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Summary

To develop complex models of the environment, coordinate extended

sequences of actions and plane ahead organisms must break free from rigid

stimulus response associations and be able to link events and behaviors that

are separated in time. Essential to these is the ability of the brain to maintain

sustained representations of environmental absent information: a process

generally designated as working memory (WM).

Seating at the apex of the cortical hierarchy the prefrontal cortex (PFC)

as been strongly implicated, by both lesions and physiology studies, in WM

dependent behaviors. Given its integrative nature activity in the area it’s

a combination of preprocessed sensory and motor inputs with time varying

cognitive internal mechanisms, making a complete understanding of its func-

tion only possible in the context of a moment to moment comparison with

behavior.

To investigate how the joint activity of neurons, in prefrontal regions,

encodes task relevant information, during a WM dependent behavior, we

developed a head-fixed delayed response task on a treadmill for mice. Our

task allowed us to minutely monitor the animals’ behavior while acutely

recording the simultaneous activity of dozens of cells in the mPFC of the

mice. Such features enabled us to have a good understanding of how the

animals were solving the task, confirming its WM, and to relate representa-

tions encoded in the joint neural activity with the mice’s behavior in each

trial.

We found that it was possible to demix from the joint activity of the neu-

ix



rons, using a dimensionality reduction technique, demixed principal compo-

nents analysis (dPCA), retrospective and prospective WM representations

of both cue and decision. Also demixable was a trial length stable signal

seemingly related to the animals’ engagement in the task. dPCA further

revealed that the mice’s movement strategies on the treadmill had a strong

influence in the recorded activity.

Taking advantage of our simultaneously recorded neurons we also dis-

covered that in each trial the mouse mPFC encodes both WM sustained

information, during the cue free memory period, and a faithful representa-

tion of the mice speed strategy on the treadmill.

Together these results show that the joint activity of neurons in the

mPFC of the mice encodes, in a multiplexed way, multimodal representations

of informative sensory features, future goals or decisions, speed strategies and

the animals’ internal state - engagement. All the aforementioned variables

are relevant when considering a putative function of the area in organizing

context adapted, WM dependent, goal directed behavior.
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Resumo

Para conseguirem formar modelos complexos do ambiente, coordenar

sequências de acções que se desenrolam no tempo e fazer planos, os organ-

ismos não podem depender apenas de associações rígidas entre estímulos e

repostas, tendo que ser capazes de ligar eventos e comportamentos que acon-

tecem separados no tempo. Essencial para tal é a possibilidade do cérebro

manter e suster representações de informação que já não se encontra pre-

sente no exterior, um processo genericamente denominado por memória de

trabalho.

Posicionado no cume da hierarquia cortical o córtex pré-frontal tem sido

implicado, por estudos baseados em lesões e fisiologia, em comportamentos

dependentes da memória de trabalho. Dado a sua natureza integradora a

actividade nesta área é uma combinação de estímulos sensoriais e motores

com processos cognitivos que variam no tempo, tornando um entendimento

completo da sua função apenas possível no contexto de uma comparação,

momento a momento, com o comportamento.

De modo a investigar como a actividade conjunta dos neurónios, nas

regiões pré-frontais, codifica informação relevante, durante um comporta-

mento dependente da memória de trabalho, desenvolvemos uma tarefa de

resposta tardia, numa passadeira rolante, para ratinhos com cabeça imobi-

lizada por um implante. A tarefa permitiu-nos monitorizar com precisão o

comportamento dos animais enquanto gravávamos a actividade simultânea

de dezenas de células no seu córtex pré-frontal medial. Estas características

permitiram-nos perceber bem como é que os animais resolviam a tarefa, con-

xi



firmando a sua dependência na manutenção de uma memória de trabalho, e

relacionar as representações codificadas pela totalidade da actividade neu-

ronal com o comportamento dos ratinhos em cada ensaio.

Usando uma técnica de redução dimensional, dPCA, descobrimos que

era possível separar da actividade conjunta dos neurónios representações de

memória de trabalho, retrospectivas e prospectivas, das pistas e decisões im-

plicadas na tarefa. Também separável foi um sinal estável, presente durante

todo o ensaio, aparentemente relacionado com o envolvimento dos animais

na tarefa. Para além destes o dPCA também revelou que a estratégia de

movimento dos ratinhos na passadeira tinha uma grande influência na ac-

tividade que gravámos.

Tirando partido das nossas gravações simultâneas da actividade neuronal

também percebemos que, em cada ensaio, o córtex pré-frontal medial do

ratinho codifica informação em memória de trabalho, durante um período de

memória livre de pistas, juntamente com uma representação fiel da estratégia

de velocidade dos animais na passadeira.

Juntos estes resultados demonstram que a actividade conjunta dos neurónios

no córtex pré-frontal dos ratinhos codifica, de uma maneira multiplexada,

representações multi-modais de variáveis sensoriais informativas, objectivos

futuros ou decisões, estratégias de velocidade e estados internos dos animais.

Todas estas variáveis são relevantes para uma possível função da área em

organizar comportamento deliberado, e adaptado ao contexto, dependente

de memória de trabalho.
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General Introduction
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Chapter 1. General Introduction

1.1 The Prefrontal Cortex

Measured by our success in adapting, prospering and becoming dominant

in almost all environments there seems to be something strikingly different

between humans and the other species. We are not the most adapted of

animals, when considering the relation with a specific habitat, but we seem

to be the more flexible in creating new maps between our possible repertoire

of behaviors and the specific challenges imposed by different or evolving

contexts. When looking into the brain in search for what endows us with

this particular ability the spotlight has been historically centered on the

PFC. A set of features seems to point to the distinctive character of the

area: the PFC attained maximum relative growth in the human brain ( 29%

of the total cortical surface against 17% in the chimpanzee and 3.5% in the

cat, for instance) also, in the timeline of brain evolution, it was one of the

last cortical regions to develop [37], a pattern mimicked by ontogeny, with

it maturing late, in humans [36] and monkeys [29], and not attaining full

maturity until adolescence [70].

The PFC is located at the anterior pole of the mammalian brain and

is generally considered to be formed by three main regions: dorsolateral,

medial and orbital prefrontal cortices. The boundaries between these (and

respective subdivisions not mentioned here) have been traced in different

ways, dependent on the applied methodologies and followed criteria, and

despite the existence of common motifs (the dorsolateral prefrontal cortex

(dlPFC) is usually associated with cognitive functions supporting behavior

and the medial and orbital with regulating emotional behavior and basic
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Chapter 1. General Introduction

drives) there are no strong evidences to consider the whole area, or its sub-

divisions, as structural entities with unitary functions [25].

Figure 1.1: Schematic Diagram of Some PFC’s Connections: Inputs from several brain
systems converge in the interconnected PFC. Most connections are reciprocal with the
exceptions indicated by arrows. Figure from Miller and Cohen, 2001 [53].

Determinant for the understanding and description of PFC function and

organization are its profuse and reciprocal connection with virtually all sen-

sory and motor systems and many subcortical structures [53] (Figure 1.1 ).

The diversity of information streams that converge in it imply that complex
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Chapter 1. General Introduction

sensory and motor landscapes, as well as the cognitive mechanisms to op-

erate on them, can be found in the PFC. The neural networks underlying

these, however, are not confined to topographically demarcated areas, and

the computations they perform are many times concomitant in the context

of the same behavior and common across several behaviors. Such is one

of the main reasons why it as been historically difficult to reconcile a wide

collection of, many times, seemingly unrelated facts into a coherent whole.

General theories put forward to bound prefrontal function (particularly

the dlPFC) have tried to frame its involvement in disparate cognitive mech-

anisms (e.g attention [10], WM [21], planning [84], decision making [43]

and inhibitory control [2]) in the broader context of executive function [22]

and cognitive control [52] responsible for context adapted organization of

goal-directed behavior [19]. Such idea is supported by its aforementioned

connections as well as hierarchical position on top of the motor oriented

frontal half of the brain, which highlights his role as, in essence, an action

and execution cortex [26].

The PFC is not critical for performing simple, automatic forms of behav-

ior [52][53], it may be involved in learning them, but, with sufficient training,

they are automatized and completely implemented by lower hierarchical ar-

eas. The PFC is, however, particularly necessary in situations and contexts

that because of their novelty, ambiguity, complexity or extension in time

demand for top-down control of behavior. The area, in a position where

its representations encapsulate goals and schemes of actions containing in

themselves subordinate actions and subgoals, can then be said to have a cen-

tral part in integrating cross-temporal contingencies, percepts and actions,
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Chapter 1. General Introduction

by maintaining time sustained representations and monitoring their progress

against a general plan.

1.2 The Rodent Prefrontal Cortex

Even if the PFC, and PFC related behaviors, attain their maximal ex-

pression in primates, and in particular in humans, such doesn’t mean that

other species don’t have a PFC or exhibit prefrontal mediated behaviors.

There has been then, since long, a strong practical interest in being able

to study the area in more cost and manipulation amenable model animals,

with rodents being strong candidates.

Establishing parallels between the prefrontal function in primates and

rodents is not easy [78]. First, the area general role and regional special-

izations are not well understood in both model animals, creating a base

problem about what exactly is being compared; second, there are enor-

mous cross-species variations in the cortical cytoarchitectonics and connec-

tions[57]; third, a wide array of criteria and nomenclatures has been used,

seemingly ad-hoc, in both species [46].

Combining anatomical with functional information to address the issue

different authors proposed that, even if not possessing a granular structure

directly equivalent to the human and monkey dlPFC [61] [79], rodents have

behaviors that engage functional mechanisms akin to the ones normally as-

cribed to that area, mechanisms that are shared among several regions of

their own PFC [8][40]. The rodent prefrontal is, for sure, not as differenti-

ated as the primates’ one, with later specializations likely to have occurred,

but dorsolateral-like features, both anatomical and functional, are present
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Chapter 1. General Introduction

and can be revealed by the use of assays probing species-relevant executive

functions [79] [8].

Figure 1.2: Schematic Diagram of the Rat Prefrontal Cortex: (a) Lateral view, 0.9 mm
from the midline. (b) Unilateral coronal section, AP location depicted by the arrow above.
The different shadings represent the three major sub- divisions of the prefrontal cortex
(medial, ventral and lateral). Abbreviations: ACg, anterior cingulate cortex; AID, dorsal
agranular insular cortex; AIV, ventral agranular insular cortex; AOM, medial anterior
olfactory nucleus; AOV, ventral anterior olfactory nucleus; cc, corpus callosum; Cg2,
cingulate cortex area 2; gcc, genu of corpus callosum; IL, infralimbic cortex; LO, lateral
orbital cortex; M1, primary motor area; MO, medial orbital cortex; OB, olfactory bulb;
PrL, prelimbic cortex; PrC, precentral cortex; VLO, ventrolateral orbital cortex; VO,
ventral orbital cortex. Figure from Dalley et.al, 2004 [15].

The rodent PFC can be organized in medial, lateral and ventral areas

(see [79] and [40] for variations on this arrangement). The medial can be

subdivided in a dorsal region, with precentral and anterior cingulate cortices,

and a ventral with the prelimbic (PRL), infralimbic (IL) and medial orbital

(MO) cortices. The lateral includes the ventral agranular, insular and lateral
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Chapter 1. General Introduction

orbital cortices. The ventral region encompasses the ventral orbital and

ventral lateral orbital cortices (Figure 2 ) [15].

Based on its anatomical connections, in particular the reciprocal ones

with the mediodorsal thalamus [68], and involvement in specific behaviors,

the rodent mPFC as long been considered to take part in cognitive pro-

cesses analogous to some of the ones ascribed to the primate dlPFC [40].

Some authors have investigated and pointed to the existence of functional

heterogeneity within the area, particularly between its dorsal and ventral

parts [15][40][19][69], but such differences, and its reasons, are many times

difficult to interpret out of the context of specific tasks and in the broader

spectrum of prefrontal function.

Hence, as with the PFC (especially dorsolateral) of humans and non-

human primates, and even if in the scope of less differentiated forms of be-

havior, the rodent mPFC can be said to be implicated in a set of cognitive

control processes needed for the optimal scheduling of complex sequences of

behavior including decision making [76], attentional selection [39], monitor-

ing [30], behavioral inhibition [44] and task switching[60]. Crucially, it has

also been systematically considered critical for the online maintenance of

memory representations necessary for the organization of actions over time

[35][33][63].

1.3 Prefrontal Cortex and Working Memory

To go from simple, but inflexible, bottom up determined behaviors, in-

cluding reflexes and habits, to complex and versatile streams of actions,

animals need to be able to integrate context relevant information and fu-
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Chapter 1. General Introduction

ture plans, over variable periods of time, and use them to generate adapted

conducts.

The recognition of such need, different from the long term storage of

information in reference memory, led researchers to come up with the concept

of WM, a mechanism by which the brain would be able to sustain and

manipulate, for a short period of time, representations that could provide

the backbone to high level cognitive operations such as thinking, planning,

reasoning and decision-making [21]. Given this central role in goal-directed

behavior, establishing the neural basis of WM has been a primary focus of

neuroscience research.

The terminologies working and short-term memory have been used largely

interchangeably when scientists want to refer, at the behavioral or mecha-

nistic level, to something that needs to be remembered for a short period of

time. There is no general consensus about the terms [1] and whether they

refer to distinct mechanisms or qualitative levels within the same general

mechanism. The more accepted distinction, though, implies a complexity

difference, with short-term memory referring to the passive maintenance of

information and WM also to the processes through which that information

is manipulated [22]. In what relates to our work here, even taking in consid-

eration the complexity arguments and the heavy assumptions loaded on the

term by human and primate research, we’ll use the designation WM. Our

decision is mainly based on the fact that it is the more generally used by the

field and that to go back and forth between terminologies, when referring

to our or others’ work, would result confusing. It should be clear, though,

that, despite using the term WM, we interpret it as the basic mechanism
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Chapter 1. General Introduction

through which information is maintained active in the brain and imply no

distinction with short-term memory.

Based on psychological evidence several conceptual WM models were de-

veloped [54], but the more well-known and influential is the one proposed

by Baddeley and Hitch [3]. Badelley’s model includes one master compo-

nent (the central executive) and three slave components, responsible for

processing and maintaining information from several modalities: the visu-

ospatial sketchpad (visuospatial information), the phonological loop (speech

perception and language comprehension) and the episodic buffer (integrating

chunks of information from a different variety of sources). The central exec-

utive supervises the performance of the slave components and it’s considered

to be an attentional system with a limited memory capability. Baddeley’s

proposal is an abstract, not mechanistic, model and establishing a compari-

son between its components and particular brain structures it’s difficult and

of limited usefulness. Despite, and in a loose sense, it’s central executive

component has been related to the function played in the brain by the PFC

[16].

The PFC involvement in WM supported behaviors has been consistently

established by lesion studies, both in primates [25][59] and other mammalian

species [35], and non-invasive brain activation experiments in humans [75],

but it was the finding of neurons with elevated activity throughout a short

WM dependent period that, by providing a simple explanation for the mech-

anism of information storage, contributed the most for the association of the

area with the process.
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Chapter 1. General Introduction

Figure 1.3: Delay Period Activity in ODR Task: (A) An example of directional delay-
period activity. (B) An example of a tuning curve of directional delay-period activity. (C)
Polar distribution of the best directions of delay-period activity. A majority of the best
directions were directed toward the contralateral visual field. Figure from Funahashi, 2006
[15].

Neurons in the PFC with firing rate higher than the baseline, between

the presentation of a cue and the response of the subject, were first found

in delayed response tasks [45] [27] [56], where the former and the later were

separated by a time interval (delay). Their hypothetical role as the mech-

anism for temporal active maintenance of information was, however, deci-

sively established and investigated in the context of the oculomotor delayed
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Chapter 1. General Introduction

response (ODR) task[23]. In it monkeys had to fixate a central point on a

screen. After fixation an image was shown for some time and then disap-

peared, marking the beginning of a delay period. During the delay animals

had to keep fixating the central point, controlling for movement related neu-

ral activity. With the subsequent disappearance of the central point the

monkey had to make a saccade to the location where the image had been

initially displayed.

Neural activity, during the delay period of the ODR task, showed charac-

teristics that made it an ideal candidate mechanism for the maintenance of

information in WM: it was prolonged or shortened depending on the duration

of the delay period [42], was only present when the animals performed cor-

rect responses, being truncated or absent in error trials [27] and, importantly,

exhibited directional preference, with specific neurons firing only when the

visual cue was presented at one or a few adjacent positions [64] (Figure 1.3 ).

Also, and curiously, the neurons seemed to encode preferentially the loca-

tion of the cue and not the direction of the saccade [77]. The clarity of the

results and the seeming simplicity of the mechanism, PFC neurons, or neu-

ronal populations, selectively tuned to the to-be-remembered information,

hold it in an active state through persistent activation [32], made this the

predominant model in the WM field, inspiring several proposed theoretical

mechanisms [17] [11].

Recently, however, several lines of evidence have questioned the role of

the PFC, and stable persistent neural activity, in WM related behaviors [71].

Following the ODR task results, subsequent studies, and tasks, revealed PFC

neurons with activity that showed selectivity regarding a varied panoply of

11
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information (e.g. tactile [67], auditory [41], task rules [83] and temporal

order of stimuli [24]). This led to a progressively compartmentalized view of

the area in which it apparently contained specialized neurons for every type

of potentially useful information. Such idea seems rather implausible, and

not parsimonious, if one thinks that the same information is already being

represented, and processed, in lower hierarchical areas and that these also

possess the hypothetical requisites to maintain it over short periods of time,

with cells with sustained activity having been observed throughout the brain

(e.g. parietal cortex [31], primary visual cortex [28], superior colliculus [6],

thalamus [82] and even the spinal cord[62]).

Adding to such, and more revealing, temporal and occipital areas were

shown to also encode, during the entire memory period, task relevant rep-

resentations[80] that were tied to WM precision and the behavior of the

subjects [18]. Moreover, information in sensory areas seems to better repre-

sent the characteristics of the remembered item during the delay period than

activity in the PFC [47], where representations were shown to be more cat-

egorical in nature [50]. Together, these led to an alternative view according

to which the PFC’s primary function, in WM, is not to store but rather to

influence representations stored in hierarchically lower areas[51] [20] through

top-down signals [12][53].

The relevance of the PFC’s fixed selectivity persistent neural activity has

also been questioned. This type of activity in the PFC as practically become

a symbol for WM, but, as before mentioned, sustained activity can be found

nearly everywhere in the brain, questioning any privileged status of the area.

Also, despite its recognized importance in forming temporal links [26] [14],

12
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short-term lived representations can be stored in different ways and are not

dependent on selective sustained activity, as proved by works in which infor-

mation could still be decoded, during the delay period, despite the removal

of cells with selective elevated activity [4] [66] [72], or the observation of

relatively silent periods, between encoding and response preparation, where,

despite the inexistence of overt sustained activity, memory is still maintained

[5].

Because of the before mentioned arguments, and following developments

on brain monitoring technologies and data analysis capabilities, the focus of

research has been shifting from information encoded by neurons, or groups of

neurons, with delay period selective elevated activity, to WM encoding based

on the joint activity of neuron ensembles (Figure 4 ). Indeed, an increasing

number of studies reports that, rather than utilizing distinct populations to

encode each task variable, activity in the PFC encodes multiple task param-

eters within a single neuronal population [38] [74]. Further, researchers have

also discovered that the encoding is often done through dynamic spatiotem-

poral patterns (Figure 1.4 3 ) [50][74][4], which evolve through state space

trajectories and in which the encoding might be entirely different in distinct

time points. Although the precise mechanisms underlying dynamic popula-

tion coding are still not well understood, recent works have highlighted its

possible coupling with functional and short term synaptic plasticity [55][73].

Dynamic coding is certainly not limited to the PFC, but the area’s hi-

erarchical location and temporal integration role, allow it to fully explore

a general principle of WM dynamic coding in organizing flexible cognition

and behavior.
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Figure 1.4: Neural Mechanisms of WM: A simplified schematic comparing and contrasting
the fixed-selectivity model with population coding models involving static and dynamic
temporal codes. Orientation tuning curves for three hypothetical neurons, A, B, and C,
are shown in the top inset. Below this are schematics for three different potential neural
models of WM. Top row: The fixed-selectivity model, primarily derived from single-unit
recordings in monkey dlPFC. Middle row: Evidence for static population coding comes
primarily from fMRI decoding and forward encoding studies of visual cortex. Here the
pattern of activity across neurons can encode stimulus orientation in the absence of highly
selective neural responses. This pattern is sustained throughout maintenance. Bottom
row: Dynamic population coding has been demonstrated largely in monkey lPFC. Despite
time-varying activity in all three neurons, the representation of orientation remains stable.
The relevant orientation is encoded by a different combination of neural responses at each
point in time. Figure from Sreenivasan et.al, 2014 [71].
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1.4 Heterogeneous Representations in the

Prefrontal Cortex
An interpretation of the neural activity mediating the perception-action

cycle solely based on a function that takes us from stimuli to behavior is

made difficult by the fact that the brain doesn’t simple represent the world

in a different way. Personal significant preexistant attributions modulate

the primary representations of sensory stimuli and motor implementations

through a collection of cognitive mechanisms. At any given moment, thus,

what is being encoded by the neurons are representations of environmental

and behavioral features coloured and contextualized according to an organ-

ism’s interpretation, based on its world model and future goals [9]. Such fact

is more and more evident when moving away from the periphery, with the

activity of each neuron being less and less determined by external drivers

and more a reflection of activity in lower information processing levels. In

its position at the apex of a hierarchy through which feedforward informa-

tion ascends, being processed in the way by multiple intermediate loops

[26], the PFC deals essentially with representations that are already highly

abstracted, filtered and integrated for task relevance[58].

A direct consequence of what as been described is that neurons in the

PFC often have complex responses that are not organized anatomically and

may reflect multiple parameters such as stimuli, rules, responses or combi-

nations of these [48] [42] [7]. Traditionally this heterogeneity was neglected

and considered a difficulty in understanding the mechanistic roles of certain

neurons and brain regions. Consequently, in an effort to identify the com-
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ponents involved in the processes they were interested in, scientists tended

to handpick cells that could be directly related with features of interest, or

average the activity of a given neuron over repetitions of the same feature,

blurring all other information its response might also contain.

Recently though, this mixed selectivity, common characteristic of neu-

rons in high order areas, as been associated to high-dimensional neural rep-

resentations and the way PFC encodes information. Rigotti et.al, 2013 [66]

showed that activity in a population of neurons, in the PFC of monkeys,

simultaneously encoded all task relevant variables, in an object sequence

memory task, even when classic neural selectivity was artificially abolished.

The authors propose nonlinear mixed selectivity as the crucial character-

istic that allows for high-dimensional neural representations (Figure 1.5 )

and show that artificially abolishing it reduces the representations dimen-

sionality. High-dimensionality seemingly allows task relevant aspects to be

accessible to linear classifiers, such as simple neuron models, that can only

separate representations through planes, which would be impossible, for in-

stance, in the case of the pure and linear mixed selective neurons in Figure

1.5 b.

The characteristic response profile of neurons found in the PFC, with

its heterogeneity and mixed selectivity, might thus be at the core of the

mechanisms responsible for the adaptability of the area and its seemingly

limitless capacity to represent a multiplicity of information. Riding the wave

of technological and computational power development, both at the level of

brain activity recording and data analysis, scientists have been discovering

that the joint activity of neural ensembles in high order areas encode, simul-
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taneously and without the need for feature selectivity, multiple task relevant

variables. Findings, both in the primate [65] and rodent PFC [49], revealed

evidence for multiplexed encoding, in diverse task moments, of contextually

relevant information concerning stimuli, goals, rules and strategies [81] [48]

[4] [34], the basic necessary ingredients to orchestrate behavior.

Recording population activity allows a shift of focus from cells with easily

interpretable response tuning to the information contained in mixed selec-

tivity neurons. Leveraging statistical power from simultaneously recorded

activity [13] researchers can move away from trial averaging and extract

meaningful representations from the activity in individual trials, something

particularly important if the questions being addressed involves brain areas

where neurons are not directly, and reliable, driven by external stimuli or

actions. As said before, in the PFC the observed activity results from a

combination of external influences with the brain appraisal of these and en-

sembles in the area, working at multiple temporal and spatial scales, reflect

a panoply of internal processing mechanisms taking place in networks at

several hierarchical levels. Hence, even if the contingencies of a given trial

type are kept constant, the time course of relevant internal mechanisms may

differ substantially, making them only fully intelligible when analyzed trial

by trial, the importance of such increasing with the cognitive complexity of

task or problem.

It seems so that to fully understand the mechanisms behind the func-

tional role of an highly integrative area, like the PFC, one needs to combine,

and contrast, an understanding of the moment to moment neural activity,

with a thorough description, and comprehension, of the synchronous behav-
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2.1. Abstract

2.1 Abstract

When using behavioral paradigms to investigate the neural basis of cer-

tain behaviors, or cognitive processes, one must first make sure to completely

understand how the subjects are solving them. Delayed response tasks have

been successfully used in investigating WM at the behavioral and neural

level, but, given their design, with the cue immediately giving away the

future response, subjects have been found to use behavioral strategies to

avoid the need of keeping a memory during their cue absent period. Here we

present an head-fixed delayed response task on a treadmill, for mice, that al-

lows us to precisely monitor the behavior of the animals while simultaneously

performing multi-electrode acute recordings. Mice perform consistently well

in the task and, through a combination of analysis and behavior based con-

trols, we show that a WM representation is effectively needed for correct

performance, paving the way for a meaningful interpretation of the neural

activity.
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2.2 Introduction

Behavior is one of those pervasive concepts for which seemingly simple

and clear intuitions become suddenly muddled when a formal definition is

attempted. Nevertheless, from Tinbergen’s "The total movements made by

the intact animal" [26], to a more recent definition that emerged from a

survey performed in the behavioral biologists’ community: "Behavior is the

internally coordinated responses (actions or inactions) of whole living organ-

isms (individuals or groups) to internal and/or external stimuli, excluding

responses more easily understood as developmental changes"[15], the idea

that behavior is something that organisms perform, their way to interact,

respond and intervene in the environment, appears as a common theme. It’s

through behavior that organisms, single or collective, thrive or perish and

so it was through behavior that natural selection shaped the evolution of

nervous systems.

It should thus be clear that it’s not possible to truly understand brain

function in isolation from the behaviors it evolved to generate and control,

and that only by systematically connecting the dots between this two spaces

will it be feasible to uncover how the first gives rise to the second. Because

behavior is a complex and high-dimensional phenomenon, changing dynam-

ically in space and time in the context of a particular environment, this is

more easily said than done [10].

There is an inherent conflict between the need to simplify and constrain

animal behavior, in order to isolate particular phenomenons of interest and

facilitate the interpretation of always complex neural signals, the reduction-
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ist approach neuroscience tends to follow, and the notion that animals will

only fully express their behavioral repertoire, and that this will only be fully

understandable, in the context of more naturalistic environments [14] [24].

Even if no definitive solution to this conflict is still foreseeable, it should

stand out that behavioral tasks mustn’t totally ignore each animals’ natural

repertoire and that minutely monitoring and controlling how the subjects

are actually solving the problems imposed on them by the experimenter is

probably as important to understanding the brain as recording the biggest

number of neurons or being able to perturb their activity [8].

In an attempt to understand and describe particular behaviors, cognitive

functions and the neural activity underlying these, scientists have tried to

isolate them through the use of specifically designed behavioral assays - the

previously mentioned reductionist approach. The defining characteristic of

WM probing tasks is the existence of a delay, or memory, period over which

animals have to remember some piece of information that will allow them

to correctly perform the task. During the memory period there should be

no external cue about the memorized item: forcing the subject to store and

use an internal representation of it.

In general terms these tasks can be organized in two groups: delayed

response and delayed comparison tasks[21]. In delayed response tasks all the

information needed to correctly solve the task is already present at the onset

of the memory period and the subject only has to withhold its response until

the appropriate moment. In delayed comparison tasks the correct response

can only be determined at the end of the memory period by comparing the

previously presented cue with a new one. From this follows that wile in
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a delayed response context it’s not possible to know what information the

subjects are actually storing during the delay, the cue previously presented

or the action to be performed, in delayed comparison tasks the cue presented

before the memory period is necessarily the memorized item.

A variety of tasks, falling in one of these categories, have been used inter-

changeably to study WM in rodents [4]. From widely popular maze based

approaches, taking advantage of the rodents’ spatial navigation skills and

natural preference for narrow passages (e.g. the radial arms maze [19], t-

maze [25], Morris [18] and other water mazes [2]), to non automated delay

comparison tasks, probing match and non match conditions (e.g. with ob-

jects [23] and odours [20]), and automated freely moving delayed orienting

[13] or head-fixed delayed response [16], and comparison [17], licking tasks.

If it’s true that the same cognitive mechanisms are involved and combined

in different behavioral manifestations it is also true that different tasks will

pose different challenges to the animals, making it difficult to disentangle

general from task-specific behavioral, or neural, observations.

Understanding what a task is asking from the subjects and controlling

for how they are solving it is crucial for a meaningful interpretation of the

obtained observations. In the case of WM guided behaviors, as it became

clear since very early [27], to make claims about the actual use of a memory

it’s necessary to guarantee that the animals are not "bridging" the memory

period through any kind of non-mnemonic embodied strategy. Only such

certainty will make possible to correctly characterize the subjects’ perfor-

mance dependence on the memory period duration, interpret deficits caused

by behavioral or neural perturbations and identify related neural activity.
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The use of behavioral strategies during the memory period is prevented

by design in delayed comparison protocols, but although these have been

successful taught to other non primate species, like pigeons [28], and rodents

can perform them in more naturalistic type of paradigms [6],training true

delayed comparison tasks, with both rats and mice, has proved to be difficult

and time-consuming in the context of high-throughput automated tasks (see

[17] for a recent exception). If the question of interest depends fully in

knowing or determining the identity of the to be remembered item then a

delayed comparison task seems essential, but if that is not the case and one

just needs to guarantee that a memory is needed for the subjects to correctly

perform the behavior, delayed response tasks can and have been used with

great success throughout the years [9], providing that the appropriate efforts

and controls are put in place to monitor and understand how is the task being

solved.

Here we developed a fully automated, head-fixed, delayed response task

on a treadmill with a long belt that, given its self-initiation and spatial

features, was very engaging and easy to learn for the mice which performed

a high number of trials per session with a very good performance. Moreover,

our setups allowed us to closely monitor animal behavior, namely licks and

movement on the treadmill, giving us access to how the mice were solving the

task and guidance in designing the appropriate controls to guarantee that

a behavioral strategy was not being used to eliminate the need for keeping

a memory through the memory period. These made us confident that, like

desired, upon the presentation of an auditory cue, mice kept, throughout

the memory period, an active representation that allowed them to perform
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the correct action when presented with trigger stimulus at the end of it.
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2.3 Methods and Materials

2.3.1 Behavioral Apparatus

The results here presented were obtained using three behavioral setups:

two of them, used only for behavior, were identical and the third differed only

in what was necessary to perform the electrophysiological recordings, namely

the possibility of attaching to it a stereotaxic arm, a microscope connected

via a flexible moving arm and a light-source - all essential to the insertion

of the recording probe. The first two setups were inside the same custom

made sound-proof box which was split in two by an internal division, the

electrophysiology setup had a dedicated sound-proof box. Each setup was

connected to its own dedicated computer with the task being programmed

and controlled via Matlab. All setups sensors (rotary encoder, lick detector,

belt lap detector) and effectors (speakers, reward valve, intra trial interval

(ITI) lights) were controlled via a in-house developed input-output board

with a sampling rate of 2082 Hz .

The basic component of each setup was a treadmill formed by two 3D

printed wheels and a fabric belt running loosely around both. The back

wheel, on top of which the head-fixed mice were placed, had 20 cm of di-

ameter and 5 of width; the front wheel was smaller with 10 cm of diameter

and the same width. The axes of both wheels were fitted to ball bearings,

mounted on laser cut pieces of acrylic, that were fixed, roughly 30 cm apart,

on two 50 x 4 x 4 cm parallel aluminum rails. These two rails were fixed

centered on the top face of a hollow cube also made with the same 50 x 4 x
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4 cm rails. The belt, with 130 x 5 cm, which covered the top of both wheels

and hanged towards the ground, had glued on its surface, approximately 100

cm from one of its ends, a set of bands with a rough texture. The textured

surface covered a 15 cm stretch and was used to signal the place where the

mice could get reward in the task. To make the animals more comfortable

while running a half tube, tunnel like, plastic piece was placed around their

body during the task. This was fixed to the setup by a set of optical posts

and clamps (Thorlabs) that allowed it to be easily put in place and adapted

to each animal position.

To monitor the position of the mice on the treadmill an absolute magnetic

encoder (US Digital, MAE3) was fitted to one end of the big wheel axis. A

pair of infrared (IR) LED emitter and logic detector were used to monitor

each complete lap of the belt. For that they were installed, facing each

other, on a custom made piece of acrylic, fixed to one of the top aluminum

rails just after the front wheel, that extended towards the floor. In its lower

end this piece had the shape of a rectangular prism with approximately 5.2

x 2 x 2 cm with the top and bottom sides open to allow the belt to run

through the middle. A 0.4 cm hole was punctured in the belt aligned with

the IR emitter and detector. The rectangular prism also served the purpose

of maintaining the belt aligned with the wheels.

Mice were head-fixed in the setup to a custom made, 0.2 cm thick, alu-

minum head-plate. The head-plate was situated on top of the back wheel

with each of its lateral edges connected to one of the parallel rails by two

optical posts. The posts in each side were connected in a 90◦ angle allowing

to change the position of the head-plate both in the dorsal-ventral (DV)
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and anterior-posterior (AP) axis relative to the wheel. The head-plate had

a hole that, when the mice were head-fixed, gave direct access to the center

of the head-implant allowing for the easy insertion of the recording probes.

It also allowed the fixation, on its lower face, of speakers in several different

positions and on its upper face, facing the animal, of the reward delivery

system - lick-port.

To deliver reward to the mice during the task and monitor their licking

lick-ports were custom built out of a 3D printed plastic body to which a

water delivery spout and a IR LED emitter and logic detector were fitted.

For the delivery spout we used an 18 gauge metal needle with the tip cut and

polished. The emitter and detector were fitted and glued to specific parts of

the plastic body so that the IR beam crossed the front of the delivery spout

allowing us to monitor when the animals licked. The lick-port was fixed to

the anterior upper face of the head-plate through a set of mini optical posts

and clamps (Thorlabs) allowing for a precise positioning by moving it in the

AP and DV axis relative to mice’s mouth.

To signal ITI, and illuminate the setups while off-task, two boards of

white LED stripes, with adjustable intensity, were attached to the lateral

rails of the base cube at the height of the mice when running on the treadmill.

2.3.2 Behavioral Task

2.3.2.1 Experimental Subjects

All mice used in the experiments here presented were male from the

C57BL/6 strain. Mice selected to be implanted, and start the training pro-

tocol, were typically 3 months old with a weight around 24 gr.

41



Chapter 2. Head-Fixed Delayed Response Task on a Treadmill

2.3.2.2 Habituation Period and First Time in the Setup

Circa one week before the beginning of the actual training protocol ani-

mals started to be water deprived and habituated to being handled. Once a

day they were moved to the behavioral room, taken out of their home-cage,

given water from a 1 ml syringe and allowed to explore the experimenters’

arms and upper torso. This was the only water the animals were allowed to

drink during the day.

When accustomed to be handled mice were ready to be placed on the

wheel and head-fixed for the first time. To make them feel more comfortable

and less stressed the head-plate position was adjusted so that their body was

closer to the surface of the wheel and more to the back relative to its apex.

The half tunnel was then lowered to cover the body from neck to beginning

of the tail. After a few minutes, when the animals had already calmed down,

the lick-port was slowly moved towards their mouth until the spout almost

touched it.

The first session had a maximum length of 10 minutes, with each session

after being increased by 5 minutes until a maximum length of 40 minutes.

In each session mice were allowed to drink a maximum of 220 rewards, if

this value was reached the session ended. Session by session the head-plate

position was progressively shifted upper and towards the apex of the wheel

so that the animals reached an ideal running configuration.

2.3.2.3 Training Procedure

All training phases described below were performed in the dark inside

the sound-proof boxes. The only exception was the white light signaling the
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ITIs.

Phase 1 Learn to drink - A 0.3 µl drop of water was delivered to the

reward spout, when the mouse licked it another was delivered after 0.5 sec-

onds. Mice moved to the next phase when they managed to get 100 rewards

in one session. This happened, typically, within the first 3 sessions.

Phase 2 Learn to run - In this phase animals were asked to move a given

amount of centimeters, on the wheel without the belt, before a reward was

delivered. The initial reward distance was 20 cm and it was increased by

5 cm for each 20 rewards collected until a maximum of 100 cm. Mice were

allowed to move to the next phase when totally comfortable running on the

wheel, in which situation they would typically collect the maximum amount

of reward allowed in 20 to 30 minutes.

Phase 3 Running on the belt - The fabric belt was installed on the

treadmill. Mice had to run but now reward was delivered 1 cm inside the

reward area each time they cross it. Again, mice were allowed to move

phase once running comfortable on the belt and collecting a large number

of rewards per session.

Phase 4 Passive association of sound with reward - Same as in the pre-

vious phase but now one of two sounds (5 or 12 kHz pure tones) was played

between 8 cm before the start of the textured area and 1 cm inside it. If the

sound played was the rewarded one a drop of water was delivered immedi-

ately after it ended, if it was the non rewarded sound nothing happened. For

animals with an even number the rewarded sound was 5 kHz; for animals

with an odd number the rewarded sound was 12 kHz. To keep the animals

motivated the probability of the rewarded sound being the one played was
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0.8. For both sounds no more than 3 repetitions were allowed. Animals were

kept in this phase until getting 1000 rewards across several sessions, which

typically happened in the fourth.

Phase 5 Learn to stop - As in the previous phase but now mice had to

stop for 0.1 seconds to receive a reward. After 3 sessions in this phase, if

their hit rate was higher than 0.9 in a 40 trials running window, mice were

allowed to progress. The probability for both types of trials was leveled to

0.5.

Phase 6 Learn to discriminate between sounds - In this phase the stop

criterion was increased to 0.2 seconds, also, to progress to the next phase,

mice had now to continue to run when the no stop sound was played. Prob-

ability of both sounds was 0.5 but, to discourage the animals from stopping

indiscriminately, if the false alarms rate was higher than 0.6 the probability

of a no stop sound being played was increased to 0.8. Mice were allowed to

progress, after 3 sessions in this phase, when the proportion of correct trials

over a 50 trials running window was higher that 0.9.

Phase 7 Imposing a memory period - The sound start and end posi-

tions were shifted back, relative to the area, by 5 cm each time the mice

reached a 0.85 performance over a 40 trials running window. When the

sound start location reached the centimeter 25 from trial start the sound

was set to randomly begin in the positions 20, 25 and 30 cm. With each

successfully completed running window the possible sound start locations

increased by 5 cm in each direction until the 11 final possible sound start

locations (1,5,10,15,20,25,30,35,40,45 and 50 cm) were reached.

The training procedure (from a habituation to stable performance) lasted
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typically two to two and half months. From the originally implanted animals

around 60% normally reached stable performance with 30% never learning

to run and 10% loosing motivation during the remaining training process.

2.3.3 Head-Implant Surgery

2.3.3.1 Head-Implant

The head-fixing implants were custom designed and 3D printed. The

implants were bowl shaped, bottomless and when in position covered the top

of the skull of the mice with the edges seating on the interparietal plates,

the lateral extremes of the parietal plates and just before the animals’ eyes.

Being bottomless the implants allowed access to the top part of the mice’s

skull from a little before bregma to the anterior extreme of the frontal plate.

On its most posterior dorsal part the implant allowed for the insertion of

two screws, used to attach it to the head-plate. Also on the back, two hollow

tubes raising 1.5 cm from the upper surface of the implant and connected

to it in a 80◦ angle, allowed for the protection of ground wires, to be used

during electrophysiology, while the mice were being trained.

2.3.3.2 Surgical Procedure

In the surgery day mice were taken from their home-cage and put in an

induction chamber connected to the isoflurane delivery system (RWD Life

Sciences). When stably anesthetized they were moved to the stereotaxic

apparatus (RWD Life Sciences), their snout covered by the isoflurane deliv-

ery mask, their eyes protected with eye ointment and the skull immobilized

with ear bars. An intracutaneous injection of local anesthetic (Lidocaine)
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was then applied on top of the skull, after what a roughly round patch of

skin was cut, with surgical scissors, exposing the surface of the skull from

the intraparietal plate above the cerebellum to just before the eyes, in the

AP axis, and from the lateral edge of one parietal plate to the other in the

medial-lateral (ML) axis. The exposed skull surface was then cleaned of any

connective tissue and aligned in all three axis.

Two holes were drilled above the cerebellum, each roughly centered in

the interparietal plate of one hemisphere and custom made ground pins, to

be used during electrophysiology, were screwed to them. A needle tip was

then used to gently scratch the skull’s surface in a grid pattern and a thin

layer of "superglue" was applied covering the entire exposed skull surface and

the edges of cut skin around it. After the glue dried out a very thin layer

of dental cement was applied over covering the same surface. The location

of bregma and two positions just after and before the AP extremities of the

coordinates we wanted to target were marked, on the surface of the dental

cement, with a bone marker pen, for future reference.

A half a pea chunk of viscous dental cement was then placed on top of the

cerebellum, where the screw heads were, and the most posterior part of the

implant was lowered, aligned in all three axis, with help of the stereotaxic

arm, and pressed onto it. When the hat was solidly glued on its position,

dental cement was used to fill the remaining gap between the edges of the

implant and the cement covered skull surface. While the cement was allowed

to dry, the wires of the recording pins were tuck into their position inside

the head implant tubes.

The dental cement covered skull surface was then protected with a layer
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of silicone adhesive (World Precision Instruments - Kwik Sil) and the animal

was given one intraperitoneal (IP) injection of antibiotic (Enrofloxacin) and

one of analgesic (Buprenorphine). With the surgery finished the mouse

was gently returned to its homecage and allowed to wake up in an heated

environment. Animals were allowed to recover for one week before initiating

the training protocol.

2.3.4 Modeling Stop Probability

2.3.4.1 Model Fitting

We used logistic regression to model the probability of the mice stop-

ping upon reaching the reward area. To fit the model we used the Glmnet

package [22] that employs cyclical gradient descent to, in the case of logistic

regression, minimize

− 1
N

N∑
i=1

yi ∗ (β0 + xTi β) + log(1 + e(β0+xT
i β)) + λ[(1− α)||β||22/2 + α||β||1],

with λ ≥ 0 as a complexity parameter and 0 ≤ α ≤ 1 as a compromise

between ridge and lasso (ridge:α = 0 ; lasso: α = 1).

For all the models in this section we used an elasticnet mixing parameter

α of 0.5 (α = 1 is the lasso and α = 0 is the ridge). Also, all predictions

were made on data not used for training, using 10 fold cross validation and

the regularization parameter λ was fitted by the algorithm using an inner

nest of cross validation again with 10 folds.
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2.3.4.2 Model With All Positions Speed Predictors

In Figures 2.9 and 2.10 two models were fitted to the trials with same

sound start location: one using just the sound played as predictor and the

other using both the sound and the speed of the mouse in 19 bins linearly

spaced between sound start location and reward area start.

2.3.4.3 Model With Single Position Speed Predictors

In Figures 2.11 and 2.12 one model was fitted per individual bin speed

in trials grouped by sound start location. In each model the sound played

and the speed of the mouse in one of the 19 memory period’s bins were used

as predictors.

2.3.4.4 Model Performance

The performance of the models (how well were we able to predict if

the animals stopped or not) was accessed via the area under the receiver

operating characteristic (ROC) curve (AUC). The ROC curve is created by

plotting the hit rate (true positives) of a model against the false alarm rate

(false positives) at various threshold settings. Our thresholds went from 0

to 1 in 0.001 increments.

2.3.4.5 Fraction of Variance Calculation

To evaluate how both predictors, sound and speed, were contributing

to the predictions being made by the models we calculated the fraction

of variance associated with each when multiplied by its respective model
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coefficient. For each predictor i of n:

Fraction of V ariance = V ar(P:i ∗Bi)∑n6=i
j=1 V ar(P:j ∗Bj)

,

where each column of P is the set of values of 1 of n predictors and B is an

array with the coefficients atributed by the model to each predictor.
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2.4 Results

2.4.1 Performance in the Task
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Figure 2.1: Head-fixed Delayed Response Task on a Treadmill: (a) Head-fixed mice run-
ning on a passive treadmill with a long belt had to decide to stop, or not, on a textured
area depending on the identity of a sound (5 or 12 KHz pure tone) played a given dis-
tance before. (b) All task contingencies were dependent on the position of the mouse in
the belt. In each trial one of two sounds started randomly in one of 11 possible locations
(1, 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 cm from trial start) and ended 8 cm after.
At centimeter 100 from trial start the animals encountered the 15 cm long stopping area,
where they could express (or not) the reward triggering behavior: stopping. If the stop
meaning sound had been played and the animal stopped it received a drop of water (hit
trials). If the no stop meaning sound had been played the animal had to continue running
and received no reward (correct rejection trial). No punishments were used in both types
of incorrect rials (false alarm and miss trials). When the animals left the textured area a
light was turned on for a 15 cm ITI interval.

In our task, head-fixed mice, running on a passive treadmill with a long

belt (130 cm), had to decide to stop (or not), upon reaching an area marked
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with a textured fabric, depending on the identity of a sound (5 or 12 KHz

pure tone) heard some centimeters before, but not present at the final de-

cision moment (Figure 2.1 a). Unlike what is more common in automated

behavioral assays used in the neuroscience field the events of our task were

not set in time but in space (Figure 2.1 b). This meant that the mice’s

movement on the treadmill determined if and when would they initiate a

new trial and encounter a new event, as well as the duration, in time, of

events and inter-event intervals.
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Figure 2.2: Mice Performance: (a) Left: running performance of one animal in a single
session (30 trials window). Right: running hit and false alarm rates in the same session
(30 trials window). (b) Left: mean performance of 8 animals across 10 sessions (error
bars are for standard error of the mean (SEM)). Right: hit and false alarm rates for 8
animals across 10 sessions (error bars are for SEM).

Mice performance in the task was very good and robust both within

a single session (Figure 2.2 a) and across different sessions (overall mean
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performance of 0.95 with performance > 0.85 for all sessions of the 8 animals;

overall mean hit rate of 0.96 with hit rate > 0.90 for all sessions of the 8

animals; overall mean false alarm rate of 0.05 with false alarms < 0.2 for

all sessions of the 8 animals) (Figure 2.2 b ). The natural time penalty

associated with stopping was enough for the mice to refrain from doing it

when not necessary. Also, within session, we didn’t normally observe slow

performance oscillations related to motivation: the running aspect of the

task, which seemed to be engaging for the animals, together with it being

self initiated probably contributed to this.
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Figure 2.3: Performance Across Sound Start Locations: (a) Left: performance of the
animals in trials grouped by sound start location (error bars are for SEM). Right: hit and
false alarm rates in trials grouped by sound start location (error bars are for SEM). (b)
Mean memory period duration in time, across sound start locations, for stop and no stop
trials (error bars are for standard deviation (SD)). 8 animals and 10 session per animal
for all the above.
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The difficulty component of behavioral tasks aimed at probing WM is

traditionally placed on the amount of time the subject needs to sustain

the memory representation before using it. Unlike in other tasks, where

mice report their choices by licking, the reward triggering behavior in ours,

stopping, was different from the reward consumption behavior, a fact that

allowed us to avoid impulsivity confounds and establish longer memory peri-

ods. The mean duration, in time, of the memory period varied in quasi-linear

fashion with its length: mean hit trials delay duration 2.5 and 1.15 seconds

for the longest and shortest memory period; mean correct rejection trials

delay duration 2.14 and 1.03 seconds for the longest and shortest memory

period (Figure 2.3 b). Mice took, in mean, more time to cross the memory

period in stop than in no stop trials. Such happened because they tended

to slow down before stopping, a feature more visible in the longest memory

periods where the two behaviors had more space to diverge. Contrary to

what might have been expected, memory period duration had no significant

visible effect on the mice’s performance in the task (Figure 2.3 a and b ). If

something performance was even a little worst in the two shortest memory

periods (performance = 0.947,0.955 and 0.939 for the longest middle and

shortest delays), what might have been related with the speed dynamics of

the animals while solving the task.

2.4.2 Speed Behavior in the Task

Our setups allowed us to monitor the movement of the mice on the

treadmill giving us access to their speed, throughout the trials, while solving

the task. Being head-fixed, moving on the wheel was the primary way mice
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had to manifest their behavior and the only that allowed them to achieve

their goal. Animals had to close the distance between sound and stopping

area location to collect their reward or continue running to the next trial,

the speed at which they did it was the manifestation of a personal strategy

and not determined by the task itself. Also, despite the fact of it being a

one dimension variable, the observed speed was the result of a coordinate

process that engaged the full body of the animals.
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Figure 2.4: Mice’s Speed Behavior: Individual trials and mean (thick lines) speeds of one
example animal in hit and correct rejection trials across 6 of the 11 possible sound start
locations.

We found that in our task, regardless of a fair degree of variability from
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trial to trial, animals adopted characteristically different speed strategies

in hit and correct rejection trials. These strategies were consistent across

the different sound start locations, with mice seemingly employing a gen-

eral strategy posteriorly modulated by the different lengths of the memory

periods: "stretched" in the longer "compressed" in the shortest ones (Figure

2.4 ). Moreover, they were not a single session epiphenomenon being used

by the mice across days to navigate the task (Figure 2.5 ). Different animals

adopted different behaviors, but common themes existed (Figure 2.6 ). All
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55



Chapter 2. Head-Fixed Delayed Response Task on a Treadmill

except one animal (bM71) slowed down after trial start, waiting for a cue

to tell them what to do, until reaching the sound start position. If the re-

warded/stop sound was played mice (again except bM71) executed a parabolic

like speed trajectory accelerating and then decelerating before stopping in

the area. If the no stop sound was played 5 of the 8 animals accelerated after

sound onset until reaching a plateau speed and crossing the area into the

next trial. Interestingly three of the animals (bM59,71,73) only accelerated

around or after the last possible sound start position. Given that, except

for trials with that specific sound start, nothing marked that position, this

shows that mice had a good notion of the task rules and their position on

the treadmill belt. It also hints to the possibility that, for these animals,

the task was effectively a stop sound detection task with the no stop sound

having no meaning attached to it.

In theory, looking at the speeds of the mice in incorrect trials might

have offered us insights about the reasons behind the mistakes. In practice

this was made difficult by the small number of miss and false alarm trials.

Inspecting the same sound start mean speeds of incorrect trials ( Figure

2.7 ) sugests, for instance, that in bM59, bM67 and, less clear, in bM73 and

bM61, false alarm trials there is no acceleration after the sound, as there

is in the same mice hit trials, which could indicate that the mistakes were

committed because the animals failed to hear or didn’t identify the sound

correctly. In bM69’s false alarm trials it seems that the animal misidentified

the sounds, accelerating after sound onset as if the tone played was the one

meaning stop. Again, due to the short number of incorrect trials, this is

just anecdotal evidence. For more concrete conclusions one would need to
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go deeper on noisy single trial speed analysis, we don’t pursue that question

here.
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Figure 2.6: Mean Speed Behavior All Animals: Mean speeds of 10 sessions, for all ani-
mals, across sound start locations, for hit and correct rejection trials. Error bands are for
the SEM.

Collectively, and even with across mice nuances, the speed data collected

during the task revealed the existence of mean stereotyped behavioral strate-

gies that were visibly different between the two trial types. This observation

raised two concerns:

• Mice could be using the speed difference between hit and correct re-

jection trials as a cue to solve the task, this way avoiding the cognitive
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effort associated with keeping a memory.

• The stereotyped strategies observed during the memory period might

be the sign of an automatic, ballistic like, type of behavior in which,

upon sound presentation, mice would engage in a predetermined motor

plan with no need of cognitive guidance.

To address these issues and guarantee that our task was, in fact, forcing

the animals to use a WM while solving it, we designed and implemented a

set of data and behavior based controls presented in the next two sections.
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2.4.3 Predicting Stop Behavior
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b.
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we applied logistic regression to predict the probability of the mice stopping in the reward
area in any given trial. (b) As predictors to the model we used the sound played and speed
calculated in 19 bins of the same size between sound start and area start.

Despite the different mean speed trajectories individual trials showed

a fair degree of variability among same trial type speeds and of overlap

between different trial type speeds (Figure 2.4 and Figure 2.8 b). We took

advantage of these facts to quantify how well we could predict the probability

of the mice stopping (Figure 2.8 a), when reaching the reward area, based

on the sound played and the speed at which they were running in several
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discrete positions of the memory period (Figure 2.8 c). Doing so provided

us with a notion of how predictive of the animal behavior, at the reward

area, speed actually was and of its relative importance, compared with the

sound identity, when both were used as inputs to the model.
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Figure 2.9: Predicting the Stopping Behavior of One Animal: (a) Left: ROC curves
and performance measured as AUC of models using sound and speed (blue) or just speed
(orange) to predict one animal behavior (stop or not stop) in trials with the same example
sound start location. Right: Fraction of variance associated with the predictors of the
model in which both sound and speeds were used as inputs and which performance is
showed in the left. (b) Left: same as above but now for the mean ROC and AUC of
models fitted separately in trials grouped by sound start location. Error bands are for
SD. Right: Same as above but now for the fraction of variance means of models fitted
separately in trials grouped by sound start location. Error bars are for SD.

As expected, given the mice’s extremely good performance in the task, a

model using sound and speed at all positions in the memory period was able

to predict very well (AUC > 0.9 for all animals in all sound start locations)
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the stopping behavior of the mice - blue curves in Figure 2.9 a,b left and

blue bars in Figure 2.10. Interestingly, though not totally surprising given

the knowledge that mice tended to slow down before stopping, speed alone

was also very predictive: a model fitted using speed in all 19 positions as

the only input was able to predict stopping behavior also quite well (AUC

> 0.75 for all animals in all sound starts) - orange curves in Figure 2.9 a,b

left and orange bars in Figure 2.10.
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The adopted speed behavior was correlated with the auditory cue pre-

sented to the animals, especially closer to the area, so it was possible that
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speed’s predictive power was inherited through its association with sound.

To disambiguate this we calculated the fraction of variance (see methods sec-

tion) associated with both sound and speed when used together as inputs to

the model. As showed in Figure 2.9 a,b right and Figure 2.10 right, sound

was more informative of the behavior of animal in all but one mouse (bM71).
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Figure 2.11: Predicting Stop at Different Memory Period Positions : (a) Mean perfor-
mance, in the 19 speed bins of a single memory period length, of a model using both sound
and the speed in each bin as predictors. Error bands are for standard deviation. (b)
Top: fraction of variance associated with each predictor in the models run for each of the
19 speed bins for the same memory period length and animal as in (a). Bottom: Same
as above but with the mean fraction of variance per speed bin across all 11 sound start
locations. Error bars are for standard deviation.

Comparing the plots in Figure 2.10 right with the ones in Figure 2.6 we

can see that the relative importance of speed as predictor varies together

with the difference, close to the stopping area, of hit and false alarm trials’

speeds, also, as shown in Figure 2.9 a,b right, the speed information used

62



2.4. Results

by the model in the prediction came, almost exclusively, from these bins

where the difference in speed between trials where mice stopped and didn’t

was bigger. The information of immediate previous positions was correlated

with the one from the last bins and thus largely redundant. This was a poor

description of the mice behavior, because it was just using, to predict the

probability of a mouse stopping, speed information from where the animal

was already very close to do it, and not telling us anything about how

predictive speed was throughout the complete memory period.

To address this issue we ran a different model per speed position bin to

determine how well could we predict the mice stopping behavior, along the

entire memory period, based on the sound and the speed at each specific

position. All the different position models were able to classify very well

(mean AUC > 0.9 for all animals in all positions of all sound start trials)

if the animals were in a trial where they were going to stop or not (Figure

2.11 a), but now the fraction of variance associated with each predictor in

each of the models gave us a more realistic view of their relative importance

in the different segments of the memory period (Figure 2.11 b).

As the animals got closer to the area, and their speeds diverged more

and more depending on if they were going, or not, to stop, speed’s predictive

power increased and sound’s decreased (because, though few, animals made

mistakes). The magnitude of this change was related with the magnitude

of the speed difference, in those positions, between trials in which the mice

stopped or didn’t. In longer memory periods speeds diverged more and so

the fraction of variance associated with the speed predictor was higher than

for shorter memory periods where individual trial speeds from both trial
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types overlapped considerably. This can be seen by comparing the fraction

of variance associated with each predictor in the longest memory period of

one animal sessions (Figure 2.11 b top) with the mean fraction of variance

across all memory periods of the same animal (Figure 2.11 b bottom).
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bins across all sound start locations. Error bars are for standard deviation.

For all animals (Figure 2.12 ), even in the memory period position closest

to the stopping area, only in one (bM71) was the mean fraction of variance,

across sound starts, associated with speed equal to the one associated with

sound. For all the other mice sound was a more reliable predictor of the

stopping behavior than speed. Taking all positions, from sound to stopping

area, in all animals, speed is almost not predictive of the stopping behavior
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throughout the majority of the memory period.

Together these results show that, at the single trial level, despite the

visible mean differences between conditions, speed, by itself, does not allow

the unambiguous identification of trial type afforded by sound, making it

thus unlikely that it could be used by the animals to distinguish between

conditions during the memory period, this way preventing the need for the

use of a WM representation in guiding behavior.

2.4.4 Probing Behavioral Strategy Flexibility
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Figure 2.13: Performance in Catch Trials: (a) Performance of 7 animals in trials with 1
of 3 extra sound start locations presented infrequently throughout a session. (b) Hit and
false alarm rates on the same trials. Error bars are for SEM for both (a) and (b).

The other concern raised by the observed mean speed trajectories was

that their apparent stereotypy could signal an automatic motor plan. In

such scenario, to solve the task, mice wouldn’t need a WM or to make a

decision upon reaching the stopping area. After the sound, an automatic,

"reach" like, motor plan would kick in, taking control of behavior without
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the need for any cognitive intervention. To test if this was how our animals

were solving the task or if, as we intended, the mice were actually making

a WM guided decision when reaching the stopping area, we devised a set of

behavioral controls. These were aimed at probing the automaticity of the

behavior and the role of the physically marked stopping area in the task.
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Figure 2.14: Mean Speed Behavior Catch Trials : Mean speed for 7 animals, across sound
start locations, for hit and correct rejection trials. Error bands are for the SEM.

The brain tends to automatize frequent and repetitive behaviors, allevi-

ating the need for effortful cognitive control, and making them faster, but

also less flexible. We wanted our mice to know the rules and contingencies

of the task and then to be able to adapt their behavior in order to meet
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them.

One way we used to test the mice’s behavioral flexibility was to introduce

infrequent trials (1 in 100) with a unusual sound start location ( 70, 80 or 90

cm), which we called catch trials. Despite the sound start location in these

trials being considerably closer to the stopping area than normal, leading

to different speed behaviors (Figure 2.14 ) from the ones observed in the

frequent sound start location trials (Figure 2.6 ), mice were able to adapt

and perform very well in the task (mean performance = 0.92, 0.87 and 0.90

for sound starts 70,80 and 90 respectively) (Figure 2.13 ).
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Figure 2.15: Performance in Session with Stopping Area in Different Location: (a) Per-
formance of 6 animals in a session where the distance between the reward area and the
trial start was shortened and in two sessions before and after. (b) hit and false alarm
rates on the same sessions. Error bars are for SEM for both (a) and (b).

Another way to test behavioral adaptability was to change the environ-

ment animals knew and where they had learned the rules of the task. To

achieve that we changed the position of the stopping area in a single session,

moving it closer to the trial start. Again animals were able to adapt, both

in terms of their performance (mean performance = 0.94 with all the six

67



Chapter 2. Head-Fixed Delayed Response Task on a Treadmill

sessions from different mice above 0.9) and the speed strategy used in that

particular session (Figure 2.15 and Figure 2.16 ).
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Figure 2.16: Mean Speed Behavior in Session with Stopping Area in Different Location:
Mean speed for 6 animals, across sound starts, for hits and false alarm trials in a session
where the distance between the reward area and trial start was shortened. Error bands are
for the SEM.

In a situation where the animals didn’t need the physical presence of the

area to commit to a stop, or no stop, response, having a predetermined motor

plan that, reacting to the sound, would take them to or through the stopping

position, the removal of the texture that signaled the area wouldn’t, or would

just partially, impair their performance. To probe the role of the stopping

area in the task, we completely removed the physical cues that signaled it
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for one isolated session. For all task purposes the area still existed and all

contingencies associated with it were valid, there was just nothing signaling

it.
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Figure 2.17: Performance in No Area Session: (a) Performance of 6 animals in a session
where the texture marking the stopping area was removed and in two sessions before and
after. (b) hit and false alarm rates on the same sessions. Error bars are for SEM for both
(a) and (b).

Performance of all animals in the no area session dropped to chance level

(mean performance = 0.505 with all sessions within 0.49 and 0.51) (Figure

2.17 ) with the hit and false alarm rates going virtually to 0 (mean hit rate

= 0.031 with all sessions < 0.04; mean false alarm rate = 0.029 with all

sessions < 0.045 ). Without a physical cue to mark where they had to stop

mice just continuously ran through all trials in the session (Figure 2.17 ).

Removing the area was a drastic change, it might have happened that mice

tried to stop in the first trials of the session, failed by little the exact area

location and then disengaged for the remaining session’s trials. In Figure

2.19 we can see that the mean speed of the first 5 trials of the no area session

doesn’t reveal evidence for that. Across the stopping area the mean speed
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trajectory in these trials is essentially as flat as in the remaining session

trials, and different from the mean of the first 5 trials in the sessions before

and after, where a clear dip is seen. Mean speeds of the first trials in the

sessions before and after are noisy because the beginning of the session is

when animals tend to make more mistakes.
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Figure 2.18: Mean Speed Behavior No Area Session: Mean speed for 6 animals, across
sound start locations, for miss trials in a session where the texture marking the reward
area was removed. Error bands are for the SEM.

Together these controls showed us that the speed trajectories we observed

were not the result of automatic and inflexible motor plans, but rather a

manifestation of the way the animals chose to perform the task, depending

on the sound played and their position in the treadmill. Accordingly, they
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showed to be flexible and changed when the mice had to adapt to perturba-

tions in the regularities of the task, like the ones imposed by our two first

controls. The no area control proved us that the stopping area actually acts

as trigger, or go signal, for the animals to express, or not, the reward asso-

ciated behavior: stop. To do so correctly, as they mostly do, a memory was

necessary to guide they’re behavior during the the cue free memory period.
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Figure 2.19: Mean Speed Behavior First Trials of No Area Session: Mean speeds of the
first 5 stop trials in the no area session compared wit the means of the first 5 trials of one
session before and after, and with the mean of the remaining stop trials of the no area
session.
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2.5 Discussion

To investigate WM related activity in the mPFC we developed a head-

fixed spatial response task on a treadmill. The task combined the two inter-

esting aspects of being head-fixed, which allowed for acute multi-electrode

silicone probe recordings, and involving spatial and running competences

which, combined with the timing of events being determined by the move-

ment of the mice, made it engaging to perform and easy to learn, presum-

ably tapping on natural behavioral competences. As a consequence mice

performed typically around 400 trials per session with a very good and con-

sistent performance in one session, along several consecutive sessions and

for all sound start positions (Figure 2.2 and Figure 2.3). All these had ob-

vious positive features, but the almost absence of error trials also had its

drawbacks and conditioned our analysis at several steps of the work (e.g. by

impeding a detailed investigation of the motifs behind the mistakes and be-

ing detrimental to the possibility of disentangling cue from decision related

neural activity). One desirable improvement of the task would thus be to

make it more difficult. Such could be achieved by using, as cue, a range

of different frequencies, with a category boundary defining which should be

associated with either stopping or not.

Other relevant feature of our task was the fact that the animals could

not immediately perform the response behavior, stopping, unlike in other

common head-fixed paradigms [11]. This made it easier to introduce com-

paratively longer delay periods by avoiding anxiety driven early responses.

Separating decision and consumatory behaviors also benefits the interpreta-
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tion of task related neural activity.

In our results there were no apparent effects of delay period duration on

the animals’ behavior. This was contrary to the common observation that

performance decreases with delay period duration increase, presumably due

to a degradation of the WM content. It is worth noting that in our task the

mean duration, in time, for the stop trials with the longest memory period,

in distance, was 2.5 seconds, very distant from the 10 minutes it took for

performance to drop to chance level in a previous t-maze study [5] or the

120 minutes in a radial-arm maze one [1], for instance. It seems thus that

memory maintenance per se is not the factor that most contributes to the

difficulty of this types of task.

One noteworthy caveat of the task is the fact that only one of the con-

ditions (auditory cues) gives the mice the possibility of obtaining a reward,

putting the task in the universe of Go/No Go tasks. The fact that the ani-

mals decide when to progress in the task eliminates the confusion, in no go

trials, between correct responses and omissions, a regular caveat associated

with these types of task. Nevertheless, the unbalanced nature of the condi-

tions is still a problem with the significance of both sounds varying not only

in terms of the associated behaviors (stop or not) but also of their value to

the animals. Such fact might contribute to behavioral differences, like the

higher acceleration seen in almost all animals after the presentation of the

rewarded sound, but also change completely the way some animals solve the

task, such as in animals bM59 and bM73 that don’t show any behavioral

indication of attributing meaning to the non-rewarded sound, which might

indicate that their just detecting the reward one. The unbalance between
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conditions also makes it more difficult to separate reward from decision re-

lated neural activity and interpret observed trial type specific differences.

One possibility to deal with this problem would be to add a second stopping

area and have each of the sounds correspond to one, making the task more

similar to a T-maze navigation [12] [29]. Another, more radical, possible

transformation would be to get rid of the physical stopping area and use a

second set of sensory cues to signal a period during which the animals could

stop to receive reward. This option would introduce a better control and

bigger flexibility of the task conditions (e.g being able to precisely determine

and vary the exact duration of the memory period), but would also probably

devoid it of some of its more naturalistic aspects.

Our setups allowed us to monitor the speed of the animals running on the

treadmill, which gave us access to their behavior throughout the trial and

in particular during the memory period. This information is particularly

important because: 1. moving was the way mice had to progress in the task

and reach the intended goals and 2. high speed running in the treadmill

engages the entire body in a synchronous activity that, given the fact that

the animals were head-fixed, left no visible degrees of freedom for other

behaviors that could be used to bridge the memory period.

Monitoring speed showed us that the animals were using different, seem-

ingly stereotyped, speed strategies in hit and correct rejection trials (Figures

2.4 - 2.6 ) and led to the design of a set of behavior controls (Figures 2.13 -

2.19 ) that proved us that those were a consequence of the way mice chose

to solve the task rather than a condition for them to perform it correctly.

Measuring speed also allowed us to conclude that, despite the mean trajec-
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tories, trial to trial variability meant that speed by itself was a rather poor

predictor of the animals’ stopping behavior for the majority of the memory

period length, making it very unlikely that it could be used as cue to avoid

the need for memory maintenance. Mice were thus solving the task as they

were intended to: keeping a WM, through a task relevant cue free memory

period, and using it to perform the appropriate action when asked for by a

specific trigger - in our case the stopping area. This is comparable to other

delayed response tasks commonly used to study WM [13] [16].

Minute monitoring of the mice’s speed also allowed us to explore its

representation in the neural activity and its relation to WM encoding (see

Chapters 2 and 3 ). The nature of the memory signal during the delay period

and how much it is influenced by motor signals has been a constant source

of preoccupation and discussion [3] [7]. Moreover, tough we don’t explicitly

pursue it here, we think that having access to the movement of the animals in

a trial by trial basis might also provide helpful insights about questions like

the nature of mistakes, the timing and confidence of decisions and changes

of mind. For that to be possible an increase in task difficulty, like mentioned

before, would also be beneficial.

Finally it is worth mentioning that, although we have proved that our

task is, in essence, comparable to a traditional delayed response task, main-

taining a memory between sound and area is not the only problem the mice

are solving. Looking at their speed strategies it is possible to see that the

animals are trying to optimize their behavior in order to achieve their goals

in the most efficient way. Such generally means to: 1- slow down after trial

start waiting for the tone to determine their future action plan; 2- speeding
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up and continue to run, as fast as possible, until after the area, minimizing

the time before the next possibly rewarded trial, in no stop trials, OR, speed-

ing up after the tone but then slowing down, just enough, when approaching

the area, this way trying an optimal compromise between minimizing the

time until the reward and maximizing the possibility of stopping, in stop

trials. The execution of these deliberate strategies is not trivial, given that

the mice are running in the dark and there are no obvious cues to inform

them of their location on the belt. To achieve their purposes animals have

thus to, at every moment, compute an estimation of their position in the

belt and, according to an internally represented goal (WM), minutely select,

and time, their speed strategies.
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3.1 Abstract

The PFC as since long been implicated in WM dependent behaviors.

PFC neurons with stimulus selective elevated activity during the delay pe-

riod of WM tasks is still the most influential mechanistic model for WM

storage. Recent studies, however, have questioned such scenario and, taking

advantage of technological advances in brain activity monitoring and anal-

ysis, focused the attention on WM encoding and representation in the joint

activity of prefrontal neural ensembles. Here we recorded the simultaneous

activity of neurons, in the mice mPFC, during a WM dependent task. From

the cells mixed-selectivity response profiles, and using a targeted dimension-

ality reduction technique, dPCA, we were able to demix WM representations

of both the tone played and the decision made by the animals. Moreover,

dPCA also revealed a strong, tonic like, signal, seemingly related to the mice

engagement in the task, and a significant influence of the speed behavior of

the animals on the neural activity.
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3.2 Introduction

The prefrontal cortex seats at the apex of a cortical hierarchy ascending

from areas involved in specific sensory and motor functions to progressively

more integrative ones [15]. Despite controversy about its nature and ex-

act homology with the primate one [25][46] [4] the rat and mice prefrontal

cortices have been extensively studied as models of prefrontal function [8].

In general terms the PFC is thought of as responsible for guiding be-

havior in a adaptive manner, representing goals and orchestrating complex

sequences of behavior to achieve them, according to context specific events

and rules [9], what is regularly designated as executive [14] or cognitive [31]

control. To do so it needs to be able to represent externally generated and

internally retrieved information, keep it active and use it in the service of

multiple processes like planning, rule learning and decision making [22]. The

strong context dependence, with no universal tunning to specific stimuli or

behaviors, and the ability to represent multi-domain information interlinked

in cognitive processes is a big culprit of the unknowns still surrounding the

PFC.

Complex forms of behavior unfold in space and time. To learn asso-

ciations between temporally separated features, or orchestrate sequences of

discontiguous actions, the brain needs to be able to maintain active represen-

tations of events, rules and future goals or actions. This process, investigated

as WM, is central and subjacent to the PFC function described before and

its implementation mechanism has been one of the main focus of prefrontal

research.
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The association between the PFC and WM was steadily established

through several decades by lesion studies in non-human primates performing

delay dependent tasks [7]. From the late 70s on this results were supported,

at the mechanism level, by the finding in the primate’s PFC of neurons

with tonic elevated activity during the memory period. This delay period

activity showed stimulus selectivity, was prolonged or shortened depending

on the length of the delay and was only present in correct trials, making it

an ideal candidate to be the neural substrate of WM [13]. Impairments in

WM dependent tasks in lesioned subjects [47] [20], and cells with persistent

activity during the delay period [3] [1], have also been consistently reported

in rodents.

Recently, however, different lines of evidence have emerged challenging

the role of fixed selectivity sustained activity as the mechanism responsible

for WM [38]. Central to these new perspectives are: 1. the implausibility

of existence in the PFC of seemingly as many specialized groups of neurons

as the types of WM representations already observed [35]; 2. the possibility

that some of the WM related deficits and activity could in fact be accounted

by other cognitive processes [45] or motor behaviors ; 3. the unreliability

between the presence or absence of cells with delay period elevated activity

and the WM demandings of the task [42] ; 4. the fact that WM information

can be decoded from ensembles without selective delay period neurons [1]

and the accumulating evidence suggesting an important role for distributed

dynamic population coding in the stable maintenance of representations in

the PFC [30] [2]. These don’t necessarily question the involvement of the

PFC in executive processes mediating sequences of actions performed in time
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but doubt that single neuron delay activity per se corresponds to the actual

information storage mechanism [44].

Interpreting the precise meaning of delay period selective firing, and pre-

frontal function in general, is more complex than understanding the rep-

resentations in lower hierarchical areas where the activity is more tightly

linked to behavioral and environmental manifestations. The information be-

ing represented and the way it is represented seems to be more categorical

[11] and context dependent [19] and many of the cells often exhibit complex

and varied response properties that are not organized anatomically and re-

flect, simultaneously, different parameters. In fact, even in seemingly simple

tasks, individual neurons’ responses can be frustratingly complex [28] being

correlated with several task aspects. The existence of such mixed selectivity,

a characteristic of brain areas involved in cognitive processes across model

organisms [39] [36], brings computational advantages, as the multiple pieces

of information can be interpreted by downstream regions according to their

functional relevance, but also demands a shift of focus from clearly tuned

individual cells to mixed selectivity and neural populations.

The remarkable capabilities of the brain are a product of the interaction

between interconnected populations of neurons. The latest recording, com-

putational and algorithmic advances have given scientists access to study

the simultaneous activity of progressively larger numbers of cells. Dimen-

sionality reduction techniques [6] produce low dimensional representations

of high dimensional data sets by exposing a set of latent variables, along

which the original data covaries, that can be used to explore, produce and

test hypotheses with population data. When approaching mixed selectivity
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dimensionality reduction techniques that take into account the task param-

eters are particularly useful [24].

Here we used multi-electrode silicone probes to record the activity of

neurons from the mPFC of mice solving a head-fixed delayed response task

(see Chapter 1 ). As a model organism the mouse has been proved to be

capable of executing simple WM dependent tasks [27] [17][21], is amenable

to the recording technique we wanted to use [41] and allows for an high yield

of animals. Also, tough that is not explored in the work here presented, by

choosing the mouse as model animal we opened the door to, in the future,

take advantage of the existing genetic tools to further dissect and deepen

our observations.

In all sessions our probes targeted the PRL, IL and MO regions of the

mouse mPFC, considered to be part of the same mPFC complex and all pre-

viously involved in WM and executive behaviors [8] [22]. From here on we’ll

use the term mPFC to refer interchangeably to all areas that are considered

to be part of it (PrC, ACG, PRL, IL, MO), and will make no distinctions

about function between them. As in previous recordings from the same area

in similar vein tasks, both in non-human primates [28] and rodents [36],

the neurons we observed evidenced heterogeneous response profiles, with a

considerable proportion showing trial type selectivity during the memory

period and being modulated by task relevant events, an indication that the

behavior the animals were performing engaged the part of the brain we fo-

cused on. Because of the small amount of error trials we just calculated,

and analysed, the individual neuron’s TSHs for hits and correct rejections.

Using dPCA we found that it was possible to demix, from the activity
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of the population, dimensions across which it was possible to differentiate,

through the memory period, the tone played and the response selected by

the animals. This means that in a period where no external cue could inform

the mice about these variables the neurons encoded information about both.

Interestingly, the dimension explaining the biggest proportion of the variance

was one that separated correct (hits and correct rejections) from incorrect

(misses and false alarm) in a tonic-like way, which might be interpreted as a

signal of task engagement. Moreover, dPCA also revealed a strong influence

of the mice speed patterns in the neural activity, pointing to a previously

observed significant modulation of the area’s neurons by motor behavior [5].
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3.3 Methods and Materials

3.3.1 Extracelular Electrophysiology

3.3.1.1 Craniotomy Surgery

The day before the first electrophysiology session on a given hemisphere

a surgical intervention was performed to open a hole in the skull and dura-

mater of the animals on top of the brain location we wanted to record from.

Mice were put to sleep in an induction chamber connected to the isoflurane

delivery system (RWD Life Sciences) and, when stably anesthetized, moved

to the stereotaxic apparatus (RWD Life Sciences), their snout covered by

the isoflurane delivery mask, their eyes protected with eye ointment and the

skull immobilized through a custom made piece attaching the stereotaxic

arm to the head-implant. After, the layer of protective silicone adhesive

(World Precision Instruments - Kwik Sil) was peeled, exposing the dental

cement covered skull with the AP extremities of the stereotaxic coordinates

of interest marked. Using an electric drill, with a 0.5 mm drill bit, a line was

then gently drilled, between both marks, until all bone had been removed,

exposing the dura. A 30 gauge needle, with the tip slightly bent, was used

to puncture the dura, cut it along the length of the craniotomy and expose

the surface of the brain. To protect the exposed brain the craniotomy was

filled with phosphate-buffered saline solution (PBS) and the interior of the

head-implant covered with a 1.5% concentration agar solution. When the

later solidified it was sealed with a layer of silicone adhesive. Mice were

then given one IP injection of antibiotic (Enrofloxacin) and one of analgesic
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(Buprenorphine). With the surgery finished mice were gently returned to

their home-cage and allowed to wake up in an heated environment.

3.3.1.2 Recording Session

Recording days were, for the mice, as any normal training day with the

exception that, before session start, the recording probe was lowered to the

intended recording coordinates. Before putting the animals in the setup

everything was prepared so that probe insertion went as smoothly and fast

as possible. The animals were used to a 20 minutes period between being

head-fixed in the setup and the actual session start, ideally probe insertion

shouldn’t take much more.

After head-fixation the light-source was turned on, pointing to the head-

plate hole on top of the implant, and the microscope was positioned pro-

viding a clear view of the center of the head-implant. The layers of Kwik

Sil and agar were then peeled off and the craniotomy cavity re-filled with

PBS. Using bregma as a reference the probe would then be placed above the

craniotomy position, on the exact Ml and AP coordinates, and very slowly

(approximately 1mm per minute) lowered until the desired DV coordinates.

With the probe in position a lukewarm drop of 1.5 % agar was dropped in

the implant cavity, when solid this formed a shallow layer that prevented the

brain from drying out and the probe from moving with the mice’s movement.

The electrophysiology acquisition software would then be started followed

by the behavioral task.

In the end of the session the probe was gently pulled out of the brain,

the craniotomy re-filled with PBS and the interior of the implant covered
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with a layer of 1.5 % agar and sealed with Kwik Sil.

3.3.1.3 Electrophysiology Equipment and Spike Sporting

All electrophysiology recordings were performed with 64 channels silicone

probes (Neuronexus, Buzsaki 64sp), connected through an adapter to an

analog to digital amplifier headstage (Intan, RHD2164), and an open source

electrophysiology multichannel acquisition board (OpenEphys) [43]. The

channels’ voltage signal was sampled at 30 kHz.

To extract action potentials from the raw neuronal voltage signal, cluster

them and assigned them to a specific neuron we used the integrated spike

sorting framework KiloSort [33]. Clusters of potential cells were posteriorly

manually curated using the open source neurophysiological data analysis

package Phy [40], given that the nature of our questions was not crucially

dependent on individual cell isolation we allowed for a 15% refractory period

contamination relative to the neuron mean firing rate (FR).

3.3.1.4 Histology

Before each recording session the tip of the shanks of the recording probe,

where the recording sites were situ, was dipped in a orange-red lipophilic

membrane stain (diI, ThermoFisher Scientific). The shanks’ tips were sub-

merged for 30 seconds and then pulled out and allowed to dry for another

30 seconds. This process was repeated 3 times.

After the recording sessions were over all mice were perfused and their

brains fixed and sliced - this was done by an in-house platform. Using a

fluorescent microscope (Zeiss AxioImager M2) we were then able to use the

91



Chapter 3. Electrophysiology, Single Cell and Population Analysis

fluorescent tracts of the DiI covered shanks, together with physical penetra-

tion marks, to approximately identify the area we recorded from.

3.3.1.5 Recording Sessions Overview

All neural data here presented came from 16 recording sessions performed

in 5 different animals:

Session 1 bM67- Right hemisphere, 109 recorded neurons.

Session 2 bM69- Left hemisphere, 88 recorded neurons.

Session 3 bM73- Left hemisphere, 114 recorded neurons.

Session 4 bM73- Left hemisphere, 106 recorded neurons.

Session 5 bM73- Left hemisphere, 119 recorded neurons.

Session 6 bM73- Left hemisphere, 119 recorded neurons.

Session 7 bM74- Left hemisphere, 112 recorded neurons.

Session 8 bM74- Left hemisphere, 137 recorded neurons.

Session 9 bM74- Left hemisphere, 121 recorded neurons.

Session 10 bM74- Right hemisphere, 77 recorded neurons.

Session 11 bM74- Right hemisphere, 92 recorded neurons.

Session 12 bM74- Right hemisphere, 93 recorded neurons.

Session 13 bM76- Right hemisphere, 96 recorded neurons.

Session 14 bM76- Right hemisphere, 77 recorded neurons.

Session 15 bM76- Left hemisphere, 79 recorded neurons.

Session 16 bM76- Left hemisphere, 105 recorded neurons.

92



3.3. Methods and Materials

3.3.2 Neuronal Data Analysis

3.3.2.1 Trial Space Histograms and Delay Period Selectivity

To produce the trial space histogram (TSH) we divided all trials in space

bins, counted for each neuron the number of spikes in each bin and then

divided this spike count by the amount of time the animal took to transverse

each bin. This way the TSHs were binned in space but had FR in spikes per

second. TSHs were used throughout this thesis, in different analyses, as our

standard way of looking at neural activity. For different analyses different

length bins were used.

To get a quantitative coarse measure of the individual neurons’ selectivity

during the memory period we followed the following procedure: 1. in each

hit and correct rejection trial we calculated the firing rate of the neuron

in three linearly spaced distance bins starting 5 cm after sound end and

ending 5 cm before area start; 2. for each bin we calculated the difference

between the mean FRs of both trial types and accessed its significance via

a shuffle test in which we computed the probability, P value, of obtaining a

mean difference, at least as extreme as the original one, through an iterative

process, in which we obtained a distribution of difference of means calculated

after shuffling the trials’ identity label. Here we performed 10000 shuffling

iterations.

In the context of this analysis being selective to one of the conditions

just means that that is the one with a higher FR when there’s a significant

statistical difference between the two.
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3.3.2.2 Peri Event Time Histograms and Events Modulation

Peri-event time histogram (PETH) were produced by calculating the FR

of each neuron in 0.025 seconds bins in a 2 seconds window centered at the

event.

Significance of events related FR change was determined by means of a

shuffle test, as described for delay period selectivity, comparing the mean

FR in the 0.15 seconds period before the event with the mean FR 0.05 to

0.2 seconds after the event.

3.3.2.3 demixed Principal Components Analysis

For a complete and thorough description of dPCA please refer to the

original paper [24]. To implement the dPCA algorithm we used the Matlab

package provided by the method authors [23].

Briefly: For all N recorded neurons in one session the binned FR in any

given trial was labeled in terms of the sound that was played s (out of S = 2)

and the decision the mice made d (out of Q = 2). Each bin corresponded to

a trial position p out of P and, ideally, for each SQ condition we would have

the same K number of trials. Because in the large majority of our sessions

we didn’t have, or had very few, trials of the conditions corresponding to

mistakes (misses and false alarms), we opted to pool together data from

all sessions that met our requirements and treated our neurons as if they

had been sequentially recorded . For that, instead of using single trial data,

we average the activity of each neuron across the the trials of each SQ

condition. This way our data can be thought of as SQ time-dependent
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neural trajectories in a N-dimensional space and could be organized in a X̃

matrix of size NxSQP.

The average activity of each Neuron across conditions (each row of X̃)

was then decomposed into a set of averages (ormarginalizations) over various

combinations of parameters. By applying this marginalization procedure to

every neuron we split the Matrix X̃ into parts

X̃ = X̃p + X̃ps + X̃pd + X̃psd + X̃noise =
∑
θ

X̃θ + X̃noise

where X̃ was centered and p, ps, pd and psd were labels, with p - con-

dition independent (averaging across all conditions); ps - sound depedent

(averaging across conditions with same sound being played after subtract-

ing X̃p); pd - decision dependent (averaging across conditions where the

animal made the same decision after subtracting X̃p); psd - sound-decision

interaction (average across all SQ condition combinations after subtracting

X̃p+X̃ps+X̃pd ). The new marginalized matrices were made the same size

(NxSQP) as the original X̃ by, for instance in the case of p, replicating the

resulting average SQ times.

Given the above explained decomposition the loss fuction of dPCA was

given by

L =
∑
θ

Lθ

with

Lθ = ||X̃θ − F θDθX̃||2

where each F θ was an encoder matrix with qθ columns and each Dθ a
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decoder matrix with qθ rows. Matrix norm was ||X̃||2 = ∑
i

∑
j X̃

2
ij. The

loss function penalized the difference between the marginalized data X̃θ and

the reconstructed full data X̃, the full data projected with decoders D onto

a low-dimensional latent space and then reconstructed with the encoders F.

This loss functions was a linear regression problem with an additional rank

constraint on the matrix of regression coefficients. A problem known as

reduced-rank regression. When running the algorithm a regularized version

of the loss function was used

Lθ = ||X̃θ − F θDθX̃||2 + µ||F θDθ||2

For this analysis we pooled neurons from all sessions with at least 5 trials

in each SQ condition. This meant 6 sessions, from 3 different animals, and

615 neurons.

3.3.2.4 Explained Variance Calculations

The variance explained by each dPCA component, shown on and used

to order Figures 3.9,12,13 a, was defined as

R2 = ||X̃||
2 − ||X̃ − fdX̃||2

||X̃||2

with f and d being the specific component’s encoder and decoder.

The cumulative fraction of variance in Figures 3.9,11,12 b was obtained

using the same formula and stacking the components’ encoders and decoders.

The same process was used for the principal components analysis (PCA)

cumulative variances, shown in the same figures, but now with just one set
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of projection axis - U, instead of F and D used in dPCA.

Given the decomposition X̃ = ∑
θ X̃θ, the fraction of explained variance

could be split into the sum of the contributions from the different marginal-

izations

R2 =
∑
θ

||X̃θ||2 − ||X̃θ − FDX̃θ||2

||X̃||2

This was used to produce the bar plots in Figures 3.9,11,12 c

3.3.2.5 Clustering of Session Speeds

To cluster individual trials, based on their speeds, in an unbiased way

we applied PCA to the speeds of every session organized in a matrix where

columns were different trials and rows the speed bins from trial start to

trial end. The loadings of the first PC were strongly bi-modal and clustered

almost perfectly in hit and correct rejection trials. To further separate trials

belonging to each trial type we divided the two distributions in 3 by binning

the loadings of hits and correct rejection trials between the 0, 33, 66 and

100 percentiles.

3.3.2.6 dPCA on Speeds

In Figure 3.11 and Figure 3.12 we used the same dPCA method already

described applied in separate to hit and correct rejection trials. Importantly,

as parameter, instead of the sound played and the decision made, we used

the three speed clusters obtained from the PCA loadings (described above)

as the conditions.

For this aplication of dPCA we used all recording sessions as all condi-

tions had a sufficient number of trials in every session.
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3.4 Results

3.4.1 Acute Recordings Preparation

Our head-fixed task allowed us to perform acute extra-cellular electro-

physiology recordings, using silicone probes, in awake behaving animals. Us-

ing this preparation we recorded the simultaneous activity of large dozens

of neurons per session.

a.

b.

1 mm

Figure 3.1: Acute Recordings on Awake Behaving Mice: (a) Left: Detail of head implant
with central well allowing for easy access to the skull in recording sessions. Right: Scheme
of a mouse behaving during a recording session. The session is as any other with the
exception of the probe being stereotaxically lowered into the brain after the animal being
head-fixed (b) Left: Detail of Buzsaky A64sp silicone probe, with 10 channels in the tip
of each shank plus 4 more along the 4th shank from the left. Distance between shanks
is 0.2mm. Right: Recording probe is inserted parallel to the midline, at a 17◦ angle,
spanning 1 mm in the AP axis of the mouse mPFC centered at the PRL area.

The head-fixing implant (Figure 3.1 a) allowed easy access to the mice’s
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skull, both for the craniotomy surgery and the recording sessions. Addi-

tionally, it also created a stable environment for positioning and stabilizing

the recording probe, optimizing the quality of the signal obtained. The day

before the first recording session, in each of the hemispheres, animals under-

went a surgery in which a craniotomy and durotomy were performed on top

of the desired AP and ML recording coordinates. Recording days were as

any normal training day (Figure 3.1 b) with the exception of the operations

needed for probe insertion and extraction. See methods section for more

information about the recording procedure.

Our targeted recording area was centered in the PRL region of the mice

mPFC, an area traditionally implicated in WM and cognitive guided behav-

ior (see chapter’s Introduction). In the Mouse Brain in Stereotaxic Coordi-

nates [34] the PRL is an elongated structure extending from aproximately

1.5 to 3 mm anterior of bregma and stretching to both sides of the midline

by about 0.65 mm. In its most posterior end the PRL starts at 2.25 and

goes to 2.75 mm, from bregma, in the DV axis. In its most anterior part it

starts at 1 and ends at 1,8 mm, also from bregma.

In our recordings we aimed to place the probe in the sagittal plane (Figure

3.1 c) with its most posterior shank at 1.5 mm AP / 0.25 mm ML / 2.4 mm

DV from bregma. Due to the proximity to the midline, and the difficulty of

performing a craniotomy very close to the superior sagittal sinus, the surface

penetration ML coordinate was 1 mm from it, but the probe was inserted at

a 17◦ angle, this way targeting the 0.25 mm ML coordinate when the desired

depth was reached.

Before each recording session we stained the shanks of the probe with
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the lipophilic membrane stain DiI. The tracts left by the shanks, identifiable

both through the staining and the penetration lesions, allowed us to identify

the approximate location of the probes’ shanks tips (Figure 3.2 a). Given

O
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1.7 mm

1.4 mm

2.9 mm

2.6 mm

Probe
Shank

ProbeShank
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b.

Shank's
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MO
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PrL
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IL
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Figure 3.2: Recording Locations: (a) Location of one example probe’s shank from one
of the recording sessions. (b) Approximate recording areas of the six shanks of the probe
along the AP axis. Values are for mean +/- standard deviation of the locations of the most
anterior and posterior shanks across sessions. Remaining shanks position was estimated
by linearly spacing them between the mean values of the most anterior and posterior shanks
in all sessions. Areas legend in a and b: PrL - PreLimbic area; VO - ventral Orbital area:
MO - medial Orbital area; IL - Infralimbic area.

that we performed at least two, but some times four, penetrations per hemi-

sphere and that variability on exact probe placement was inevitable, iden-

tifying the position of each shank on each recording was impossible. The
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approach we followed to visualize an estimate of the area we recorded from,

in each mice’s hemisphere, was to take the most anterior and posterior shank

marks in it and linearly space the remaining 4 shanks between these. In Fig-

ure 3.2 b we follow an equivalent approach and use the mean positions of

the most anterior and posterior shanks, across all recorded hemispheres of

all animals, as the points between which the remaining shanks were linearly

spaced.

3.4.2 Delay Period Selectivity

High order frontal areas have access to information from several modal-

ities and representations of these can be find mixed in the activity of its

neurons. As in a collection of previous works, that recorded the activity of

neurons from frontal areas of different mammals [16] [28], also here we found

neurons with diverse and complex responses to the task events.

Trial length in our task was determined by the speed of the animals

running on the treadmill. To be able to examine and compare the mean

trial activity of each neuron, particularly during the memory period, we

computed TSHs (see Methods Section for a detailed description) in which

spike counts were taken in length bins and then divided by the time the

animal took to transverse each bin. In Figure 3.3 we show the TSHs of 4

example neurons for trials from three different sound start locations. The

mean trial activity of the different neurons was modulated in different ways

by different task event or events, a modulation that was consistent, if slightly

different, for trials with memory periods of different length.

Particularly interesting for us were neurons, like the ones in the three
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bottom rows of Figure 3.3, in which the activity in the memory period

was clearly different between the two conditions: hit and false alarm trials.

These were evidence that, overall, the population of recorded neurons carried

signals that allowed to differentiate conditions during the cue free memory

period, and thus could be used by the mice to decide what to do upon

reaching the stopping area.
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Figure 3.3: Trial Space Histograms of Firing Rates: (a) Rows: Example Neurons ;
Columns: Three different sound start locations. TSHs are calculated by, in each trial,
counting the number of spikes in 2 cm bins and dividing it by the time the animals took
to transverse that bin.

A total 0.59 of the neurons recorded in all sessions showed a significant
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mean activity difference (Figure 3.4 a), between hit and correct rejection

trials, during at least one of three segments in which we partitioned the

memory period (Figure 3.4 c upper y axes value). The proportion of neurons

Sound Area
Trial Position

0

14

28

Fi
rin

g
R
at
e
(H
z)

Hits
Correct Rejections

Sound Area
0

0.3

0.6

Pr
op

or
tio

n
of

N
eu
ro
ns

Hits Selectivity
C Rej Selectivity

Sound Area
Trial Position

0

0.5

1

Pr
op

or
tio

n
of

N
eu
ro
ns

3segments

2 segments

1 segment

b.

c.

a.

Figure 3.4: Firing Rate Selectivity in the Memory Period : (a) Example neuron with hit
trials selectivity in the initial middle and final segments of the memory period. Errorbars
are for the SEM. (b) Proportion of neurons with selective FR for each of the conditions
in the three memory period segments. (c) Proportion of neurons with selective FR for
each of the conditions grouped by in how many, and which, segments were they selective.
Neurons with segments with different condition selectivity (0.024 of the total) were not
included. In all three figures selectivity was accessed with a difference of means shuffle
test (p<0.05) and defined has the condition in which the FR was higher.

with a significantly different FR between trial types was not constant in

all the three segments ( Figure 3.4 b): 0.34, 0.39 and 0.45 of the neurons
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showed trial type selectivity in the beginning, middle and end of the delay

period respectively. Also, 0.185, 0.165 and 0.24 were selective during the

three segments, only in two or one of them, respectively. For the neurons in

which the mean activity between trial type was significantly different only in

one or two segments, these segments were, for the majority, the ones closer

to the area (0.75 of the two segments selective neurons and 0.52 of the one

segment selective ones). What seems to indicate a stronger representation

of the action to be made comparatively to the sound played.

Overall, as can be seen in Figure 3.4 b and Figure 3.4 c there was a higher

proportion of neurons with correct rejection (0.6) than hit trials selectivity

(0.4). In the context of our analysis selectivity just meant which trial type

had a higher mean FR in neurons showing a significant difference and could

arise from an excitatory response to one trial type, an inhibitory response

to the other or a conjunction of both.

3.4.3 Firing Rate Modulation by Task Events

The different running speeds and the fact that events were determined

by the mice’s position made it impossible to fully align task events in time.

Nevertheless, assuming than in a small window of time around the event

activity in all trials should be fairly aligned, we were able to compute raster

plots and PETHs for the response of each neuron to specific task events.
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Figure 3.5: Peri Event Raster Plots and Time Histograms: (a) Session raster plots of
four example neurons aligned to specific task events. Top: Stop Trials , Bottom: No Stop
Trials . (b) Average PETHs of four example neurons aligned to specific task events.

Using this approach we were able to coarsely quantify how the activity

of individual neurons was modulated (Figure 3.6 a) by specific task events

and acquire a notion of how task engaged was the population we recorded

from. We found that 0.58 of the total recorded neurons were modulated by

at least one task event, with 0.2 modulated just in hit trials, 0.14 in correct

rejection trials and 0.24 in both (Figure 3.6 b). From all recorded neurons

0.46 were modulated by one, 0.21 by two and 0.07 by three events in at

least one of the trial types. There was also a small proportion of neurons

modulated by four or five events. Consequence of the way we quantified it
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Figure 3.6: Significant FR Modulation by Task Events: (a) PETH of an example neuron
with FR significantly modulated by the stop sound onset. (b) Proportion of neurons with
significant FR modulation in at least one event, in hit, correct rejections or both types of
trials. (c) Proportion of neurons with FR significantly modulated by each of the task events
grouped by trial type and direction of modulation. (d) Proportion of neurons with FR
significantly modulated by different number of events in each of the trial types. Modulation
accessed with a difference of means shuffle test between the difference of the mean activity
of each neuron 150 ms before the event and 50 - 200ms after the event (p<0.05).

(see Methods Section), but also of the continuous and dynamic nature of

the task, with a limited ITI and the mice constantly running and stopping,

the modulations we captured might not correspond to an abrupt triggered

response to an event but be the product of slower FR dynamics. Such is

much likely the case for neurons modulated by 5, 4 or even three separate
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events.

Overall the event that modulated more neurons was the end of the stop-

ping area (AOFF in Figure 3.6 c), 0.4 of all neurons. The exact meaning of

this is impossible to apprehend in the context of our task. In hit trials the

end of the stopping area coincides with a period in which the animals are

speeding up just after being stopped collecting reward. In correct rejection

trials it signals the end of the period where animals must remember not to

stop. Also mPFC neurons have been implicated in retrospectively encod-

ing trial outcome [29] [36]. All these might be partially responsible for our

observation.

Surprisingly both area start (0.16) and reward (0.185) modulated a rel-

ative small percentage of neurons. Trial start, sound start and sound end

modulated about the same proportion of neurons (0.21, 0.26 and 0.28 re-

spectively) but exhibited an upward trend in terms of the proportion of

those that were excited or inhibited. These events cover a period in which

mice enter a new trial, signaled by light off, tend to slow down waiting for

the tone and speed up again after tone hearing it. The modulation pattern

probably reflects both the neurons’ response to the specific events (light off,

tone on, tone off) and the associated movement variations.

3.4.4 Low Dimensional Representations of Task Pa-

rameters

dPCA extracts from the population activity one dimensional principal

components that are associated to specific task parameters (e.g. stimuli

and decision), this way exposing the dependencies that explain the observed
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neural activity (Figure 3.7 ). Due to the very few mistakes committed by

the mice it was impossible to apply dPCA, at the single trial level, in the

majority of the sessions. Because of such, in the analysis here shown, we

pooled data from all our recordings that met the method criteria (see Meth-

ods Section and original dPCA paper [24]) and used the cells’ trial averaged,

instead of individual trial, activity. Also, to maximize the amount of input
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Figure 3.7: Demixed Principal Component Analysis (dPCA) : (a) In the Example scheme
dPCA finds the latent variables that best explain the data while exposing their dependencies
on the sound being played, the decision of the animal and condition independent factors.
This is achieved through two linear transformations that compress and decompress the
data both minimizing the reconstruction error and imposing a demixing constraint on the
latent dimensions . (b) At any moment the firing rate of a population of N neurons
can be represented in a N dimensional space. In this N = 2 example the response in
time to two different Sounds is plotted as a trajectory of dots. Top: by projecting the
data on the dPCA decoder axis one manages to separate the responses to the different
stimuli while approximately preserving the geometry of the original data. Bottom: the
projection on the decoder axis is mapped onto a different axis (encoder axis), allowing
for the reconstruction of the sounds class means. Together, the encoder and decoder axis
minimize the reconstruction error between the original data and the stimulus class means.
Both (a) and (b) adapted from Koback et.al, 2016 [24].

data available, we grouped together all trials independently of the sound
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start location in each. For that we built aligned TSHs in which the memory

periods (the trial segment which length varied) were transformed to have

the same number of different size bins (see Methods Section for clarification).

The procedure didn’t introduce significant artifacts in our data as original

and aligned TSHs were qualitatively similar ( Figure 3.8 ).

dPCA was able to almost perfectly demix, from the joint activity of all

neurons, components independent and dependent of the task parameters

(sound and decision) and the interaction between them (Figure 3.9 c bot-

tom), in a way that captured most of the variance in the data (Figure 3.9

b).

Projecting the full data ( hit, miss, correct rejection and false alarm tri-

als) onto the first couple of components associated with sound and decision

(Figure 3.9 a first two top rows, left column ) revealed, for both parame-

ters, a clear separation between the trials where the same sound had been

presented or decision made. This showed that neurons possessed, at the

population level, throughout the memory period, linearly decodable infor-

mation about the sound played and the decision (stop or not) made by the

mice. Curiously, for both parameters’ first PCs, these representations were

still separable in and after the stopping area, which might be attributed to

the previously discussed involvement of the mPFC in keeping time sustained

representations of previous actions and task relevant stimuli [29].

Also in the projections onto the second PCs of both sound and decision it

was possible to separate different sound and response representations during

the memory period. Here, though, the separation collapsed and the projec-

tions associated with both sounds and decisions crossed at area start. This
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provides an indication that the stopping area has a task meaning attached

to it, as it sharply modulates the projections, and so that, upon reaching it,

the recorded neurons are still involved in some decision (or commitment to

decision) process.
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Figure 3.8: dPCA Input Trial Space Histograms: (a) To take full advantage of dPCA,
and feed the algorithm as much data as possible, trials with different delay lengths were
aligned by cutting them shortly before sound start and re-sampling the memory period data
with the same number of different size space bins. Each row is an example neuron with
the original TSH on the left and the aligned TSH on the right. The procedure doesn’t alter
the basic TSHs shapes.

On other behavioral tasks condition independent factors were normally

responsible for explaining the majority of the variance in the data [24]. If

one thinks that the experimenters are trying to explain the total variance

in the neural activity using just a few parameters of the sensory space they
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control and few behavioral manifestations they monitor (even when actively

trying to prevent others), such observation is not surprising. In our task,
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Figure 3.9: dPCA Results for Sound and Decision as Parameters : (a) Demixed prin-
cipal components. Each subplot is the projection of the full data on a specific decoder
axis. From top to bottom the rows depict the first and second sound, decision, condition
independent and sound/decision interaction components. Overall variance explained by
each component is shown as a percentage. (b) Cumulative variance explained by dPCA
and PCA. Dashed line is an estimate of the fraction of ’signal variance’ in the data (see
Methods). (c) Top: Total signal variance split among parameters. Bottom: Variance
of the individual demixed principal components. Each bar shows the proportion of to-
tal variance, and is composed out of four stacked bars, of different color, corresponding
to condition-independent variance, sound variance, decision variance and variance due
to stimulus-decision interactions. Each bar appears to be single-colored, which signifies
nearly perfect demixing.

though, the condition independent components, which captured the vari-

ance associated with unaccounted task parameters, explained, in total, only
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26% (Figure 3.9 c top) of the variance, with its most explanatory principal

component being only the third overall (Figure 3.9 a third row left column).

One possible explanation for this difference might be the influence of speed

in the neural activity, as speed and motor responsive neurons have been

found in the mPFC before [10] [18] [36].

Because of its continuous nature the speed of the animals can’t be used

as a parameter in dPCA, but we know, from the nature of our task and the

behavioral analysis on Chapter 1, that movement is how animals expressed

themselves in the task with speed varying greatly both within and between

trials. We also know that, despite single trial variability, there were speed

patterns that covaried with both the to be performed response of the animals

(stop or not) and the sound played. The influence of speed in the variance

of the neural data is thus probably masked in the sound and decision pa-

rameters variance explained. It’s worth remembering here that, unlike in a

saccade or a reaching movement, in our task speed was the result of a whole

body coordinated effort.

Another unexpected finding was that the component that explained the

most variance on the data, 14%, was the one that accounted for the interac-

tion between sound and decision. When projecting the data onto this com-

ponent we saw a trial long, seemingly constant, separation between correct

(hits and correct rejections) and incorrect trials (misses and false alarms).

Such hints to a relation of the neural activity in the mPFC with the engage-

ment of the mice in the task.

We knew that, due to the nature of our recording method, with the probe

being inserted in the beginning of each session, and a need to start the task
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as soon as possible to not compromise the mice’s behavior, an overall slight

increase in FR was seen during each session (Figure 3.10 b). We also knew
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Figure 3.10: Differences Between Correct and Incorrect Trials: (a) Average TSHs of
all neurons in all recording sessions grouped by trial type. (b) Average FR, across all
neurons, in the first and second half of all sessions. (c) Histogram of the normalized
session position (trial / number of trials in session) for false alarm and miss trials.
Colored + signs are the medians of both distributions. (d) Left: projection of the stop
sound trials in the first 0.7 portion of the session onto the first sound-decision interaction
component. Right: projection of the stop sound trials in the last 0.3 portion of the session
onto the first Sound/Decision Interaction component. (e) Top Right: projection of the
no stop sound trials in the first 0.5 portion of the session onto the first sound-decision
interaction component. Bottom Left: projection of the no stop sound trials in the last 0.5
portion of the session onto the first sound/decision interaction component.

that the distribution of incorrect trials was not even throughout the sessions,

particularly for miss trials, that tended to occur more towards the end of

the session (Figure 3.10 c). Looking at the mean firing rate of all recorded
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neurons grouped by trial type we could observe a difference between hits

and misses (Figure 3.10 a), but not so much between correct rejection and

false alarms, which made us think that the interaction between the location

of incorrect trials in the session and the increase in FR could be, at least

partially, responsible by what we were observing in the dPCA interaction

parameter.

The fact that in Figure 3.10 b the increase in FR affected all trial types in

a quasi equal manner was an indication against it, but still we projected the

neural data coming from the first and second halves of each session onto the

first sound/decision interaction demixed principal component and observed

the same result as in the whole session data, confirming the existence of a

tonic-like separation between correct and incorrect trials of both trial types.

3.4.5 Low Dimensional Representations of Speed

As discussed before the movement of the animals on the treadmill, mea-

sured as speed, had the potential to be responsible for a fair degree of the

variability observed in the neural data. Because dPCA doesn’t deal with

continuous variables we devised a way to get a notion of that influence. We

grouped together trials that shared some speed related characteristics and

employed these as input conditions to dPCA. To group the trials, avoiding

imposing some arbitrary criterion (e.g. tresholding max or mean speed), we

used the loadings resulting from applying PCA to the speeds of all trials in

each session.
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Figure 3.11: PCA on Session Speeds: (a) Cumulative explained variance of the PCA
components. Dots are the components mean across all recording sessions, shaded area is
the standard deviation. Note that, on average, the first component explains around 60 % of
the variance on the trials speeds. (b) First 3 Principal Components on an example session.
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in (c).

Speed data was very low dimensional with the first three principal com-

ponents (Figure 3.11 b) explaining 87% of the total variance (Figure 3.11 a).

The distribution of the loadings of the first PC was binomial, almost per-

fectly clustering the trials into the ones in which the mice stopped or didn’t

(Figure 3.11 c). We took advantage of that to divide each of the clusters

(stop and no stop trials) in three groups (grey vertical bars in Figure 3.11

115



Chapter 3. Electrophysiology, Single Cell and Population Analysis

c) using their 0, 33, 66 and 100 percentiles. Mean speeds of the different

groups in stop and no stop trials are shown in Figure 3.11 d.
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variance explained by each component is shown as a percentage. (b) Cumulative variance
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each bar shows the effectiveness of the demixing.

We found that this simple segmentation of trials according to their speeds

accounted for 25% of overall variance in neural activity during stop trials,

with 13% coming from the first component alone (Figure 3.12 a top right
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plot and Figure 3.12 c). The influence was even bigger for trials where the

mice didn’t stop with our grouping accounting for an impressive 48% of the

variance, with 18% in the first component (Figure 3.13 a top right plot and

Figure 3.13 c). The difference in the variance explained by our grouping

procedure in stop and no stop trials probably arises from the fact that speed

trajectories in stop trials were more stereotyped, having less trial to trial and

group to group variability, thus being better captured by the condition inde-

pendent components. This highlights that the condition independent com-

ponents are also capturing speed associated variance, particularly the one

related with intra-trial mean speed trajectories common to all our groups.
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The fact that such a crude partition of trials, according to their speed

characteristics, is able to explain the aforementioned values of variance in

the recorded neural data attests to the influence motor aspects have on it in

the context of our task.

118



3.5. Discussion

3.5 Discussion

To investigate the mPFC’s involvement in guiding behavior in a WM

dependent delayed response task on a treadmill we recorded (Figure 3.1 )

the simultaneous activity of populations of neurons centered at the ventral

part of the prelimbic area (Figure 3.2 ).

In a coarse analysis, to better understand how the task engaged the

recorded area, we found that the neurons evidenced trial type memory period

selectivity, with around 0.59 showing a mean FR that was different between

hit and correct rejection trials for at least one third of it (Figure 3.4 c). These

were not all classic WM-like neurons, with condition specific elevated activity

in the memory period, such as the one in Figure 3.4 a, as the FR differences

could be due to different combinations of excitation and inhibition in each

of the trial types. Nevertheless, this selectivity (see Figure 3.3 bottom three

rows) was a strong indication that the area contained signals, during the cue

free memory period, that could be used to generate appropriate behavior

later on.

Neurons seemed to care more about the response, stopping or not, than

the tone played with the proportion of selective cells increasing closer to the

stopping area area (Figure 3.4 b and c). It’s noteworthy that the mean TSHs

of 0.185 of the selective neurons encoded trial type for the entire duration

of the memory period, a different scenario from what it was observed in the

same area in similar tasks (e.g. Fujisawa et.al, 2008 [12]) in which different

neurons encoded different segments of it. Even considering that it might

be partially explained by inhibition in hit trials, the fact that 0.39 of the
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neurons were selective for correct rejection trials (see Figure 3.3 bottom two

rows and Figure 3.4 b bottom two rows ) also indicates that, contrary to

what might have been thought, these were not "passive" trials in which the

mice just ran to reach the next one.

Neurons’ FR was also modulated by specific occurrences with 0.58 of the

cells changing their response with at least one task event. Some neurons

were modulated by events of just one trial type while others responded

in both trial types Figure 3.6 b and to more than one event Figure 3.6 d.

Interestingly, the event that modulated more neurons, both in hit and correct

rejection trials was the end of the stopping area: 0.4. If in the case of the hit

trials some of this can possibly be related with a motor signal resulting from

animals accelerating after reward consumption, in correct rejection trials

there is no significant change in speed associated with the end of the reward

area Figure 2.6. The prefrontal as been previously implicated in monitoring

functions, including outcome [37], the strong modulation induced by the end

of the stopping area might be related with this. An interesting situation is

raised by such scenario given that in trials where the no stop sound is played

mice never receive feedback about the correctness of their choice so any

signal related with outcome in those trials is necessarily taking in account

an internal expectation. Another possible interpretation is that, given the

coincidence of the end of the area with the ITI signaling lights being turned

on, the modulation might reflect a perception of transition between trials or

contexts.

Our single neuron analysis, even if broad and descriptive in nature, re-

vealed a population of neurons with heterogeneous response profiles, able
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to encode trial identity during the memory period and being modulated by

one or more events from both trial types. The nature of our task was highly

dynamic with the animals constantly accelerating and decelerating to navi-

gate from event to event and trial to trial, without clear baseline periods to

allow neural activity to stabilize ( the ITIs were very short). Given these

and the relevance of movement as the mean to solve the task it was to be

expected, even if not directly captured by this analysis, for the neural activ-

ity to also reflect motor components. The way dynamic movement related

activity strongly modulates, throughout the cortex, the response of neurons

to task related events has been recently extensively analysed [32].

Using a targeted dimensionality reduction technique, dPCA, we were

able to demix, from the joint activity of the neurons, low dimensional rep-

resentations of the sound played, the response executed by the mice and

interactions between these. Strikingly the most salient feature encoded in

the data was a difference between correct (hits and correct rejections) and

incorrect (misses and false alarms) trials (Figure 3.9 a bottom left) cov-

ering the entire trial in a tonic-like manner. The fact that the difference

was present from trial start to end, and was poorly modulated by any task

event, seems to suggest that it reflects some sort of task independent in-

ternal state of the mice, like engagement or awareness. The PFC is known

to operate in a context dependent manner, with internal states being part

of what forms the context in which a behavior is selected [9], it’s possible

that in error trials the animals were more disengaged which impacted the

activity. Such could explain why the animals made mistakes, as looking at

the first demixed principal components for sound and decision (Figure 3.9
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a first two rows left column) doesn’t reveal any marked difference between

the way these variables were encoded in correct versus error trials, and so

no obvious WM-related reasons for the mistakes committed.

As discussed before, a delayed response task doesn’t determine the iden-

tity of the information animals have to remember to solve the task. Subjects

could keep a memory of the played tone until the reward area or upon hear-

ing the tone they could immediately decide what to do and keep a memory

of the decision. Our analysis reveals that, in the context of our task, the

neurons in the mPFC encode, from sound onset, in both correct and error

trials, a retrospective memory of the task cue and a prospective memory of

the to be made response (Figure 3.9 a first two rows left column). It’s note-

worthy that sound encoding remains pretty much constant between sound

and area, but decision encoding becomes stronger as the animals approach

the area and the moment of decision commitment. Contrary to what hap-

pened in classical delay period neurons, this selective representations didn’t

collapsed with the trigger cue, and the animals response, but kept active into

the ITI and the end of the trial, similar to what was described by Maggi

et.al,2018 [29], and agreeing with PFC involvement in behavior and environ-

ment tracking. Modulations associated with the beginning of the stopping

area were, however, present in other components (e.g second demixed com-

ponents of both sound and decision and first condition independent demixed

component), an indication that the area effectively acts as some sort of trig-

ger signal and that not everything is decided after cue presentation. These

modulations are not simply explained by the animals stopping or receiving

reward, given that they happen both in trials in which the mice stop, or
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don’t, and receive, or not, reward.

Given the reductionist nature of behavioral tasks the total variance of

neural activity explained by its parameters is normally low, with the ma-

jority of the variance being captured by the catch all condition independent

parameter [24]. The scenario we observed was different, with the variance

explained being more uniformly spread between the parameters, and con-

dition independent factors explaining just 26% of the variance (Figure 3.9

c). Movement is a crucial feature of our task, with the animals pursuing

their objectives while running at high speed, an exercise that involves a full

body coordinated effort. This is not what happens in a good proportion

of the behavioral assays used in neuroscience in which body movement is

normally purposefully restrained or the animals are confined to small be-

havioral boxes. The possible influence of the speed and speed variations of

the mice in the neural activity are not directly captured by any of the task

features used in the dPCA analysis, but we know that in different moments

of the task speed covaries both with the tone played and the response made.

It’s thus possible that our task parameters explain more variance than nor-

mally observed because they are inheriting movement associated variance

with them correlated. Movement has been shown before to explain a good

degree of the variance present in neural activity [32]

In favor of such hypotheses, and confirming the big influence movement

had on the recorded activity, are the results we obtained when using speed

as the parameter input to dPCA. For such we divided the stop and no

stop trials in three groups clustered in an unbiased way based on the mice

speed strategies(Figure 3.11 ). This simple division accounted for 13% of
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the explained variance in stop trials and for an impressive 48% in no stop

trials,Figures 3.12-13 . Bear in mind that given the stereotypical nature

of the speed trajectories some of the speed related variance is captured by

the condition independent parameter, especially in stop trials, and so that

this is an underestimation of the real impact movement has on the neural

activity. A strong presence of motor behavior representation in the mPFC

neural activity had previously been described [5] [26].

Taken together all these reveal that the heterogeneous activity of neu-

rons in the mice mPFC encodes several task features spanning the sensory

to cognitive to motor arch. These multidimensional representations and the

ability to sustained them in time linking intra-trial events, but presumably

also different trials, its evidence of the area’s putative involvement in coor-

dinating and orchestrating behavior.
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4.1. Abstract

4.1 Abstract

A distinctive characteristic of prefrontal areas, in both primates and ro-

dents, is the predominance of neurons, with heterogeneous response profiles,

that reflect in their activity the combination of external factors with the

brain appraisal of these. This mixed selectivity has been associated with

the PFC’s ability to simultaneously encode all the different multimodal fea-

tures needed to guide adaptive behavior. To be fully understood the relation

between population encoded activity and behavior needs to be explored at

a moment to moment level, particularly with cognitive and motor variables,

which time varying characteristics are poorly described by averaged mea-

sures. Here, using simple linear models, we show that, in the context of

our task, WM information about trial type and the ongoing speed strat-

egy of the mice are simultaneously encoded, at the single trial level, in the

joint activity of mPFC’s neurons. Importantly, the variables can be decoded

in a fairly independent way, with WM encoding not depending on behav-

ior. Also, movement encoding neurons tendentiously reflect past changes in

speed of the mice on the treadmill.
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4.2 Introduction

At every moment distributed networks of neurons in the brain communi-

cate and work together to represent the world and generate adapted behav-

ior. The idea that the chances of understanding this process only get better

by monitoring the simultaneous activity of the biggest possible number of

cells is intuitive. Hence, despite the body of knowledge built on top of stud-

ies based on single neuron recordings and averaged repeated measures [6],

a general agreement is forming that neural activity can only be completely

understood at the ensemble and single trial level [5]. The simultaneous

recording of populations of neurons gives access to how information is en-

coded in the spatiotemporal features of the ensembles’ activity and allows

access to the mechanisms behind phenomenons that are poorly captured or

even disguised by averaging across presentations.

The issues arising from trial averaging are particularly pertinent in the

case of motor behaviors - more difficult to constrain and systematize than

stimuli in the sensory domain, and internal cognitive processes - many times

not directly relatable to any external time-varying measurable quantity [3].

The relevance of population recordings grows, thus, with the distance from

the periphery, being particularly relevant in high order cognitive areas, like

the PFC. In these areas the activity of the neurons is more variable, being

less reliably driven by specific external inputs and outputs and more by the

activity of other neurons that convey the brain’s own interpretation, and

appraisal, of those same external features [2].

The integrative nature of the PFC’s activity means that its neurons can
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exhibit virtually any type of response profile, mixing influences from sensory,

cognitive and motor aspects. Such mixed selectivity has been hypothesized

to underlie the ability of the neurons to generate high dimensional repre-

sentations of a significant amount of task-relevant aspects [26], this possibly

explaining the impressive flexibility, and adaptability, of the encoding ob-

served in the PFC [7], and facilitating the selective readout of information

by downstream areas.

Accordingly, a growing number of studies, focused on how information

is processed in the PFC, of both primates and rodents, by the evolving pat-

terns of ensembles of neurons, have consistently revealed that multiple task

relevant elements are simultaneously encoded in the neurons’ joint activity.

This multiplexed information commonly represents a diverse set of features,

associated with guiding and controlling behavior in a task specific manner,

such as cue or cues identity, location and direction, behavioral strategy and

progress tracking, goals and trial outcome monitoring [29] [16] [28] [10] [15]

[13] [1]. The decodable information tends to display temporal stability, being

present in the absent of external drivers both when the task overtly demands

for it, as in WM tasks [29] [16], or in passive task periods with no cognitive

demands [1]. Passive representations of previous choices and outcomes were

even found in the first time naive animals had contact with a given task,

pointing for an innate role of the mPFC in linking certain phenomenons in

time, or at least to a very fast ability in forming certain task specific rep-

resentations [17]. The way given features are encoded by the populations

has also been shown to be largely independent of the characteristics of the

feature per se varying with different task rules and contexts [23] [11].
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What is known about a given brain area depends on the questions asked

when studying it. Traditionally, activity related with the animals’ move-

ments, or internal states, has been ignored, discarded, or controlled for,

in an attempt to isolate information directly linked to variables of interest.

Movement, nevertheless, seems to be broadly represented in the cortex, with

its signals being deeply intertwined with task relevant features and possible

serving computational purposes [20]. Running, for instance, is known to

modulate the gain of visual inputs [22], visual motion [27] and predictive

coding [12].

Prefrontal research has been traditionally concerned with high order cog-

nitive functions, but, as was realized in the context of WM related activity

investigation [4] [9], motor variables can also strongly impact the area’s ac-

tivity [14]. Movement and movement trajectories [9] [11], head position [4]

and speed [10] [23] have been, for instance, identified has influencing mPFC’s

activity. Interestingly the way these motor variables are encoded in the area

seems to also depend on the context in which they happen, and in particular

in their relation to motivationally relevant outcomes [4].

In the context of our task, taking advantage of the dozens of simultane-

ously recorded neurons per session, we were able to decode, at the single trial

level, both the centimeter by centimeter speed of the animals on the tread-

mill, during the entire trial, and a stable representation, during the memory

period, of trial selective information that could be used to guide behavior.

Speed, a low level motor variable, and trial identity, an internally gener-

ated and sustained cognitive variable, were simultaneously and seemingly

independently encoded in the activity of the same population of neurons.
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Moreover, the ensemble’s activity tendentiously reflected the speed at which

the mice were running, rather than determining it, and was more involved

in encoding its changes than absolute values. The motivational context in

which the behavior was performed also impacted how well speed could be

decoded, with our model decoding better speed when the mice already knew

they were going to receive reward.

The ability of the mPFC population’s activity to encode, in a multiplexed

way, both a categorical cognitive variable and a continuous and detailed

representation of the ongoing animal behavior supports the area’s role in

integrating multimodal sources of information and using them to orchestrate

and control behavior.
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4.3 Methods and Materials

4.3.1 Predicting Speed

4.3.1.1 General Model

We used the Glmnet Matlab package [24] to fit the multivariate linear re-

gression model we employed to predict speed in each session. The algorithm

minimizes the penalized sum of squares

1
2N

N∑
i=1

(yi− β0 − xTi β)2 + λ[(1− α)||β||22/2 + α||β||1]

through cyclic gradient descent with λ ≥ 0 as a complexity parameter and

0 ≤ α ≤ 1 as compromise between ridge and lasso (ridge:α = 0 ; lasso:

α = 1).

As the response vector Y we used the concatenated speeds of all trials, in

cms/s, calculated in 1 cm bins. As predictors we used the FRs of all recorded

neurons organized in an input matrix X where the values in each row were

used to predict the speed value in the correspondent row of the vector Y. All

rows of X had 21 columns per recorded neuron, with all columns containing

the FR, in Hz, of the respective neuron, in a given 1 cm bin, organized in

the follwoing way: the FR in the center column of each 21 columns’ group

corresponded, in trial position, to the speed in the same row of the target

vector Y, the 10 columns before and after contained the FRs of the neuron

10 ∗ 1 cm bins before and after that. This procedure amounted to convolve
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4.3. Methods and Materials

a 21 ∗ 1 cm kernel with the FR of all neurons through each trial. The input

matrix X was then S ∗NK with S = number of speed bins being predicted;

N = number of neurons; K = size of the predicting kernel.

All predictions were made on data not used for training, using 10 fold

cross validation and the regularization parameter λ was fitted by the algo-

rithm using an inner nest of cross validation, again with 10 folds.

4.3.1.2 Speed Prediction Performance Calculations

To access how well were our models predicting speed (Figure 4.2 and

Figure 4.15 ) we used R2 defined here as

R2 = 1−
∑n
i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

with y = real speeds; ŷ = predicted speeds; ȳ = mean of real speeds.

In Figure 4.4 the performance of the models was compared through the

residual sum of squares ∑n
i=1(yi − ŷi)2.

4.3.1.3 Past-Future and Speed-Acceleration indices

The 21 coefficients predictive kernels, K, of all neurons were attributed

a past future index (PFI) according the following formula

PFI =
| 1
N

∑10
i=1 ki| − | 1

N

∑21
i=12 ki|

| 1
N

∑10
i=1 ki|+ | 1

N

∑21
i=12 ki|

where for neurons that influence speed the first 10 elements have a higher

mean,| 1
N

∑10
i=1 ki|, and for neurons that reflect speed the last 10 elements

have a higher mean| 1
N

∑21
i=12 ki|,
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The same kernels were also attributed a speed acceleration index (SAI).

For that, each kernel K was first normalized between 0 and 1 and then

centered so that the first and last values of K were equidistant from 0 with

the lower of them being made negative and the higher positive. After this

transformation the following formula was used to calculate the SAI from the

transformed kernel K̃

SAI =
|K̃21 − K̃1| − | 1

N

∑
K̃|

|K̃21 − K̃1|+ | 1
N

∑
K̃|

sigmoid shaped kernels, K̃, had an absolute mean, | 1
N

∑
K̃| close to 0 and

a big absolute difference between the last and first values,|K̃21 − K̃1|. In

gaussian shaped kernels the mean of K̃ was big and the absolute difference

between the first and last values close to 0.

4.3.1.4 Speed Prediction with Past and Future Neuronal Activity

All linear regression models used to predict speed in Figure 4.15 were fit-

ted using the same algorithm described above in the General Model section,

just the input matrix X and the response vector Y were different. Y was a

vector with the concatenated speeds of all trials, in cms/s, calculated in 3

cm bins. The input matrix X had the same number of rows as Y with each

column containing the FR, in Hz, of each of the recorded neurons, in the

same trial position bin as the speed in the correspondent row of Y. Several

models were fitted with the row correspondence of X and Y being shifted

in relation to each other.
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4.3.2 Predicting Trial Identity

4.3.2.1 General Model

To predict trial identity from the neural activity during the memory

period of each trial we used logistic regression. For this we again used the

Glmnet package [24] that uses cyclical gradient descent to minimize, in the

case of logistic regression minimize

− 1
N

N∑
i=1

yi ∗ (β0 + xTi β) + log(1 + e(β0+xT
i β)) + λ[(1− α)||β||22/2 + α||β||1],

with λ ≥ 0 as a complexity parameter and 0 ≤ α ≤ 1 as a compromise

between ridge and lasso (ridge:α = 0 ; lasso: α = 1).

The response vector Y had the same number of rows as the number of 1

cm bins between sound off and the end of each trial. All rows coming from

hit trials were set to be equal to 1 and all coming from correct rejection

trials equal to 0. The input matrix X was built as described above for the

speed prediction general model.

4.3.2.2 Speed Prediction Performance Calculations

The performance of the trial identity prediction models (Figure 4.9 and

Figure 4.13 ) was accessed via the area under the receiver operating charac-

teristic (ROC) curve. The ROC curve was created by plotting the hit rate

(true positives) of the model against the false alarm rate (false positives)
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at various threshold settings. Our thresholds went from 0 to 1 in 0.001

increments.

4.3.3 Speed and Trial Identity Predictions Compari-

son

In Figures 3.12-14 the relation between each neuron’s 21 coefficients

prediction kernels, resulting from speed and trial identity predictions, was

accessed via the Pearson correlation coefficient between the kernels.

To compare overall session decoding the Pearson correlation coefficient

was taken between the full vector of coefficients fitted by each model (cor-

responding to the concatenation of all neurons’ kernels).
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4.4 Results

4.4.1 Decoding Speed, From Neural Activity, at the

Single Trial Level
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Figure 4.1: Predicting Mice Speed from Single Trial Neural Activity: To predict the speed
of the mice in each cm of a given trial we used a sliding kernel to linearly combine
the activity of all simultaneously recorded neurons a given number of cms into the past
and into to future relative to the cm being predicted. In the figure toy example speed is
predicted by combining the firing rates of three neurons over 5cm, averaged in 1 cm bins,
and centered on the cm we want to predict. In reality we used a 21 cm sliding kernel
extending 10 cm into the past and future of the speed bin being predicted. The coefficients
associated with each firing rate bin were fitted using linear regression.

As we showed in the previous chapter (Figure 3.12 and Figure 3.13 )

speed exerts a considerable influence in the neural activity observed in the

mPFC of mice solving the task. To better characterize this influence, and
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understand how speed was represented in the population activity, we took

advantage of our simultaneously recorded neurons and tried to decode speed

at the single trial level.

Using a cross validated linear regression model we predicted the speed

of the mice, in each centimeter of each trial, from the linear combination of

the activity of all neurons at and around the centimeter being predicted. In

practice, we combined the FR of each neuron in 21 × 1 cm bins centered

at the bin being predicted and extending 10 cm into the future and past of

that bin (Figure 4.1 ).
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Figure 4.2: Performance of the Speed Prediction Model: Speed in each cm of a trial
was predicted by combining the firing rates of all neurons using a 21 * 1 cm bins kernel
extending 10 cm into the past and the future of the position we wanted to predict (see
Figure 4.1). The model was fitted using all hit and correct rejection trials from all sound
start locations. (a) Performance of the model in one recording session, quantified as R2,
for all, hit and correct rejection trials. In all 3 cases the first 11 bars are for the R2

calculated separately for the trials with the same sound start position and the last bar for
the R2 calculated with all trials grouped. (b) Model performance in each recording session.
The X axis is the same as above and each row is one recording session. The arrows signal
the session showed in (a).
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Our linear model was able to predict the speed of the animals on the

treadmill consistently well across sessions and for all sound start locations

(0.64 ± 0.13 SD mean session R2 using both trial types and all sound start

locations) (Figure 4.2 a and b left ). Prediction was better, though, in hit

than in correct rejection trials (0.63 ± 0.15 SD and 0.52 ± 0.15 SD mean

session R2, respectively) (Figure 4.2 a and b middle and right). Here we

didn’t fit different models for each trial type data, just calculated the R2s

separately from the true and predicted speeds grouped by trial type. The

R2 calculation is dependent not only in how close the model predictions

are to the real speed values, but also in how close is the mean of those

same values to them (see Methods Section). Given the difference in mean

speed patterns, and in speed variability, inside each trial and between trials,

comparing theR2s calculated with all trials or with just the condition specific

ones might have introduced distortions. Looking at the normalized error

between the real and the predicted values, for the three situations, the results

were, however, consistent with the obtained R2s: when considering all trials

together the mean error per speed value predicted was 8.32 ± 1.4 SD cm/s;

in just hit trials the mean error was 8 ± 1.5 SD cm/s; and in just correct

rejection trials 8.7 ± 1.3 SD cm/s.

To gain a clearer idea of the meaning of the R2 values and the fidelity

of the predictions we plotted the mean predicted and real values, in one

example session, together. In Figure 4.3 one can observe how well the mean

predicted speeds track the mean real speeds along the entire trial, in both

hits and correct rejections and for all sound start locations. Importantly,

the prediction captures well the crossings and overlaps between the speed
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patterns of the two trial types, evidence that it is not just reflecting a baseline

difference between the two.
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Figure 4.3: Real and Predicted Mean Speeds: Real and predicted mean speeds, grouped by
sound start location and trial type, of an example session.

Because of the existence of clear stereotypical mean speed trajectories,

in both trial types, it was not totally evident for us if the neurons were

just encoding these mean modes of action or if they were, in fact, encoding

speed in each trial. To address this question we fitted two new models,

using the same data and procedure as before, but introducing two crucial

manipulations: in one we shuffled the correspondence between the input

FRs and the target speeds across all trials; in the other we shuffled the

input-target correspondence just within trials of the same condition, hits

and correct rejections, breaking single trial correspondence but preserving

the means. By comparing the performance of the non shuffled original model
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with the two new shuffled models we would be able to find what proportion

of our original prediction power was explained from predicting the mean or

trial specific speed.
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Figure 4.4: Trial to Trial Vs. Mean Trial type Speed Prediction : (a) Example trials: real
and predicted speeds. 3 Different models were fitted: Black - shuffling neural and speed
data between all trials; Grey - shuffling between trials of the same condition; Red and
Green - no shuffle. (b) Proportion of RMSE, relative to the total shuffle model (dashed
line), of the condition shuffle (grey bars) and no shuffle models (colored bars). Top:
example session, Bottom: all sessions. Boxes on the bottom plots bars are for the SEM.

Introducing information about trial type specific mean speed (shuffling

just within the same condition) improved our prediction, in comparison with

the total shuffle model, for both hits and correct rejections (mean original

error proportions of 0.8 ± 0.09 SD and 0.9 ± 0.08 SD, for hit and correct re-
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jection trials respectively, across sound start locations). Although improved

this prediction was still considerable worst than the achieved by the original,

non shuffled, model which reduced the total shuffle model error even further

(mean original error proportion of 0.56 ± 0.10 SD and 0.62 ± 0.11 SD,

for hit and correct rejection trials respectively, across sound start locations)

(Figure 4.4 ). Such showed us that at least half of our model performance

was coming from actually predicting trial specific speed.

It was somewhat surprising that our predictions were so accurate given

that we were fitting a single model to trial segments with different meanings

and needs, from both trial types and in all sound start locations. The good

performance of the model in these conditions implies that the mPFC, a non

primary motor area, encodes, in each trial, a fairly universal representation

of a low level motor feature: speed.

4.4.2 How are the Neurons Encoding Speed ?

We showed that the population activity in the mice’s mPFC possesses

information about the speed at which the animals run on the treadmill

while solving the task. Because of the method we used to decode speed,

linearly combining the activity of all neurons in 21 × 1 cm bins around the

speed position being predicted, we could look at the coefficients the model

attributed to each neuron’s prediction kernel to gain an idea of when and

how much was the activity of each neuron important for the prediction.
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Figure 4.5: Speed Prediction Kernels Coefficients : Coefficients of the 21 bins sliding
kernels, fitted when predicting speed, for all neurons in all sessions, sorted by position
of their center of mass. For visualization purposes kernels were normalized so that all
coefficients would be between -1 and 1 but maintained their original sign. Neurons with
the center of mass in the past (negative values) reflect the speed at which the mouse was
running. Neurons with the center of mass in the future influence the speed at which the
mouse will be running.

Figure 4.5 shows, for all sessions, normalized between -1 and 1 and ad-

justed so that all coefficients maintained the same sign, each neuron’s 21 bin

coefficients prediction kernel sorted by their centers of mass. In all sessions

the relation of the neurons’ activity with speed was heterogeneous with cells

that reflected, either by increasing or decreasing their FR, the speed at which

the animals were running some distance into the past and others that were

predictive, again in both directions, of the speed at which the mice would

be running some centimeters into the future.
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Figure 4.6: Speed-Acceleration and Past-Future Indices : Speed prediction kernels can
be classified using a Speed-Acceleration index (-1 if the kernel as a gaussian like shape
being involved in predicting a constant speed or 1 if the kernel as a sigmoid like shape
being involved in predicting a change in speed) and a Past-Future index (-1 if the neuron
activity reflects the speed of the animal 1 if it contributes to it). (a) examples of kernel
shapes with positive Spd-Acc index. (b) examples of kernel shapes wit negative Spd-Acc
index. (c) Spd-Acc Vs. Past-Fut indices plot of all neurons from one example session.
Neurons are color code according to the mean value of their kernel coefficients. Bar plots
show the sum of the kernel coefficients means (positive and negative) in each 0.1 bin of
both indices.

For every session the information contained in Figure 4.5 could be sum-

marized by characterizing each neuron’s kernel in terms of its past-future

(kernel’s center of mass location) and speed-acceleration (kernel’s shape) re-

lation with speed prediction (Figure 4.6 ). Plotting the classification, along

this two axes, of the kernels of all neurons, across all sessions, revealed that

the biggest contribution to the predicted speed values came from sigmoid

like kernels, involved in encoding changes in speed (Figure 4.7 center and
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left, and a mean 0.74 ± 0.06SD of neurons per session with a positive Spd-

Acc index) that had their center of mass in the past (Figure 4.7 center and

bottom, and a mean 0.57 ± 0.03SD of neurons with negative PFI index)

this way reflecting, rather than influencing, speed. Curiously, neurons with

gaussian shaped kernels, particularly the ones associated with larger coeffi-

cients, had a closer to zero PFI and so encoded speed in the present or at

least in a balanced way between past and future.
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Figure 4.7: Speed-Acceleration and Past-Future Indices All Sessions : Same as (c) in
Figure 4.6 but now for all neurons from all recording Sessions.

To get a more direct handle on the important question of whether mPFC

activity reflected, or was being reflected, in the mice’s speed we used a

different modeling approach: speeds and FRs in each trial were calculated

in 3 cm bins and then the bins alignment was systematically shifted, into the

past and the future, relative to each other, with a different speed predicting
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model fitted in each shift (Figure 4.8 a). The same procedure was followed

using all trials or just hit or correct rejection trials.
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Figure 4.8: Predicting Speed with Past and Future Neural Activity : (a) Speed, in 3 cm
bins, is predicted by linearly combining the FR of all neurons calculated over same length
bins. Different models were fitted shifting the alignment of the speed and FR bins into
the future and past in one bin (3 cm) shifts. 13 Models were fitted: one aligned plus
six 3 cm shifts into the past and six into the future. (b) Performance of each model in
one example session for: both types of trials predicted together - left; hit trials predicted
separately - center; correct rejection trials predicted separately - right. For all 3 plots 0
corresponds to present and each bar into the past (negative X axis) and future (positive
X axis) corresponds to a 3 cm shift. (c) Same as above above but now color mapped for
all sessions. Arrows indicate the example session in (b).

Using this approach we were still able to decode speed information from

the mPFC’s population activity but the performance of the models was

worst. This was somewhat to be expected as we were predicting speed in

one bin using the FR in another individual same size bin, instead of pulling

information from several bins around the predicted one, as we did before.

Also, overall, the performance was better in the models applied to all and
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hits than to correct rejection trials (mean session R2s of 0.35 ± 0.13SD, 0.38

± 0.12SD and 0.29 ± 0.08SD, for the best shifted position models in all, hit

and correct rejection trials, respectively) (Figure 4.8 b and c), in line with

the results obtained when predicting speed with the sliding kernel approach

(Figure 4.2 ).

By fitting a different model with each bin shift we found that, as the

coefficient kernels’ analysis had already suggested, information in the mPFC

allow us to predict better speed to the past than to the future of the neural

activity (Figure 4.8 b and c). A tendency that was stronger in hit trials (sum

of R2s of models in negative bins representing in average 0.75 ± 0.12SD of

the total R2s sum across sessions) but also true for the models fitted to all

trials together (0.6 ± 0.08SD) and, to less extent, correct rejections (0.54 ±

0.15SD).

All together these results demontrate that it’s possible to decode, from

the simultaneously recorded activity of neurons in the mPFC, the speed at

which the mice run on the treadmill while solving the task. Moreover, that

the FRs encode more changes than stable values of speed and that these

representations tend to be retrospective, relating more to past than future

speeds.

Until now we worked under the assumption that the mPFC encodes speed

in the same way independently of trial type and position on the trial. Given

that the mPFC is not a primary motor area and has been found to represent

the same feature, and behavior, differently depending on the context [10] [4],

we were aware that our assumption was, with great probability, simplistic.

To test broadly how decoding speed in a trial type, or trial position, specific
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manner would compare with predicting speed in a general way, we fitted

new models, separately, to the entire trial, or just after the sound, in hit and

correct rejection trials (Figure 4.15 a).
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Figure 4.9: Predicting Speed in a Condition Specific Manner : Speed prediction model
performance for hit and correct rejection trials: predicted together in the entire trial - 1;
Predicted separately in the entire trial - 2; Predicted separately from sound onset to trial
end - 3.

For both hit and correct rejection trials fitting a model specifically to

each trial type improved our speed prediction performance, even if not in a

dramatic fashion (mean session R2 of 0.63 ± 0.15SD and 0.67 ± 0.12SD in

hit trials and 0.53 ± 0.15SD and 0.58 ± 0.14SD in correct rejection trials

for general and trial type specific model). In hit trials our prediction per-

formance was still further increased when we limited our analysis to period

of the trial after the sound (mean session R2 of 0.71 ± 0.12SD), this is the

period where the speed behavior becomes more relevant and where the mice

already have an expectation that they are going to receive reward. The

same doesn’t happen in correct rejection trials where, when one restricts the

analysis to the portion of the trial after the sound, the mean performance
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of the model drops to an R2 of 0.54 ± 0.11SD.

The performance of our model improved when we tried to predict speed

in a condition specific manner and also, in the case of the hits, in a particu-

larly relevant part of the the trial. Despite these, the improvement was not

dramatic, and although a more refined analysis would be necessary to fully

address this issue, it is possible to say that speed in the mPFC is encoded

in a way that can be read out by a same linear model in fairly universal, not

radically context dependent, way.

4.4.3 Decoding Trial Identity, From Neural Activity,

at the Single Trial Level

We learned that neurons in the mice mPFC encode speed in a single

trial basis, but what about the memory needed for the animals to know

what action to perform upon reaching the stopping area? Was it possible to

decode, from the population activity, in every trial and throughout the entire

memory period, information that would allow to classify the type of trial the

mouse was in? To answer this question we used logistic regression, and the

same 21 × 1 cm bins sliding kernel approach, to predict the probability, at

each memory period centimeter, of an animal being in a hit trial (Figure

4.9 ). Importantly, due to the small amount of mistakes committed by the

mice, we only used correct trials in these predictions and so it was impossible

to disambiguate if the representation we were decoding was from the sound

played or the decision made by the animals.

Our model was able to decode very well (Figure 4.10 ), from the popu-

lation activity, throughout the memory period, the identity, hit or correct
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rejection, of a given trial, for all different sound start locations (mean AUC

of 0.94 ± 0.08SD , across all sessions, for predicting the identity of all trials

together).

Trial Position
Sound

Predicted Trial Identity
Real Trial Identity

x13 : x53

x11 : x51

x12 : x52

Xi Wii = 1

3

1

H
it
Tr
ia
lP
ro
ba
bi
lit
y

N
eu
ro
ns

0

spikes

Figure 4.10: Predicting Trial Identity from Single Trial Neural Activity: To predict the
identity of a given trial (hit or correct rejection) we followed the same procedure described
in Figure 4.1 but used logistic, instead of linear regression, to fit the model and predict
the probability of the mice being in a hit trial at each cm between sound off and trial end.

These representations were quite stable along the the entire memory

period, as can be seen in the predictions for all centimeters of the memory

period averaged across same sound start location trials (Figure 4.11 ). Hence,

in each trial, for the entire delay period between the end of the sound and the

action trigger signal provided by the area, it was possible to decode, from

the mPFC, information that could guide the behavior of the mice. Such

stability was also an indication that our ability to decode trial identity was
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not dependent on the fact that we could also predict speed: speeds, in hit

and correct rejection trials, are markedly different close to the area, but are

overlapping just after the sound.
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Figure 4.11: Performance of the Trial Identity Prediction Model : Trial identity of each
cm of a trial is predicted by combining the firing rates of all neurons using a 21 * 1
cm bins kernel extending 10 cm into the past and the future of the position we wanted
to predicted (see Figure 4.9). The model is fitted with all correct trials from all delays
grouped. (a) Performance of the model in one recording session, quantified as AUC, for
all different sound start location trials grouped. (b) Same session as in (a) but now with
the performance of the model in all sound start locations individually (first 11 bars) and
together (12th bar). (c) Model performance in each recording session. The X axis is the
same as above and each row is one recording session. The arrows signal the example
session in (a) and (b).

Despite this observation we were still interested in understanding if and

how was our ability to predict speed and trial identity, from the same pop-

ulation of neurons, related. In an extreme situation, where speed between
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trial types was different in the entire memory period, predicting speed and

trial identity would be effectively the same and trial type representation

could be solely due to motor and not cognitive differences. Functionally, if

both pieces of information, a stable WM and a evolving representation of

behavior, would have to be used to aid the mice during the task, it would

be important if they could be retrieved independently and unequivocally.
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Figure 4.12: Real and Predicted Mean Trial Identity : Real and predicted mean trial
identity, grouped by sound start location and trial type, of an example session.

To clarify the relation between our speed and trial identity prediction

models we calculated the correlation between the coefficients kernels of each

neuron resulting from predicting the former (Figure 4.5 ) and the later (Fig-

ure 4.12 ). Note that in the context of trial identity prediction it doesn’t
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make sense to classify the kernels like we did for speed (Figure 4.6 ) as we

were basically predicting the same value throughout the entire memory pe-

riod.

Taking the correlation between each neuron’s kernels we calculated for

each recording session an histogram of kernel correlations ( Figure 4.13 a

and b). Doing so we found that, for the majority of the neurons in all

sessions, the kernels were negatively correlated (0.63 ± 0.08SD mean session

proportion of neurons with negative correlation coefficient between both

kernels). Taking the correlation between the full vectors of coefficients (not

split into each neuron’s kernel) yielded consistent results (Figure 4.13 c)

with a mean correlation coefficient of -0.39 ± 0.16SD across all sessions.

The sign of the correlation doesn’t have a biological meaning here, as it is

dependent on the values used to encode both trial types when predicting

trial identity, the relevant fact was if they were, or not, correlated.

Even in the trials with a shorter memory period, where there was less

space for the speeds to diverge, as the animal sped up or slowed down, de-

pending on if they were in a correct rejection or hit trial, there was a clear

speed difference between the two trial types in the portion of the mem-

ory period closer to the stopping area (Figure 2.6 ). In this segment of the

trial one should have been able to discern trial identity quite well just by

being able to predict the speed at which the mice were running. The cor-

relation observed between the coefficients of our models, when predicting

speed and trial identity, were much probably related with this correlation

between speed and trial type, which, as we’ve showed in Chapter 2, serves

no necessary behavioral function.
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Figure 4.13: Trial Identity Prediction Kernels Coefficients : Coefficients of the 21 × 1 bins
trial identity prediction sliding Kernels for all neurons, in all sessions, sorted by position
of their center of mass. For visualization purposes kernels were normalized so that all
coefficients would be between -1 and 1 but maintained their original sign. Neurons with
the center of mass in the past (negative X axis values) can be think of as retrospectively
encoding an estimation of trial identity. Neurons with the center of mass in the future
(positive X axis values) can be think of as prospectively encoding an the estimation of trial
identity.

How much of our ability to predict trial identity was derived from pre-

dicting speed? Did the neurons carry independent representations of both

variables, with our models picking up an existent but unnecessary corre-

lation, or was our ability to decode speed and trial identity inextricably

related? To further investigate this we predicted speed and trial identity

in three different 15 cm trial segments, in the beginning, middle and end

of the memory period (Figure 4.14 a), with the objective of comparing the
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coefficient kernels in stretches of the memory period where the extent of the

separation between the speed trajectories in the two trial types was different.
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Figure 4.14: Speed and Trial Identity Prediction Kernels Comparison : (a) Histogram of
the cross correlation coefficients between each neuron speed and trial identity prediction
sliding kernel for a given example session. (b) Same as in (a) but now color coded for all
sessions. Numbers on the right of the plot are the cross correlation coefficients between
each session full vector of coefficients for speed and trial identity prediction. (c) Histogram
of the cross correlation coefficients between each session full vector of coefficients for speed
and trial identity prediction.

By doing so we first found that our ability to predict speed and trial

identity was maximal at segment 3, the one closest to the stopping area

(Figure 4.14 b), but that we were still able to predict both quite well in the

the first and intermediate segments (mean session R2 of 0.49 ± 0.1SD , 0.49
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± 0.12SD and 0.67 ± 0.08SD for segments 1,2 and 3, respectively; mean

AUC of 0.91 ± 0.11SD, 0.93 ± 0.1SD and 0.96 ± 0.09SD for segments 1,2

and 3, respectively).
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Figure 4.15: Speed and Trial Identity Prediction in Different Segments of the Trial : (a)
Using the same sliding kernel approach speed and trial identity were predicted indepen-
dently for three different 15 cm segments of the trials. (b) Left: Speed prediction model
performance in the three different segments quantified as R2. Right: trial identity predic-
tion model performance in the three different segments quantified as AUC. For both the
number on top of the plots are the mean performances of the model across sessions in
each segment. (c) Same as in (b) of Figure 4.12 but now for the three different segments.
(d) Same as in (c) of Figure 4.12 but now for the three different segments.

Importantly, we also found that the correlation between the speed and

trial identity models’ coefficients covaried with the separation between both

trial types speed trajectories (Figure 4.14 c and d). From segment 1 to seg-
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ment 3 the way our models decoded, from the population activity, speed and

trial identity went from being largely uncorrelated to becoming negatively

correlated (mean proportion of neurons per session with kernel correlations

between -0.2 and 0.2 of 0.43 ± 0.07SD, 0.4 ± 0.07SD and 0.32 ± 0.07SD

and mean sessions coefficients’ vectors correlations of 0.04 ± 0.15SD, - 0.2

± 0.2SD and -0.5 ± 0.13SD for segments 1, 2 and 3, respectively), following

the increase in difference between the speeds in hit and correct rejection

trials.

It is thus possible to decode, from the simultaneous activity of an ensem-

ble of neurons in the mouse mPFC, a stable cognitive representation that

is not being driven by sensory stimuli nor overt motor actions: there is no

task relevant sensory cue in the memory period and trial identity can be de-

coded, in a fairly independent way, from the speed of the animals, a motor

variable that reflects an whole body engagement and leaves little room for

other memory bridging behaviors.
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4.5 Discussion

As we saw in Chapter 3 (Figure 3.9, Figure 3.12 and Figure 3.13 ) motor

activity, measured as the speed at which the mice ran on the treadmill, had

a substantial influence in the neural activity we recorded. Speed was freely

determined by the animals at every moment of every trial and so, even

if mean trial specific patterns existed, it was only possible to completely

understand how it was being encoded in the neural activity by looking at

the relation of the two variables continuously in a single trial basis. We

were able to do so by leveraging on the simultaneous activity of the neuron

ensembles we recorded in each session.

Applying a rather simple linear model (Figure 4.1 ) to all the trials of each

session we were able to decode the speed at which the animals were running

for the total trial length (Figure 4.2 and Figure 4.3 ). The performance of

our model wasn’t just related with distinguishing the speeds coming from the

two different trial types, as can be seen from the R2s calculated separately

for hit and correct rejection trials, nor with predicting the mean patterns

of activity in each of the trials, demonstrated by the shuffle controls in

Figure 4.4. Activity in the mPFC possessed, thus, enough movement related

information for it to be possible to decode the speed of the mice at each cm

of each trial.

The presence of motor neural correlates in the mPFC has been docu-

mented before (e.g Cowen and McNaughton, 2007 [4] and Euston and Mc-

Naughton, 2006 [9] ), but speed related neurons or activity, though found,

are normally discarded or controlled so not to act as confounds for other
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variables of interest like location [10] or strategic decisions and prospective

direction choice [23]. Lindsay et.al, 2018 [14] didn’t find strong representa-

tions of velocity when specifically looking at the influence of motor patterns

in the mPFC. Crucially, though, their observations took place in small and

closed environment and in the context of spontaneous behavior, with the

animals not being engaged in a particular task. Considering that the mPFC

is an high order area, involved in combining meaningful streams of informa-

tion to guide behavior [8], it should be expected for it to encode information

important in the context of solving a specific problem or exercise. In our

task forward linear movement was the only behavior through which mice

could navigate the environment and speed modulation the way to imple-

ment different goal oriented strategies. It makes then sense for speed related

information to be found in the mPFC of the animals.

The functional significance of such representation cannot be established

in the context of our work here, but given what is known about the area

and what we observed in our data some hypotheses might be discussed.

The mPFC has been implicated more in monitoring and controlling than

directly generating behavior [21] [19], maintaining representations of past

behavioral and environmental features [17], accordingly our neurons seem to

preferentially encode information about the past rather than of the future

movements of the animals (Figure 4.7 and Figure 4.8 ). These online repre-

sentation of the behavior might be useful in terms of keeping track of a set

of necessary actions leading to a desired goal [15] or in providing a feedback

signal that can be used for state estimation, if we look at it in the context

of a motor control problem [30].
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We also found that the neurons cared more about changes than constant

values of speed (Figure 4.7 ). If one thinks about what the animals have

to accomplish accelerations and decelerations are the de facto actions they

have at their disposal to implement selected strategies. Looking at the speed

patterns, in average or at the single trial level (Figure 2.4 and Figure 2.6 ),

what defines them, in each condition, are not so much the actual values of

speed at which their are completed but their specific shapes, determined

by the acceleration - deceleration patterns of the animals. If the mPFC is

keeping track of the mice’s behavior, in order to situate it in the context of

a general strategy being implemented, it makes sense for it to represent its

actual purposeful actions, and not just the speed at which they are being

executed.

In the context of its general role in cognitive control [18] [25] the mPFC

has been studied in situations where automatic and impulsive behaviors have

to be modulated. To anticipate these scenarios, and intervene when neces-

sary, activity in the area has, presumably, to keep a representation of what

the subject is doing in the context of a given task or problem. Our task

is simple and it’s not clear, given what it’s hypothesized to be the area’s

function, if its demands would engage it. One way to start addressing this

question would be to zoom in around specific trial segments and verify if neu-

rons shift from retrospective to prospective encoding of the mice behavior,

signaling an involvement of the mPFC in generating behavior. Candidate

segments would be when the tones are played ( particularly the stop sound,

where animals have to withhold the licking response and continue running)

and the stopping area where, in the case of hit trials, animals have to com-
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mit to stopping and, in correct rejections, inhibit the attractive pull of this

behavior (the reward associated response). We plan to perform this analysis

in the near future.

We fitted the coefficients associated with the bins of the sliding kernel

used to predict speed at each cm of each trial (Figure 4.1 ), consequently,

all speed values were decoded the same way. This assumed that speed en-

coding in the mPFC was universal and didn’t depend on contextual factors,

something to be more expected from a primary motor area. Our model

performs better in hit than correct rejection trials (Figure 4.2 ). Such obser-

vation might mean that neurons in the area are more engaged by trials to

which the prospect of reward confers added importance, akin to what was

observed by Cowen and McNaughton, 2007 [4]. Another possibility is for

the enhanced performance to be related to the fact that hit trials have more

acceleration - deceleration periods than correct rejections, with these, as de-

scribed before, being better represented by the neurons. Predicting speed

separately for each of the conditions yielded consistent results and showed

that even with a dedicated model speed is less decodable in correct rejection

than in hit trials (Figure 4.9 ).

The mPFC has been described to encode the same features in a differ-

ent way depending in the context in which they are encountered [11]. Our

results, concerning the encoding of speed, show that while fitting separate

models to different trials types, and different segment sections, improves

our results(Figure 4.9 ), thus pointing to some context dependency, such im-

provements are not dramatic, with a fair degree of speed related information

seemingly present in the same format through different task contexts. Our
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exploration of this issue is coarse, especially in what concerns different task

epochs, a better description of how speed encoding varies with context would

need a more detailed analysis.

Apart from the behavioral strategy followed by the mice the other out-

standing feature of our task was its memory guided component. Using an

analogous approach to the one used to decode speed (Figure 4.10 ) we were

able to classify, at each cm of each trial after the sound, the identity of the

respective trial (Figure 4.11 and Figure 4.12 ). Because we just used correct

trials in our analysis it was not possible to discern what information was

used to differentiate between trial type (sound or decision) but, irrespective

of the memory content, its representation was stably decodable, in the same

way, during the entire memory period.

As when using dPCA, also here the WM representations continued active

past the moment in which the mice stopped to collect reward (in hit trials)

or successfully crossed the area without stopping (in correct rejection trials).

Such indicates that the mPFC is not just involved in keeping information

within the scope of one trial, but also in carrying it past its most immediate

usefulness, bridging temporally dissociated contexts (or trials, in the case of

the task).

In our task, and after the presentation of the auditory cue, neurons in

the mPFC simultaneously encoded, in each trial, the speed at which the

mice were running on the treadmill and the identity of the respective trial.

Multiplexed encoding of task variables by ensembles of neurons in the mPFC

has been consistently reported [1][23][17] before. In both trial types (hits and

correct rejections) mice adopted different speed strategies that became more
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and more different as the animals approached the area and prepared to stop.

When we decoded trial type were we really decoding a cognitive internally

sustained representation or, as it as been described before [9] [4], were we

merely picking up neural signals reflecting different behavioral patterns? The

relation between mean condition speed strategies was not constant, varying

in signal and amplitude throughout the trial (Figure 2.6 ), despite so we

were able to decode trial identity in a stable way, which seemed to indicate

that the former was not crucially dependent on the later. Looking at the

correlations between both the kernels of individual neurons and the vectors

of coefficients from each session, resulting from predicting speed and trial

identity, we confirmed this first indication (Figure 4.15 ). Hence, although

the behavioral differences could in fact be picked up by the model, leading

to a correlation between predicting speed and trial identity (Figure 4.14 and

Figure 4.15 ), this was not a necessary condition for successful prediction of

the later. It was possible to predict trial identity, in a way that was largely

uncorrelated with predicting speed, in a trial segment (just after the sound)

where speed strategies were similar between hit and correct rejection trials.

Taking advantage of our simultaneous ensemble recordings to relate neu-

ral activity to behavioral and cognitive variables we discovered that neurons

in the mice mPFC encoded, in each trial and in a multiplexed way, both

an ongoing representation of its momentaneous behavior (speed) and a sta-

ble internally generated representation that could be used to guide behavior

(trial identity). Both variables could be decoded in uncorrelated way, which

provides evidence that trial identity representation was not anchored on dif-

ferences in speed behavior and suggests that they can be read, independently
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from each other, by other brain regions or networks.
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5.1 Objective

Functionally, WM refers to the general process through which the brain

is able to maintain sustained in time active representations [14]. Such ability

is the backbone of high level cognition, allowing subjects to "glue" events,

contingencies, and sequences of actions in time, this way enabling planning

and goal directed behaviors [15]. This pivotal role in complex behavior made

establishing its neural basis a priority of neuroscience research.

Mechanistically WM is also an interesting process [9] [4] [29]. It’s rather

intuitive to imagine, and study, how and why neural activity is driven by im-

mediate environmental input or body output, but its harder to conceptualize,

and investigate, the means by which neurons keep an active representation

in the absence of external direct influence.

Our project aimed to contribute to the ongoing effort of illuminating the

subject by exploring how neural activity in the mice mPFC was involved in

the completion of a WM guided task. By recording the simultaneous activity

of populations of neurons, while, at the same time, minutely and precisely

quantifying the animal behavior, we hoped to be able to disentangle, char-

acterize and understand better the multivariate activity of the area and the

way WM information and other relevant task variables were encoded and

related.

5.2 Properties of Recorded Neurons
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While the emphasis, when using multi-site electrodes to perform extra-

cellular electrophysiology, is normally put on the ensemble based analysis the

simultaneous recorded neurons allow, a necessary, but least recognized ad-

vantage, is the fast collection of a high yield of individual cells. A coarse de-

scription, and quantification, of the dozens of neurons we typically recorded

from, in each session, revealed a scenario of heterogeneous response patterns

and diffuse tunning to multiple task features. Such is not strange as it is the

hallmark of areas in hierarchically high and integrative positions [22][1], like

the primate dorsolateral PFC, an area heavily involved in WM dependent

behaviors [15] [16], of which the mice mPFC is believed to be homologous

[19], or at least share analogous functions[30].

The recorded neurons were typically engaged by the task, with a good

proportion having their FR modulated by one or more events and/or show-

ing condition selectivity during the memory period. Curiously, contrary to

what others observed [12], almost one third of the neurons were selective for

the entire memory period. It’s important to note here, though, that these

were not, in their majority, classic sustained elevated activity cells, with the

selectivity, as we calculated it, simply representing significant difference in

FR. It is also worth noting that both the response to specific events, and

the memory period selectivity results, were influenced by the continuous dy-

namic modulation of activity produced by the temporal integration of the

responses to specific task features with the mice movement: animals were

constantly running and stopping, accelerating and decelerating, with seldom

any time for the activity to stabilize.
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5.3 Multiplexed Representations

Even if it was difficult to make sense of the averaged response profiles

of the mPFC neurons recorded during the task, it was rather probable that

mixed [27][28] on them were several layers of task and behavioral relevant

information only decodable at the population level. Using both a targeted

dimensionality reduction technique [6], dPCA[20], and simple linear mod-

els (linear and logistic regression [18]), we were able to decode, from the

joint activity of the neurons, multiplexed representations of WM sustained

information, the speed at which the mice ran on the treadmill and a signal

seemingly related to their engagement while solving the task.

Because of the very few mistakes committed by the animals, it was not

possible to run dPCA on the activity of the simultaneously recorded neurons

in each session. Nevertheless, we were able to apply it to the averaged joint

activity of neurons pooled from several sessions [20]. Also, due to the same

reason, when decoding information, at single trial level, using linear and

logistic regression, we applied the models only to correct trials (hits and

correct rejections).

5.3.1 Working Memory

Even not taking advantage of the full potential of our data, dPCA re-

vealed that, as necessary for an area presumed to be involved in using WM

to organize and guide behavior, the mice mPFC encodes, in a stable way and

during the entire memory period, both a retrospective representation of the

sound played and a prospective representation of the to be performed action.
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Using logistic regression we confirmed that, in each trial and throughout the

entire memory period, it was possible to decode the identity of the trial the

mice were performing (hit or correct rejection). However, because we only

analysed correct trials it was not possible to identify what information and

when was being encoded.

In delayed response tasks [8] the cue immediately reveals the to be per-

formed response, consequently, it’s not possible to discern which informa-

tion, stimulus or decision, are the animals using to solve the task and it’s

not straightforward to understand what is being stored in the activity of the

neurons [13]. In our task dPCA revealed that both are represented in a quite

stable way for the entire length of the delay period, even decision, which rep-

resentation, in delayed response tasks with a fixed duration memory period,

has been described to, sometimes, only be reactivated closer to the response

moment [31]. The fact that we don’t observe the same might be related to

our variable length memory periods, but might also be influenced by our

decision to put together trials from all different sound start locations. Ap-

plying dPCA separately to the different sound start trials would, possibly,

have revealed different patterns of decision encoding in WM.

What is the function and nature of these memory representations? We

proved, to the extent that our data allowed us, that the mice were not using

speed based behavioral strategies to bridge the cue free delay, and a cognitive

representation was necessary for good task performance. In the mouse the

mPFC is a good candidate for the place where such representations could

be useful in guiding behavior [15][7] and, accordingly, we found that the

joint activity of the area, both in average and that the single trial level,
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contained trial type selective information during the delay. This ability to

decode memory was seemingly not dependent on the activity of one, or a few,

selective and reliable neurons as, per session, an average of 0.4 ± 0.04 SD

of the recorded neurons was necessary to account for 0.8 of the total sum of

the model loadings (data not shown). Also, the encoding didn’t seem to be

drastically dynamic as we were able to predict trial identity, with the same

model, throughout the entire memory period. Our sliding kernel approach

to decoding makes this conclusion not completely clear, however. Both

mentioned questions would thus benefit from a more thorough analysis: such

as fitting different models with an increasing numbers of cells and comparing

the evolution of the performances, for the first, and checking how well could

we decode trial type in one segment of the trial with a model fitted in a

different segment, for the second.

The observed memory selectivity seemed to, effectively, represent a cog-

nitive function and not be the product of behavioral differences in the mem-

ory period, as previously reported in the context of other delayed response

tasks[5][11]. Different speed strategies existed between trial types in our

task, but, the same way they were not necessary for the mice to solve the

task, they were also not essential for our ability to decode environmentally

absent information during the memory period. This was already suggested

by the constant nature of the memory representations, both in the dPCA

components as in the logistic regression prediction (by opposition to the dy-

namical nature of the difference between trial type specific speeds), but was

confirmed by the fact that both speed and memory could be decoded from

the neural activity, in a fairly independent way.
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Despite of their nature, the function and need of the WM representations

for task performance is not clear and further investigation would first need

to test the whole area involvement by inactivating it chemically or optically.

But even if we can only speculate about the necessity of the memory encod-

ing we observed, one thing we can say, according to the dPCA results, is

that its presence doesn’t mean that animals won’t make mistakes: both for

sound and decision the representations, in correct and incorrect trials, are

seemingly indistinguishable. The reason for the mice mistakes doesn’t seem,

thus, to lie in a lack of memory guidance.

When one thinks about WM it generally thinks about memorizing a

piece of information between two defined points of interest, or maybe the

putative underlying mechanism with a neuron that elevates its discharge

rate between a cue and an action. But if we see WM as the underlying

mechanism of keeping representations active in time and allowing reality to

be bond together, there’s no intrinsic reason for information to be discarded

the moment it is used. Both in the first dPCA components, for sound and

decision, as in the trial identity decoding, with logistic regression, the active

representations didn’t collapse with the mice stopping (or safely crossing

the area) but continued through the ITI and presumably into the next trial.

This has been showed before [26] and may serve several useful functions,

like keeping track of previous outcomes, and courses of actions, and binding

together events in causal chains [23].
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5.3.2 Movement

Movement on the wheel was the way mice had to express their choices

and strategies in the task. If a fundamental role of the PFC is to coordinate

goal oriented behavior [15] [10] then, in the context of our task, movement

was the most important variable it had to work with. Accordingly, speed

on the wheel was strongly represented on the neural activity we recorded.

Just by clustering trial types, according to specific speed strategies, we were

able to explain a significant amount of the total variance of the data in

both trials in which the animals stopped, or not. Also, movement related

variance, picked up by the sound and decision components, is one of the

possible explanations for why, in our task, and contrary to others [20], the

variance explained, in the dPCA analysis, it’s much more divided between

all parameters, instead of mainly concentrated on the condition free one.

Movement’s relevance was further confirmed by our ability to decode speed

at every point of each trial, which, given the trial to trial variability of the

mice speed strategies, was the only way to understand its true relation with

the neural activity [3].

As mentioned, changes of speed were the way mice had to express their

actions on the wheel and their encoding in the mPFC might have been re-

lated to the region’s role in organizing and controlling behavior. Recent

evidence, however, has shown that movement related activity is pervasive in

the mouse cortex during sensory-guided decision making [25], raising ques-

tions about the regional, and encoding, specificity of the speed signal we

observed. In the current impossibility of directly comparing recordings from
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distinct brain regions we can look at how the way speed is encoded in our

recordings relates to the putative functions of the mPFC.

The facts are not conclusive. From what is known of the area one would

hypothesize that, rather than a fine description of speed at every moment,

the mPFC would encode more general action related information. Seem-

ingly consistently we observed that the mPFC cares more about changes of

movement, the actions mice had their disposal to shape their strategy. Also

expected would be for the format and strength of speed encoding to be dif-

ferent in different contexts. The way features are encoded in the mPFC has

been shown to be context dependent [17] and differences in the quality of the

encoding have been observed with motor representations [5] in relation to

different outcome contexts. We could decode speed better in rewarded than

in non rewarded trials, which might be a reflection that the mPFC cares

more about what the animal is doing when the possibility of reward exists.

We also see an improvement, if not huge, in rewarded trials, when decoding

speed just after the sound (moment when the identity of trial is given away)

compared with decoding it in the entire trial. The same is not true, though,

for non rewarded trials where, even if there is no reward involved, one might

have expected a better encoding closer to the area, where the speed behav-

ior becomes more relevant. Although we didn’t compare it directly, the way

speed is encoded in the different mentioned contexts doesn’t seem to be rad-

ically different. We could decode it quite well, in both trial types, using the

same model and decoding it in separate in specific contexts didn’t lead to

great differences in model performance.

The analysis we do here is coarse, though, and the clarification of these
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questions would benefit from more detail: a finer compartmentalization of

the contexts, a thorough comparison of the coefficients of the models specifi-

cally applied to each of them and cross predicting speed in specific segments

with the models generated in others. In a larger scope it would also be quite

interesting to compare the characteristics of the movement encoding that we

observed in the mPFC with brain regions in different anatomical positions

and with different functions.

Assuming a specificity of the speed information we are able to decode

another open question is its functional relevance. Our analysis revealed

that mPFC activity is tendentiously related with the past movement of the

mice and so the region doesn’t seem to be directly involved in driving the

animals movement at every moment, which would be more expected from

a primary motor area. By encoding past actions the mPFC representations

might be useful in the context of keeping track of the ongoing behavior of

the mice in order to situate in a determined plan or sequence of actions. The

mPFC is known to keep representations of past behaviors and be involved

in sequential behavior tracking [21]. An interesting possibility, given the

proposed role of the PFC in cognitive control [24], is that, in particular task

moments, like the vicinity of the area, the region would assume control of the

behavior and start encoding the future actions of the animal. To test this

hypothesis we plan to zoom in and verify if, in particular trial locations, the

temporal relation we observed, between the neural activity and the speed of

the animals, is inverted. For that we will need to change the way we bin the

neural activity, as doing it in space completely blurs its dynamics when the

animals stop in the crucial zone of the reward area.
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Here we focused on how the behavior of the mice was encoded in the

mPFC, but also important for understanding the region’s function, given the

spatial character of our task, would be to explore how the area represents

space. One interesting future analysis would thus be to try to decode location

in the belt from the neural activity.

5.3.3 Task Engagement

Corruption or lack of WM representations don’t seem to be the reason

why mice committed mistakes: in the memory period of error trials the

animals seemingly possessed, based on the dPCA analysis, the same infor-

mation, about the tone played and the to be performed action, as in correct

trials. One possible explanation for the animals’ behavior in error trials is

that, despite possessing all the relevant information, mice disengaged from

the task. Activity in the PFC is a combination of sensory and motor repre-

sentations with the values and meanings the subjects endow them with [2].

These together form a specific context [10] and give rise to a state of neural

activity needed for given behavior. Correct performance of the task is not

only dependent on cue and action information but also on the mice internal

state.

In our task the strongest signal present in the neural activity, quantified

by the variance explained in the the dPCA analysis, was a seemingly tonic,

whole trial length, difference between correct and incorrect trials. Such

a signal can be interpreted as reflecting something about the mice internal

state and being a correlate of behavioral engagement. Further analysis would

be needed to understand more about the temporal dynamics of this signal,
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such as when does it appear and if it is present in sporadic mistakes or

just when the animals go through periods of bad performance. Particularly

interesting would also be to decode speed in error trials and understand how

the mice engagement affects speed encoding in the mPFC.

Also worth would be a deeper exploration of the comparison between the

neural activity in correct and incorrect trials. Rigotti et.al, 2013 [28], for

instance, also found that the PFC of monkeys, in a WM task, encoded the

same memory period information both in correct and incorrect trials, but

that, during mistakes, the neural activity dimensionality collapsed.

5.4 Final Remarks

In this thesis we developed a new behavioral paradigm to investigate how

the neural activity in a high order cognitive brain area, the mice mPFC, is

involved in a goal directed, WM dependent, task. Through a careful, and

thoughtful, analysis of the behavior we proved that the mice were not re-

sorting to a low level, or automatic, behavioral artifice to solve the task, but

actually needed a cognitive representation to guide their behavior. Addi-

tionally, we also discovered that the animals chose specific speed strategies

in order to seemingly optimize their stop/no stop behavior and minimize

the time to the next reward. Such knowledge paved the way for a more

meaningful and informed interpretation of the recorded neural signals.

The population activity we recorded, through the use of multi-site sili-

cone probes, showed qualitatively similar properties to equivalent data sets

recorded both in primates an rodents. From an heterogeneous population of

neurons, with mixed selectivity response profiles, it was possible to decode,
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simultaneously, variables reflecting the WM maintenance of stimuli and de-

cisions, the ongoing speed strategy of the animals and a measure of task

engagement.

The precise functional relevance of these observations can not be estab-

lished in the context of our work here but, given the information it encodes,

what is known about the area and the problem the animals are solving in

our task, it is possible to speculate that the observed mPFC’s activity might

serve two basic functions: 1. keep a stable WM representation of the present

behavioral context or goal (stop, or no stop, trial); 2. monitor the ongoing

behavior of the mice (speed) against a representation of the environmental

context (location on the belt) with the possibility of intervening, in specific

task moments, shifting from reflecting to directly influencing the behavior.

The also observed engagement signal can be thought of as an activity back-

ground, reflecting internal state, that interacts with other encoded features.

The work laid out here, and the data-set that supports it, can now serve

as the base of a deeper, and more precise, investigation. Some of the ques-

tions raised can, and should, be further explored, as suggested throughout,

with variations, and improvements, of the analysis here performed.
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