRPMI were added and solution 

was transferred into 1,5mL tubes with 400µL cRPMI. Eppendorfs were centrifuged (15 

minutes, maximum speed, Temp 4ºC), supernatant was carefully removed and 

sporozoites were diluted placed at a concentration of 150,000 sporozoites per 100µl 

cRPMI.  

. Sporozoites were resuspended in 100µL of 20 µM SYTO 61, and placed in the 

fridge for 30 min. Sporozoites were then centrifuged (15 minutes, 13200 RPM, Temp. 

4ºC), resuspended at 25x103/20µL and 20ul added to each well of a 96 well plate. Plasma 

was diluted 1:500 in PBS, and 20 µL were added to the respective wells. Negative 
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controls (no SYTO61 labelling or no plasma) were also included. The plates were 

centrifuged (10 min., 3900 RPM, Temp. 4ºC), 20µL of anti-IgG CF488A (1:1000 in PBS; 

Sigma - Aldrich) were added  to each well and incubated for 30 minutesat 4 ºC. Samples 

were fixed with 20µL of 2% formaldehydefor 10 minutesat 4 ºC, and then 200µL of cold 

PBS were added to pass to cytometry tubes. The samples were acquired in a BD LSR 

Fortessa X-20. 

 

3.11. Optimization of flow cytometry panels 

Flow cytometry is a single cell technique used to measure physical and chemical 

characteristics of a population of cells. A suspensions of cells is fluorescently labeled 

through expression of fluorescent proteins, staining with fluorescent dyes or with 

conjugated antibodies, and analyzed individually with a flow cytometer.  

The fluidics system is responsible for the transport of the cells from the suspension tube 

to the flow cell through pressurized lines, ensuring individual cell alignment through the 

laser beam. The injection rate can be manipulated by the user.  

The point where the cell interact with the laser is called interrogation point. The laser 

beam is emitted over the single cell and the scatter of the emitted light can be measured 

and correlated with some characteristics. Forward scatter (FSC) indicate the relative size 

of the cell and side scatter (SSC) indicates the internal complexity or granularity of the 

cell. The laser beam will also excite the fluorophores present in each single cell, causing 

it to emit fluorescent light that will be separated and targeted through a system of optical 

mirrors and filters according to the specific wavelengths of the respective optical 

detectors. After passing by the interrogation point, the fluidic system takes the cell to the 

waste container.  

The emitted light detected is converted to voltage when amplified and signal 

obtained becomes digital in BD FACSDivaTM software. 

Fluorophores attached to the antibodies absorbing in a range of specific 

wavelengths (absorption spectrum) result in excitement of electrons, which emit light in 

a higher wavelength (emission spectrum) when returning to their ground state of energy. 

The different absortion and emission sectra of fluorophores allow their separation using 
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optical filters. The fluorescent compounds added to a cell can identify different cell 

populations, surface receptors, intracellular organelles, immunophenotyping, measure 

enzyme activity and apoptotic cell populations and determine nucleic acid content. The 

most widely fluorochromes used are fluorescein isothiocyanate (FITC), phycoerythrin 

(PE) and allophycocyanin eF780  (APCeF780). They have also been developed in 

response to the increased number of colors detected by cytometers tandem dyes 

containing two fluorochromes, as such as PE-Cy5 and APC-Cy7 for example.  When the 

first die reaches the maximal absorbance, the energy is transferred to the second dye that 

will emit fluorescence. When multiple fluorochromes are used, an overlap of the emission 

spectra of the fluorochromes can occur, that is called spectral overlap. Colour 

compensation is the technique used to correct this overlap, trough the subtraction of a 

fraction of the signal from the fluorochrome that is spilling over into that channel. To 

know how much compensation is needed single-colour control samples should be run, to 

measure the fluorochrome signal detected in other channels, and apply compensation to 

remove the signal. 

BD LSRFortessa X-20 is a multicolor analysis with  four lasers violet (405 nm), 

blue (488 nm), yellow-green (561 nm) and red (640 nm), and each one has different 

detectors with filters for a set of fluorochromes.  

This complex technique requires a long process of optimizations. The construction 

of the panels need to consider several aspects, such as the maximum number of 

parameters that BD LRSFortessa X-20 can analyse, the limited colours of antibodies 

reactive with rhesus available and the conjugation of the fluorochromes. Therefore, in 

order to create antibody panels to analyze the populations of interest, we included both 

rhesus-reactive anti-human antibodies after appropriate testing, as well as specific anti-

rhesus antibodies. Once the panels were decided and created according to the criteria 

described,  the antibodies were titrated to identify the ideal concentration at which it is 

possible to distinguish between the negative and the positive populations using 

concentrations of 1:80, 1:160 and 1:320. After testing these standard concentrations it 

was necessary for some of the antibodies to test other dilutions. And finally the candidate 

panels were tested to ensure that the conjugation of the antibodies in their respective 

fluorochromes and in the decided concentrations worked (tables 2 and 3). This entire 
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optimization process was performed with rhesus monkey PBMCs and the compensations 

were performed with compensating beads, used as single-color controls. 

2 panels were created to incorporate all populations of interest, panel 1 (table 2) 

focused on identifying antigen presenting cells, ILCs, NK and NKT cells and TCRγδ 

cells, and panel 2 to identify T and B lymphocytes and the respective memory and 

regulatory/helper cells(table 3). All panels included a fixable viability dye (FVD) to label 

dead cells.  

Table 2- Panel 1 to analyse the phenotype of the cells. Panel focused on identifying NKT cells, TCRγδ cells, 
NK, dendritic cells, monocytes and ILCs 

Fluorochrome Panel 2 Clone Company Dilution factor 

BV785 CD127 A019D5 BioLegend 1:40 

BV711 BDCA-1 L161 BioLegend 1:640 

BV650 HLA-DR L243 BioLegend 1:160 

BV605 CD16 3G8 BioLegend 1:80 

BV510 CD3 V500  1:40 

BV421 CD11c 301627  1:160 

PerCPCy5.5 CD4 OKT4 BioLegend 1:80 

FITC CD21 B-ly4 BioLegend 1:40 

PE-Cy7 CD123 6H6  1:200 

PE-Cy5 CD20 2H7 BioLegend 1:320 

PE-Dazzle594 CD14 M5E2 BioLegend 1:640 

PE TCRγδ  B1 BioLegend 1:160 

APCeF780 FVD - eBioscience 1:80 

AF700 CD8 RPA-T8 BioLegend 1:40 

AF647 CD45 MB4-6D6 Miltenyi Biotec 1:80 
 

Table 3- Panel 2 to analyse the phenotype of the cells. Panel focused on identifying T and B lymphocytes, and 
respective memory cells. 

Fluorochrome Panel 1 Clone Company Dilution factor 

BV785 CD127 A019D5 BioLegend 1:40 

BV711 CCR7 G043H7 BioLegend 1:80 

BV650 CD69 FN50  1:80 

BV605 CD40L 24-31 BioLegend 1:80 

BV510 CD3 V500  1:40 

BV421 CD27   1:200 

PerCPCy5.5 CD4 OKT4 BioLegend 1:80 

FITC CD21 B-ly4 BioLegend 1:40 

PE-Cy7 CD25 2A3 BD Bioscience 1:40 

PE-Cy5 CD20 2H7 BioLegend 1:320 

PE-Dazzle594 CD14 M5E2 BioLegend 1:640 

PE CXCR5 MU5UBEE eBioscience 1:640 

APCeF780 FVD - eBioscience 1:80 

AF700 CD8 RPA-T8 BioLegend 1:40 

AF647 CD95 DX2 BioLegend 1:320 
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 To quantify the specific immune responses by intracellular cytokine assay (ICS), 

another panel was used (table 4), in which some antibodies were stained at the surface 

and others intracellularly according to the method described later. 

Table 4- Panel to analyse specific responses of the cells against stimulus. (*) Antibodies used as intracellular 

staining;  the rest were used for surface staining. 

Fluorochrome Stimulation Clone Company Dilution factor 

BV711 CCR7 G043H7 BioLegend 1:80 

BV650 CD69* FN50  1:80 

BV605 CD16 3G8 BioLegend 1:120 

BV510 CD3* V500  1:40 

BV421 TNF-α* Mab11 502929  1:80 

PerCPCy5.5 CD4* OKT4 BioLegend 1:80 

FITC IL-2* MQ1-17H12  1:40 

PE-Dazzle594 IFNγ* 4S.B3 502545  1:160 

PE TCRγδ B1 BioLegend 1:160 

APCeF780 FVD - eBioscience 1:80 

AF700 CD8* RPA-T8 BioLegend 1:40 

AF647 CD95 DX2 BioLegend 1:320 

 
 

   
 

Data analysis consists in the identification of cells or population of interest through 

a method denominated gating, that select the populations of interest. The gating strategy 

can be visualized in a histogram, that represent the number of events in the y-axis for a 

parameters signal value in channel numbers in x-axis, or in a 2-D graph, a two-parameter 

analysis. The analysis of the acquired data was performed with FlowJo V10. 

 

3.12. Phenotypic characterization of immune populations in the blood, 

liver and spleen of immunized vs. non immunized monkeys   

PBMCs were analysed before the first immunization (day 0) and on day 140. Liver 

mononuclear cells and splenocytes were analysed on day 140. 

Cells were thawed and placed at a concentration of 1x107 cells /ml in PBS2 (PBS 

with 2% of serum). One million cells (100µL) were placed per well in a 96 U-bottom well 

plate and centrifuged (5 minutes, 1600rpm), and supernatant was removed by flipping the 

plate. 20µL of FVD eFluor™ 780 from eBioscience were added for 15 min. at RT, and 

then 100µL of PBS2 were added per well and the plate was centrifuged (5minutes, 

1600rpm). Cells were surface-stained using with the antibodies described on tables 3 and 
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4 at the respective concentrations and were incubated 20 minutes at RT. Cells were 

washed with 100µl of PBS2, centrifuged (5 minutes, 1600rpm) and were fixed in 100µL 

of formaldehyde 1% for 5 minutes at RT. Cells were washed with 100µL of PBS2, were 

centrifuged (5 minutes, 1600rpm), and were added 200µl of PBS2 per well totransfer to 

FACS tubes. About 500,000 events per tube were aquired on a BD Fortessa X-20 

whenever possible and the analysis was performed with FlowJo V10.   

Due to the lack of sample or enough cells to be analysed, results on PBMCs and 

liver cells are missing for some immunized monkeys. 

 

3.13. Quantification of specific immune responses by ICS 

Specific immune responses of PBMCs and liver mononuclear cells against 

sporozoites were analysed at day 140 through intracellular cytokine assay. Briefly, cells 

were stimulated with cryopreserved PbWT, PbVac or Pf sporozoites and cytokine 

production was measured by flow cytometry. A non-stimulated control and a positive 

control were always included per monkey, and brefeldin was added to all samples in the 

final 5h. The phenotype and the stimulation assays of each monkey were performed on 

the same day.  

Cells and sporozoites were thawed as described above. Cells were distributed in U-

bottom 96 wells plate, at a concentration of 1x107 cells /ml in cRPMI per well/condition. 

100µL of stimuli were added to each well. To non-stimulated wells 100µL of cRPMI 

were added, and to the positive control, 80µL of cRPMI, and plates were placed during 

17 hours at 37ºC and 5% CO2. The positive control is a combination of phorbol myristate 

acetate (PMA; final concentration 10 ng/mL) with ionomycin (final concentration 500 

ng/mL) to induce the maximum intracellular capacity to produce cytokines. 20µL of this 

solution were added per well to each positive control. One hour later 20µL of brefeldin 

(final concentration 10µg/mL) were added to all the wells to inhibit the protein transport 

from the golgi complex to the endoplasmic reticulum keeping them inside the cell, and 

the cells were incubated for 5h at 37ºC and 5% CO2. 

After the last incubation, the plates were centrifuged (5 min., 1600rpm), 20µL of 

FVD 1:3200 were added and cells were 15 minutes at RT. Cells were washed with 100µL 

https://en.wikipedia.org/wiki/Endoplasmic_reticulum
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of PBS2/ well, centrifuged (5 min., 1600rpm) and 20µL of a surface antibody mix (with 

the antibodies at the appropriate dilutions) in PBS2 was added. Stained cells were 

incubated 30 minutes at RT, 100µL of PBS were added, plate was centrifuged and 100µL 

of Fix/Perm (fixation/permeabilization concentrate diluted 1:4 in 

fixation/permeabilization diluent; Invitrogen) was added, and the cells were further 

incubated in the fridge for 30 minutes. Next the plates were centrifuged and cells were 

washed with permeabilization buffer diluted 10x in water. Fix/Perm and permeabilization 

buffer are a kit used to fix cells in suspension and permeabilize the membrane of the cells 

in order to facilitate the intracellular antibodies access to intracellular structures and 

leaves the morphological light-scattering characteristics of the cells intact at the same 

time as reduce background staining. Antibodies for intracellular staining were added 

(20µL of a mix of antibodies diluted in permeabilization buffer to the appropriate 

conentrations), and were incubated in the fridge for 30 minutes. The cells were washed 

with 100µL of PBS2, centrifuged (5 min., 1600rpm), and 200µL of PBS2 were added 

each well. Cells were transferred to cytometer tubes and an additional 100µL of PBS2 

were added. All wash steps aim to reduce the background of the cells, allowing population 

distinction. About 500,000 events were acquired on BD Fortessa X-20 and the analysis 

was performed using FlowJo V10.   

Due to the lack of sample or enough cells to be analysed, results on PBMCs and 

liver cells are missing for some immunized monkeys. 

 

3.14. Statistical analysis 

Due to the small number of samples per group it is not possible to test the normality 

of the variables and therefore non-parametric statistical tests were used. To compare 

between two groups in which both samples consist in distinct test subjects a non-paired 

Mann-Whitney statistical test was used, and for paired samples Wilcoxon matched-pairs 

signed rank tests were applied119. Differences were considered statistically significant 

when P-values were lower than 0.05, and represented in the figures as: *: P < 0.05, **: P 

< 0.01, ***: P < 0.001 and ****: P < 0.0001.  
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To analyze correlations nonparametric Spearman correlation was used. A 

correlation result = -1 means an inverse correlation, = 0 that the two variables do not vary 

at all together and = 1 a perfect correlation. A small p-value reject the idea that the 

correlation is due to random sampling.  

Statistical analysis and all the graphs were performed in GraphPad Prism 7.   
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4. Results 

 

4.1. Invasion of rhesus hepatocytes by PbWT in vivo 

We first asked whether PbWT was able to infect rhesus hepatocytes in vivo, since 

this had not been previously addressed and was crucial for the validation of the model. 

One monkey was inoculated with PbWT sporozoites and 2 days later infection was 

confirmed in histological slides of liver sections (Fig.4). This validated the use of PbWT 

for the immunization of rhesus macaques. 

 

 

Figure 4- Histological liver slices of PbWT infecting rhesus hepatocytes in vivo.  

 

4.2. Safety evaluations 

According to the study scedule shown above, several parameters were determined 

by haematology and clinical chemistry throughout the study on freshly obtained blood 

samples at the BPRC. The following biochemical evaluations were performed: alkaline 

phosphatase, alanine transaminase (ALAT), aspartate transaminase (ASAT), gamma 

glutamyl transpeptidase (γ‐GT), bilirubin, cholesterol, lactate dehydrogenase (LDH), 

urea, creatinine, albumin, total protein, glucose, iron, calcium, sodium, potassium, 

chloride, phosphate and bicarbonate (HCO3‐). The following haematological evaluations 

In vitro                                                In vivo 
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were performed: erythrocyte count, haemoglobin, haematocrit, mean corpuscular volume 

(MVC), mean corpuscular haemoglobin, mean corpuscular haemoglobin concentration, 

white blood cell count including leukocyte differentiation, platelet count and mean 

platelet volume.  All these data were compared with reference values obtained from 

healthy naïve rhesus monkeys,  and clinical parameters that were altered during the course 

of the study were due to frequent sedation and blood collection, and as such were 

consistent between control and immunized monkeys. 

The animals were also evaluated for their weight and behaviour, that remained 

constant.  

To confirm that there were no breakthroughs thick smears and PCR were 

performed. No breakthroughs were detected, with parasite not being found in the blood.  

In general, the mosquito-delivered PbWT and PbVac sporozoite inoculations were 

well tolerated and no severe adverse events were observed.   

 

4.3. Humoral immune responses 

The humoral immune responses of rhesus macaques immunized with PbWT or 

PbVac were determined in plasma samples by ELISA (Fig. 5). Total IgG titers against 

PbWT or PbVac sporozoites were calculated relatively to a standard curve, and presented 

as the difference between post (day 70) and pre (day 0) immunization samples. 

 

Figure 5- IgG titers were determined in rhesus plasma by ELISA (difference between day 70 and day 0). IgG 
concentrations are presented as arbitrary units, calculated from a standard curve made from a pool of rhesus plasma 

* 

* 

* 
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at day 70. To verify significance between day 0 and day 70 of the plasma of each monkey were used paired Wilcoxon 
tests and Mann-Whitney statistical between the animals groups.  

Immunized animals presented higher IgG titers than control monkeys, confirming 

the generation of a humoral immune response against PbWT and PbVac. In addition, we 

found no significant differences in sporozoite-specific IgG titers between PbWT- and 

PbVac-immunized animals.  

Sporozoite-specific IgG titers were further tested in a modified ELISA assay where 

whole sporozoites were used as antigen and quantification was performed by flow 

cytometry. Pf sporozoites were analysed in parallel with PbWT and PbVac in order to 

evaluate the specific humoral response. Median fluorescence intensity (MFI) was used to 

determine relative IgG titers, and the results are presented as the difference between post 

(day 70) and pre (day 0) immunization samples (Fig. 6). 

 

Figure 6- IgG titers were determined in rhesus plasma by Flow cytometry (difference between day 70 and day 
0). IgG concentrations are presented as arbitrary units, calculated from a standard curve made from a pool of rhesus 
plasma at day 70. To verify significance between day 0 and day 70 of the plasma of each monkey were used paired 
Wilcoxon tests and Mann-Whitney statistical between the animals groups. 

Total IgG titers against PbWT and PbVac sporozoites increased significantly with 

immunization, in agreement with the ELISA results. Of note, no statistical significant 

differences were observed between PbWT- and PbVac-immunized monkeys. These 

results further confirm the generation of a humoral response to both PbVac and PbWT. 

Importantly, we also found increased IgG titers against Pf sporozoites in both 

PbWT- and PbVac-immunized as compared to non-immunized monkeys, although this 

was only significant for the later. This supports the generation of an anti-Pf humoral 

* 

* 

* 

* 

* 
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response elicited by PbVac immunization and indicates that the PfCS protein present on 

PbVac but not PbWT may be involved in this response.  

.  

4.4.  Phenotypic characterization of immune populations in the blood, 

liver and spleen of immunized vs. non immunized monkeys   

Next we characterized the landscape of immune populations described to be 

involved in response to infection or vaccination in the blood and tissues of immunized 

and non-immunized macaques by flow cytometry. The populations analysed and the 

corresponding markers used to identify each population are presented in Fig. 7.  

We first analysed the frequency of the most important innate populations in the 

blood in order to compare the alterations in cell populations with immunization. The 

populations analysed included monocytes (CD14+HLA-DR+), myeloid DCs (HLA-

DR+CD14-CD11c+CD123-), plasmacytoid DCs (HLA-DR+CD14-CD11c-CD123)+, 

NK (CD16+/-CD8+), NKT (CD16+) and ILCs (Lin-CD45+D127+/-). The gating strategy 

used to identify all the populations is presented in supplementary figure 1 (annex 1) and 

data is presented as fold change between day 140 and day 0 (Fig. 8). 

Figure 7- Phenotypic populations to be analysed by flow cytometry. 

CD8- HLA-DR- CD14- CD11c-  

CD127+/-CD45+ (ILCs) 
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Figure 8- Alterations in innate populations with immunization.. Innate populations were analysed within 
PBMCs at days 0 and 140 according to the gating strategy presented on annex 2. Statistical significance was assessed 
usiang Mann-Whitney non-parametric tests. PbWT immunization; PbVac immunization  

Although none of the modifications from control to immunized animals were 

significant, there was a slight decrease in ILCs on day 140 compared with day 0 and an 

increase in plasmacytoid DCs.  

The same immune populations were then analysed in tissue (liver and spleen), and 

PBMCs from the last day of the experiment (Fig. 9).  
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Figure 9- Frequency of  monocytes, DCs, ILCs, NK and NKT cells in blood and tissues on 
day 140 post-immunization. Data was analysed as depicted in annex 1 and is presented as 
frequency within total leukocytes. Statistical significance was assessed usiang Mann-Whitney 
non-parametric tests. PbWT immunization; PbVac immunization 

Monocytes were found to be more present in PBMCs than in tissues, as expected.  

In addition, we found a decrease in monocyte frequency in the blood but not in the liver 

or spleen in immunized animals, although this was not significant. Frequency of dendritic 

cells did not show significant differences. NK cells were increased in liver cells and L ive r S p le e n P B M C s
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PBMCs of immunized animals, although this was not significant. NKT lymphocytes were 

decreased in the the spleen of immunized animals, although not significanlly.   

Interestingly, we found a decrease in ILC frequency in all organs in immunized as 

compared to non-immunized animals, and this decrease was statistically significant in 

PBMCs.  

Next we analysed the impact of immunization on the circulating T and B cell 

compartments by comparing the fold change from day 0 to day 140 of immunized and 

non-immunized groups (Fig. 10). An extensive analysis of the following T cell 

populations was performed: total T cells (CD3+), TCRαß T cells (TCRαß+; CD16-), CD4 

T cells (CD4+CD8-); CD4 Tfh cells (CXCR5+; CD25-); CD4 Treg cells (CD25+; 

CD127-); CD4 Tfr cells (CXCR5+); CD8 T cells (CD8+CD4-); CD8 Tfc (CXCR5+) and 

TCRγδ T cells (TCRαß; CD16+), and also B cells (CD20+; CD3-). The gating strategy 

is presented in annex 1 and 2.  

 

Figure 10- Alterations of the T cell compartment and B cells within total PBMCs of immunized and non-
immunized monkeys from days 0 to 140, frequency within total lymphocytes. Statistical significance was assessed 
usiang Mann-Whitney non-parametric tests.  PbWT immunization;  PbVac immunization 
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Overall we found that the circulating T cell compartment was very robust and did 

not present major alterations with immunization. Importantly, we found a mild but 

significant increase in CD4+ T cells in the immunized group as compared to the control 

group. 

Next we compared the frequency of all T cell subsets in the liver and spleen as well 

as PBMCs in  immunized vs. non-immunized animals.  

First we analysed total T cells as well as the TCR and TCR subsets. We found 

no overall alterations in total T cell frequency in the spleen or PBMCs with immunization, 

but a clear decrease (although not significant) in total T cells in the liver (Fig. 11). When 

we analysed TCR and TCR T cells separately we could conclude that the decrease 

observed was due to lower frequency of the later subset in the liver. In addition, we found 

that TCR T cells were significantly decreased in the spleens of immunized monkeys, 

in contrast to the non significant complementary increase in TCR T cells in the same 

organ.  
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Figure 11- Frequency of T cells, and the 2 major TCR recepors in blood and tissues on day 140 post-
immunization. Data was analysed as depicted in annex 1 and is presented as frequency within total lymphocytes. 
Statistical significance was assessed usiang Mann-Whitney non-parametric tests.  PbWT immunization;  
PbVac immunization. 

The frequency of CD4+ T cells was found to be higher in PBMCs than in liver and 

spleen (Fig. 12A), In addition, CD4+ T cell frequency increased after immunization both 

in PBMCs, in line with the results presented in Fig. 10, and in the liver, although this was 

not significant. There were no alterations in the frequency of naïve and memory CD4+ T 

cells with immunization in the spleen or in PBMCs (Fig. 12B). Nevertheless, we observed 

an increase in the naïve compartment in the liver, which was mirrored by a decrease in 

memory CD4+ T cells (Fig. 12B). We further found an increase in liver Treg cells, which 

have been reported to increase in infectious contexts, in immunized animals, although 

this was not significant. Finally, Tfh cells showed a slight, non significant increase in 

immunized monkeys in both tissues and blood, while Tfr cells presented a trend for 

increased frequency upon immunization in both tissues.  
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Figure 12- Frequency of CD4 cell subsets in blood and tissues on day 140 post-
immunization. Data was analysed as depicted in annex 2 and is presented as frequency within (A) 
total lymphocytes, and within (B) CD4+ cells in memory analysis. Statistical significance was 
assessed usiang Mann-Whitney non-parametric tests.  PbWT immunization; PbVac 
immunization. 

Surprisingly, we found lower statistically significant frequency of CD8+ T  cells in 

the liver after immunization (Fig. 13). This is unexpected since this cell subset has been 

reported to play a key role in protection against pre-erythrocytic stages of malaria 

infection. Regarding naïve and memory CD8+ T cell subsets, an increase in the later was 

found only in the spleen upon immunization, in parallel with a decrease in the former 
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subset. Finally, follicular cytotoxic CD8+ cells did not reveal major differences between 

the two groups of animals.  

 

Figure 13- Frequency of CD8 cell subsets in blood and tissues on day 140 post-

immunization. Data was analysed as depicted in annex 2 and is presented as frequency within (A) 
total lymphocytes, and within (B) CD8+ cells in memory analysis. Statistical significance was 
assessed usiang Mann-Whitney non-parametric tests.  PbWT immunization; PbVac 
immunization.  

TRM, identified by CD69 expression, showed a statistically significant decrease in 

the liver of immunized animals, which is due to a decrease in CD8+ but not CD4+ T cells 

(Fig. 14). As expected, CD4+ TRM cells represented a much lower frequency of total 

lymphocytes in the liver than CD8+ TRM cells. Finally, CD4+ TRM cells presented 

increased frequencies in the spleen of immunized monkeys, although this was not 

statistically significant.  
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Figure 14- Frequency of tissue resident memory cells in tissues on day 140 post-immunization. Data was 
analysed as depicted in annex 2 and is presented as frequency within total lymphocytes. Statistical significance was 
assessed usiang Mann-Whitney non-parametric tests.   PbWT immunization; PbVac immunization. 

Total B cells showed only a slight increase in the liver of immunized animals (Fig. 

15). 

 

Figure 15- Frequency of total B cells in blood and tissues on day 140 post-immunization. Data was analysed 
as depicted in annex 2 and is presented as frequency within total lymphocytes. Statistical significance was assessed 
usiang Mann-Whitney non-parametric tests. PbWT immunization; PbVac immunization. 

L iv e r S p le e n P B M C s

4 0

5 0

6 0

7 0

8 0

9 0

T  ce lls

F
re

q
. 

o
f 

ly
m

p
h

o
c

y
te

s

L iv e r S p le e n P B M C s

1 0

2 0

3 0

4 0

5 0

6 0

B  c e lls

F
re

q
. 

o
f 

ly
m

p
h

o
c

y
te

s

L ive r S p le e n P B M C s

1 0

2 0

3 0

4 0

5 0

6 0

B  c e lls

F
re

q
. 

o
f 

ly
m

p
h

o
c

y
te

s

C o n tro l

Im m u n iz e d

L ive r S p le e n P B M C s

1 0

2 0

3 0

4 0

5 0

6 0

B  c e lls

F
re

q
. 

o
f 

ly
m

p
h

o
c

y
te

s

C o n tro l

Im m u n iz e d



 

50 

 

 

Finally, analysis of the naïve and memory B cell subsets revealed no statistically 

significant changes associated with immunization (Fig. 16). Nevertheless, a trend for  

increased unswitched memory B cell frequencies was found in the spleen of immunized 

animals.   

 

Figure 16- Frequency of  B cell subsets in blood and tissues on day 140 post-

immunization. Data was analysed as depicted in annex 2 and is presented as frequency within 
total lymphocytes. Statistical significance was assessed usiang Mann-Whitney non-parametric 
tests.   PbWT immunization; PbVac immunization. 

 

4.5. Correlations between blood and tissue populations 

A major advantage of this work is the ability to compare the circulating 

compartment, that is usually assessed in human studies, with tissue-specific alterations. 

We thus analysed the correlations between the frequencies of immune populations in 

blood cells and tissues, and also between tissues (Table 5).  

The analyse of the correlation between the frequencies of populations between 

blood cells and tissues, and also between tissues are presented in table 6. The p-values 
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that give consistency to the results of r, showing that increase/ decrease in both tissues is 

common, are marked in blue. Thus we can see that the increase of NK in PBMCs and 

liver is consistent, as well as the decrease of NKT in spleen with the other two samples. 

As well as the frequency of the Tfh population between the PBMCs and the liver and all 

Treg correlations tend to increase together. And finally, in memory B cells there is a slight 

increase between PBMCs and the spleen and a decrease in them in double negative (DN) 

cells. 

Table 5- Analysis of cell frequency correlation between blood cells and tissues and between both tissues. 

Correlation was assessed usiang Spearmen-r tests with 95% interval confidence, correlation coefficient, r, ranges from 
-1, an inverse correlation to +1, a perfect correlation. The p-values that give consistency to the results of r, showing 
that increase / decrease in both tissues is common, are marked in blue. 

 
PBMCs- Liver PBMCs- Spleen Liver- Spleen 

 
Spearman- r p-value Spearman- 

r 
p-value Spearman- r p-value 

Monocytes 0,2845 0,454 0,2586 0,4379 0,3842 0,2722 

mDCs 0,06695 0,8683 -0,3904 0,2324 -0,07903 0,8302 

pDCs 0,2167 0,5809 -0,3189 0,3364 0,006079 0,992 

ILCs -0,1333 0,7435 0,2545 0,4511 0,4255 0,2203 

NK cells 0,7333 0,0311 (*) 0,2636 0,4348 0,7697 0,0126 (*) 

NKT cells 0,65 0,0666 0,8455 0,0018 (**) 0,697 0,0306 (*) 

T cells 0,4 0,2912 0,2273 0,5034 0,103 0,785 

TCRαß 0 >0,9999 0,06364 0,8603 0,5152 0,1334 

TCRγδ 0,5799 0,1076 0,5114 0,1107 0,103 0,785 

CD4 T cells 0,4667 0,2125 0,3827 0,2441 0,4681 0,1738 

CD4 Tfh cells 0,9667 0,0002 (***) -0,1727 0,6147 -0,2242 0,5367 

CD4 Treg cells 0,7833 0,0172 (*) 0,6909 0,0226 (*) 0,7333 0,0202 (*) 

CD4 Tfr cells 0,6 0,0968 0,2727 0,4181 -0,006061 >0,9999 

CD4 memory cells 0,1088 0,7844 0,222 0,5073 0,3891 0,2659 

CD4 naive cells 0,15 0,7081 0,2091 0,5393 0,2606 0,4697 

CD8 T cells 0,3833 0,3125 0,3182 0,3415 -0,0303 0,946 

CD8 Fc cells 0,6778 0,0514 0,09112 0,7905 0,04863 0,899 

CD8 memory cells 0,3667 0,3363 0,2 0,5574 0,2727 0,4483 

CD8 naive cells 0,2667 0,4933 0,2455 0,4684 0,2727 0,4483 

TRM cells - - - - -0,05455 0,8916 

CD4 TRM cells - - - - -0,1043 0,7822 

CD8 TRM cells - - - - -0,09091 0,8113 

B cells 0,35 0,3586 0,2364 0,4854 0,6485 0,049 (*) 

NSM B cells 0,4333 0,2499 0,9021 0,0003 (***) 0,2067 0,5652 

SM B cells 0,2667 0,4933 0,4364 0,1826 0,1636 0,6567 

Naive B cells 0,1833 0,6436 0,1913 0,5703 -0,1824 0,6136 

DN B cells 0,2833 0,463 0,6364 0,0402 (*) -0,2364 0,5135 
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We found a positive correlation between NK cells in the liver and in the blood or 

the spleen, indicating that liver NK frequency can be accurately assessed systemically. 

CD4 Tfh and CD4 Treg cells were the only other populations that were positively 

correlated between liver and PBMCs, and thus may represent accurate tissue information 

from the blood. Interestingly, CD4 Treg frequency was always highly correlated amongst 

all compartments analysed, indicating systemic regulation. And finally, in memory B 

cells there is a consistent result between PBMCs and spleen. Even so, there are not many 

correlations between changes in blood and tissues, which means that regulation of cellular 

changes occurs locally in each tissue, and when we look at blood prefile it is not possible 

to interpolate to tissues. 

 

4.2. Cellular immune responses 

We analyzed blood and liver cells of immunized and non immunized animals for 

the production of the Th1-associated cytokines IL-2, IFN-γ and TNF-α upon antigen 

(sporozoite) encounter using an ICS assay. Cells were stimulated with  PbWT or PbVac 

sporozoites, as well as with Pf sporozoites, during 22 hours and the intracellular specific 

production of cytokines by different populations was analysed.  IFN-γ aims to increase 

immune response and its durability105, TNF-α is involved in controlling parasite burden 

and activate other effector cells such as NK cells and macrophages64 and IL-2 is a 

cytokine associated with memory T cells and T cell proliferation and differentiation In 

the case of specific stimulation it is relevant to distinguish between PbWT and PbVac 

immunized monkeys, so results are presented as separate groups in the graphs. 

Analysis of total lymphocytes revealed low responses to all types of sporozoites in  

immunized monkeys, which were indistinguishable from the responses of non-

immunizaed controls (Fig. 17). Nevertheless, cytokine production was higher in liver 

cells than in PBMCs, specially against PbVac.  
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Figure 17- Analysis of total lymphocytes specific response in liver cells and PBMCs in liver 
and PBMCs. Cytokine production is presented as a result of the production of any of the three 

cytokine (IFN-γ or IL-2 or TNF-α)in a  frequency of parent to which the frequency of the same 

unstimulated animal was subtracted.. The gatting strategy used it was the same as to analyze the 
phenotype. Statistical significance was assessed usiang Mann-Whitney non-parametric tests 
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Figure 18- Analysis specific responses of T cells (A) and the major T cell subsets (B) in liver 
and PBMCs. Cytokine production is presented as a result of the production of any of the three 

cytokines (IFN-γ or IL-2 or TNF-α)in a  frequency of parent to which the frequency of the same 

unstimulated animal was subtracted.. The gating strategy used was the same as to analyze the 
phenotype. Statistical significance was assessed usiang Mann-Whitney non-parametric tests 

 

Within total T cells (Fig. 18A), higher specific responses in immunized vs 
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γδ T cell cytokine production (Fig. 18 B, C). Regarding γδ T cells, their specific responses 

to all stimulus in both blood and liver were negligible . 

We next analysed the specific responses of CD4+ T cells (Fig. 19A). Liver cells 

from PbWT-immunized animals showed a trend for increased cytokine production upon 

stimulation with any of the sporozoites relative to control monkeys, and this was not 

observed in PbVac-immunized animals. In contrast, increased specific responses in the 

blood of immunized animals were only observed  upon stimulation with PbVac 

sporozoites, and these were statistically significant in PbWT-immunized monkeys. 

Similar results were obtained when analysing memory populations, although statistical 

significance was lost for the later case (Fig. 19B).  

 

Figure 19- Analysis of CD4+ T cells (A) and memory cells (B) specific response in liver and 
PBMCs. Cytokine production is presented as a result of the production of any of the three cytokine 

(IFN-γ or IL-2 or TNF-α)in a  frequency of parent to which the frequency of the same unstimulated 

animal was subtracted.. The gatting strategy used it was the same as to analyze the phenotype. 
Statistical significance was assessed usiang Mann-Whitney non-parametric tests 
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Cytokine production by total CD4+ T cells was further dissected in terms of mono- 

and poly-functional cells (Supplementary figure 3). The results in the liver show that the 

responsible for the increase in cytokine production of PbWT animals stimulated by 

PbWT is TNF-α. Regarding PbVac stimulation, only a slight increase occurs in TNF-α 

in both immunized animals and an increase of IFN-γ in PbVac immunized monkeys. Pf 

stimulation increased the frequency of TNF-α in PbWT monkeys and IL-2 on PbVac 

monkeys. On PBMCs, PbWT stimulation induce a decrease of TNF-α in both immunized 

monkeys and an increase of IL-2 in PbVac-immunized monkeys, PbVac stimulation lead 

to an increase of IL-2 in immunized animals that translate into an increase in the total 

frequency. Also Pf stimulation show an increase of IL-2 in PbVac monkeys. Although 

very inconsistent, and not statistically significant, we can say that the most often repeated 

variable is an increase in TNF-α in the liver and IL-2 in PBMCs. 

 

Figure 20- Analysis of specific responses to CD8+ T cells (A) and CD8+ memory T cells (B) 
in liver and PBMCs. Cytokine production is presented as a result of the production of any of the three 

cytokine (IFN-γ or IL-2 or TNF-α)in a  frequency of parent to which the frequency of the same 

unstimulated animal was subtracted.. The gatting strategy used it was the same as to analyze the 
phenotype. Statistical significance was assessed usiang Mann-Whitney non-parametric tests 
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We then analysed specific CD8+ T cell responses in the liver and blood of 

immunized vs. non-immunized animals. Regarding blood cells, PbWT and PbVac, but 

not Pf immunization, induced an increase on cytokine production against PbVac 

sporozoites in immunized animals. Within the CD8+ memory T cell population this trend 

was maintained, although PbWT-immunized animals showed only a slight increase in 

response PbVac stimuli. In the liver  an increased response was observed in PbWT-

immunized animals when stimulated with PbWT or PbVac, but  this was not statis+tically 

significant. We further analysed mono-and poly-functional cells within total CD8+ T cells 

in response to sporozoite stimulation, but found no relevant results (Supplementary figure 

4). 

In conclusion, none of the T cell subsets from immunized animals analysed showed 

increased cytokine production upon stimulation with Pf sporozoites, indicating that 

PbVac immunization may not elicit cross-species cellular responses in rhess monkeys.  

The potential of NKT cells reside in the rapid release of cytokines that promote or 

suppress different immune responses. Both liver and blood NKT cell responses were 

limited and not different between immunized and non-immunized controls (Fig. 21A). 

This was also observed for NK cells (Fig. 21B), except for the response of PbVac-

immunized animals against Pf, which was significantly decreased upon stimulation 

relatively to the control.  
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Figure 21- Analysis of NKT (A) NK (B) specific response in liver and PBMCs. Cytokine 

production is presented as a result of the production of any of the three cytokine (IFN-γ or IL-2 or 
TNF-α)in a  frequency of parent to which the frequency of the same unstimulated animal was 

subtracted.. The gatting strategy used it was the same as to analyze the phenotype. Statistical 
significance was assessed usiang Mann-Whitney non-parametric tests 
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TRM cells showed an increase in cytokine production, that was specific to PbWT-

immunized animals and observed against all stimulations tested.  

 

Figure 22- Analysis of total, CD4+ and CD8+ TRM specific response in liver and PBMCs.. Cytokine production 

is presented as a result of the production of any of the three cytokine (IFN-γ or IL-2 or TNF-α)in a  frequency of parent 

to which the frequency of the same unstimulated animal was subtracted.. The gatting strategy used it was the same as 
to analyze the phenotype. Statistical significance was assessed usiang Mann-Whitney non-parametric tests. 
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5. Discussion 

 

Malaria remains one of the most severe health problems worldwide, causing high 

morbidity and mortality in the regions where it is endemic. An effective vaccine would 

help close the gap left by other malaria control interventions and would be an essential 

tool in malaria control. Therefore, the need to develop an efficient vaccine for this disease 

is urgent. Nevertheless, this achievement is quite challenging due to the variability of the 

parasite and the lack of knowledge about the biology and immune response caused by it. 

IMM’s Prudêncio Lab proposed a new vaccination platform against human malaria, 

PbVac, in which the rodent parasite, P. berghei, expresses the PfCS antigen. This vaccine 

candidate constitutes a safe “naturally attenuated” Wsp vaccine with the aim to promote 

humoral responses and cross species cellular immune responses that will protect against 

a subsequent Pf infection. This thesis aimed to analyse the immune responses generated 

by PbVac immunization of rhesus monkeys, which are phylogenetically close to humans.  

Most vaccines work by inducing B lymphocytes to produce specific antibodies. It’s 

the case of PfCS-specific antibodies in RTS,S112, and the primary response to CPS 

immunization and RAS protection, in which antibodies interfere with sporozoite motility, 

hepatocyte invasion and development109. We analysed the humoral response induced by 

PbVac and PbWT in rhesus monkeys, as compared to non-immunized animals, and 

confirmed the increase in total IgG titers against PbVac and PbWT sporozoites upon 

either immunization. In contrast, Pf sporozoites were only recognized by antibodies 

generated in PbVac-immunized but not in PbWT-immunized monkeys. Since PbVac and 

PbWT differ only in the presence of PfCS in the former, we may conclude that PbVac 

induced the generation of anti-PfCS antibodies, which were able to recognize Pf. This is 

in line with results involving PbVac immunization of NZW rabbits, in which increased 

IgG titers anti-PfCS were reported101. Importantly, the increase in IgG titers anti-Pf 

sporozoites supports the induction of humoral responses against Pf sporozoites in PbVac-

immunized monkeys. It would be interesting to study the in vitro ability of the antibodies 

generated by PbWT or PbVac immunization of monkeys to inhibit human hepatocyte 

invasion by Pf sporozoites, in order to understand whether humoral immunity would be 

functional against Pf infection  
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A great advantage of this pre-clinical study is the possibility of analysing tissues, 

such as the spleen and the liver, a target organ of Plasmodium, which is not possible in 

humans, as well as to compare them with immune responses measured in the blood 

compartment. We performed an extensive analysis of the dynamics of cellular immune 

populations upon immunization with either PbWT or the genetically modified parasite 

PbVac in order to assess possible cellular changes.  

We found a decrease in the frequency of blood monocytes with immunization, 

although this was not statistically significant. One possible explanation for this decrease 

is that monocytes migrated into tissues and differentiated into macrophages, a population 

that was not analysed in the current study.  

Interestingly, we found a decrease in circulating ILCs with immunization and when 

comparing immunized and non-immunized animals at the last time point. This could be 

explained by migration of ILCs from the periphery to tissues such as the liver and spleen, 

where they are widely distributed. However, since we also found decreased frequency of 

ILCs  in these organs with immunization, we may speculate that they may have migrated 

to other tissues, such as the skin, or even an increase in apoptosis, as has been reported 

for ILC1s by Ng et al.120  

Although NKT cells do not appear to have a clear physiological role against pre-

erythrocytic stages of malaria, their association with a diminished humoral response in 

immunization of CD1d-deficient mice and an inhibitory effect against the development 

of liver stages of malaria in vivo have been reported 121. In our study we observed a large 

distribution of NKT cell frequency both in the liver and spleen cells, but no statistically 

significant changes in any of the compartments analyzed.  

Activation and expansion of γδ T cells have been reported in the blood of Pf-

infected individuals up to 4 weeks after vaccination122 and Plasmodium-infected animals, 

as well as after RAS vaccination, where they are essential for induction of sterile 

protection123. In contrast, immunization of rhesus monkeys with PbVac or PbWT 

parasites resulted in a decrease in γδ T cell frequency that was significant in the spleen. 

Although structural and cellular changes in malaria infection are known, such as changes 

in B cell populations and antigen presentation by APCs124, there is a lack of data regarding 
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γδ T cell modulation in the spleen of Pb-infected mice in the literature for use as a 

comparative term. 

CD4+ T cells have been shown to play an important role in CPS111 as well as in 

RTS,S112 immunizations, but not to be essential to mount immune responses in GAS 

immunization107. In our studies we observed an increase in CD4+ T cells within PBMCs 

following immunization, and this trend was also found in immunized animals when 

compared with non-immunized at the last time-point, both in PBMCs and in the liver. 

However, there is no increase in memory cells that would lead to long-term protection, 

but rather a decrease in these cells in the liver, although not statistically significant. We 

would expect immunization to increase the frequency of memory cells and not to decrease 

them, as is so widely achieved in different vaccines, so we do not know what could 

explain this observation. 

It has been proposed that Treg cells could be induced as part of the immune 

response to vaccination and play a role in limiting the immunogenicity of malaria and 

HIV vaccines, where these cells are induced in natural infections to regulate the 

inflammatory response125. In this phenotypic analysis we found a small increase in Treg 

cells in the liver of immunized animals. Also Tfr cells, which have key responsibilities in 

the GC response126, show an increase in frequency in the liver and spleen after 

immunizations. Alterations of both populations may eventually lead to a limitation of the 

immunogenicity of the vaccine. In its turn Tfh cells play a role in the production of long-

lasting humoral immunity making it a promising cellular response to improve vaccine 

efficacy trough differentiation signals to GC B cell126. However, these immunizations do 

not trigger a noticeable increase in frequency in this population.  

RAS immunization leads to presentation of antigens by APCs in the lymph nodes, 

which prime specific CD8+ T cells that then migrate to the liver105. IFN-γ-producing cells 

such as CD8+ T cells, have been identified as mediating immunity like RAS105 and 

GAS107-based vaccines and helping to eliminate the parasite in CPS immunization110.  

CD8+ T cells are expected to be a highly active population after immunization, 

eliminating parasites that invade hepatocytes, and creating a repertoire of specific 

memory cells. Surprisingly, we found a statistically significant decrease in liver CD8+ T 

cells upon immunization. TRM cells have also been a research target after demonstration 
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of the capacity of rhesus monkey sporozoite immunization for generating liver TRM  and 

of the result of their depletion in loss of immunity127. Interestingly, we found a statistically 

significant reduction in total TRM cells with immunization, which was due to the reduction 

in TRM CD8+ T cells. Although these cells are usually found at the site of infection, studies 

have shown they are scattered far from the site of infection, and that repeated infections 

increase this spread128. This may explain the observed decrease in CD8+ TRM cells, since 

CD8+ memory T cell cells that are most involved in the response to this parasite have 

spread and thus significantly decreased their frequency of controls in the target organ. 

B cells are responsible for antibody production both in primary and secondary 

responses. Creation of a memory repertoire is an important mechanism in CPS 

immunization109 and RTS,S vaccine to induce protective immunity. Although we found 

generation of humoral immune responses to PbVac, there were no statistically significant 

changes in B cell naïve and/or memory populations. 

Regarding data correlation among tissues and blood, these did not occur in 

populations that had shown statistically significant changes, so there are highly correlated 

populations in blood and tissues but this did not translate into a change in population 

dynamics between control and immunized monkeys. In general PBMCs are not ideal for 

understanding what goes on in the tissues due to their poor correlation, yet they were able 

to give us information about NK, NKT, Treg and Tfh cells 

Several vaccine trials in animal models and humans have shown the importance of 

the Th1-associated cytokines IL-2, IFN-γ and TNF-α in the acquisition of immunity 

against Plasmodium infection129. IFN-γ is a cytokine that seems to play a more relevant 

role, and has been described in RAS vaccines to be produced by CD4+ T cells to enhance 

this response or by CD8+ T cells to eliminate infected hepatocytes105,106. PfSPZ is an 

example of a vaccine at an advanced stage of development where the role of those 3 

cytokines was studied in a similar experiment in rhesus macaque130 In GAS 

immunization, CD8+ memory cells are believed to create protection through IFN-γ-

secreting CD8+ T and in CPS110 immunization IFN-γ CD8+ T cells elicit a crucial 

immune response. In RTS,S IFN-γ activates CD4+ T cells and induces death of infected 

cells, CD4-produced IL-2 activates NK cells and helps the antibody production by B cells, 

and induces T cell proliferation112.  
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Liver and blood cells from the last time point of the experiment were stimulated 

with PbWT, PbVac or Pf sporozoites in order to study specific cellular responses to each 

of the stimuli. Overall, we found a tendency for increased total IL-2, IFN-γ and TNF-α 

production in CD4+ T cells of PbWT-immunized monkeys, which was statistically 

significant for circulating CD4+ T cells when stimulated with PbVac. In contrast NK 

cells had decreased cytokine in both the liver and in PBMCs, and this was statistically 

significant upon Pf stimulation in PbVac-immunized monkeys. All other populations, 

including  TCRγδ cells and CD8+ T cells, did not show clear differences in cytokine 

responses to sporozoite stimulation in immunized vs. non-immunized monkeys. . In 

PfSPZ studies was demonstrated that these attenuated sporozoites inducing a high 

frequency of effector memory IFN-γ–producing CD8+ T cell responses in the livers of 

NHPs with iv administration, but not with sc administration. The latter route of 

administration shows a much lower T cell response, and also antibody response, that was 

comparable to the responses in the human volunteers immunized sc or id.These results 

do not appear to correspond to any pattern observed with other vaccines. However, the 

variability of the results and the low number of animals analysed per group make it 

difficult to draw extensive and/or statistically solid conclusions on the specific cellular 

responses. In addition, since there was a 1 month difference between the last 

immunization and final organ collection, we may be analysing an inadequately late time 

point of cellular responses.  

 We can speculate that one of the reasons why PbWT and PbVac immunization 

did not generate significant cellular immunity may be related to the lack of response by 

TCRγδ cells, which appear to be initial drivers of the immune response. Indeed, in mouse 

models of PfSPZ vaccination the absence of γδ T cells impaired protective CD8+ T cell 

responses and ablated sterile protection. The inability of monkey γδ T cells to produce 

cytokines and probably to recruit other immune cells may have partially hindered other 

responses. The parasites are known to have been recognized by antibodies, which reached 

the liver and invaded the hepatocytes but for some reason these cells were unable to 

trigger the response and perform their functions. Have been showed such in natural 

infection as after vaccination that γδ T cells rapidly expand and increase in frequency, 

and produce cytokines, mainly IFN-γ, associated with protection. This cells also have a 
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cytotoxic action, present antigens, promote dendritic cell maturation, help B cells and 

recruit other immune cells.  

Another option regards the route of administration. PfSPZ experiments on rhesus 

monkeys have reported the ineffectiveness of sc immunization as compared to iv. 

Although we can argue that mosquito bite immunization is not the same as sc 

immunization, since there are sporozoites that are immediately able to reach blood or 

lymphatic vessels, it is also not the same as immunizing iv, in which it is possible to 

ensure that sporozoites enter the bloodstream. Mosquito bite immunization still has the 

caveat of not controlling the amount of sporozoites inoculated. We can thus hypothesize 

that the method of administration was not optimal and, therefore, did not trigger an 

adequate immune response. Although a humoral response has been created, we do not 

know whether this response could be exacerbated if the route of administration was iv. 

We can also speculate that the lack of cellular responses was due to the number of 

mosquitoes used in each immunization. Assuming that the mosquito bites about 50 

sporozoites per bit, 75 mosquitoes inoculate about 3750 sporozoites. For example, in the 

PfSPZ vaccine, immunizations inject about 135,000 sporozoites per immunization, and 

in the Gf Pfb9slarp vaccine between 10 and 500,000 sporozoites were tested. From what 

we can see, there is still enormous potential for increasing the number of sporozoites used 

for immunization in order to possibly trigger a more prominent cellular response.  

It would be great to be able to challenge immunized monkeys to know whether 

immunization translates into animal protection or attenuated parasitaemia or disease 

symptoms. However, this is not possible since Pf does not cause disease in rhesus 

macaques.  

Or that too many days have passed since the last immunization to still be able to 

verify phenotypic changes in the cellular profile of the immunized monkeys, and that the 

low dose of immunization has not allowed memory to be created in the cells to be able to 

recognize the parasite antigen and release cytokines as specific response. Thus it would 

be possible to use isolated PBMCs at harvest during the study to also analyse their 

phenotype and to evaluate their specific responses to sporozoites by stimulation and to 

know if there was any immunization that might have led to an increase in cellular 

response, and if so its duration. 
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In the future it would still be interesting to know if an increase in immunization 

dose would trigger a stronger cellular immune response, so that we can know if this 

response is even dependent on CD4+ cells with the help of humoral immunity. Or if there 

was in fact no response due to the unrecognition by TCRγδ cells to sporozoites that 

possibly leads to the lack of immune response, and whether this pattern would continue 

with a second and potent experiment. Or that too many days have passed since the last 

immunization to still be able to verify phenotypic changes in the cellular profile of the 

immunized monkeys, and that the low dose of immunization has not allowed memory to 

be created in the cells to be able to recognize the parasite antigen and release cytokines 

as specific response.  
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6. Conclusion 

 

In this work we have evaluated the humoral and cellular immune responses to P. 

berghei-based whole-sporozoite malaria vaccination in rhesus macaques.  

Our results indicate that P. berghei parasites are able to infect rhesus hepatocytes 

in vivo, which we anticipate might equally occur in humans. Of note, P. berghei-based 

Wsp administration was safe and no breakthroughs were observed throughout the study, 

which are important pre-requisites for translation to the clinic. 

Importantly, we found that PbVac but not PbWT immunization led to the 

generation of circulating antibodies that recognize Pf sporozoites. This indicates (1) that 

humoral immunity against Pf was generated, which is an exciting result; and (2) that anti-

PfCSP-specific antibodies play an important role in Pf recognition. These results validate 

the use of Pb as a delivery platform able to efficiently generate humoral responses to the 

antigen(s) introduced.  

In contrast to the clear humoral responses generated by PbVac, we found, in 

general, low cellular responses to any of the parasites employed for immunization or for 

in vitro stimulation. In the future, it would be interesting to study whether an increase in 

immunization dose or administration route would trigger stronger cellular immune 

responses. 

The study presented here provides valuable information on the immune responses 

elicited by the PbVac vaccine candidate, and constitute an important stepping-stone for 

the design of a clinical trial that assesses PbVac safety and immunogenicity in humans. 

Most importantly, it represents another step towards the development of a much needed 

safe and efficient malaria vaccine. 
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8. Attachments 

 
Supplementary figure 1- Gating strategy from tube 1 of phenotypic analyses. 
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Supplementary figure 2- Gating strategy from tube 1 of phenotypic analyses. 
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Supplementary figure 3- Mono- and poly-functional cytokine production by total 
CD4+ T cells in the liver (A, B, C) and in PBMCs (D, E, F) upon antigen (sporozoite) 
encounter using an ICS assay. 
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Supplementary figure 4- Mono- and poly-functional cytokine production by 
total CD8+ T cells in the liver (A, B, C) and in PBMCs (D, E, F) upon antigen 
(sporozoite) encounter using an ICS assay. 
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