
Miguel Pires Egídio Reis

Bachelor of Computer Science and Engineering

Blockchain-Enabled DPKI Framework

Dissertation submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
Computer Science and Informatics Engineering

Adviser: Henrique João Lopes Domingos,
Departamento de Informática,
FCT/UNL

Examination Committee

Chairperson: Miguel Carlos Pacheco Afonso Goulão
Raporteur: Nuno Miguel Carvalho dos Santos

Member: Henrique João Lopes Domingos

September, 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório da Universidade Nova de Lisboa

https://core.ac.uk/display/322889226?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Blockchain-Enabled DPKI Framework

Copyright © Miguel Pires Egídio Reis, Faculty of Sciences and Technology, NOVA Univer-

sity Lisbon.

The Faculty of Sciences and Technology and the NOVA University Lisbon have the right,

perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

This document was created using the (pdf)LATEX processor, based in the “novathesis” template[1], developed at the Dep. Informática of FCT-NOVA [2].
[1] https://github.com/joaomlourenco/novathesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt

To Mariana.

Acknowledgements

Firstly, I want to thank my thesis advisor Prof. Henrique João Domingos, for his support

and advice. Working with him was truly an honor. I also want to thank every teacher I

had during my journey in Faculty of Sciences and Technology of the NOVA University

of Lisbon, I learned immensely from them. I will cherish the moments I lived during

the last years for the rest of my life. I look forward to apply what I have learned in my

professional career.

I thank my parents, sister, and close friends, for their support and encouragement

through stressful times. Without them, these years would be incredibly harder. Finally,

I want to thank some of my closest colleagues Rui Louro, Rafael Figueiredo, and Arthur

Rocha, for our fun experiencies and projects.

vii

Abstract

Public Key Infrastructures (PKIs), which rely on digital signature technology and estab-

lishment of trust and security association parameters between entities, allow entities

to interoperate with authentication proofs, using standardized digital certificates (with

X.509v3 as the current reference). Despite PKI technology being used by many appli-

cations for their security foundations (e.g. WEB/HTTPS/TLS, Cloud-Enabled Services,

LANs/WLANs Security, VPNs, IP-Security), there are several concerns regarding their

inherent design assumptions based on a centralized trust model.

To avoid some problems and drawbacks that emerged from the centralization assump-

tions, a Decentralized Public Key Infrastructure (DPKI), is an alternative approach. The

main idea for DPKIs is the ability to establish trust relations between all parties, in a

web-of-trust model, avoiding centralized authorities and related root-of-trust certificates.

As a possible solution for DPKI frameworks, the Blockchain technology, as an enabler

solution, can help overcome some of the identified PKI problems and security drawbacks.

Blockchain-enabled DPKIs can be designed to address a fully decentralized ledger for

managed certificates, providing data-replication with strong consistency guarantees, and

fairly distributed trust management properties founded on a P2P trust model. In this

approach, typical PKI functions are supported cooperatively, with validity agreement

based on consistency criteria, for issuing, verification and revocation of X509v3 certifi-

cates. It is also possible to address mechanisms to provide rapid reaction of principals in

the verification of traceable, shared and immutable history logs of state-changes related

to the life-cycle of certificates, with certificate validation rules established consistently by

programmable Smart Contracts executed by peers.

In this dissertation we designed, implemented and evaluated a Blockchain-Enabled

Decentralized Public Key Infrastructure (DPKI) framework, providing an implementa-

tion prototype solution that can be used and to support experimental research. The

proposal is based on a framework instantiating a permissioned collaborative consortium

model, using the service planes supported in an extended Blockchain platform lever-

aged by the Hyperledger Fabric (HLF) solution. In our proposed DPKI framework model,

X509v3 certificates are issued and managed following security invariants, processing

rules, managing trust assumptions and establishing consistency metrics, defined and

ix

executed in a decentralized way by the Blockchain nodes, using Smart Contracts. Cer-

tificates are issued cooperatively and can be issued with group-oriented threshold-based

Byzantine fault-tolerant (BFT) signatures, as group-oriented authentication proofs. The

Smart Contracts dictate how Blockchain peers participate consistently in issuing, sign-

ing, attestation, validation and revocation processes. Any peer can validate certificates

obtaining their consistent states consolidated in closed blocks in a Meckle tree structure

maintained in the Blockchain. State-transition operations are managed with serializabil-

ity guarantees, provided by Byzantine Fault Tolerant (BFT) consensus primitives.

Keywords: PKI, DPKI, Blockchains, Distributed Ledger, Consortium Blockchains,

Hyperledger- Fabric (HLF) Platform , Byzantine Fault Tolerance (BFT), BFT Consensus,

Group-Oriented Cooperative Multisignatures (COSigs), Threshold Digital Signatures.

x

Resumo

As soluções PKI (ou infraestruturas de chave pública) baseiam-se na utilização de

assinaturas digitais e suportam o estabelecimento de chaves públicas ou demais atributos

de confiança associados à identificação de entidades principais, para uso como provas de

autenticação. Uma PKI suporta a emissão, gestão ou revogação de certificados normali-

zados para autenticação desses atributos, sendo a norma X.509v3 o padrão prevalente.

Os certificados são emitidos em cadeias, a partir de entidades centrais instituídas como

autoridades raiz da certificação (CAs), sendo aceites como entidades de confiança. As

CAs são constituídas por empresas, sectores governamentais ou outras organizações, atu-

ando como entidades terceiras, externas aos principais para os quais os certificados são

emitidos, e independentes do contexto de interação entre esses principais. As funções de

uma CA são similares às padronizadas em frameworks para soluções PKI, sendo o padrão

PKIX uma referência relevante. Embora tais soluções sejam geridas transversalmente aos

sistemas que utilizam os certificados, os seus serviços estão na base de confiança destes

sistemas.

As funções de uma CA ou de soluções PKIs estão assim na base de confiança de

protocolos de segurança de comunicações (ex: HTTPS, TLS, IPSec, VPNs), aplicações de

segurança (ex: Web/HTTPS, S/MIME, DKIM), na segurança do sistema DNS (ex.: DNS-

SEC) e nos mais diversos serviços de software para computação ou de armazenamento de

dados em nuvem. A utilização de CAs e PKIs tem ainda repercussão no uso de dispositi-

vos Bluetooth ou NFC, na utilização confiável de automóveis, equipamentos hospitalares,

serviços de smart-cities, aplicações IoT, smart-cards, cartões bancários, cartões de cidadão

ou passaportes, entre muitos outros casos e sistemas críticos.

Dada a sua relevância, existem hoje preocupações crescentes acerca dos modelos de

concepção de PKIs e respectivos modelos de confiança centralizados, em que a raiz de

confiança é detida por entidades centrais atuando com cariz autoritário ou oligárquico.

Estas são susceptíveis de operação incorreta, podem constituir pontos centrais de falha

ou ataque e operam na prática sem escrutínio das condições de operação por parte dos

principais para os quais os certificados são emitidos. Perante estas preocupações, o rede-

senho de soluções PKI com base em modelos decentralizados pode apresentar vantagens

interessantes.

xi

Várias soluções para descentralização da base de confiança foram propostas e algumas

tornaram-se historicamente relevantes e bem conhecidas, no contexto de aplicações espe-

cíficas, como por exemplo o sistema PGP (Pretty Good Privacy) orientado para gestão de

certificados para Email ou para troca de ficheiros autenticados, num modelo de confiança

P2P do tipo Web-of-Trust. Mais recentemente, a ideia de descentralizar a confiança numa

solução PKI para uso genérico está associada à noção de DPKI (Decentralized PKI). Numa

DPKI pretende-se descentralizar as funções de uma PKI sem que prevaleçam entidades

com autoridade central. As funções e operações de uma PKI podem ser realizadas de

forma cooperativa, envolvendo várias entidades distribuídas.

A tecnologia Blockchain potencia a abordagem de soluções DPKI, por permitir ende-

reçar modelos descentralizados de notarização de operações com controlo de integridade

do estado dessas operações, bem como de replicação desse estado em todas as entidades

prticipantes, com garantias de consistência e com base em interações P2P. Numa DPKI

suportada em plataformas Blockchain pode perspectivar-se a emissão colaborativa de

certificados X509v3 com base em regras de emissão, validação ou de revogação, executa-

das por todas as entidades com critérios de consistência. É ainda interessante suportar

critérios de reação rápida na verificação de históricos partilhados e rastreáveis relativos

ao estado dos certificados. As anteriores operações podem ser processadas por Smart

Contracts, programáveis para serem executados de forma consistente e autónoma pelas

entidades que cooperam na DPKI.

Esta dissertação objetiva a concepção, implementação e avaliação experimental de

uma solução DPKI baseada numa plataforma Blockchain. A solução baseia-se numa fra-
mework que endereça um modelo de consórcio colaborativo, alavancada por planos de

serviços suportados na plataforma Blockchain Hyperledger Fabric (HLF). Os certificados

X509v3 são emitidos e geridos respeitando invariantes de segurança e confiabilidade,

com regras de processamento definidas e executadas pelos nós da Blockchain expressas

em Smart Contracts (ou Chaincodes). Os certificados são emitidos de forma cooperativa,

sendo autenticados por assinaturas digitais orientadas a grupos ou assinaturas de limiar,

com propriedades de tolerância a falhas ou ataques bizantinos. Os Smart Contracts ex-

pressam os critérios e condições de emissão, assinatura, atestação, validação e revogação,

sendo executados autonomamente e consistentemente por todas as entidades na Block-

chain. O histórico de estados dos certificados são guardados em blocos de operações com

garantias de integridade e imutabilidade, agregados numa estrutura de árvore Meckle

mantida e replicada na Blockchain. As operações de transição de estado são processadas

com garantias de serialização e ordenação suportadas por protocolos de consenso tole-

rante a falhas bizantinas (ou consenso BFT).

Palavras-chave: PKI, DPKI, Blockchains, Notarização Distribuída, Blockchains de

Consórcio, Plataforma Hyperledger Fabric (HLF), Tolerância a Falhas Bizantinas (BFT),

Consenso com BFT, Assinaturas Cooperativas Orientadas a Grupo (COSigs), Assinaturas

Digitais de Limiar (Threshold Signatures.

xii

Contents

List of Figures xvii

List of Tables xix

Listings xxi

Acronyms xxiii

1 Introduction 1

1.1 Context and Motivation . 1

1.2 Problem Statement . 6

1.3 Objective and Contributions . 7

1.4 Document Structure . 8

2 Related Work 9

2.1 Background . 9

2.2 Public Key Infrastructure . 9

2.2.1 PKI and PKIx . 10

2.2.2 PKI Implementations . 12

2.3 Web-of-Trust Models . 14

2.4 Blockchain . 16

2.4.1 Blockchain Characteristics and Foundations 17

2.4.2 Blockchain Trends . 20

2.4.3 Blockchain Platforms . 20

2.4.4 Decentralized Ledgering with Resilient Group Signatures 23

2.5 Blockchain-Enabled PKI Approaches . 24

2.5.1 Background . 24

2.5.2 PB-PKI . 25

2.5.3 Blockchain-Based PKI Management Framework 26

2.5.4 IKP . 27

2.5.5 CertCoin . 28

2.5.6 PomCor: Backing Rich Credentials with a Blockchain PKI 29

2.5.7 Blockchain-Based Certificate and Revocation Transparency 29

xiii

CONTENTS

2.5.8 SCPKI . 30

2.5.9 Other Approaches . 30

2.6 Discussion . 31

3 System Model and Architecture 35

3.1 Application Scenario . 35

3.2 System Model . 36

3.2.1 Entities . 37

3.2.2 Interactions . 39

3.2.3 Requirements . 43

3.3 Reference Architecture . 43

3.4 Software Architecture Components . 45

3.4.1 Base Hyperledger Fabric . 45

3.4.2 Extended Hyperledger Fabric . 47

3.4.3 Blockchain-Enabled DPKI Proxy 53

3.5 Adversary Model Considerations . 55

3.6 Summary . 56

4 System Implementation 57

4.1 Prototype Overview and Technologies . 57

4.2 Prototype Implementation . 58

4.2.1 Blockchain Network . 58

4.2.2 DPKI Proxy . 59

4.2.3 DPKI Chaincode . 65

4.2.4 DPKI Signatures . 67

4.2.5 Bootstrap Signatures . 67

4.2.6 Internal Clients . 68

4.2.7 X509v3 Certificates and CRL Extensions 69

4.3 Summary . 69

5 Experimental Evaluation and Analysis 71

5.1 Evaluation Environment . 72

5.2 X509v3 Certificate Issuing for External Clients 72

5.2.1 Cryptographic operations and their impact on the system 73

5.2.2 Latency variation in the issuing process 74

5.2.3 Impact in the size of issued X509v3 certificates 75

5.2.4 Impact of the number of endorsers 75

5.2.5 Impact of the number of normal peers 76

5.2.6 Comparison with the Issuing Process in a Conventional PKI Solution 77

5.3 Revocation of certificates and CRL Issuing 78

5.4 OCSP Requests . 79

5.5 Summary . 79

xiv

CONTENTS

6 Conclusion and Final Remarks 81

6.1 Conclusion . 81

6.2 Future Work . 82

Bibliography 85

I Blockchain-Enabled DPKI Chaincode 91

xv

List of Figures

2.1 Hierarchy of a PKI certificate chain (left) and Architectural model of a PKIx

(right) . 10

2.2 Process of a simple PKI using OpenSSL . 12

2.3 Threshold signature construction . 23

2.4 Example of a PKI Blockchain structure . 25

2.5 Certificates in Blockchain-Based PKI Management Framework 26

2.6 IKP schema . 28

3.1 Application Scenario . 37

3.2 Standard Model Sequence Diagram . 39

3.3 Self-Signed Certificate Model Sequence Diagram 41

3.4 CSR Model Sequence Diagram . 42

3.5 Architectural View . 44

3.6 Hyperledger Fabric Architecture . 46

3.7 Hyperledger Fabric Transaction Flow . 47

3.8 BFT Consensus service for Hyperledger Fabric 48

3.9 Certificate Validation and Signature . 49

3.10 Blockchain Public-Key Certificate State (BCS) 50

3.11 Example of Certificate Trust Level . 52

3.12 Blockchain-Enabled DPKI X509v3 certificate 55

4.1 DPKI Signature Flow . 68

4.2 A certificate issued by the Blockchain-Enabled DPKI 69

5.1 Variation in the latency in issuing X509v3 extended certificates. 74

5.2 Number of Endorsers and size of issued certificates. 75

5.3 Latency in issuing X509v3 extended certificates with a variable number of

Endorsers. 76

5.4 Latency in issuing X509v3 extended certificates with a variable number of

Regular Peers. 76

5.5 Performance of Threshold Signatures and Multi-Signatures in the revocation

of certificates. 78

xvii

List of Figures

5.6 Performance of OCSP processing when using Threshold Signatures and Multi-

Signatures. 79

xviii

List of Tables

2.1 Comparison of Blockchain Platforms. 21

4.1 Proxy REST API Endpoints . 60

4.2 Proxy HLF SDK Client Interface . 64

4.3 Excerpt of Chaincode Functions . 67

5.1 Testbench Environment . 72

5.2 Analysis of different Cryptographic Algorithms and Key Sizes 73

5.3 Comparison with the issuing process in a conventional PKI 77

xix

Listings

3.1 Example of an Extended Smart Contract 52

I.1 Annex: Excerpt of the PKI Chaincode Properties and Functions 91

xxi

Acronyms

API Application Programming Interface.

ARP Address Resolution Protocol.

BaaS Blockchain-as-a-service.

BCS Blockchain Public-Key Certificate State.

BFT Byzantine Fault Tolerance.

CA Certificate Authority.

CoSigs Cooperative Signatures (or Group Oriented Cooperative Multi-

signatures).

CPS Certificate Practice Statement.

CRL Certificate Revocation List.

CRR Certificate Revocation Request.

CSR Certificate Signing Request.

DDoS Distributed Denial of Service.

DHT Distributed Hash Table.

DNS Domain Name System.

DoS Denial of Service.

DPKI Decentralized Public Key Infrastructure.

ESCC Endorsement System Chaincode.

EVM Ethereum Virtual Machine.

HLF Hyperledger Fabric.

HSM Hardware Security Module.

HTTP Hypertext Transfer Protocol.

HTTPS Hypertext Transfer Protocol Secure.

xxiii

ACRONYMS

IETF Internet Engineering Task Force.

IKP Instant Karma PKI.

IoT Internet-of-Things.

IP Internet Protocol.

IPFS InterPlanetary File System.

IPSec IP Security.

JSON JavaScript Object Notation.

LAN Local Area Network.

MAN Metropolitan Area Network.

MITB Man-in-the-Browser.

MITM Man-in-the-Middle.

NFC Near Field Communication.

OCSP Online Certificate Status Protocol.

OID Object Identifier.

P2P Peer-to-Peer.

PAN Personal Area Network.

PB-PKI Privacy-Aware Blockchain-based PKI.

PBFT Practical Byzantine Fault Tolerance.

PEM Privacy-Enhanced Mail - Format.

PGP Pretty-Good-Privacy.

PKCS Public Key Cryptography Standards.

PKI Public Key Infrastructure.

PKIx PKI based on the industry standard X.509 model.

PoET Proof of Elapsed Time.

PoS Proof of Stake.

PoW Proof of Work.

RA Registration Authority.

REST Representational State Transfer.

RFC Request for comments.

RTT Round-Trip Time.

xxiv

ACRONYMS

SCPKI Smart Contract-based PKI.

SDK Software Development Kit.

SSH Secure Shell.

TCP Transmission Control Protocol.

TLS Transport Layer Security.

UI User Interface.

VA Validation Authority.

VAN Vehicular Area Network (including VANETs Vehicular AdHoc Net-

works).

VPN Virtual Private Network.

WAN Wide Area Network.

WLAN Wireless Local Area Network.

X509v3 X509 Certificate with extension fields.

XSPP Extended Signing Policies Provider.

xxv

C
h
a
p
t
e
r

1
Introduction

1.1 Context and Motivation

Public Key Infrastructures. The IETF RFC 4949 (Internet Security Glossary) [55] defines

public-key infrastructure (PKI) as the set of hardware, software, entities, policies, and

operational procedures needed to create, manage, store, distribute, and revoke digital

certificates for the use of public-key cryptography, authentication and key-distribution

protocols and for standardized digital signatures. PKIs enable the secure, convenient,

trust and efficient acquisition of public keys related to principals, with <Subject IDs to

Public Keys> mappings established by the certificate attributes and their policy enforce-

ments. The IETF-PKI working group [52] has been the driving force behind setting up

a formal (and generic) standardized model based on X.509 PKI frameworks for X509

certificates [29], suitable for deploying a certificate-based architecture on the Internet.

The PKIX model [59] is generically behind the standardization of the entity model and

functions in PKI solutions in different available platforms. It is also the base framework

of the PKI technology used by Internet Certification Authorities (CAs) on the Internet. In

the PKI model, the certification structure is based on the use of X509 certificates, issued

and managed in certification chains used as hierarchies of certification, with an arbitrary

number of certification levels. In such hierarchies, each level L corresponds to an entity

certifying the certificate for an entity in Level L-1. In practice, these levels are usually

levels of the certification of the same CA. On top of each certification chain, there is a

root-of-trust certificate, corresponding to the top certification level of the CA, accepted

as a centralized trust authority [59]. In the validation of those certification chains, Pub-

lic Keys of CAs (or Root Public Keys), are pre-installed in local key stores, provided as

pre-configured objects in software systems (e.g. devices, computers, operating systems,

software solutions, as provided by their manufacturers).

1

CHAPTER 1. INTRODUCTION

Based on the assumption that a root-of-chain (or a root in a certification chain) is con-

sidered trustable, certification chains can be processed and validated, by verifying each

certificate in the chain, according to the respective standard attributes. The process is in

general conducted in a direct way (considering that each certificate is issued and signed

by an entity with an upper-layer certificate public-key). However, is also possible to adopt

a reverse way (when a public key of a previously validated and trusted certificate was

used to certify upper-layer certificate). Cross-certification is also possible, mixing direct

and reverse certification chains. By possible peering agreements between two different

CAs in different hierarchies, it is possible to address a model based on an oligarchy of in-

dependent CAs. A set of CAs can constitute such close oligarchies, as a variant extension

of the centralized model, allowing for better scale-out conditions, but always following a

centralized authority model.

PKI Limitations and Drawbacks. Despite its various advantages, the PKI trust model

assumptions has several drawbacks [16]. CAs, as centralized roots of trust, and conse-

quently central points of failures, can be compromised to issue fake certificates that are

still valid due to bad practices. There is also a lack of transparency concerning CA behav-

iors. Information about certificate revocation is also slowly spread and verification of the

certificates revocation status is prone to errors.

PKIs are cornerstones in the trust computing bases of most devices, systems, appli-

cations, services or protocols. The certification and validation of X509 certificates (and

included public-keys for asymmetric cryptographic methods) are in fact behind the secu-

rity guarantees of all the most used security protocols in the Internet from Cloud-Based

Web-Enabled Security Protocols and Web/HTTPS environments to other TLS-supported

secure channels, DNS-Security, SSH-Services, IPSec or Secure VPNs, as well as for access-

ing Wireless Local Area Networks. Many of the problems are induced by the centralized

trust model, as addressed in PKI frameworks, and the related issues have been known

and extensively discussed for many years by many authors.

At the same time, current implementations have suffered from several critical issues.

One issue is the reliance on the user to make an informed decision when there is a problem

in verifying a certificate. Unfortunately, it is clear that most users do not understand what

a certificate is and why this might be a problem. This issue is also applicable to many

programmers, due to the complexity involved in extended attributes and policies that

are today involved in an X509 certificate and how these attributes must be completely

managed in the verification processes in the context of specific applications. Hence they

choose to accept a certificate, or not, for reasons that have little to do with their security

policies, which may result in the compromise of their systems.

Another critical problem is the assumption that all of the CAs represented in the

“trust store” of end-users are equally trusted and managed, and apply correct and equiv-

alent management policies. The reality shows that this is not true. Those policies are

really unknown by the users. This was dramatically illustrated by compromises from

2

1.1. CONTEXT AND MOTIVATION

well-known CAs [23], that resulted in many fraudulent certificates issued with public-

keys mapped in well-known organization names and private keys controlled by others.

Other concern is that different software implementations use different trust stores and

different validation policies, hence presenting different security views under different

trust assumptions. In this way, there are differences in the verification assumptions from

different software even if executed in the same computer.

Summarizing, the centralized PKI model and the role of CAs can have problems and

limitations, generally because it relies on central trusted parties acting as a possible cen-

tral failure or attack points, and so, paradoxically, as possible untrustable parties. Trust

centralization is also a big problem in terms of transparency. It leaves the management

of outsourced trust without scrutiny from the certificated entities for which the certifi-

cates are issued. This is a door open for attackers to conduct man-in-the-middle (MITM)

attacks, intrusion attacks against the CAs, or misbehaviors and bad operation of CAs,

without any awareness control from the users. Currently, there are thousands of claimed

trusted CAs around the world that have been appearing as attractive targets for cyber-

criminals. These thousands of CAs have the ability to create alternative identities for one

same entity, with different issuing practices in generating certain attributes in certificates.

This is a problem in the control and correct validation of such identities and certificates in

multilevel certification chains, a well-known vulnerability with serious security incidents

and repercussions. Even considering the standardization effort behind the X509v3 frame-

work, the fact is that different CAs also issue certificates with different attribute values

and meanings, as well as, with different attributes considered critical for the validation

under the sole responsibility of users.

Attacks against certificates issued on centralized roots of trust have been also con-

ducted with a mixed of MITM attacks (combining different techniques such as: ARP

spoofing, IP spoofing, DNS spoofing, HTTPS spoofing) and man-in-the-browser (MITB)

attacks, as well as, other intrusions in computers where the certificates are used, with

numerous incidents that have already shown to increase the risk of MITM attacks and

new intrusions, when we place too much trust in one or a reduced number of CAs. In

practice, the registration process of identities for certification requests is also a problem

requiring special attention of registration processes conducted by CAs, or Registration

Authorities (RAs) working as delegates of CAs. Attackers can trick the CAs and RAs into

thinking they are someone else, or they can go so far as to compromise the CA, and get

it to issue a rogue certificate for a fake or for a stolen digital identity. These attacks oc-

curred frequently in the past. This was the case of the DigiNotar incident that happened

in 2011 [14] when fraudulent certificates from the Dutch CA company were issued as a

result of an attack.

More recently, in an incident that happened in 2017, hackers took control of Brazilian

banks DNS server and tricked a CA into issuing a valid certificate to them [24].

Many observers state today that the out-of-date PKI design poses high-security risks

3

CHAPTER 1. INTRODUCTION

and single point of failures, in breaking encrypted online communication, as well as, in

breaking the authenticity of communicating entities. This is a risk for all the security

protocols and systems used today on the Internet (in different levels of the TCP/IP se-

curity stack and services). In the research community, there is also a growing opinion

arguing that centralized PKI systems are struggling to keep up with the evolving and fu-

ture requirements in the digital landscape and the modern world of scalability challenges,

requiring a better designed and decentralized approach to PKIs.

It is interesting to note that the Internet Engineering Task Force (IETF), responsible

for Web-enabled PKI standardization itself, has created a draft memo describing current

issues and concerns on PKIs [28], sharing also the above concerns.

Independently, groups of researchers, for example, around the “Rebooting the Web of

Trust” movement [54]), also assessed current PKI weaknesses in their publications, agree-

ing that the current implementation of centralized and Web-accessible PKI solutions have

serious problems that should not be ignored.

DPKIs – Decentralized Public Key Infrastructures.

Decentralized public key infrastructures (DPKIs) are a possible alternative approach

and are regarded as a promising way to return the control of online identities, and related

public keys, to the entities they belong to. By doing so, DPKI solutions are envisaged as a

way to address many usability and security challenges that plague traditional PKIs [59].

The goal of DPKIs is to ensure that, unlike the conventional PKIX framework design

model, no single third-party can compromise the integrity and security of any system

as a whole. In a DPKI the trust management must be decentralized by design, through

the use of technologies that make it possible for geographically and politically disparate

entities to reach consensus on the state of identities in a shared database. The DPKI

approach, as approached in [2] focuses primarily on a decentralized key-value datastores

and operations not depending on single points of failures or attack targets. More recently,

the possible use of Blockchains is advanced as an enabling technology for that purpose,

despite that other technologies can also provide similar or superior security properties for

consistently distributed trust assumptions and distributed and consistently maintained

shared databases.

Blockchains. In 2008 Satoshi Nakamoto caught the attention of many people and

organizations by publishing an article regarding a P2P cryptocurrency system called Bit-

coin [42]. This system uses a distributed ledger technology in a consistently replicated

database, known as Blockchain: an immutable and public chain of blocks aggregating

transactions ordered and validated under a model known as Proof of Work (PoW). To-

day, Blockchains are in the core of more than 2073 cryptocurrency systems [10], but this

technology is now explored in many other applications such as IoT applications, supply

chains, health records, and other application domains (e.g. [36, 41, 51]). Also, other con-

sensus algorithms started to be used for different types of Blockchains, mainly due to the

4

1.1. CONTEXT AND MOTIVATION

fact that PoW, as a safe eventual-consistency model, is computationally very expensive,

being a source of bad performance metrics for latency conditions and transaction through-

puts, and harmful in terms of energy efficiency. Consensus planes for Blockchains can be

also addressed by other solutions, including Byzantine Fault Tolerance (BFT) protocols,

looking carefully for scalability vs. performance tradeoffs [13]. Relevant examples today

use Practical Byzantine Fault Tolerant Protocols (PBFT) in different variants [8, 9, 40] in

the core of different consensus planes in different types of Blockchains [7, 22, 26, 53].

Blockchain-enabled DPKIs. Several Blockchain-enabled DPKI solutions have been

approached in recent proposals, each with different purposes (e.g. [1, 4, 38, 66]). Differ-

ently, models inspired by Web-of-Trust [59, 65], particularly used for managing public-

key certificates, already addressed in the past the context of distributed-systems [48, 58].

Considering Blockchain service planes for the implementation of decentralized ledgers

and replicated consistent logs of immutable and ordered operations, this technology can

potentially help to overcome some identified problems of conventional centralized PKI

systems, avoiding their root-of-trust model assumption. Blockchain-enabled DPKIs can

be designed with a decentralized ledgering model, data-replication consistency guaran-

tees, and distributed trust management properties. Therefore, PKI functions for issuing

and managing X509v3 certificates can be based on a web-of-trust model enabled by the

Blockchain services.

The research motivation and the hypothesis in our dissertation are to address Blockchain

technology as a possible enabling technology for DPKI solutions, helping in resolving the

identified issues, limitations and security drawbacks in conventional PKI systems and

their centralized design models.

The decentralized nature of Blockchain-enabled DPKI management frameworks seems

to be interesting to tackle the problems of conventional PKIs, providing the typical re-

quired functions. At the same time, the idea is to use the potential of Blockchains to

eliminate single points of failures, and reacting fast to misuses of the managed certifi-

cates in their lifecycles, as well as, revocation operations.

Summarizing, some points emerge as initial advantages:

• A Blockchain can make the process of certificates’ issuing and revocation states

stored in a transparent, reliable, and immutable shared ledger. This can prevent

attackers from breaking in or inducing in integrity breaks, thus effectively avoiding

the MITM attacks against PKI and CA targets or intrusions on single nodes;

• Trust management can be established consistently by consensus protocols. All peers

participating in the DPKI solution have to follow the rules of the consensus protocol,

so the state of certificates will be regarded consistently, with all the operations that

can change the replicated state observed by each peer with total order guarantees;

• A DPKI can benefit from the use of different types of Blockchain service planes,

5

CHAPTER 1. INTRODUCTION

that make it possible for geographically and politically disparate entities, or peers,

using neutral data storage solutions and flexible support for arbitrary data types.

This allows the management of certificates and their life-cycle states in different

representation formats, as well as different forms of binding information between

identifiers and related certificates, that can be globally accessed and readable.

Furthermore, some researchers argued that the logic of key management and func-

tions can be implemented on Smart Contracts [1], provided as a key element that can

be extended with the necessary expressiveness requirements to execute the processing

conditions on peer-operations, in many current Blockchain platforms.

Nevertheless, the use of Blockchains to design a DPKI solution always imposes some

attention, for example, in requiring a device of a peer to synchronize a full copy of all

the consensus data or different types of synchronization modes. The scalability consid-

erations for the DPKI requirements must be also carefully analyzed in terms of induced

workloads, as well as the tradeoff on the anonymization of Blockchain peer-identifiers,

particularly in permissionless platforms, and DPKI participants and identifiers bind-

ing to the managed certificates. The support for BFT consensus primitives beyond the

Blockchain-enabled DPKI operations is also another issue that must be investigated. To

address these issues, some initial design considerations must be addressed, related to the

adversarial model conditions, the management of peer identifiers and namespaces used

for certificates’ subjects, the registration process of such identifiers, or the way smartcards

can be used to support the typical PKI functions. All the above dimensions are related

to the objectives of the present dissertation in the definition of the system model and

architecture for the proposed Blockchain-enabled DPKI solution, as well as, to drive the

choice of the base Blockchain platform and its service planes.

1.2 Problem Statement

There are proposals to enhance PKIs [33] by promoting PKI transparency and responsi-

bility using public logs. Recent proposals require that more than one entity confirm a

certificate or allow domains to express security policies for their certificates, and detect

wrong behaviors through shared logs. Although these proposals are a step forward, they

did not have much impact in practice, mainly due to the difficulty and costs of imple-

mentation, performance penalties and others. Due to its characteristics, the Blockchain

technology can help build safer and stronger PKIs. An immutable public ledger where

we may store certificates and other information offers transparency and can be managed

cooperatively. Data can be quickly disseminated, which is suitable for revocation data

and it may be possible to specify rules related to certificates or CAs with the use of Smart

Contracts, by also automatizing reactions such as reports or rewards [38].

In the last years, several Blockchain-based solutions started to come to life [1, 4,

20, 34, 38, 64, 66], despite that, many of them are based on cryptocurrency-oriented

6

1.3. OBJECTIVE AND CONTRIBUTIONS

applications. Blockchains are also very different in their services planes, permission vs.

permissionless models, under open vs. consortium-based P2P distributed environments.

For the context of the dissertation we defined our problem in the following way:

Can we design a Blockchain-enabled DPKI framework addressing its required functions, in a
cooperative P2P environment with a distributed ledger and decentralized trust model? Can we
provide the necessary services allowing different entities to cooperate, in order to overcome the
identified problems of PKI design assumptions based on a root-of-trust model?

We defined the objectives of our dissertation by addressing the above questions.

1.3 Objective and Contributions

In this dissertation we propose, design, prototype and evaluate, a Blockchain-Enabled

DPKI framework model, based on service planes leveraged by the Hyperledger Fabric

(HLF) platform [26], extended by some required services present in [21]. In our proposed

PKI framework, X509v3 certificates are issued and managed following security invariants,

processing rules, and trust and consistency control, expressed and executed by Blockchain

Peers using Smart Contracts. Certificates are issued cooperatively, using group-oriented

digital multi-signatures (COSigs), as aggregated multi-signatures or, optionally, by BFT

threshold-signatures [61]. The Smart Contracts dictate how Blockchain peers participate

in issuing, signing, attestation, validation and revocation processes, in a consistent way.

Any peer can validate certificates by verifying its consistent state, stabilized in searchable

blocks in a Merkle tree structure, maintained in the Blockchain. State-transition opera-

tions are managed with serializability and total ordering guarantees, provided by BFT

consensus primitives, in a consensus plane designed for the HLF Platform.

Summarizing, our contributions are:

• Design of the framework, in a consortium BFT-enabled Blockchain model, defining

its entities, roles, components, protocols, and operations, to enable the required PKI

services. With the purpose of cooperative issuing of certificates, with certificates

authenticated by cooperative Multi-signatures or BFT Threshold Signatures, repre-

senting a cooperative CA. Furthermore, with the use of Smart Contracts to define

the issuing, certification, validation and revocation rules and invariants.

• Implementation of the framework in a prototype developed1 on the HLF Blockchain

in a Cloud-Blockchain PKI as a Service solution.

• Experimental evaluation of the developed prototype to validate the solution, includ-

ing the observation of performance metrics with different parameterizations and

1Central repository of the Blockchain-Enabled DPKI prototype: https://github.com/miguelreisa/

thesis-prototype-general

7

https://github.com/miguelreisa/thesis-prototype-general
https://github.com/miguelreisa/thesis-prototype-general

CHAPTER 1. INTRODUCTION

comparative analysis of such indicators faced to functions supported in a conven-

tional and centralized PKI solution. The evaluations cover the following observa-

tions:

– X509v3 certificate Issuing, including:

* Evaluation of cryptographic operations

* Latency of the certificate issuing process

* Size of extended X509v3 certificates

* Variability in the number of peers in the issuing process

* Comparison with certificate issuing in a conventional PKI

– Scale impact in the number of participant nodes and their roles in the DPKI

– Evaluation of processes for certificate revocation and issuing of Certificate

Revocation List (CRL)

– Evaluation of certificate validation requests supported by the provided Online

Certificate Status Protocol (OCSP) implementation

1.4 Document Structure

The remaining chapters of this report are organized as follows: in Chapter 2 we survey

and discuss related work references to address our objectives and expected contribu-

tions, presenting and summarizing the identified inspirations, differences, limitations

or drawbacks, considering our specific goals; Chapter 3 addresses the system model, de-

sign principles and architectural foundations of our proposed Blockchain-Enabled DPKI

solution; Chapter 4 is focused on describing the implementation of a prototype of our

designed solution; Chapter 5 is dedicated to the experimental evaluation effort conducted

to analyze and to validate the proposed solution; finally, Chapter 6 concludes the disser-

tation report, presenting the main conclusions and final remarks, as well as, proposing

future research work directions.

8

C
h
a
p
t
e
r

2
Related Work

2.1 Background

The background aspects for the objectives of the dissertation involve (i) the study of PKI

(Public-Key Infrastructures) and the standardized frameworks behind the current imple-

mentations, (ii) the understanding of principles of trust decentralized models (namely

Web-Of-Trust models), particularly addressed for the distributed management of public-

keys and related X509 certificates, (iii) a study on different Blockchain platforms, to

understand their typologies and relevant differences in the services’ planes provide, and

(iv) the study of recent proposals in the literature to address Blockchain-enabled PKI

frameworks and solutions. We summarize those related work strands in the following

sections, concluding with a critical analysis of related work issues focusing on the defined

objectives and expected contributions.

2.2 Public Key Infrastructure

A Public-Key Infrastructure (PKI) is a set of software, hardware, policies, roles and proce-

dures needed to create, distribute, store and revoke digital certificates based on asymmet-

ric encryption. The main purpose of developing a PKI is to allow safe, convenient and

efficient acquisition of public keys which allows us to encrypt and sign data [59].

The PKI has several tasks, such as:

• Define key pair creation policies.

• Define policies regarding the issuing and revocation of certificates of public keys.

• Define certification chains. Figure 2.1a shows an example of a chain of certificates.

For example, W may be a CA that issued the certificate of another CA X, and X

9

CHAPTER 2. RELATED WORK

(a) Hierarchy of a certificate chain
(from [59])

(b) Architectural model of a PKIx
(from [59])

Figure 2.1: Hierarchy of a PKI certificate chain (left) and Architectural model of a PKIx
(right)

issued the certificate for the subject C.

• Generate key pairs if needed.

• Distribute, publicly, public key certificates, as well as the public key revocation

certificates.

2.2.1 PKI and PKIx

PKIx is a PKI based on the industry-standard X.509 model that is appropriate for devel-

oping and deploying a certificate-based architecture on the Internet [59].

The main elements of PKIx are the following:

• End entity: a term used to describe the end-users, devices or other entity that can

be identified on the subject field of a certificate. They normally use the PKI services.

• Certification Authority (CA): issuer of certificates and Certificate Revocation Lists

(CRLs). It can also support a wide variety of administrative functions, even though

these functions are normally delegated to one or more Registration Authorities

(RAs).

• Registration Authority (RA): an additional component that may assume a variety

of administrative functions from the CA. Associated to the final process of the end

entities registration, but can also assist in other areas.

• CRL Issuer: an additional component that a CA may delegate to publish CRLs.

10

2.2. PUBLIC KEY INFRASTRUCTURE

• Repository: any method used for storing certificates and CRLs, so the end entities

are able to retrieve them.

Figure 2.1b shows the architectural model of a PKIx. Besides the main elements, PKIx

identifies several management functions that must be supported by the management

protocols, these functions are:

• Registration: the process in which a user makes himself known for the first time to

the CA (directly or through an RA). Occurs before the CA issues a certificate to the

user. This initiates the process of registration to a PKI. The end entity receives one

or more secret keys to share for future authentication.

• Initialization: A client system must have the necessary key materials related to

the keys stored elsewhere in the infrastructure before it can operate with security

(e.g. the client needs to be initialized with the public key and other information

regarding the trusted CAs to be used in certificate paths validation).

• Certification: Process in which a CA issues a certificate related to a user’s public key.

The certificate is returned to the user’s client system and/or posts that certificate in

a trusted repository.

• Cross Certification: A cross-certificate is a certificate issued by one CA to another

CA, it contains a CA signature key used for issuing certificates. In order to establish

this certificate, two CAs must exchange information.

• Key Pair Recovery: When using a key pair, it is important to provide a mechanism

to recover the necessary decryption keys when access to the keying material is not

possible. Without this mechanism, it will not be possible to recover the encrypted

data. This allows entities to restore their key pair from an authorized key backup

facility (normally it is the CA that issued the end entity’s certificate).

• Key Pair Update: Key pairs need to be updated regularly and new certificates issued.

This is required when the certificate lifetime expires or it is revoked.

• Revocation Request: A trusted person advises a CA of an abnormal situation that

requires a certificate revocation. Reasons for this include private key compromised,

affiliation change, name change, and others.

Various PKI enhancements were proposed in the last years in order to improve the

weak aspects of the TLS PKI. One predominant concern is the dissemination of revoked

certificates which is made by a CA. The dissemination should be fast to keep all the clients

and servers connections secure and the revocation status needs to be authentic, that is,

clients can verify if the revocation was created by a trusted CA [62]. Another concern is

the fact that there is no effective way to monitor SSL/TLS certificates in real-time. Fake

certificates can be issued by compromised CAs or simply due to mistakes.

Examples of improvements are [33]:

11

CHAPTER 2. RELATED WORK

Figure 2.2: Process of a simple PKI using OpenSSL

• Approaches based on public logs that are constantly verified to monitor CAs [32].

• Recent propositions require that multiple entities must confirm the validity of a

certificate.

• Revocation systems that spread information of non-expired certificates that were

invalidated (e.g. private keys leaked).

• Allow domains to express security policies regarding their TLS certificates and

detect incorrect behaviors by publishing policies in public logs.

Despite the appearance of new proposals, they didn’t have a practical impact. CRLs

are still the best-established approach to disseminate information of revocation, although

it is not activated in mobile browsers and most desktop browsers.

2.2.2 PKI Implementations

Public Key Infrastructures (PKIs) are needed since most applications need to be secured

with certificates and respective keys but they are difficult and expensive to implement

since the implementation of a flexible trust center software is expensive and prone to

mistakes.

OpenSSL [49] is Apache-licensed and it is the most basic form of CA and tool for PKI

and is included in the main Linux distributions. It is a toolkit for the SSL/TLS protocols

that allows creating a PKI with the basic components CA, RA, certificate, Certificate

Signing Request (CSR), CRL and Certificate Practice Statement (CPS), where the last one

is a document that describes the structure and processes of a CA [50]. The OpenSSL

command line allows to easily create CAs, certificates, and others.

A process of a simple PKI is shown in Figure 2.2 (from [50]). The requestor generates

a CSR and submits it to the CA, the CA then issues the certificate based on the CSR and

returns it to the requestor. Later, if the certificate is revoked, the CA adds it to the CRL.

12

2.2. PUBLIC KEY INFRASTRUCTURE

Root CAs issue certificates for CAs, intermediate CAs also issue certificates to CAs

but are bellow the root, and signing CAs issue certificates for users.

OpenCA [46] is an open-source PKI implementation based on three main components:

web interface to perform operations, OpenSSL backend for the cryptographic operations

and a database that store the needed information, such as CSRs, certificates, Certificate

Revocation Requests (CRRs), and CRLs.

OpenCA has many elements, such as a public interface, RA interface, CA interface,

flexible certificate extensions, CRL issuing, warnings for soon to expire certificates and

many others. It is designed for a distributed infrastructure in order to support maximum

flexibility for big organizations.

EJBCA [15] is a PKI CA software built with the Java language. It is based on com-

ponents and independent of the platform. Besides that, it guarantees flexibility and

scalability and can be used to build a complete PKI infrastructure for any organization.

It can have multiple CAs and. an unlimited number of SubCAs and RootCAs. X.509 is

one of the standards and supports certificates of long or short expiration. An RA Web UI is

available for self-registry and issuing by the administrators. It also possesses revocations

and CRLs.

Big scale installations can use multiple EJBCA instances running on a cluster, a dis-

tributed database in a separated cluster and a third cluster with HSMs (Hardware Security

Module that offers additional security) that stores the keys of different CAs.

It supports multiple PKI architectures, such as:

• Single CA/RA: single instance that acts as CA and RA.

• CA with distributed RAs: having multiple RA instances allows to register a diverse

set of users and devices. CAs have role-based access control in order to decide what

each RA is allowed to do.

• External RA with only outgoing connections: an external RA (or several) stores the

certificate requests and revocations in a separated database. The CA can, periodi-

cally, pull these requests from the database (only outcoming traffic is allowed from

the CA). This is a way to isolate the CA for security reasons, allowing flexibility in

registering entities at the same time.

• Validation Authority (VA): EJBCA has a VA incorporated, therefore the Single

CA/RA setup has validation of certificates. However, if we want to build a big-

ger PKI it is better to separate the VA from the CA for performance reasons or, if we

want to use a VA for multiple PKIs, for example.

• Cluster and High Availability: both CA and VA can be clustered in order to achieve

more availability and performance. This means that there are more servers involved,

but the architecture doesn’t change whether it is clustered or non-clustered.

13

CHAPTER 2. RELATED WORK

2.3 Web-of-Trust Models

Web-of-Trust [59, 65] is a concept introduced in the design of security services for dis-

tributed systems. This model, targeted for decentralized trust management functions,

was considered in the past as a support component in the design of Pretty-Good-Privacy

(PGP), GnuPG, and other OpenPGP-Email systems [48, 67] to establish authentication

proofs of binding between public keys and principals, as defined in the IEEE RFC 822

standard [60], where unique identifiers are related to email addresses. The Web-of-Trust

model was defined as an opposite approach for centralized trust models (e.g. PKIs). Based

on this model, is also possible to address multiple and independent Webs of Trust, where

any peer, through their identity certificate, can be a part of multiple webs, acting as a CA

for their own certificates, managed in P2P interaction models.

For the decentralized management of public-keys and certificates, each peer main-

tains locally a ring of its private keys, maintained securely and possibly encrypted with

passphrase-based encryption methods, and a ring of public keys that includes sets of self

public keys and public keys of other peers. The main idea is not to include any spec-

ification for establishing certifying authorities or centralized trust. Instead, the model

offers autonomous and convenient means of deciding trust, associating trust-information

metrics with the public keys stored in the public-key ring structure.

The trust information on the public keys is included as additional data in each public-

key entry of the public key ring. Trust data is managed and computed as a result of the

dissemination of certificates in P2P interactions, where new, unknown or already known,

certificates are received in announcements, originally sent and disseminated by different

peers.

In a basic model, the structure for a public-key ring organization is as follows:

• Each entry is a public-key that corresponds to a certificate. Associated with each

entry there is a key legitimacy field that indicates the extent to which the peer node

managing the ring will trust that public key which belongs to another peer node;

the higher the level of trust, the stronger is the binding of that peer with the stored

public key.

• Also associated with a public key entry there are zero or more digital signatures

(collection of signatures certifying the public key). These signatures are collected

from messages arrived from other peers in the dissemination process of certificates.

• Each signature in the collection has an associated signature trust field that indicates

the degree to which the principal trusts the signer to certify other public keys.

• The key legitimacy field for each public key certificate is derived from the collection

of signature trust fields in each entry.

• Finally, each entry defines a public key associated with a particular owner, with an

owner trust field included. This field indicates in each moment the degree to which

14

2.3. WEB-OF-TRUST MODELS

this public key is trusted to sign other public-key certificates.

In the management of the trust-related information of certificates stored in the public

key ring, the levels of trust are assigned form initial parameterizations and computations,

defined and executed in an autonomous way, by each peer (in isolation). In the model,

signature trust fields are in practice cached copies of the owner trust field from another

entry. Locally to each peer, the management process for public-key rings can be conducted

by using the following rules:

• When the peer inserts a new public key on the managed public-key ring, it must

assign a value to the trust associated with the owner of this public key. If the

owner is the peer itself, and therefore this public key also appears in the private-

key ring, then a value of ultimate trust can be automatically assigned to the trust

field. Otherwise, it will be necessary to decide some trust value to be assigned

to the owner of this key. For this decision, it can be specified that the owner is

unknown or that a certain level of trust will be decided, according to possible local

peer parameterizations for this purpose.

• When the new public key is entered, one or more signatures may be attached to it

(depending on the received messages signing that public key). As new signatures

can arrive in the future, more signatures may be added later to the public-key entry.

When a signature is inserted into the entry it is necessary to search the public-key

ring to find if the signature is among the known public-key owners. If so, the owner

trust field value for this owner is assigned to the trust field for this signature. If not,

an unknown user value is assigned (or some other default metrics).

• The value of the key legitimacy field is then computed considering the signature

trust fields present in the entry. If at least one signature has a signature trust value

of ultimate, then the key legitimacy value can be considered as complete. Otherwise,

it is computed a weighted sum of the trust values. For example, a weight of 1/X can

be given to signatures that are always trusted and 1/Y to signatures that are usually

trusted. X and Y are configurable parameters in each peer node. When the total

of weights of the introducers of a Key/PeerID combination reaches 1, the binding

can be considered to be trustworthy, and the key legitimacy value is then set to

complete. Thus, in the absence of ultimate trust, the peer must collect X signatures

that are always trusted, Y signatures that are usually trusted, or some combination

to achieve the complete trust.

The management process of public key rings continues as a dynamic process, being

orthogonal to the use of public keys by different applications running in the peer node.

Any peer may wish to revoke its current public keys. This can happen due to the compro-

mise of the respective private keys or is simply to renew the validity of the public keys.

Note that the compromise would require that an adversary, somehow, had obtained the

15

CHAPTER 2. RELATED WORK

involved private keys or that the opponent had obtained the private key from the private

key ring, as a consequence of an intrusion attack.

The convention for revoking a public key is for the owner to issue and to sign a key

revocation certificate, sending it to other peers. Each peer can also reroute an observed

revocation certificate to other peers. A revocation certificate can be similar to a regular

certificate, only including a special attribute mentioning that the purpose of the certificate

is to revoke the respective public key. The corresponding private key must be used to

sign the revocation certificate that revokes the corresponding public key. The owner

should then attempt to disseminate this certificate as widely and as quickly as possible,

to enable potential correspondents to update their public-key rings as soon as possible.

Note that an adversary who has compromised the private key of an owner can also issue

a revocation certificate. However, this would deny the adversary, as well as the legitimate

owner in the future use of the public key. Therefore, it seems a much less likely threat

than the malicious use of a stolen private key.

There are two main considerations we must mention about the presented Web-of-

Trust model. The first consideration is that the model follows an asynchronous process of

convergence, with no prior consistency guarantees on the state of the distributed public-

key rings that are stored and managed differently by the different peers. Furthermore,

the collection of signatures for each disseminated public key corresponds to different

aggregations of individual signatures and is not signed cooperatively and consistently by

the same group of peers. The last observation is relevant for the approach of the solution

as we must address in the dissertation.

2.4 Blockchain

The Blockchain is a paradigm that can reinvent the way we deal with distributed databases,

contracts, transactions for shared logging, or notarization systems under properly dis-

tributed system model assumptions. It can enable the creation of transparent global

networks, allowing for direct relations between agents without the intervention of central

authorities.

In the more essential engineering vision, a Blockchain is a distributed database, used

as a decentralized and immutable ledger, with the purpose of managing distributed

transactions and to store the state of such transactions in a replicated and consistent

environment. The participating nodes execute consensus mechanisms and protocols in

order to validate transactions and to store consistent states in the public shared ledger.

The Blockchain design principles introduce an innovative way to establish trusted

relationships in P2P interaction models, avoiding the need for intermediation entities

to act as central trust authorities. Centralized intermediation, besides being a slowness

factor, is vulnerable to failures due to the fact that if it fails or operates incorrectly, all

the trustability assumptions of dependent principals will be compromised, and they

will be strongly affected. With Blockchain-enabled services, it is no longer necessary to

16

2.4. BLOCKCHAIN

place trust in intermediary entities. Trust assumptions are based on verifiable consensus

mechanisms, running in the services planes and structural internet working support for

P2P interactions [37]. Apart from many incorrect uses, Blockchains are used today in

business areas that can take advantage of the technology, including Finance, Energy, Mo-

bility, Transports, Smart Cities, Smart Cars, IoT systems, with lots of industrial projects

on-going, and a few interesting successfully cases showing innovation and competitive

factors for new business-models or organizational-processes [13].

2.4.1 Blockchain Characteristics and Foundations

Backgound. A Blockchain system is supported by different planes of services, operating

together to provide the required properties. In such planes there are in general three main

essential components: (i) the immutable public ledger containing logged-transactions, (ii)

the consensus mechanisms and related algorithms to validate and order transactions, (iii)

and well-established processing rules to validate and to maintain the Blockchain state in

the expected way, with the required consistency criteria [37].

Optionally, depending on the nature, the characteristics or application purposes of dif-

ferent Blockchains may be designed with different flavors, and other complementary ser-

vices planes can be added: authorization (or permission) service planes (for permissioned-

Blockchains), membership control planes to regulate the participation and roles of peers

(in consortium Blockchains), alternative or configurable consensus planes, as well as se-

curity and privacy services planes or trusted execution environment components (for

security requirements).

A relevant component in a Blockchain is the mechanism targeted to address incentive

models, a relevant feature related to the sustainability conditions of the Blockchain in

order to incentivize the participation and engagement of nodes. This is particularly

relevant to permissionless Blockchains. Incentive models can have strong repercussions

on the support for the verification of transactions, as well as on the engagement of nodes

in the consensus plane mechanisms. For example, the mining process in Bitcoin addresses

exactly the above dimensions, allowing participants to obtain rewards from their proof

of engagement, using Proof of Work (PoW) as a consensus-style mechanism [42].

Currently, another important element of Blockchain platforms is the establishment

of processing rules and algorithms using conventionally named Smart Contracts [57].

In a more pragmatic vision, these contracts are essentially computer programs that can

be expressed in a programming language, expressing invariants, conditions and other

processing rules. Smart Contracts are stored and executed by the Blockchain nodes

and can be used to automate the unstoppable transfer of crypto-tokens between users,

according to agreed-upon conditions. In other application-domains, Smart Contracts are

also used to deliver things, such as weather data, currency exchange rates, airline flight

information, and sports statistics.

Blockchain ledger and consistency. The Blockchain ledger, as a chain of blocks, is a

17

CHAPTER 2. RELATED WORK

data-structure (such as a Merkle-Tree) containing blocks of transactions, with each block

having proof of integrity with a cryptographic hash of the previous block. In Blockchains

that use PoW consensus mechanisms, the blocks contain a nonce.

The chain establishes the total order of transactions and, therefore, avoids double-

spending attacks, since the adversary can’t change the block data without the other nodes

noticing due to the hashes present in the chain, and because there is a mechanism to

select the right chain (based on the number of blocks computed). This means that it is

only possible to append or read data from the ledger, after the validation of the blocks.

Types of Blockchain platforms There are three main types of Blockchains, regard-

ing membership management and permission model: permissionless, permissioned and

consortium [45]:

• Permissionless/Public: the ledgers are stored in P2P networks with decentraliza-

tion and anonymity. PoW is the most used consensus protocol and it has the objec-

tive to limit the rate which new blocks are committed. Anyone can join the network

but consensus needs a big amount of energy and time. Bitcoin and Ethereum use

this type of membership.

• Permissioned/Private: also known as distributed ledger technology. Normally, a

single organization has control of the Blockchain in order to manage the participa-

tion membership. Parties have verifiable IDs and need access control to participate.

This allows the secure interactions between identity groups that possess a common

objective but don’t fully trust each other. It is possible that in such cases, different

roles for participants can be defined. It may exist a closed group of nodes with the

task of creating new blocks by executing BFT algorithms to determine the order of

the blocks stored in the ledger. Not all roles will be involved in such operations,

given the scalability and performance problems that can be related to such algo-

rithms. Unlike permissionless architectures, permission Blockchains do not spend

a big amount of energy and time in the consensus algorithm. Multichain [22] for

example uses this type of membership control.

• Consortium Blockchains: semi-decentralized and permissioned Blockchains, but

instead of a single organization having the control, a number of organizations have

the control of the Blockchain where, for example, each one may control a node of

the network. The administrators restrict reading rights to certain users as they wish

or can assign specific roles to other users. Data can be public or private. In concrete

implementations, sometimes we verify that not all functions are based on a full

P2P model due to the presence of different roles. For example, Hyperledger Fabric

(HLF) [26] uses this type of membership management control.

Blockchain consensus plans and consensus proofs. Depending on the design as-

sumptions for consensus guarantees and possibly related inventive model, different types

18

2.4. BLOCKCHAIN

of consensus mechanisms can be involved in consensus planes. The most well-known are

the following [11]:

• Proof of Work (PoW): as introduced above, is particularly used in permissionless

Blockchains and for cryptocurrency ecosystems. This algorithm consists of the com-

putation of a strong hash-function, having a random nonce and the hash of the

block as input, to obtain a previously defined result. Peers repeat this computa-

tion process until they achieve the result. When a peer solves this cryptographic

puzzle, he sends the block in question to the rest of the network. Peers receiving

the block verify its contents and the solution of the puzzle, appending the block

to the ledger if the block and solution are valid. The peer that solved the puzzle

receives a monetary reward for the energy and effort spent. The downsides of PoW

approaches are the energy consumption and the fact that decentralization may be

lost if a miner has more computation power than the rest of the network, resulting

in the renaissance of oligarchies in practice (a situation that is happening in the

current crypto-currency systems).

• Proof of Elapsed Time (PoET): an approach that tries to remove the computational

cost of PoW maintaining at the same time its advantages. For each block, miners

must wait an agreed set time, and the first to finish waiting is selected to validate

the block. A platform is used to ensure that the miners, in fact, waited the defined

time (under certain trustability assumptions). The downside is that the platform

seller must be trusted and proofs of elapsed time must be obtained and exhibited

with required trusted verification.

• Proof of Stake (PoS): in this case, the creator and validator of a new block is selected

in a deterministic way, depending on its wealth/stake. The more wealth a miner

has, the more mining power he has. Miners are incentivized simply due to the fact

that if they do not have correct behavior, they lose their wealth. The drawback is

that wealthy miners acquire more easily more cryptocurrencies, where new miners

have difficulties to do so, causing the possibility of centralized wealthy peers with

more power.

• Consensus Proofs with Practical Byzantine Fault Tolerance (PBFT): interesting

for consortium Blockchains, is one of the consensus algorithms used in HLF that

supports pluggable consensus components. A leader does the ordering of the trans-

actions and consensus is made through these steps: leader broadcasts a request, each

validator signs and broadcasts a prepare message, and if enough prepare messages

are received, the validators broadcast committed messages. The request is accepted

if enough commits are received. This algorithm has a considerably better perfor-

mance when compared to consensus algorithms used in permissionless Blockchains,

but it does not scale well when the number of participating nodes in the consensus

19

CHAPTER 2. RELATED WORK

rises. The optimization of PBFT consensus in scalable Blockchains has been an

interesting research area, addressing scalability vs. performance tradeoffs.

2.4.2 Blockchain Trends

Cryptocurrencies are among the many applications that can be implemented using the

Blockchain. Its distributed and decentralized characteristics make it possible for the

creation of many different types of applications.

In the last year, we saw the use of the Blockchain technology by companies to ex-

plore new ways to approach business processes, IoT, content streaming [35], security

(mentioned in this paper) and many others.

In the future, we will probably see an increase in the use of this technology in the use

of Smart Contracts in traditional business systems, security innovations, Blockchain-as-

a-service (BaaS) [3], and others. The food industry can suffer major changes regarding

transparency and traceability in its flow. Even the art industry can take advantage of a

Blockchain ledger to fight thieves and art forgers.

2.4.3 Blockchain Platforms

There are many platforms, each with its focus points and characteristics. Table 2.1, based

on a table from [21], compares several platforms regarding their main characteristics.

The platforms are briefly explained:

• Ethereum [17] is used by many applications, some of them approach PKIs and are

mentioned in this report. It is a decentralized platform that runs Smart Contracts

in a virtual machine (Ethereum Virtual Machine - EVM) that requires payments via

the cryptocurrency ‘gas’. It is designed so it can be used for any type of application.

The consensus mechanism is PoW but it is expected that, in the future, a PoS based

algorithm named Casper [18] will be used.

• Quorum [53] is an enterprise and permissioned version of Ethereum. The consen-

sus mechanism is based on a voting process that uses Smart Contracts to assign

voting rights, offering better performance when compared to Bitcoin and Ethereum.

There are open and private transactions: open transactions are similar to Ethereum’s

transactions and in private transactions data is not publicly shown.

• Hydrachain [25] is a permissioned extension of the Ethereum platform. It allows

the setup of private or consortium chains. Ethereum’s Smart Contracts are fully

compatible with this extension. Instead of using PoW, like Ethereum, it uses a BFT

consensus protocol named HC Protocol, where a quorum of validators signs the

blocks. One of the upcoming features is the possibility of multi-chain setups.

• Hyperledger Fabric [26] is a permissioned Blockchain that allows the insertion

and remotion of components regarding consensus and membership services. It

20

2.4. BLOCKCHAIN

C
on

se
ns

u
s

p
la

ne
St

or
ag

e
p

la
ne

V
ie

w
p

la
ne

Ty
p

e
C

om
m

.
D

ec
en

tr
.

M
u

lt
.

ch
ai

n
s

Sm
ar

t
C

on
-

tr
ac

ts
M

ec
h

an
is

m
B

FT
T

h
ro

u
gh

p
u

t
sc

al
ab

il
it

y
L

ed
ge

r
re

p
li

ca
ti

on
V

ie
w

co
m

p
u

ta
ti

on
T

x.
p

ri
-

va
cy

Pe
er

an
on

ym
.

Si
gn

.
V

al
id

at
io

n
7

E
th

er
eu

m
Pe

rm
is

si
on

le
ss

P
2P

Fu
ll

7
3

Po
W

51
%

L
ow

(<
10

0
tp

s)
G

lo
ba

l
E

ve
nt

u
al

ly
co

ns
is

te
nt

,c
au

sa
ll

y
or

d
er

ed
SM

R
7

7
Tr

ad
it

io
na

l

Q
u

or
u

m
Pe

rm
is

si
on

ed
H

yb
ri

d
Pa

rt
ia

l
7

3
C

on
so

rt
iu

m
(P

lu
gg

ab
le

)
3f

+
11

P
re

su
m

ab
ly

hi
gh

(>
10

00
tp

s)

Pa
rt

ia
l(

p
ri

va
te

Sm
ar

t
C

on
tr

ac
ts

ar
e

on
ly

re
p

li
ca

te
d

be
tw

ee
n

au
th

or
iz

ed
p

ee
rs

)

St
ro

ng
ly

co
ns

is
te

nt
,

to
ta

ll
y

or
d

er
ed

SM
R

3
3

Tr
ad

it
io

na
l

H
yd

ra
ch

ai
n

Pe
rm

is
si

on
ed

H
yb

ri
d

Pa
rt

ia
l

7
3

C
on

so
rt

iu
m

3f
+

1
P

re
su

m
ab

ly
hi

gh
(>

10
00

tp
s)

G
lo

ba
l

St
ro

ng
ly

co
ns

is
te

nt
,

to
ta

ll
y

or
d

er
ed

SM
R

7
7

Tr
ad

it
io

na
l

H
yp

er
le

d
ge

r
Fa

b
ri

c
V

1
Pe

rm
is

si
on

ed
H

yb
ri

d
Pa

rt
ia

l
3

3
O

ff-
ch

ai
n

se
rv

ic
e2

(P
lu

gg
ab

le
)

3f
+

12
H

ig
h

(>
10

00
tp

s)

Pa
rt

ia
l(

ea
ch

ch
an

ne
lh

ol
d

s
a

le
d

ge
r

be
tw

ee
n

a
su

bs
et

of
no

d
es

)

St
ro

ng
ly

co
ns

is
te

nt
,

to
ta

ll
y

or
d

er
ed

SM
R

3
7

M
u

lt
i-

si
gn

at
u

re
s

H
yp

er
le

d
ge

r
Fa

b
ri

c
w

it
h

B
FT

an
d

G
ro

u
p

Si
gn

at
u

re
s6

Pe
rm

is
si

on
ed

H
yb

ri
d

Pa
rt

ia
l

3
3

O
ff-

ch
ai

n
se

rv
ic

e2

(P
lu

gg
ab

le
)

3f
+

12
H

ig
h

(>
10

00
tp

s)

Pa
rt

ia
l(

ea
ch

ch
an

ne
lh

ol
d

s
a

le
d

ge
r

be
tw

ee
n

a
su

bs
et

of
no

d
es

)

St
ro

ng
ly

co
ns

is
te

nt
,

to
ta

ll
y

or
d

er
ed

SM
R

3
7

M
u

lt
ia

nd
T

hr
es

ho
ld

Si
gn

at
u

re
s

H
yp

er
le

d
ge

r
Sa

w
to

ot
h

Pe
rm

is
si

on
ed

P
2P

Fu
ll

3
7

3

Po
E

T
/

ra
nd

om
le

ad
er

el
ec

ti
on

2

51
%

4
P

re
su

m
ab

ly
hi

gh
(>

10
00

tp
s)

G
lo

ba
l

E
ve

nt
u

al
ly

co
ns

is
te

nt
,c

au
sa

ll
y

or
d

er
ed

SM
R

7
7

Tr
ad

it
io

na
l

H
yp

er
le

d
ge

r
B

u
rr

ow
Pe

rm
is

si
on

ed
H

yb
ri

d
Pa

rt
ia

l
3

-
3

Po
S

(T
en

d
er

-
m

in
t)

3f
+

1
H

ig
h

(>
10

00
tp

s)

Pa
rt

ia
l(

ea
ch

ch
ai

n
ho

ld
s

a
le

d
ge

r
be

tw
ee

n
a

su
bs

et
of

no
d

es
)

St
ro

ng
ly

co
ns

is
te

nt
,

to
ta

ll
y

or
d

er
ed

SM
R

3
-

7
Tr

ad
it

io
na

l

H
yp

er
le

d
ge

r
Ir

oh
a

Pe
rm

is
si

on
ed

H
yb

ri
d

Pa
rt

ia
l

7
7

C
on

so
rt

iu
m

3f
+

1
P

re
su

m
ab

ly
hi

gh
(>

10
00

tp
s)

G
lo

ba
l

St
ro

ng
ly

co
ns

is
te

nt
,

to
ta

ll
y

or
d

er
ed

SM
R

7
7

M
u

lt
i-

si
gn

at
u

re
s

C
ou

n
te

rp
ar

ty
Pe

rm
is

si
on

le
ss

P
2P

Fu
ll

7
3

Po
W

51
%

L
ow

(<
10

0
tp

s)
G

lo
ba

l
E

ve
nt

u
al

ly
co

ns
is

te
nt

,c
au

sa
ll

y
or

d
er

ed
SM

R
7

7
M

u
lt

i-
si

gn
at

u
re

s

M
u

lt
ic

h
ai

n
Pe

rm
is

si
on

ed
H

yb
ri

d
Pa

rt
ia

l
3

3
C

on
so

rt
iu

m
N

ot
B

FT
H

ig
h

(>
10

00
tp

s)

Pa
rt

ia
l(

ea
ch

ch
ai

n
ho

ld
s

a
le

d
ge

r
be

tw
ee

n
a

su
bs

et
of

no
d

es
)

E
ve

nt
u

al
ly

co
ns

is
te

nt
,t

ot
al

ly
or

d
er

ed
SM

R
3

3
M

u
lt

i-
si

gn
at

u
re

s

O
p

en
ch

ai
n

Pe
rm

is
si

on
ed

C
/S

Pa
rt

ia
l

3
3

Pa
rt

it
io

ne
d

C
on

se
ns

u
s5

(P
lu

gg
ab

le
)

n/
2

+
1

H
ig

h
G

lo
ba

l
St

ro
ng

ly
co

ns
is

te
nt

,
to

ta
ll

y
or

d
er

ed
SM

R
7

3
M

u
lt

i-
si

gn
at

u
re

s

Te
zo

s
Pe

rm
is

si
on

le
ss

P
2P

Fu
ll

7
3

Po
S

51
%

P
re

su
m

ab
ly

L
ow

(<
80

tp
s)

G
lo

ba
l

E
ve

nt
u

al
ly

co
ns

is
te

nt
,c

au
sa

ll
y

or
d

er
ed

SM
R

7
7

M
u

lt
i-

si
gn

at
u

re
s

1
W

it
h

Is
ta

nb
u

lB
FT

;
2

W
it

h
th

e
u

no
ffi

ci
al

B
FT

-S
M

aR
t

or
d

er
in

g
se

rv
ic

e
p

re
se

nt
ed

in
[7

];
3

A
ss

u
m

in
g

ev
er

y
no

d
e

is
eq

u
ip

p
ed

w
it

h
In

te
l’s

SG
X

te
ch

no
lo

gy
.O

th
er

w
is

e
d

ec
en

tr
al

iz
at

io
n

is
p

ar
ti

al
;

4
If

u
si

ng
Po

E
T;

5
Tr

an
sa

ct
io

ns
ar

e
va

li
d

at
ed

by
d

iff
er

en
t

au
th

or
it

ie
s

d
ep

en
d

in
g

on
th

e
as

se
ts

be
in

g
ex

ch
an

ge
d

.E
ac

h
or

ga
ni

za
ti

on
co

nt
ro

ls
th

ei
r

ow
n

in
st

an
ce

an
d

ea
ch

in
st

an
ce

ha
s

on
ly

on
e

au
th

or
it

y
va

li
d

at
-

in
g

tr
an

sa
ct

io
ns

;
6

V
er

si
on

im
p

le
m

en
te

d
in

[2
1]

;
7

A
ll

B
lo

ck
ch

ai
ns

su
p

p
or

t
th

e
no

rm
al

tr
ad

it
io

na
ls

ig
na

tu
re

va
li

d
at

io
n.

Po
W

=
P

ro
of

-o
f-

w
or

k
Po

E
T

=
P

ro
of

-o
f-

el
ap

se
d

-t
im

e
Po

S
=

P
ro

of
-o

f-
st

ak
e

Table 2.1: Comparison of Blockchain Platforms.

21

CHAPTER 2. RELATED WORK

does not require that Smart Contracts are written in a specific language or based

in cryptocurrencies. Uses a notion of membership that may be integrated with

industry-standard identity management. Nodes can participate in multiple chains

(named channels) concurrently. This platform separates the transaction flow in

three steps that may be performed in different entities in the system:

1. Execute the transaction and verify its correctness, endorsing it;

2. Ordering through a consensus protocol;

3. Validation of the transaction through application-specific trust assumptions

that also prevent race conditions caused by competition.

• Hyperledger Sawtooth [44] is a permissioned Blockchain. The consensus mecha-

nism is pluggable and its default is PoET, mentioned above in this report. Ethereum

Smart Contracts are supported by the Hyperledger Burrow EVM and can be written

in a wide variety of languages, such as Python, JavaScript, and Java. When possible,

the transactions are executed in parallel in order to achieve better performance.

• Hyperledger Burrow [31] is a permissioned Ethereum smart-contract Blockchain.

The consensus mechanism is the PoS Tendermint [8] engine. Entities have permis-

sions and either contain Smart Contract code or correspond to a public-private key

pair. Unlike Fabric, nodes cannot participate in multiple chains concurrently.

• Hyperledger Iroha [27] is a permissioned Blockchain-based on HLF. It can be used

to manage custom digital assets, such as currencies, serial numbers, and patents.

It uses a PBFT-based consensus algorithm, called Sumeragi, which has a peer rep-

utation protocol in order to choose the order of nodes that process transactions.

Sumeragi ensures high performance and low latency transactions.

• Counterparty [12] is a permissionless Blockchain build on top of Bitcoin. Users

can trade any type of digital token and anyone may write Smart Contracts. It has an

additional currency, XCP, in order to be possible to pay for the execution of Smart

Contracts. There are wallets that, for example, allow the creation and management

of tokens and multi-signature addresses. Since it is based on Bitcoin, the consensus

mechanism is PoW, which has the drawbacks mentioned in this report.

• Openchain [47] is a permissioned Blockchain suitable for organizations that wish

to manage digital assets in a secure way. The consensus mechanism uses Partitioned

Consensus, where each Openchain instance only has one authority that validates

transactions. Different transactions are validated by different authorities depending

on the assets involved. There are validators, that validate and store transactions,

and observers, that receive a read-only copy from the ledger and perform their own

validations. Unlike most Blockchains, it has a client-server architecture. Each chain

is governed by the organization that deployed that chain.

22

2.4. BLOCKCHAIN

Figure 2.3: Threshold signature construction

• Multichain [22] is a permissioned Blockchain that supports multiple chains run-

ning in parallel. The consensus mechanism is a variant of PBFT, where instead of

having several validators, there is only one that is selected in a round-robin type

policy. Transactions occurring in a chain can trigger transactions in others. It does

not support Smart Contracts.

• Tezos [63] is a permissionless Blockchain that supports Smart Contracts. The con-

sensus mechanism is based on PoS and any stakeholder can participate in the con-

sensus process. Smart Contracts are written in OCaml language and possess formal

mathematical verifications in order to improve security and decrease bugs. The

ledger is self-amending and stakeholders vote on proposals to modify the rules of

the network.

2.4.4 Decentralized Ledgering with Resilient Group Signatures

Threshold signatures improve the resilience and robustness of a system, such as a Blockchain.

In threshold signatures, a group of participants generates one fault-tolerant signature. It

was invented over 20 years ago but it is still not commonly used.

The work in [61] implements threshold signatures schemes for an asynchronous

Blockchain system. There is a group of n parties P = {P1, P2, ..., Pn} in which t may

be corrupt, and for the reconstruction of a signature, it is necessary at least k valid sig-

nature shares and n, k and t must follow a specific requirement. This means it is not

necessary to have all parties involved in the construction of the signature and a number

of participants may fail to deliver their signature share and still being possible to recon-

struct the signature. After the request to sign a message, each signing party computes its

share of the signature and the client constructs the final signature by combining all the

23

CHAPTER 2. RELATED WORK

parts. A simplification of this process is shown in Figure 2.3 (from [61]). The resultant

signature is the same regardless of the combination of valid signature shares. To generate

the secret shares (shares of the key), it is used the Shamir Secret Sharing [56], where a

trusted dealer that does not belong to the group of n parties generates the secret shares

and sends them secretly to each party member. The identity of all signers that collaborate

in the construction of a signature must not be known and this is possible and desirable

in a Blockchain. This scheme offers improvements in signature verification by using

less storage and verifications when compared with the multi-signature scheme since, in-

stead of multiple signatures being stored and verified, the validator only validates one

signature.

2.5 Blockchain-Enabled PKI Approaches

2.5.1 Background

Conventional PKIs have several problems: CAs are central points of failure and there

is too much trust placed on them; there is a lack of transparency regarding certificates

and their revocation; and many others. Information about the revocation of certificates

takes some time to disperse, and a client that is receiving a server’s certificate may see the

certificate as valid when in reality it was revoked due to some security concerns.

It is hard to update multiple entities and not have performance penalties due to

communication and implementation costs. For example, backing up signature keys in a

CA opens the possibility to the CA to act as the owner of the keys. This would require to

backup the decryption keys on the CA but not the signature keys. In this case, each user

would have to have two pairs of keys, one for encryption and other for signatures.

The Blockchain has characteristics that can improve PKIs, such as:

• Decentralization eliminates single-points-of-failure in CAs;

• Ledger, a reliable transaction record of PKI events, is published and it is trustable

as long as the majority of the Blockchain contributors are honest;

• Certificate transparency of certificates and their revocation since the ledger can be

a public log;

• Transactions in the Blockchain make the dissemination of revocation information

faster than usual.

Figure 2.4 (from [4]) shows what a PKI Blockchain structure can look like. Such as the

structure of a traditional Blockchain, each block has the hash of previous blocks in order

to have a reliable transaction record. The registration, updates, and revocations of keys

are made by publishing the identity, public key, and action (e.g. register) as a transaction.

The Merkle root contains the hash of transactions per each block and is used to verify

transactions without downloading the entire Blockchain.

24

2.5. BLOCKCHAIN-ENABLED PKI APPROACHES

Figure 2.4: Example of a PKI Blockchain structure

2.5.2 PB-PKI

Despite existing Blockchain-based PKIs that offer security properties, they link the enti-

ties to their respective public keys. This may not be a problem in many cases, but some

applications require some level of privacy (e.g. smart cards, IoT devices, smart vehicles).

In the Privacy-Aware Blockchain-Based PKI (PB-PKI) [4], L. Anox and M. Goldsmith

adapt the CertCoin, a Blockchain-based PKI that is also mentioned in this report, to be

privacy-aware. CertCoin links public keys to their identity in the registry and update of

keys. Privacy-aware means that the public key is not connected to its identity except if

the owner wishes to do so or there is a consensus from the majority of the network.

They established different notions of privacy:

• Total privacy: entities cannot link a public key to its identity and messages can be

sent to non-specific members or via broadcast, without having knowledge of the

public key identity.

• Neighbour group anonymity: an identity is identified within a group of neighbours.

The entity of a group gives the other members information that allows them to link

its public key to its identity when making a key update. This way the group of

neighbours can attest to the rest of the network the correctness of the update.

• User-controlled disclosure: the users choose when to show the link between their

public key and their identity.

Each entity has a public key-pair and an offline key-pair. The offline key-pair is

randomly generated at each update and the new public key is calculated by using the

previous public key and offline secret key as input. By doing this, it is not possible to

link the new key to the previous one. An entity can use its offline key pair to prove the

ownership of the public key and has also a master offline key pair that can be used to

recover the offline keys in case they are stolen or lost.

In order to prevent the link a new key to the old one by looking at a key update and

seeing that a key changed, there are two possible approaches: the use of a time delay

where both keys are valid so it is hard to know when the new key was created; or, when

25

CHAPTER 2. RELATED WORK

using neighbour groups, all the members of the group must update their keys whenever

one member wishes to do so.

When an identity must be tracked, the authorities can ask the identity to show the

link between the public key and identity. If it does not follow this command, it is possible

for the majority of the network to use key shares from previous updates and reconstruct

the keys that belong to the target entity. This reconstruction can be achieved since the

entity that updates its keys must share the key secrets of the new key with the rest of the

network, in order to make this consensus possible.

2.5.3 Blockchain-Based PKI Management Framework

(a) Certificate extensions related to the
Blockchain

(b) Type of certificates stored in the Blockchain

Figure 2.5: Certificates in Blockchain-Based PKI Management Framework

This framework [66] focuses on the revocation of certificates, one of the main prob-

lems of traditional PKIs. As many others Blockchain-based PKIs, the Blockchain acts

as a public append-only log that offers certificate transparency since the certificates and

associated public keys are stored in that log. It allows revocation of certificates, and since

it is not possible to remove information from the Blockchain ledger, a CA can only mark

a certificate as revoked. Any behavior that is not correct from a CA can be traced by other

entities. The Blockchain contains a white-list that has valid certificates and a black-list

that contains revoked certificates. When revoking a certificate, an entity simply adds the

hash of the target certificate to the black-list, marking it as revoked.

26

2.5. BLOCKCHAIN-ENABLED PKI APPROACHES

This work extends the X.509 certificate to be compatible with the Blockchain approach

by adding extension fields to set metadata information related to the Blockchain. The

extensions are shown in Figure 2.5a (from [66]).

Each CA has an associated Ethereum Smart Contract that possesses an array of hashes

of the issued certificates, additional info (i.e. expiration date) and a mapping of the

revocation data referenced by the certification hash. A certificate contains the address

of the Smart Contract belonging to the parent CA to allow the validation of the chain

of trust between a leaf and the root certificate. The types of certificates are shown in

Figure 2.5b (from [66]).

Due to the fast synchronization of the ledger in each node, revocation data is quickly

disseminated through the network, something that does not occur in traditional PKIs.

Since this system makes use of the Ethereum Blockchain, there are gas costs involved,

and due to the volatility of cryptocurrencies, there is no certainty in the costs to upload

and update certificates.

2.5.4 IKP

In traditional PKIs, it usually takes some time to notice and verify that a certificate is

invalid or revoked. This is mainly due to the fact that there are no automatized processes

to report certificates. Besides, there are no incentives to report non-authorized certificates.

Instant Karma PKI (IKP) [38] is an automized platform used to define and report

wrong behaviors from CAs, to incentivize them to correctly issue certificates and the

detectors to report non-authorized certificates as fast as possible. Participant HTTPs

domains are able to publish domain certificate policies which specify the criteria the

certificates must follow, and any violation of those policies constitute wrong behaviors

from CAs. CAs can sell reaction policies, that refers to financial transactions to domains

that must occur when a non-authorized certificate is reported. The domains affected by

the certificate, the detector and the CA receive payment from those transactions so that

CAs lose money when issuing expired or invalid certificates and the detectors receive

money by reporting them. Figure 2.6 (from [38]) explains briefly how this scheme works.

The system is implemented in Ethereum, where the Smart Contract ecosystem offers

a public mechanism in order to automatize the handling of reports from detectors and

execute financial transactions, assuring fast responses to wrong behaviors from the CAs.

IKP is an extension of the standard TLS architecture and introduces two new entities:

• IKP authority: stores the information of CAs, public keys for authentication and

financial account information to receive payments. It also stores domain certificate

policies, given by the domains, and reaction policies, that automatically react when

a report is received. The authority is responsible for execution those reactions and

may be instantiated as a Smart Contract in Ethereum;

27

CHAPTER 2. RELATED WORK

Figure 2.6: IKP schema

• Detectors: report suspect certificates to the IKP authority. Any entity can be a

detector.

2.5.5 CertCoin

CertCoin [20] is based on the cryptocurrency Namecoin [43], which is based on Bitcoin

and is developed to act as a decentralized DNS, and supports register and update of

domains. Registration of a domain has a cost but its update is free. This works as an

incentive for the works to mine blocks with CertCoin information. It takes advantage of

the merged mining protocol of Namecoin where the miner is allowed to mine more than

one block at the same time, increasing the security of all transactions.

The transaction regarding a domain registration contains two public keys that are

associated with the bought domain, a public online key and an offline public key. The

online private key is used to sign messages and verify their authenticity from the server

that is hosting the website and the website itself. The offline private key must be stored

in a secure offline storage in order to not be vulnerable to threats and is used to sign or

revoke keys when in the presence of some type of compromise. When creating a new key

for the domain, it will be signed with the old key, allowing the owner to prove ownership

of the key or to trace the previous keys and signatures.

CertCoin uses cryptographic accumulators [19] to store tuples in the form of (d, pk,

exp), for example, where d is the domain, pk the public key associated, and exp the

expiration date of the key. Accumulators are the representation of a set of elements with

constant size. After the addition of a new element, a witness is generated so it can prove

that the element was in fact added. This avoids the overhead of storage that exists when

each user stores all the Blockchain information and, instead, to solve that problem, each

user stores only the current state of registered domains and keys.

Blockchains do not support key-value gets, which is important in PKIs to make queries

28

2.5. BLOCKCHAIN-ENABLED PKI APPROACHES

regarding public keys from specific domains. CertCoin proposes the use of an authen-

ticated Distributed Hash Table (DHT), the Kademlia unauthenticated DHT [39] in par-

ticular. Although its use in CertCoin contains a few changes: use of digital signatures

for authentication and integrity, assignment of unique Node IDs to resist Sybil attacks

where an adversary can create several nodes with the objective to gain reputation, and

a modified key recovery process to incentivize all nodes to participate and support the

DHT. To contribute, each domain allocates a node to the DHT.

This approach removes the trust deposited in CAs, that can suffer from problems and

attacks, and creates a domain repository where the miners are rewarded when mining

blocks containing domain purchases and transfers.

2.5.6 PomCor: Backing Rich Credentials with a Blockchain PKI

The objective of the PomCor project is to identify five remote identity proofing solutions to

use as an alternative to knowledge-based verification. In one of those solutions, described

in [34], a rich credential is supported by a Blockchain PKI. A rich credential allows a

subject to identify himself to a remote verifier without any prior relationship by using

verification steps, such as private key, password, and biometric features.

As in others Blockchain-based PKIs, the hash of each certificate is stored in the ledger.

The difference here is: hashes of valid certificates are stored in a ledger and hashed of

revoked certificates are stored in a different ledger. In order to authenticate an entity,

if its certificate is in the valid certificates ledger and not in the revocations ledger, then

it is valid. This does not require a separate process that may be demanding in terms of

processing and storage, making clients prone to skip this verification step (e.g. CRLs).

2.5.7 Blockchain-Based Certificate and Revocation Transparency

CAs can suffer attacks that make them issue incorrect certificates and, due to the lack

of transparency in traditional PKIs, they are only noticed after some time, in which it is

possible that SSL/TLS negotiations have already taken place involving those certificates.

Blockchain-Based Certificate and Revocation Transparency [64] takes advantage of the

Blockchain characteristics where it acts as a public append-only logger to store certificates

e revocation operations. Certificates signed by a CA and their information regarding the

state of revocation are published by the subject/web-server as a transaction. Each subject

has a publishing key pair to sign certificate transactions in order to manage its certificates

while cooperating with CAs. This removes the total authority that usually CAs have in

traditional PKIs by giving some control to the servers.

The system architecture uses some aspects of the bitcoin system. Miners append the

transactions to the Blockchain after verifying the transaction and mining the block. Block

in the Blockchain is similar to the one in bitcoin regarding the header and organization of

transactions (Merkle hash tree). It is also possible to use an incentive mechanism where

29

CHAPTER 2. RELATED WORK

the miners receive coins and those coins are purchased and consumed by the servers

when they publish certificate transactions.

To validate certificates, a browser first communicates with a P2P network of servers

and miners to download the block headers from the Blockchain, then it verifies if the

headers are correctly chained and if each one has a valid PoW nonce and if everything

is valid updates its local copy if a longer chain of certificates was received. Since the

certificate chain was firstly verified by the miners, the browser only has to verify if it trusts

on the trusted root CA associated to the certificate involved in the SSL/TLS negotiation,

every other verification is made by the miners.

Although this offers an interesting way to achieve certificate transparency, introduces

overheads regarding storage, certificate validation, and incentive costs.

2.5.8 SCPKI

In traditional PKIs, CAs sign certificates as a whole and sometimes it can be useful if

single attributes can be signed instead, making possible to an entity vouch for another

entity’s attribute, such as its public key, name, address or other [1].

SCPKI [1] is a system that makes use of the web-of-trust model, where entities vouch

for other entities instead of having a CA that issues certificates, and the Ethereum Smart

Contracts so entities can create, manage and sign attributes.

Since Ethereum involves gas costs, SCPKI is designed so it is possible for the users to

store big amounts of data outside the Blockchain (e.g. IPFS [5]) in order to have fewer

costs. The hashes of data are stored in the Blockchain to keep their authenticity.

SCPKI is hosted on the Ethereum Blockchain and has two main components:

• Smart Contract: acts as an interface to the Blockchain to manage identities and

attributes. It has functions to add attributes, used by an entity to add an attribute

to its identity, sign attributes, so entities can vouch for other entities’ attributes, and

revoke signatures, in order to entities revoke their own signatures if necessary;

• Client: interacts with the Smart Contract and systems like IPFS so the users can

search and filter attributes.

This solution has its drawbacks. The system is designed so that all the entities ref-

erenced by the system must be using it, that is, if an entity wants to vouch for another

entities’ attribute, the target entity must be in the system and have created that attribute.

Regarding privacy, the system is not suited to publish more private attributes, since, in

order to entities sign attributes, they must be made public.

2.5.9 Other Approaches

Alternatives, such as Certificate Transparency from Google, have a problem where if an

attacker can obtain a valid but fake certificate and control the Certificate Logs, he can

30

2.6. DISCUSSION

develop a man-in-the-middle (MITM) attack by giving the client a fake view of the log

that contains the fake certificate (split world attack) [30]. CertLedger [30] offers certificate

and revocation state transparency by handling that problem. It uses a Blockchain-based

public log to validate, store and revocate TLS certificates. The system is resistant to

the split world attack due to the use of Blockchain. There is a decentralized public log

mechanism with consensus between the clients that makes impossible for the attacker

to develop that attack since the log is distributed and it is not possible to reverse its

state, therefore he can’t show a fake view of the log without the client noticing. Another

improvement is the fact that the revocation process can be done by the domain, which

removes some power from CAs because this process is normally only done by CAs. During

the TLS handshake, the ClientLedger Client and a domain agree on the last block number

and the domain sends the certificate with the proof that is generated from the State

Merkle Tree of the agreed block. The client can verify if the certificate was issued for

the domain and the proof through the state tree hash that is in the agreed block header.

Clients do not need to make more validations because, when appending a certificate to

the Blockchain, the validation is already made. The revocation status is verified through

that state tree hash. Because of this, clients do not need CAs to verify the revocation state

of a certificate and may verify it by using the state tree hash from the downloaded block

header.

2.6 Discussion

PKIs are essential to the secure use of digital public-key certificates. Nevertheless, tra-

ditional PKIs have several problems, such as centralized management infrastructures

and, therefore, trust centralization established by root-of-trusts and related oligarchies.

Several potential problems emerge from the inherent trust-centralized model.

Blockchains, as disruptive technologies, can change the way PKIs can be designed,

with decentralized and cooperatively managed trust assumptions, in the context of a new

approach for Blockchain-enabled PKI solutions. Some approaches shown in previous

sections use the Blockchain technology to implement PKIs to address different issues:

to remove the centralization of trust and to avoid single points of failure, to propose

management function using immutable decentralized ledgers, to offer transparency in

the management processes, and to support revocation information, in order to be quickly

disseminated by all the interested peers. Although discussed implementations address

many problems and generic interests shared in our approach, some studied solutions have

drawbacks or do not provide what we are looking for. The main identified drawbacks are

the following:

• Many Blockchain platforms used by studied solutions, and their base service planes,

are targeted for cryptocurrencies ([1, 4, 20, 34, 38, 66]), which limits the imple-

mentations due to their specific focus, volatility, and costs for the use of PKIs for

31

CHAPTER 2. RELATED WORK

different purposes and different applications. Moreover, the service planes imple-

ment functions not particularly interesting for our approaches, such as the base

consistency criteria for replication and related consensus primitives, the high-costs

on energy needs, scalability assumptions and anonymous participation with no

membership control.

• Several Solutions, such as [1, 34, 38, 66], use Ethereum, which has gas costs in

inherently design considerations for permissionless platforms, not addressing the

case for consortium-Blockchains that are in the more specific target of our approach.

• Some proposals use financial transactions ([4, 38]) as an incentive to guarantee

correct behavior of CAs. We are looking for a solution that does not need monetary

incentives, addressing a consortium model of participating entities interested in

cooperating as members of a decentralized PKI solution, providing the same func-

tionalities found in current PKIs, following, for example, the functions and roles

defined in the PKIX standard framework.

• In PomCor [34] it is possible for a group of miners to create a fork where a cer-

tain certificate is not in the ledger of revoked certificates, wherein the real ledger

is, and this may take some time to be noticed. In the meanwhile, the certificate

could already have been used by clients (incurring in similar problems with asyn-

chronous revocation processes in centralized PKIs purely supported by the periodic

dissemination of CRLs).

• Some implementations are based on permissionless platforms, with the consensus

mechanisms based on the PoW consensus style. However, there are serious perfor-

mance issues regarding the validation of blocks (in the validation management of

certificated during their operational life-cycle). The base energy problem of the

Blockchain services is also an issue that will promote PKI solutions not energy-

aware, and not efficient in dealing with energy vs. effectiveness vs. performance

tradeoffs.

• We found in the studied solutions, that the addressed processes related to certifi-

cates and signatures of the Blockchains and PKI functions use certificates are in

general bootstrapped under centralized assumptions, even targeting applications

on top in a decentralized way. This seems to be paradoxical. In other words, the

issuing process is out-of-cope of the promoted decentralized solutions, with the em-

phasis targeted only to the validation and revocation operations, with centralized

bootstrap processes. We must also notice that in many current Blockchain plat-

forms, the management of certificates is an orthogonal issue that must be solved

externally, currently by using the current centralized PKI solutions. This is some-

thing that we can understand in a “separation-of-concerns"approach. However,

from another viewpoint, it is an unmatched solution for the purpose of Blockchains

in establishing decentralized trust-management conditions.

32

2.6. DISCUSSION

It would be ideal to follow design assumptions, where CAs or external centralized

PKI services and components have a lower or no presence at all, where peers simply

create and issue their own certificates in a cooperative way and gather trust from other

peers. We also would like to separate the context of PKI from the application, where the

application could be cryptocurrency-related or not. As far as we studied from the related

work, no solution addresses the requirements that we want to address in our dissertation.

As a summary, we emphasize the following characteristics not present in the state-of-art

solutions:

• Cooperative issuing of certificates, with certificates authenticated by both coop-

erative Multi-Signatures or BFT Threshold Signatures, representing a cooperative

CA.

• Smart Contracts with expressiveness to define the issuing, certification, validation

and revocation rules and invariants, and required trust metrics consistently defined

in the Blockchain

• PKI management functions supported in a consortium BFT-enabled Blockchain,

where transactions are proposed to a subset of endorsement nodes (acting as CAs),

but with membership control that also provide high transaction throughputs for

the certificate issuing process.

We base our design and implementation criteria on the above analysis of limitations

and drawbacks in the studied related work, designing our solution leveraged by an ex-

tended plane of services built for the HLF Consortium Blockchain Platform. In these

extensions, we include BFT consensus primitives for the consistency criteria, Threshold

Group Signatures, and the support of extended Smart Contracts. The extensions are pro-

vided in a prototype of the extended platform, initially developed in NOVA LINCS [21].

This is explained in the following chapter where we will address the system model con-

siderations and architectural concerns, in the design of our proposed DPKI Blockchain

enabled solution.

33

C
h
a
p
t
e
r

3
System Model and Architecture

In this chapter, we propose our system model for a Blockchain-Enabled DPKI Solution,

based on a permissioned-oriented collaborative consortium model. This solution aims

to address the main problems of traditional PKIs, such as their centralized trust model.

Clients will be able to issue and manage X509v3 certificates through transactions and

by following security invariants and processing rules. These invariants and rules will

be defined in Smart Contracts, which in the Hyperledger Fabric (HLF) Blockchain, are

referenced as chaincode, and verified by the peers when receiving transactions proposals.

The immutable public ledger allows any peer to verify the validity of all transactions

and reproduce the current state of the certificates through them. We start by discussing

an application scenario, followed by an overview of the system model design principles,

entities, interactions, and requirements. We discuss the reference architecture and its

components, and the adversary model.

3.1 Application Scenario

PKIs allow the use of digital signatures, asymmetric encryption, and other security tech-

nologies [59]. Through certificates issued by entities of a PKI, it is possible for many

applications to interact with authentication and security. The main entity of a PKI is the

Certificate Authority (CA), which issues digital certificates. A client sends a certificate

request to a CA in order to obtain a certificate signed by the CA, being then able to use the

certificate for various applications. The CA possesses a certificate signed by another CA

in a chain where the root CA self-signs its certificate, where normally these root CAs cer-

tificates are stored in our devices to authenticate other certificates, and their signatures,

from that chain. Entities may then verify if a certificate is valid by verifying its attributes

and signature. This traditional model is the standard and several business models are

35

CHAPTER 3. SYSTEM MODEL AND ARCHITECTURE

dependent on it.

The traditional model is complex and possesses several problems. If the keys of several

certificates are compromised, the notification regarding their revocation it is not spread

fast enough. The main problem is the fact that the system has a single point of failure.

If a CA is compromised that may trigger a threat chain, where the certificates signed

by that CA can be compromised and, besides, the CA may be unreachable. Another

undesirable aspect is the lack of transparency regarding the way that certificates are

issued and validated in CAs.

To address those problems, we propose a Blockchain-Enabled DPKI where we mitigate

the problems related to centralization and transparency. The application scenario for

our proposition is illustrated in Figure 3.1, as well as the different entities and their

interactions, which are explained in detail further below. External clients may request

functions of certificate issuing, revocation, Online Certificate Status Protocol (OCSP)

requests, and others, through the system proxies. The proxies have direct communication

with the Blockchain peers in order to send transaction requests regarding DPKI functions.

We can see in the figure that an external client contacts a Proxy, for example for the issuing

of an X509v3 certificate, and the Proxy contacts the endorsers, which are responsible

to verify, through Smart Contract functions, and sign transactions and DPKI content.

Internal clients are inside the Blockchain network but in other channels. One example

of the participation of internal clients is the existence of a Supply Chain channel, where

all the participants of the channel use certificates issued by the DPKI channel. The

ordering service peers order all received transactions so the peers storing the transactions

in their local ledger have the same order of events and results. Various organizations can

participate in the system and agree upon the rules used in the issuing and revocation of

certificates. A valid scenario is the participation of existing PKI-owning organizations to

offer a DPKI, where each organization has an endorser in the network, to sign certificates

and other DPKI content, and one Proxy to enable the communication with external clients.

3.2 System Model

In our system model, distinct entities work cooperatively in a Blockchain in order to

support a DPKI. Instead of having a single and centralized CA, several nodes in the

Blockchain network act as if each one was a single CA (Endorser Nodes). Each CA node

signs a certificate received in an issuing request, where the issued X509v3 certificate ends

up with multiple signatures instead of one, as in traditional X509v3 certificates. Issued

certificates are then stored in the persistent and immutable ledger of the Blockchain to

offer transparency.

To facilitate the external client’s process to issue and manage certificates, there are

Proxies that act as intermediaries, and clients send the same data to a Proxy that would

send to a traditional CA. The Proxy handles the gathering of signatures and storage of

36

3.2. SYSTEM MODEL

Figure 3.1: Application Scenario

the certificate in the Blockchain, where its behavior can be validated by contacting an-

other Proxy or even the Blockchain directly. There may be internal clients, present in the

Blockchain, that contact the CA nodes directly. HLF has the notion of channels, and our

Blockchain-Enabled DPKI can be functioning in a specific channel, and in other chan-

nels can exist other types of applications such as Supply Chains, where the integrating

elements request certificate related operations to the DPKI channel.

Different entities or organizations participate in the consortium Blockchain, each

one possessing an Endorser Node that signs certificates and other DPKI-related material,

and a Proxy. Functions in Smart Contracts validate certificates through specific valida-

tions, and the trust level of a certificate can also be computed through Smart Contract’s

functions when requested by an internal or external entity. Inspired by the Pretty-Good-

Privacy (PGP) model, entities can sign issued certificates in order to increase their trust

level.

3.2.1 Entities

DPKI Proxy. Facilitates the contact between the external client and the Blockchain-

Enabled DPKI network. The external client contacts the Proxy to request operations of

the DPKI (e.g. issue, revoke). There may, and should, exist more than one Proxy. If four

organizations are cooperating in the consortium-based DPKI, each one has, for example,

one endorser signing certificate issuing requests and, optionally, one Proxy. This removes

single points of failure and a client can contact only one Proxy or several. When a Proxy

receives a certificate request from a client, it is responsible to send the certificate signing

request as a transaction to the Blockchain, collecting the signatures from the endorsers

to insert in the certificate and sending it to the Blockchain for storage and to the client.

37

CHAPTER 3. SYSTEM MODEL AND ARCHITECTURE

The system model supports two types of clients:

• External Client. The external client is the main client in the Blockchain-Enabled

DPKI. This type of client is not aware of the entities inside the Blockchain, only

knowing the outside Proxies information. In a traditional PKI, a client contacts a

CA to request the issuing of a certificate by sending the correspondent Certificate

Signing Request (CSR). In our system model, the client requests the certificate is-

suing in the same way by contacting the Proxy as if it was contacting a traditional

CA, sending the CSR. The Proxy handles the communication with the Blockchain

in the name of the client, returning the resulting issued certificate. The client may

also request other types of operations such as Certificate Revocation List (CRL), the

revocation status of a certificate through OCSP, and revocation requests. Informa-

tion received from the Proxy that was obtained from the Blockchain is signed by the

Blockchain entities that handled the request. This way clients can confirm that the

received data was not tampered or created by the Proxy. In case of doubt, clients

can go further and contact the Blockchain nodes directly.

• Internal Client. Entities inside the Blockchain may also request DPKI opera-

tions. This makes sense mainly in Blockchains with the notion of channels. The

Blockchain-Enabled DPKI can be running in a channel and an entity from another

channel (e.g. Cryptocurrency related) can request a certificate to use it in its chan-

nel.

The Blockchain supports the model and has several components and entities, offering

services and different service plains. We detail this later in this chapter. The Blockchain

entities are the following:

• Endorser. In our system model, endorsers not only validate and sign transaction

requests but also sign certificates, CRLs and OCSP responses that are validated

through Smart Contract functions.

• Orderer. In order to guarantee consistency and order regarding certificate opera-

tions (e.g. revocation), all types of transactions including certificate related, are

ordered for storage in the Blockchain ledger by the peers.

• Normal Peer. While transactions and other content are signed by the endorsers,

normal peers have the purpose of receiving, validating and storing the transactions

changes in their local ledger, offering integrity and transparency. The transactions

are delivered in blocks by the ordering peers.

38

3.2. SYSTEM MODEL

3.2.2 Interactions

The main interaction in our solution is regarding the issuing of X509v3 certificates. The

system model offers three types of interaction with the client, that are detailed further

below. We will focus on the external client, which we foresee to be the main one. The

internal client is expected to use the Self-Signed Certificate Model, where he acts as its

own proxy, managing the received signatures.

Figure 3.2: Standard Model Sequence Diagram

Standard Model. This interaction model is viewed as the main one, where the external

DPKI client contacts the Blockchain-Enabled DPKI as if it was contacting a traditional CA.

When requesting the issuing of a certificate, the client sends the same data that would

send a CA, a CSR. This model is illustrated in Figure 3.2. The client contacts the DPKI

Proxy, which acts as an intermediary, to request DPKI operations. The DPKI Proxy has

a component configured to communicate with the Blockchain peers, having information

such as their certificates stored.

1. The client sends a CSR to the DPKI Proxy, requesting an X509v3 certificate that is

validated by a smart contract and signed by the endorsing peers.

2. The DPKI Proxy does some initial validation to check if the CSR has a valid signa-

ture and attributes. If everything is valid, it generates an X509v3 certificate from

the client’s CSR and signs it.

39

CHAPTER 3. SYSTEM MODEL AND ARCHITECTURE

3. Having this initial certificate, the Proxy sends a transaction proposal request in-

cluding the certificate to the Blockchain with the purpose of having the Endorsers

validate and sign this certificate.

4. Each endorser validates the received certificate through a Smart Contract’s function.

The output of the validation function must be the same on every endorser. After

this validation, each endorser signs the certificate and sends the signature to the

Proxy.

5-6. The Proxy receives the signatures from the endorsers and validates them. It creates a

new X509v3 certificate from the client’s CSR again but now including the endorsers’

signatures. The Proxy itself signs the created certificate, acting as a CA. This way

the certificate has one standard signature (in the signature field) besides having the

endorsers’ signatures. Furthermore, we also obtain transparency, knowing which

Proxy acted as an intermediary in this process.

7. For persistence, future validation and transparency, the Proxy sends a transaction

request to store the issued X509v3 certificate in the Blockchain’s persistent ledger.

The endorsers validating the transaction validate all signatures created by the other

endorsers regarding the certificate.

8-9 Upon receiving the confirmation from the Blockchain that the certificate was vali-

dated and stored, the Proxy sends the final X509v3 certificate to the client, finalizing

the certificate issuing.

Self-Signed Certificate Model. If obtaining an X509v3 certificate issued by the

Blockchain-Enabled DPKI is not desired by the client, he may send a self-signed cer-

tificate instead of a CSR to the Proxy, requesting validation and signatures from the

Endorsers regarding its certificate. This model is illustrated in figure 3.3

1. The client generates a self-signed X509v3 certificate with the desired attributes and

extensions and sends it to the DPKI Proxy as a request to obtain the validation and

signature from the endorsers.

2-3. The DPKI Proxy validates the client’s certificate and associated signature and sends

a transaction proposal request including the certificate to the Blockchain in order

to obtain the endorsers’ validation and signatures.

4. As in Standard Model, each endorser validates the received certificate through the

Smart Contract function. After this validation, each endorser signs the certificate

and sends the signature to the Proxy.

5-6. The DPKI Proxy receives the signatures generated by the endorsers in the proposal

request, validates and sends them to the client.

40

3.2. SYSTEM MODEL

Figure 3.3: Self-Signed Certificate Model Sequence Diagram

7. The DPKI Proxy finalizes the transaction proposal by assembling the endorser’s

responses in a transaction and sends it to the Blockchain for final validation and

storage. This is not strictly necessary to the issuing of the certificate but offers

transparency by storing in the Blockchain the information related to this process.

8. Meanwhile, the client re-creates the self-signed X509v3 certificate by including the

signatures of the endorsers.

9-12. Optionally, the client may specify in the request sent to the DPKI Proxy to store

the final certificate in the Blockchain. This facilitates the process of other external

entities to validate the client’s certificate by contacting the Blockchain, which now

has the certificate and other information related to the issuing process. The DPKI

Proxy sends a transaction proposal to the Blockchain in order to store the certificate,

sending a response to the client about whether the certificate was stored successfully

or not.

CSR Model. A client may wish to have a certificate signed by a traditional CA that

41

CHAPTER 3. SYSTEM MODEL AND ARCHITECTURE

Figure 3.4: CSR Model Sequence Diagram

is already trusted in the outside environment. This model makes possible that a client

possesses a certificate that was signed by the Blockchain-Enabled DPKI, through its en-

dorsers, and by a traditional CA.

1. The client creates a CSR and sends it to the DPKI Proxy, requesting signatures from

the Blockchain-Enabled DPKI.

2. The DPKI Proxy executes basic validation regarding the CSR’s signature and at-

tributes.

3. If the validation is successful, the Proxy sends a proposal request including the

client’s CSR in order for the endorsers to validate and sign it.

4. Each endorser validates the CSR attributes and signature, signing it if the valida-

tions are successful.

5-7. The DPKI Proxy gathers and verifies the signatures from the endorsers, sending

them to the client. It also finalizes the transaction proposal sending the CSR and its

signatures for storage, for future validation and transparency.

8-9. The client re-creates the CSR by including the signatures of the endorsers. The final

CSR is sent to a traditional CA with the standard approach.

10. The traditional CA, whichever is chosen by the client, executes its process to validate

the client’s CSR and generates an X509v3 certificate. Although the CA must accept

the field that includes the endorser’s signatures.

42

3.3. REFERENCE ARCHITECTURE

3.2.3 Requirements

Our system model must hold the following requirements:

RQ1 BFT-Consensus and persistence of data regarding the read and write operations

related to the DPKI.

RQ2 DPKI Decentralization with cooperative issuing of certificates, with certificates au-

thenticated by cooperative Multi-Signatures or BFT Threshold Signatures, repre-

senting a cooperative CA

RQ3 Identity of the DPKI network participant entities and assure non-repudiation of

operations.

RQ4 Auditability and transparency of any DPKI related operation executed in the past

by any participant entity.

RQ5 DPKI should be accessible to internal and external entities of the Blockchain.

RQ6 A collaboration of organizations in the Blockchain in order to create Smart Contracts

that dictate rules regarding the certificate issuing process.

RQ7 Issuing and revocation requests should have a similar processing work in the client

such as in traditional PKI operations.

RQ8 Quick and easy obtention of revocation information by OCSP or CRLs.

RQ9 The trust level of certificates can change by having different entities signing specific

certificates if they desire.

RQ10 Processing and obtention of the trust level of certificates, measured by Smart Con-

tract functions.

RQ11 Smart Contracts with expressiveness to define the issuing, certification, validation

and revocation rules and invariants, and required trust metrics consistently defined

in the Blockchain

3.3 Reference Architecture

Our system aims to implement a decentralized PKI (DPKI) with auditability, transparency,

and non-repudiation of operations. To achieve this, the base of the system is the Blockchain

Technology. In order to have all the requirements in the Blockchain layer, we have an

extension layer of the Blockchain services. For the service to be more accessible to the

exterior, there is an API layer to facilitate the interaction and processing needed. All

these layers together form the architecture illustrated in Figure 3.5. The architecture sup-

ports the DPKI, as also the necessary communications for interested entities and clients.

43

CHAPTER 3. SYSTEM MODEL AND ARCHITECTURE

Figure 3.5: Architectural View

Support libraries for BFT-Consensus, BFT Threshold Signatures, and extended Smart

Contract logic, some of the desired requirements for this system, are implemented in

the work of [21], which extends the HLF, a consortium-based Blockchain, to have these

requirements. Since we also will use HLF, because of its permissioned-oriented collab-

orative consortium model and the notion of channels, we will take the work from [21]

and develop our solution having its extensions as the base, making the desired changes.

Smart Contracts in the HLF Blockchain are referenced as chaincode, therefore, we will

also use this term from here.

Base Hyperledger Fabric. HLF [26] offers some of the desired characteristics men-

tioned previously. Its consortium-like model enables the management of the different

type of peers that coexist in the Blockchain network. However, it does not possess the

Threshold Signature scheme that we desire and, although it is possible to plug consensus

mechanisms, it does not have a BFT consensus mechanism as one of its defaults.

44

3.4. SOFTWARE ARCHITECTURE COMPONENTS

Extended Hyperledger Fabric. Fortunately, work from [21] extends HLF by adding

to its base an extended Blockchain service layer that adds a fully decentralized threshold

group-oriented signature verification process of transactions, and extended Smart Con-

tracts that allow contracts not only to specify the properties of an application running

on a Blockchain system but also the properties of the system itself and how transaction

flows should occur. This extended layer also includes a consensus service [7] based on

the BFT-SMaRt [6] consensus mechanism, a PBFT-like mechanism that was modeled to

work with HLF. Besides those extensions, we added in the HLF’s ledger two virtual com-

ponents: a public ring with trust metrics of certificates and a private key ring. The public

ring serves to store the Blockchain Public-Key Certificate State (BCS), explained further

below, in which each peer has the same copy in its ledger, while the private key ring,

stores the private keys (or signature shares when a certificate uses threshold signatures)

of a peer, therefore being specific to each peer. Changes to the HLF’s Extended Signing

Policies Provider (XSPP) were also made in order to the endorsers sign certificates, with

multi-signatures or threshold signatures. Through these extensions, internal entities in

the Blockchain will be able to request certificate issuing.

Blockchain-Enabled DPKI Proxy. To facilitate the process of DPKI operations when

involving external clients (requirement RQ5), a Proxy layer was implemented. This is

important in order to external clients have the same process (e.g. same content format in

the requests) with the Blockchain-Enabled DPKI that they would have with a traditional

centralized process, following the requirement RQ7. The Proxy is able to communicate

with the Blockchain network through the client SDK, sending DPKI related transaction

proposals and receiving responses, also verifying transactions and certificates signatures.

It executes basic validations before sending the client’s requests to the Blockchain. An API

is offered to request DPKI operations regarding issuing, verification, and management of

certificates.

These layers form our Blockchain-Enabled DPKI solution, where clients do not have

more burden requesting DPKI operations and there is transparency regarding transac-

tions and certificates.

3.4 Software Architecture Components

3.4.1 Base Hyperledger Fabric

This is the layer in which our solution depends on. It could be used any permissioned-

oriented collaborative consortium Blockchain but, as mentioned previously, we chose

HLF due to its channels concept, being open-source, and having the work from [21] that

extends the HLF Blockchain with functionalities that we desire, such as BFT consensus

and BFT threshold signatures. It has Smart Contracts technology, named chaincode,

to define rules and functions that, in our system, will be used to define the issuing,

45

CHAPTER 3. SYSTEM MODEL AND ARCHITECTURE

revocation, and management of certificates.

Each network node has a copy of the ledger where it is stored information from trans-

actions that were fully ordered by the consensus protocol. This Blockchain has a high

performance of transactions throughput. Being permissioned, the participants are known

among themselves and not anonymous. They may not fully trust each other but the net-

work can be operated under a model with legal agreements or frameworks to manage

disputes.

Figure 3.6: Hyperledger Fabric Architecture

It is possible to insert consensus protocols. This is focused in more detail in the

Extended HLF layer components. It has also a new architecture for transactions, execute-

order-validate, shown in Figure 3.6 (from [26]), where:

1. Execute: Endorser executes the transaction and verifies its correctness, endorsing it

if the result is valid.

2. Ordering of transactions through the pluggable consensus protocol.

3. Validate: validate transactions through endorsement policies before committing

them into the ledger.

This allows parallel executions by eliminating non-determinism since the inconsistent

results in the execute phase can be rejected before the ordering phase. Performance and

scalability are improved because of this architecture.

The transaction flow is shown in Figure 3.7 (inspired by [26]) and is briefly the follow-

ing:

1. The client creates a transaction proposal to invoke a chaincode function with input

parameters and sends the proposal to the endorsing peers.

2. The endorsing peers, nodes responsible for the endorsement of transactions, verify

the transaction (e.g. clients’ signature and the result by simulating the chaincode

function). In this step, there are no updates to the ledger. The simulation generates

read and write sets that, along with the endorser signature, are sent to the client.

3. The client verifies the endorsers’ signatures and checks if the results from each

response are identical and, if so desires, submits the transaction to the ordering

service.

46

3.4. SOFTWARE ARCHITECTURE COMPONENTS

4. The ordering service does not verify the transaction content, it just receives and

orders transactions in blocks, to send them to the Blockchain peers.

5. Peers receive and validate transaction in blocks through the endorsement policy, and

ensure that no changes were made in the read variables since the transaction was

endorsed. Transactions are marked as valid or invalid. Each peer stores the block

with transactions in the ledger and commits the write sets. Invalid transactions are

also registered in the ledger.

6. The client is notified that the transaction was appended in the ledger. It is also

informed if the transaction was validated or not.

Figure 3.7: Hyperledger Fabric Transaction Flow

3.4.2 Extended Hyperledger Fabric

BFT Consensus. The base Hyperledge Fabric, although allowing the insertion of several

consensus algorithms, does not bring any BFT algorithm incorporated, only crash-fault.

We wish to have support for BFT consensus in our security requirements. We are not

interested in the consensus algorithms used in cryptocurrency-based Blockchains due

to their performance and attack vectors. The HLF extension on which we are building

our solution embedded a BFT ordering service [7] that is designed and implemented

47

CHAPTER 3. SYSTEM MODEL AND ARCHITECTURE

to incorporate in the HLF’s consensus mechanism. This service is built on top of BFT-

SMaRt [6], which is based on a PBFT algorithm and receives transactions that are waiting

to be stored in the Blockchain ledger, to group them in blocks, distributing those blocks

through the Blockchain network nodes in order to validate and store them in the ledger.

The BFT-SMaRt algorithm assumes the standard BFT-SMR model in which there are

3f + 1 replicas to tolerate f byzantine faults. It is open-source and was the first BFT

SMR library to support reconfigurations of sets of replicas and to offer transparent and

efficient support for durable services. In this consensus service, depicted in figure 3.8

(from [7]), built for HLF, the consensus nodes execute a BFT consensus protocol. There is

a set of 3f + 1 ordering nodes and an arbitrary number of frontend nodes. The ordering

nodes execute a distributed consensus protocol to establish the total order of transactions.

The frontend nodes execute the relay of transactions sent by clients to the consensus

protocol. The authors from this extended HLF [21] made some changes to this consensus

service to make adaptations to allow, for example, the submission of transactions to

the consensus replicas by multiple organization memberships, since in this extension

multiple organizations have more than one signature per transaction.

Figure 3.8: BFT Consensus service for Hyperledger Fabric

XSPP. Network nodes sign transactions to endorse them. Generally, the scheme used

in this type of Blockchains is multi-signatures, which is present in the base HLF. Each

endorsing peer signs a transaction and the envelope that contains endorsers’ signatures,

built by the client with the received signatures, has a signature for each endorser, using

the standards RSA or ECDSA. In order to improve the fault-tolerance of the system,

the work from [21] incorporated the extension XSPP, which contains signing policies

based on threshold signatures, that are explained in section 2.4.4. This signature scheme

improves the signature verification by using less storage and verifications when compared

to the multi-signature scheme since only one signature is validated. This scheme also

removes single points of failure, wherein multi-signatures, if the verification or creation

of a signature fails, the transaction involved may become invalid. This extension adds

48

3.4. SOFTWARE ARCHITECTURE COMPONENTS

signing and verification functions to the transaction flow when using threshold signatures.

The signature scheme to use in the endorsement of transactions is specified in a Smart

Contract.

For our solution, we also made changes to this component in order to have endorsing

peers sign certificates with the specified signature scheme, which works as the transaction

signing process.

Threshold Signatures

Threshold signatures are implemented in a cryptographic service (implemented in [21])

as a service plane of the Extended HLF. The signature models correspond to the model

from [61], which were previously discussed.

Certificate Issuing

Figure 3.9: Certificate Validation and Signature

49

CHAPTER 3. SYSTEM MODEL AND ARCHITECTURE

In this system it is possible to request signatures from the endorsing peers, that are

seen as a cooperative CA, through the invocation of a chaincode function, giving a CSR

or X509v3 certificate as input. A simplified version of this process is shown in figure 3.9.

Each endorsing peer receives the CSR or X509v3 certificate to sign and verifies it through

the simulation of the function invoked by the client to request the signatures. This

function has verifications that may vary from function to function. If the verification is

successful, the endorsing peer makes a request to the component responsible for signing

transactions and certificates, Endorsement System Chaincode (ESCC), to create a signa-

ture from the CSR or certificate. This component queries the chaincode to obtain the

signature scheme to use. If multi-signature is the scheme specified, it uses the default

mechanism. If it is threshold signature, uses the XSPP to create a threshold signature

with its private share. At the end of this process, if successful, the endorsing peer re-

sponds to the transaction proposal by sending the built signature. The client takes all the

received signatures, verifies them, and inserts them into the updated CSR or certificate.

This process is similar to the transaction signing process, the main difference here is the

CSR or certificate verification in the chaincode function.

Private Key Ring

Certificate signing keys are stored in each endorsing peer as each one has a private

key ring, each private key belonging and stored in a single peer of course. Various types

of keys may be stored for multi-signatures and threshold signatures. New keys or shares

(threshold signatures) can be stored over time. The component responsible for signing

certificates reads these keys to sign a CSR or X509v3 certificate.

Public Ring

Certificates and their related information can be stored in the Blockchain ledger, main-

tained by each participating peer. Every action related to the management of certificates,

either successful or not, can be stored in the ledger for transparency and future valida-

tions. In order to facilitate the reading of certificates information, their information could

be grouped and condensed in an easy to read structure. An example of a structure is the

Blockchain Public-Key Certificate State (BCS) table, shown in figure 3.10.

Figure 3.10: Blockchain Public-Key Certificate State (BCS)

The BCS would be built by running through all transactions related to certificates

in the public ledger and using their information, present in every peer, to construct the

50

3.4. SOFTWARE ARCHITECTURE COMPONENTS

table. These transactions include issuing or revocation of a certificate, signing of a peers

certificate by any other peer, and others. For instance, the column related to the certificate

signatures can be built by going through all the transactions that involve a peer signing

that certificate. We should reinforce that this BCS is not initially visible as a table in the

public ledger, the idea is that the data needed to build it is present in the ledger. After

building it, the table may then be stored in the ledger. As such, if we wish to have a

version of this table present in the ledger, it is needed that a peer builds it. We see two

ways of doing this, either there are peers with a specific role designed to construct this

table when needed or between time intervals, or any peer is allowed to do it and receives

a monetary reward for putting in the computational time and effort.

Certificate Trust Level

Another aspect present in our solution is the possibility of having a level of trust in

certificates, measured by Smart Contract functions. This is inspired by the PGP’s Web-of-

Trust scheme, where users have key rings in order to store the public keys of other users

and assign levels of trust to each entry since public keys collect signatures throughout

time. In our system model certificates may have different levels of trust, depending on

the signatures that certified them and computations from Smart Contract functions. The

fact that the trust level is derived through defined Smart Contract functions and not by

each individual user, addresses the asynchronous process of convergence issue in the

Web-of-Trust model, where there are different management and storage of keys by each

user. Certificates are signed by the same group of endorsing peers acting as a cooperative

CA, offering an amount of consistency regarding the signatures on each certificate. The

level of trust starts to deviate when different entities sign different certificates and Smart

Contract functions compute the level of trust of certificates based on the number of

signatures and which entities signed them. As expected, this level of trust will probably

mean nothing to entities outside the Blockchain environment, since they are not aware

of the system logic of certificates issued in the Blockchain-Enabled DPKI. This is mainly

useful for applications running in different Blockchain channels, aware of the system

logic, or external applications that somehow follow this logic. A client requesting the

issuing of a certificate through the Blockchain-Enabled DPKI may not want any part of

this level of trust model, choosing not to participate in this logic. Figure 3.11 shows an

example of the level of trust of an X509v3 certificate, different chaincodes may generate

different levels of trust for certificates.

Extended Smart Contracts

Another extension added in the work from [21], that is also useful for our solution, is

the Extended Smart Contract Logic. Succinctly, it is a structure that consists of having

three types of property sections in Smart Contracts or chaincodes:

• Base: existing properties in the base chaincodes. Contains properties such as the

chaincode ID.

51

CHAPTER 3. SYSTEM MODEL AND ARCHITECTURE

Figure 3.11: Example of Certificate Trust Level

• Extended: properties related to the extended layer. Examples of useful properties

to incorporate are the signature scheme to use in transaction endorsement or the

number of nodes necessary to sign transactions related to the chaincode.

• Application: any application-related property.

Different properties can be incorporated into different chaincodes as needed. For our solu-

tion, the needed properties are the signature mechanism to use when signing certificates,

which can be different from the one used in transaction signing, nodes in the coopera-

tive CA, and others. A structure example of extended properties is shown in Listing 3.1.

We interpret DPKI-related properties as extended system properties and not application

properties, mainly due to the fact that several of those properties will be read by internal

Blockchain components when signing and managing transactions and certificates.

Listing 3.1: Example of an Extended Smart Contract

1 ExtendedSmartContractProperties DEFINITIONS : : = BEGIN

2

3 Transact ion : : = SEQUENCE {

4 Id OBJECT IDENTIFIER ,

5 Payload BIT STRING

6 }

7 LedgerData : : = SEQUENCE {

8 Key OBJECT IDENTIFIER ,

9 Value BIT STRING

10 }

11 BasePlatformSystemPropert ies : : = SEQUENCE {

12 ContractId OBJECT IDENTIFIER ,

13 TransactionLog SEQUENCE(SIZE (0 . . 9 9 9)) OF Transaction ,

14 LedgerRecords SEQUENCE(SIZE (0 . . 9 9 9)) OF LedgerData ,

15 . . .

52

3.4. SOFTWARE ARCHITECTURE COMPONENTS

16 }

17 ExtendedSystemProperties : : = SEQUENCE {

18 TransactionSignatureScheme INTEGER (0 . . 3) ,

19 TransactionWitnessNodes SEQUENCE(SIZE (0 . . 1 0)) OF IA5String ,

20 CooperativeCASignatureScheme INTEGER (0 . . 3) ,

21 CooperativeCAWitnessNodes SEQUENCE(SIZE (0 . . 1 0)) OF IA5String ,

22 C e r t i f i c a t e I s s u i n g R u l e s SEQUENCE(SIZE (0 . . 9 9 9)) OF IA5String ,

23 ValidFrom IA5String ,

24 ExpiresOn IA5String ,

25 AvailableDPKIFunctions SEQUENCE(SIZE (0 . . 2 0)) OF IA5String ,

26 . . .

27 }

28 Appl ica t ionProper t i e s : : = SEQUENCE {

29 . . .

30 }

31 END

Internal DPKI Client

Entities within the Blockchain can also execute requests related to the management

and issuing of certificates. This is mainly useful for nodes of other channels, where a

node may participate for example in a supply chain channel and wishes to invoke a chain-

code function from the Blockchain-Enabled DPKI channel to request signatures for its

certificate. The certificates used in that channel could even operate fully through the

management and signatures of the cooperative CA. Internal clients, although they can,

will probably not have the necessity of using a Proxy to invoke DPKI-related operations,

since they can be aware of the existing nodes that they need to contact to request cer-

tificate related operations. Even nodes inside the DPKI channel may invoke this type of

operations in order to collect more signatures or revoke an owned certificate.

3.4.3 Blockchain-Enabled DPKI Proxy

This layer is responsible for the intermediation between the external client and the

Blockchain.

Proxy API. This API allows external clients to contact the Proxy in order to make

requests related to certificates regarding their verification and management. The requests

that should be available are the following:

• issueCertificate(CSR)

• dpkiSignaturesRequest(X509v3SelfSignedCert or CSR)

• getCertificateRevocationList()

• getOcsp(certificateNumber, detailLevel)

53

CHAPTER 3. SYSTEM MODEL AND ARCHITECTURE

• revokeCertificate(serialNumber, signature)

DPKI Logic. In receiving and sending requests related to certificates in several for-

mats (e.g. PEM, PKCS#12), it is necessary to have the processing of those formats as

their conversions as well. This component is also used to take the Blockchain endorsers

signatures and insert them in new or existing certificates. We follow the standard model

X509v3. Signatures of the Blockchain-Enabled DPKI are inserted as an extension in an

X509v3 certificate. This is shown in Figure 3.12 where it specifies the type of signature

used (e.g. multi-signatures or threshold signatures) and the collection of signatures (or

signature shares if using threshold signatures).

Verification of CSRs and certificates. Despite the final and main verifications are

made in chaincode functions, with previously established rules, Proxies may execute

simple initial verifications. This allows, for example, to have some filtering of certificate

requests. A possible idea is for the Proxies to have some sort of cache for common requests,

in order to avoid to constantly contact the Blockchain to request revocation lists, state of

certificates, and others.

Client SDK. This component is responsible for the communication with the Blockchain

nodes. It has the necessary material to communicate with the nodes with authentication.

Since the Proxy, normally, belongs to one of the entities participating in the Blockchain

network, that material is previously installed and configured. It will have access to in-

formation regarding the available functions of the various chaincodes installed in the

DPKI channel. If it does not have information of a certain chaincode, it is possible to

obtain it through a query to the Blockchain. It builds the transaction proposals to invoke

chaincode functions with certain parameters. Those functions will be mainly related to

the issuing and management of certificates. Transactions are signed with the client SDK

credentials. It also receives the endorsers’ responses regarding transaction endorsements

and certificate signatures.

Certificate Signature Validation. This component is in charge of validating signa-

tures, mainly from endorsers, regarding certificates and their issuing process. In the

construction of a Proxy, it is installed, safely, the cryptographic material (e.g. public keys

of endorsers, and or threshold public key if threshold signatures are also being used) nec-

essary for these validations. When the Proxy asks for the endorsers’ signatures concerning

a certificate, it verifies them before inserting them into the certificate. An external client

may also execute these validations if it has access to the public keys.

XSPP. This component comes from the extension work in [21]. It is a modification

of the HLF’s standard client SDK in order to read and validate transactions signed with

the threshold signature protocol. We also modified it to read the endorsers’ signatures

regarding certificates.

54

3.5. ADVERSARY MODEL CONSIDERATIONS

Figure 3.12: Blockchain-Enabled DPKI X509v3 certificate

3.5 Adversary Model Considerations

In order to have a suitable and practical solution for a Blockchain-Enabled DPKI, we need

to define an adversary model, which is explained ahead.

The primary processing is in the Blockchain and its related services. We need to

address that there may exist external threats with the objective of compromising the

system processes, transactions, consensus, and communications. To maintain a secure

and functional DPKI it is necessary to guarantee that the decisions and the storage in the

ledger are not compromised. The BFT Consensus integrated in the extension layer by [21]

brings those guarantees.

It is also correct to assume that it may exist internal threats. Nodes inside the Blockchain

may show byzantine behavior when processing transactions and endorsements. Since we

are implementing a DPKI, with sensible operations regarding issuing and revocation of

certificates, we should have an elevated secure level tolerant to intrusions with BFT as-

sumptions. BFT Consensus is also suitable for this type of threat. We assume that the

minimum number of correct nodes is never compromised to maintain the conditions of

liveness and safety of the BFT consensus protocol.

Communication channels may also be compromised by adversaries. Because of this,

communications should be secured with TLS support, joined by multi-signatures or BFT

threshold signatures in the endorsement and verification of transactions and certificates.

Proxies are controlled by entities that participate in the Blockchain network, we do

not assume that more than a minimum (e.g. BFT consensus minimum) are compromised.

If for example a single Proxy is compromised, the Proxy is removed and the external

client contacts another Proxy

55

CHAPTER 3. SYSTEM MODEL AND ARCHITECTURE

Denial of Service (DoS) and Distributed Denial of Service (DDoS) attacks are out of

the scope of this dissertation and we did not consider them in the system model.

3.6 Summary

In this chapter, we presented the system model for the Blockchain-Enabled DPKI. The

entities and their interactions with the system were briefly explained, as well as the main

components that are required for deployment. We used HLF as the Blockchain compo-

nent in the presentation model due to the characteristics previously mentioned. System

requirements were also defined in order to build a suitable and secure model. Considera-

tions were made regarding the adversary model and its impact on the construction of the

presented model, which we also discussed. In the following chapter, we will present the

prototype that was developed through the system model, detailing further the aspects of

a possible implementation.

56

C
h
a
p
t
e
r

4
System Implementation

In this chapter, we present the prototype developed by following the system model pro-

posed in Chapter 3. We start by presenting the prototype overview and technologies,

and then we present the prototype implementation. The prototype code regarding the

Blockchain network, Proxy, and extensions of HLF is in the central repository1.

4.1 Prototype Overview and Technologies

The main services and components of our prototype are the following:

• Blockchain services. For the Blockchain services, we used the Hyperledger Fabric

(HLF) [26] platform, due to its characteristics, mentioned in previous chapters, with

support for threshold signatures and BFT consensus through the extension made

by [21]. We also made changes to the implementation to enable the signing of

DPKI content given by specific Chaincode functions. The implementation code of

HLF and its extensions is supported in Golang language, and the version used is

Go 1.12.1. The consensus mechanisms and signature components made by [21] are

made in Java language (Java 9) and use UNIX domain sockets for the communication

between the Golang and Java processes. The exchange of information with HLF is

made through gRPC2 with Protobuf serialization.

• Proxy component. Acts as an intermediary to facilitate and standardize the relation

of the client with the Blockchain network. Executes basic conversions and verifi-

cations before relaying the client requests to the Blockchain. It is also in charge of

some DPKI operations such as inserting the endorsers’ signatures in a new issued

1Central repository of the Blockchain-Enabled DPKI prototype: https://github.com/miguelreisa/

thesis-prototype-general
2gRPC framework: https://grpc.io/

57

https://github.com/miguelreisa/thesis-prototype-general
https://github.com/miguelreisa/thesis-prototype-general

CHAPTER 4. SYSTEM IMPLEMENTATION

X509v3 certificate. For the proxy server, it was used Java language (Java 8) with

the Spark Framework 2.8.03 to implement a REST API to provide endpoints so the

client is able to communicate with the Proxy. The messages exchanged between

the client and Proxy are in JSON format. Certificates, Certificate Signing Requests

(CSRs) and other types of DPKI information are in Base64 when exchanged be-

tween the client, the Proxy, and the Blockchain peers. The Proxy interacts with the

Blockchain by using an extended implementation of the HLF Java SDK 1.1, made

by [21] to function with threshold signatures, and was further extended by our work

to receive and interpret DPKI-related signatures. Bouncy Castle4 version 1.59 was

also used for the cryptographic functions.

• DPKI Chaincode. We address the HLF Chaincode created to execute DPKI-related

operations as a component, due to its importance in this system. The Chaincode

program chosen to run DPKI operations runs in a secured Docker container that

isolated from the endorsing peer process. The result of the called function must

be the same in all computations called by endorsers to be valid. If, for instance,

the verifications of a certificate issuing process do not have the same result in all

computations, that process is aborted. As the HLF code, the Chaincode is also in

Golang with the version 1.12.1.

• DPKI Content For all the DPKI-related data, the RFC 5280 X509v3 [29] format was

used. This standard is in all issued certificates, Certificate Revocation List (CRL),

and Online Certificate Status Protocol (OCSP) responses.

• Test tools and benchmarks to validate and analyze the implementation and its

difference to traditional PKIs.

Docker containers were used in order to be possible to run multiple Blockchain net-

work nodes in a single machine. Each node has a dedicated container for its local ledger.

This virtualization facilitated the implementation of the prototype, as its benchmarks. It

was used version 18.09.03 of Docker CE5 and version 1.23.2 of Docker Compose6.

4.2 Prototype Implementation

4.2.1 Blockchain Network

As mentioned previously, HLF was used due to its characteristics and extensions from [21].

For the implementation of the Blockchain-Enabled DPKI, the main changes were made in

the Endorsement System Chaincode (ESCC) component, for the signing of DPKI content,

which explained further in Subsection 4.2.4. The Chaincode explained in Subsection 4.2.3

3Spark Framework: http://sparkjava.com/
4Bouncy Castle: https://www.bouncycastle.org/
5Docker CE: https://docs.docker.com/install/
6Docker Compose: https://docs.docker.com/compose/

58

4.2. PROTOTYPE IMPLEMENTATION

is another important component for the management and validation of DPKI-related

functions that produce DPKI content to be signed by the endorsers through the ESCC

component.

4.2.2 DPKI Proxy

The proxies are the gateway between external clients and the Blockchain-Enabled DPKI

network.

4.2.2.1 Proxy REST API

A REST API is exposed by the Proxy to enable clients the request of issuing and manage-

ment of certificates. The endpoints are briefly explained in Table 4.1 and detailed further

below.

• Issue X509v3 Certificate: the proxy receives a CSR in order to create a new X509v3

certificate created and signed by the Blockchain-Enabled DPKI system. The proxy

that receives the request executes the following steps:

1. Verifies the CSR content and signature (basic verifications since the Chaincode

function is responsible for verifying if the specified rules are followed).

2. Creates the associated X509v3 certificate from the CSR received, with pre-

established start and expiration dates. The DPKI Chaincode then verifies if

the dates are correct, accepting or not the certificate to be issued.

3. The proxy acts as a traditional CA, signing the certificate and storing the signa-

ture in the associated fields. This also offers transparency regarding the Proxy

that was responsible for the issuing process of this certificate.

4. Sends a transaction proposal using the DPKI Chaincode function responsible

for the issuing of certificates. This proposal is used to gather the signatures

from all endorsing peers, which are endorsing this certificate. The Chaincode

function process is explained further in this chapter. The only argument of

this proposal is the generated X509v3 certificate in Base64 PEM format.

5. After receiving the responses from the proposal, and confirm that they are

coherent (e.g. the output of the simulation of the Chaincode function is the

same in all endorser responses), for each response:

5.1 Checks if the response contains a signature regarding the DPKI content of

the transaction, which in this case is the signature of the endorser regard-

ing the X509v3 certificate created by the proxy.

5.2 Verifies the transaction signature. If using threshold signatures, uses the

functions added by [21] in the SDK extensions.

59

CHAPTER 4. SYSTEM IMPLEMENTATION

Endpoint Description

/getChaincodeDefinition

By using this endpoint, external clients
can obtain information about the Chain-
code and Blockchain-Enabled DPKI such
as the cryptographic algorithms used
and endorsers public keys. This way
any external client can obtain enough in-
formation to verify X509v3 certificates,
OCSP responses, and CRLs issued by the
Blockchain-Enabled DPKI.

/issueX509v3Certificate

Receives a CSR in order to create a new
X509v3 certificate, created and signed
by the Blockchain-Enabled DPKI system.
The newly issued X509v3 certificate is re-
turned in Base64.

/signCSR

Receives a CSR to obtain signatures from
the Blockchain-Enabled DPKI system in
order to use it to issue certificates with
another DPKI. The CSR, with the added
signatures, is returned in Base64.

/signSelfSignedX509v3Certificate

Receives a Self-Signed certificate to obtain
signatures from the Blockchain-Enabled
DPKI system. The self-signed certificate
with the added signatures is returned in
Base64.

/revokeX509v3Certificate

Revoke a certificate and issue a new CRL
with this certificate included. Receives
the certificate serial number and a signa-
ture created by the client to ensure that
the entity requesting the revocation is the
owner of the certificate. The newly issued
CRL is returned in Base64.

/getX509v3CertificateBySerialNumber

Search a certificate issued by the
Blockchain-Enabled DPKI with the given
serial number. Certificate is returned in
Base64.

/crlRequest
Obtain the Blockchain-Enabled DPKI last
updated CRL in Base64.

/ocspRequest/:serialNumber

Obtain the OCSP regarding the x509v3
certificate with the given serial number.
The OCSP returned, contaning the sta-
tus of the certificate (good, revoked or un-
known), is signed by all the endorsers

Table 4.1: Proxy REST API Endpoints

60

4.2. PROTOTYPE IMPLEMENTATION

5.3 Verifies the endorser signature regarding the certificate. We assume that

each Proxy obtains the endorsers DPKI certificates before the Blockchain-

Enabled DPKI system is initialized. If threshold signatures are being used,

we use the functions added by [21], regarding an existing threshold signa-

ture library7, in the SDK extension. When the Proxy server is starting, it

queries the DPKI Chaincode to obtain the signature type and algorithm

being used, storing them for future validations and signatures. It then

adds that signature in a list to be later stored in a certificate extension.

6. Finalizes the transactional proposal by sending the transaction with all the

endorsements. This is what makes the transaction to be committed in the

ledger, offering transparency in the DPKI operations.

7. Inserts the signature type that is used by the DPKI in the X509v3 certificate as

an extension, with OID 2.5.29.89.

8. Inserts the signatures list, added in 5.3, in the X509v3 certificate as an exten-

sion, with OID 2.5.29.90.

9. Optionally, inserts the original X509v3 certificate, without the Blockchain-

Enabled DPKI related extensions, in Base64 format, as an extension with OID

2.5.29.88. This way, the verification of the signatures generated by the en-

dorsers is easier. It should be taken into consideration that this makes the

certificate size increase considerably.

10. Re-generate the X509v3 certificate, now with the endorsers’ signatures. The

proxy also acts as a traditional CA by signing the certificate.

11. A new transaction proposal is sent in order to store the newly issued X509v3

certificate in the Blockchain ledger, where it can be re-verified before the stor-

age process. This proposal follows the HLF traditional flow, verifying the

transaction responses, sending the response with the endorsements, etc..

12. Send a response to the client, with his X509v3 certificate in Base64 PEM format,

concluding the issuing of the certificate.

In the other models, either signing a CSR or a Self-Signed certificate from the client,

the steps are similar. The only difference is that the Proxy does not issue a new

X509v3 Certificate, only obtaining and inserting the signatures from the endorsers

regarding the CSR or Self-Signed Certificate.

• Revoke X509v3 Certificate: The proxy receives the client’s certificate to be revoked

in Base64 PEM format, a nonce created by the client, and a signature, also created

by the client. The content of the signature is PEM of the certificate to be revoked,

together with the given nonce. This is used to verify that the client requesting the

revocation is, in fact, the owner of the certificate. The process related to sending

7https://github.com/sweis/threshsig

61

CHAPTER 4. SYSTEM IMPLEMENTATION

the transaction and verifying the endorsers’ signatures regarding the DPKI content

is the same as the issuing process. The arguments for the transaction proposal are

the certificate to be revoked, the client’s nonce and signature, and the date of the

revocation, which is created by the Proxy at the moment that the revocation proposal

is built. If the revocation date was created by the Chaincode function, which is run

by each endorser’s Chaincode simulator, the output date would be different in each

simulation. Each proposal response contains the new CRL containing the client’s

certificate, which is the same in each response, otherwise, the process is aborted

since the Chaincode function simulations did not produce the same result. Each

response also contains the associated endorser signature regarding the new CRL.

The proxy then adds the endorsers CRL signatures in the new CRL, inserting them

in the CRL extensions, with the OID mentioned before. A different Chaincode

DPKI function is used by the proxy to store the new CRL, containing the endorsers’

signatures. This function may also verify that the endorsers’ signatures inserted by

the proxy are in fact valid.

• Get X509v3 Certificate: the proxy receives the serial number of the X509v3 certifi-

cate to search and returns the certificate if it is present in the Blockchain’s ledger.

The Chaincode function creates a query to search for the certificate. The fact that

the response from the function simulation in each endorser needs to be the same,

in order to the transaction be valid, offers data consistency.

• CRL Request: this endpoint is used to obtain the Blockchain-Enabled DPKI’s cer-

tificate revocation list. The CRL that is returned is stored in the Blockchain’s ledger

and contains each endorser’s signature and the signature type, both stored in the

CRL extensions. As in searching for a certificate, the function simulation in each

endorser needs to be equal, offering data consistency.

• OCSP Request: this endpoint is used to obtain the current status of the certificate

with the serial number received as input. The Proxy creates a transaction proposal

for the Chaincode function responsible to obtain the status of the certificate. The

OCSP status is generated by the Chaincode by querying the Blockchain’s ledger.

The different possible status follow RFC 5280 [29] (good, revoked, or unknown). It

would be possible executing optional logic that may attribute a certain level of trust

level to the certificate. This trust level mechanism was introduced in Subsection

3.4.2. The OCSP response is then returned to the client, which also contains the

endorsers’ signatures so it is possible to verify that the certificate status is correct

and endorsed by the endorsers.

The REST API uses the interface shown in Table 4.2 to operate the requests and relay

the requests as transaction proposals to the Blockchain.

62

4.2. PROTOTYPE IMPLEMENTATION

4.2.2.2 Proxy SDK Client

The proxy SDK client enables the communication with the Blockchain’s peers in order

to send transaction proposals regarding DPKI requests and content. The base functions

of the SDK that enable this communication are from the official HLF 1.18, together with

extensions9 from [21] to enable the use of threshold signatures in transactions. We also

added changes10, to enable the signing of DPKI content.

The interface of the DPKI-related functions that communicate with the Blockchain

peers via transaction proposal is represented in Table 4.2.

SDK Function Description

getChaincodeDefinition

Makes a query to the Blockchain’s Chain-

code to obtain all the information re-

garding the Chaincode and Blockchain-

Enabled DPKI properties such as crypto-

graphic algorithms and endorsers public

keys. This way the Proxy can give rele-

vant information to external clients.

requestSignaturesForClientCertificate

Creates a X509v3 Certificate from a

client’s CSR (proxy acts as CA) and sends

the certificate in a transaction proposal in

order for the endorsers to sign the certifi-

cate. Inserts the signatures in the exten-

sions of the X509v3 Certificate. Receives

the client CSR as a parameter and returns

the BLockchain-Enabled DPKI approved

X509v3 Certificate containing the signa-

tures generated by the endorsers.

requestSignaturesForClientCSR

Takes the client’s CSR and sends it in a

transaction proposal in order for the en-

dorsers to sign it. Receives the client CSR

as a parameter and returns the received

CSR, together with the signatures gener-

ated by the endorsers.

8HLF SDK 1.1: https://github.com/hyperledger/fabric-sdk-java/tree/release-1.1
9Extended HLF SDK 1.1 for threshold signatures: https://github.com/fmiguelgodinho/

fabric-sdk-java
10Extended HLF SDK 1.1 for threshold signatures and signed DPKI content: https://github.com/

miguelreisa/thesis-prototype-general/tree/master/fabric-extended-java-sdk

63

https://github.com/hyperledger/fabric-sdk-java/tree/release-1.1
https://github.com/fmiguelgodinho/fabric-sdk-java
https://github.com/fmiguelgodinho/fabric-sdk-java
https://github.com/miguelreisa/thesis-prototype-general/tree/master/fabric-extended-java-sdk
https://github.com/miguelreisa/thesis-prototype-general/tree/master/fabric-extended-java-sdk

CHAPTER 4. SYSTEM IMPLEMENTATION

requestSignaturesForClientSelfSignedCert

Takes the self-signed certificate of the

client and sends it in a transaction pro-

posal in order for the endorsers to sign it.

Receives the self-signed certificate from

the client and returns it, together with the

signatures generated by the endorsers.

getX509v3CertificateBySerialNumber

Makes a query to the Blockchain’s ledger

using a transaction proposal regarding a

X509v3 Certificate, with the specified se-

rial number. Receives the serial number

to search as a parameter and returns the

corresponding X509v3 Certificate if it is

present in the ledger.

ocspRequest

Sends an OCSP request as a transaction

proposal to the Blockchain’s Chaincode

regarding the serial number specified by

the client. Receives the serial number as a

parameter and returns the OCSP response

with the status of the certificate and the

signatures generated by the endorsers re-

garding the OCSP response. Optionally,

it may return the trust level of the certifi-

cate if the Chaincode provides it.

revokeCertificate

Asks the Blockchain-Enabled DPKI to re-

voke the client’s certificate via transaction

proposal. The Chaincode function is re-

sponsible to verify if the client that sent

the certificate to be revoked is, in fact, its

owner (via signature). Receives the serial

number or base64 PEM of the certificate

to be revoked, together with a nonce and

a signature involving the base64 PEM and

nonce. Returns the newly generated CRL,

now containing the revoked certificate.

crlRequest
Asks for the Blockchain-Enabled DPKI’s

Certificate Revocation List using a trans-

action proposal for the Chaincode.

Table 4.2: Proxy HLF SDK Client Interface

64

4.2. PROTOTYPE IMPLEMENTATION

4.2.3 DPKI Chaincode

One of the most important components in the prototype is the main DPKI Chaincode.

This Chaincode contains the DPKI-related functions that need to be run in order to is-

sue, revoke and manage certificates, as to obtain CRLs and OCSP responses. Table 4.3

describes the functions present in the system’s Chaincode. It is worth mentioning that

each function, if multi-signatures are being used, begins by verifying if all endorsers

already signed each other’s public keys in order to start the Blockchain-Enabled DPKI

services. This is explained with more detail in Section 4.2.5. All functions are used by

the Proxy except the ones mentioned otherwise. An example of a Chaincode (simplified)

is in Annex I. The complete Chaincode function is present in the central repository of

the prototype11. The idea is to exist liberty in the definition of properties and functions

and the possibility to have different Chaincodes to manage DPKI content differently. The

Chaincode functions to issue and manage certificates must contain certain validations in

order for the endorsers to sign and endorse certificates, OCSP responses, and revocation

lists.

Chaincode Function Description

Init

Called when the Chaincode is instanti-

ated by the Blockchain network. Stores

the properties given in the Chaincode in-

stantiation request.

getChaincodeDefinition
Obtain the Chaincode properties such as

the DPKI content signature type and algo-

rithm, or the endpoints of each endorser.

getEndorsementMethod
This function is called by the system

ESCC to identify the signing method for

transaction proposals.

getDPKISignatureMethod
This function is called by the system

ESCC to identify the signing method for

DPKI content.

checkEndorsersPubKeySignatures

Check if all endorsers have their public

keys signed by all other endorsers. This

is used to know if the endorsers accept

and trust each other in order to start the

Blockchain-Enabled DPKI services.

11Central repository of the Blockchain-Enabled DPKI prototype: https://github.com/miguelreisa/

thesis-prototype-general

65

https://github.com/miguelreisa/thesis-prototype-general
https://github.com/miguelreisa/thesis-prototype-general

CHAPTER 4. SYSTEM IMPLEMENTATION

signEndorserPubKey

Used by the endorsers to sign the public

key of the specified endorser. It is only

used in multi-signatures since in thresh-

old signatures there is only one public key

shared by all endorsers, and therefore it is

assumed that all endorsers trust that key.

signX509v3Certificate

Used by the Proxy to gather signatures

from the endorsers regarding the newly

issued X509v3 certificate. This func-

tion should execute validations before re-

turning the X509v3 certificate so the en-

dorsers may sign it.

signClientSelfSignedX509v3Certificate

Used to gather signatures from the en-

dorsers of a client’s self-signed certificate.

Like the previous function, this should

also execute validations.

signClientCSR

Used to gather signatures from the en-

dorsers of a client’s CSR. As the previous

function, this should also execute valida-

tions.

ocspRequest

Obtains the certificate with the given se-

rial number from the ledger, verifying

it against the currently active CRL, also

stored in the ledger. Besides returning the

OCSP of the certificate, it may also return

the trust level of the certificate, defined

by a algorithm used in the function.

getCRL
Return the CRL stored in the Blockchain’s

ledger.

revokeX509v3Certificate

Receives the client’s certificate in Base64

or only the serial number of the certificate

to revoke, together with a signature from

the client to ensure that he is the owner

of the certificate. Generates and returns

a new CRL containing the newly revoked

certificate.

getX509v3CertificateBySerialNumber
Search for a certificate with the given se-

rial number in the Blockchain’s ledger.

66

4.2. PROTOTYPE IMPLEMENTATION

storeX509v3Certificate

Store a newly issued X509v3 certificate,

validated and signed by the Chaincode

and endorsers, in the Blockchain’s ledger

for transparency, integrity, and the possi-

bility to obtain the certificate in the fu-

ture.

storeSignedCSR

Store a CSR validated by the Chaincode

and signed by the endorsers for trans-

parency, integrity, and the possibility to

obtain the CSR in the future.

storeSelfSignedCert

Store a Self-Signed certificate validated

by the Chaincode and signed by the en-

dorsers for transparency, integrity, and

the possibility to obtain the certificate in

the future.

Table 4.3: Excerpt of Chaincode Functions

4.2.4 DPKI Signatures

The prototype supports choice between multi-signatures and threshold signatures. The

creation of these signatures is executed in the same way and environment as the HLF

transaction-related signatures. Figure 4.1 shows how this process works. When the com-

ponent responsible for the signatures, either for transactions or DPKI content, recognizes

that a Chaincode function output contains DPKI content, it generates the signature using

the signature type specified in the Chaincode and inserts it in the response besides the

transaction’s body and signature.

We decided to separate the signing of DPKI content and transactions in terms of the

signature method and key pairs of each endorser. This allows greater control, although it

would be possible to use the same keys and signature method for the signing of transac-

tion proposals and DPKI content. For example, for some reason, it would be possible to

use multi-signatures in the signing of transaction proposals, and threshold signatures in

the signing of DPKI content.

4.2.5 Bootstrap Signatures

Having all peers hold sets of multi and threshold signature keys at the beginning of the

Blockchain network is not correct in terms of security if we blindly trust the signatures

and the associated keys in DPKI-related transactions. To address this, we assume that

67

CHAPTER 4. SYSTEM IMPLEMENTATION

Figure 4.1: DPKI Signature Flow

endorsing peers have assigned keys before starting up the Blockchain network but, for

the clients to be able to request DPKI operations, those keys must be trusted by all

other endorsing peers. To achieve this, inspired by the PGP model, endorsing peers

trust a selected public key from a fellow endorsing peer through a DPKI Chaincode

function, which may contain extended verifications if desired. DPKI-related functions in

the Chaincode can only be called if all the public keys are trusted by all endorsing peers,

starting the DPKI services. We assume that the organizations that control the endorsing

peers discussed the DPKI rules and conditions beforehand, but those signatures are the

validation of the acceptance from all organizations.

4.2.6 Internal Clients

In the development and explanation of the prototype, our focus was the external clients,

since we view them as the main clients of the Blockchain-Enabled DPKI. Although, it

would be possible to have internal clients. These clients may be operating in different

Blockchain channels (e.g. supply chain channel or a hospital-related channel) and want

to use certificates issued by the Blockchain-Enabled DPKI. There are two ways of doing

this: to have the same process flow as external clients, and contact a Proxy, or, since they

have direct access to the Blockchain-Enabled DPKI peers, act as their own Proxy and send

transaction proposals themselves in order to gather signatures from the endorsers regard-

ing generated self-signed certificates, using the Self-Signed Certificate model presented

in Chapter 3. To invoke a DPKI Chaincode function from another channel, that channel

must have a Chaincode with a function that calls the DPKI Chaincode function. This way,

68

4.3. SUMMARY

peers from various channels can use the Blockchain-Enabled DPKI without problems.

4.2.7 X509v3 Certificates and CRL Extensions

To store the Blockchain-Enabled DPKI signatures from the endorsers, we make use of the

extension fields in both X509v3 certificates and CRLs. An extension with OID 2.5.29.89

was created to store the signature method used. To store the signatures an extension

with OID 2.5.29.90 was created. The signatures generated by the endorsers are stored in

Base64 strings. The OID 2.5.29 is the identifier for Version 3 certificate extensions. The

numbers 89 and 90 were used since there are no extensions with those values. We added

an optional extension with OID 2.5.29.88 that can be used to insert the original issued

X509v3 certificate without the signatures. This is useful for easy verification of each

endorser signature, but this increases significantly the size of the certificate. Without this

extension, if we intend to verify the signatures, we must remove the extensions regarding

the signature type and the signatures in order to successfully verify them against the

originally issued certificate. Figure 4.2 shows an example of an issued X509v3 certificate

with all the mentioned extensions.

Figure 4.2: A certificate issued by the Blockchain-Enabled DPKI

4.3 Summary

In this chapter, we presented the prototype developed by the system model from the

previous chapter. We started by presenting a prototype overview and the technologies

used in its implementation. We further detailed each component, mainly the DPKI signa-

tures incorporated in the Blockchain, the DPKI Proxy, and the Chaincode. An overview

69

CHAPTER 4. SYSTEM IMPLEMENTATION

of the DPKI Proxy API exposed to the external clients was made, as well as the func-

tions in the DPKI Chaincode that enable the management of X509v3 certificates in the

Blockchain-Enabled DPKI. An explanation regarding the storage of signatures inside

X509v3 certificates was also made, which enables the insertion of multi-signatures or

threshold signatures in certificates without damaging the X509v3 standards.

70

C
h
a
p
t
e
r

5
Experimental Evaluation and Analysis

In this chapter, we will present a set of experimental evaluations conducted with the de-

veloped prototype presented in Chapter 4. Succinctly, we intend to answer the following

questions:

• Can we build a decentralized Blockchain-Enabled DPKI with a latency that does

not prevent the proper use of its services by external clients?

• How do different cryptographic operations and key sizes affect the operations of the

system?

• Does the latency per issuing of X509v3 certificates enable a viable system?

• Do functions such as certificate revocation, Certificate Revocation List (CRL) issu-

ing, and Online Certificate Status Protocol (OCSP) requests have decent latency

values that do not discourage external clients from following good practices and

calling those services when needed?

For this purpose, we will first introduce the benchmark environment used for the con-

ducted tests (Section 5.1), as well as the characteristics that all benchmarks followed.

Then, we discuss in the following sections each experimental evaluation, explaining the

intended observations, the conducted experiments, and the results observed. The DPKI

functions that were executed in the experimental evaluations were X509v3 certificate

issuing (Section 5.2), revocation of certificates and CRL Issuing (Section 5.3), and OCSP

requests (Section 5.4), as these are the main functions of the Blockchain-Enabled DPKI de-

veloped. Finally, we conclude the chapter with the generic conclusions from all conducted

evaluations (Section 5.5).

71

CHAPTER 5. EXPERIMENTAL EVALUATION AND ANALYSIS

5.1 Evaluation Environment

A dedicated server was used to run the Blockchain Network and Proxy. The specifications

of this server are shown in Table 5.1. Each peer of the Blockchain network is a docker

container and has another dedicated container for its local ledger, therefore, for each peer,

there are two docker containers. A single Proxy was used in the evaluations.

The external client used to call the Blockchain-Enabled DPKI functions is an average

personal computer and has an RTT of 43ms with the dedicated server. The requests were

made through the Proxy REST API with HTTP.

In all evaluations, four orderers were used in the BFT ordering service of the Blockchain

network.

Regarding threshold signatures, the implementation used, developed in [21], is based

on the optimistic version of the threshold signature verification algorithm [61], where

the algorithm was able to verify the signatures on the first generated combination of k

shares. Another aspect relevant in the usage of threshold signatures is the number of

shares necessary to validate a signature. It is possible to only need for example two shares

of four possible shares to validate a signature. In the evaluations, we required the total

number of shares to validate signatures.

When multi-signatures were used, they were applied in the signing of DPKI related

content, as well as in the signatures of transactions. The same applies to threshold signa-

tures.

Dedicated cloud server
CPU AMD Epyc 7351P - 16 c / 32 t - 2.4 GHz / 2.9 GHz
RAM 128GB DDR4 ECC 2400MHz
OS Ubuntu Server 18.04 Bionic Beaver LTS
Model OVH Advance-4

Table 5.1: Testbench Environment

Each result in the evaluations consists of an average of twenty executions. Regarding

endorsement policies (e.g. peers that need to sign transactions and DPKI content such as

certificates to be issued), when we mention for example, six endorsers, this means that

the endorsement policy requires that six peers, acting as endorsers, need to sign the DPKI

content, either being certificates, OCSP responses, or newly issued CRLs.

5.2 X509v3 Certificate Issuing for External Clients

The most important function in our Blockchain-Enabled DPKI is the certificate issuing

function, which is why most of the evaluations were made through this function. It is

the process with more steps regarding signatures and their verifications, and certificate

manipulation. All requests in these benchmarks follow the first model, represented in

Figure 3.2, where the external client sends a Certificate Signing Request (CSR) to the

Proxy in order to obtain an issued X509v3 certificate signed by all endorsers.

72

5.2. X509V3 CERTIFICATE ISSUING FOR EXTERNAL CLIENTS

5.2.1 Cryptographic operations and their impact on the system

Signature Issue Cert. Endorsers sign. Verify sigs Store Cert. Total

Multi-sig RSA 2048 bits 1345ms 0.002156ms 2ms 1491ms 3298ms
Multi-sig RSA 4096 bits 1187ms 0.002324ms 3,15ms 2135ms 3377ms

Multi-sig RSA/PSS 2048 bits 1075ms 0.002348ms 2,4ms 1493ms 3366ms
Multi-sig RSA/PSS 4096 bits 1175ms 0.002289ms 3,4ms 1489ms 3360ms

Multi-sig ECDSA 256 bits 1175ms 0.002343ms 4,7ms 1490ms 3452ms
RSA Threshold 2048 bits 1290ms 0.002766ms 6,5ms 1360ms 4438ms
RSA Threshold 4096 bits 4093ms 0.003020ms 12,25ms 3716ms 8478ms

Table 5.2: Analysis of different Cryptographic Algorithms and Key Sizes

In order to evaluate the performance of different cryptographic operations in the issuing

of certificates, several benchmarks were run with different algorithms and key sizes. Table

5.2 shows the results of those benchmarks. For this evaluation, four peers, all endorsers,

were used.

The second column refers to the transaction where the Proxy, after receiving the

CSR from the client and generating a new X509v3 certificate, sends the certificate to

the Blockchain network to be validated and gather signatures from all endorsers. The

certificate is also being stored in the local ledger of each peer after the ordering service

finishes ordering and dispersing the transaction blocks. It includes the verification of the

CSR by the Proxy, the validations by the chaincode, and other minor steps needed in the

issuing process. That is why it is understandable that this step represents a rather high

percentage of the total time. The same happens in the fifth column, wherein this case the

transaction is related to the storage of the newly issued X509v3 certificate.

We can see that the time needed for the endorsers to sign the DPKI content, in this

case, the newly issued certificate, is small when compared to the total time. This shows

that the use of different cryptographic algorithms when using multi-signatures does not

affect considerably the time needed to issue an X509v3 certificate. The fourth column also

confirms this, despite the verification of signatures taking much longer, when compared

to the creation of the signatures, mainly due to the fact that the Proxy reads the public

keys from files, an aspect that could be improved.

Multi-signatures with RSA have a similar time in the signing and verification when

compared with RSA/PSS, where RSA/PSS has a slightly higher value due to the mask

generation process. When comparing to ECDSA, as it is well known in cryptography, the

verification step in ECDSA signatures is slower than RSA or RSA/PSS.

Although the times representing signature verification and generation only refer to the

signing of DPKI content and not transactions, we believe that when signing transactions

with threshold signatures, since the content is considerably bigger and there are several

steps where there are verifications (e.g. when normal peers store the state in their local

ledger, they validate the transaction and therefore the signatures), it escalates the total

73

CHAPTER 5. EXPERIMENTAL EVALUATION AND ANALYSIS

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

L
at

en
cy

p
er

ce
rt

ifi
ca

te
is

su
in

g
(s

)

Figure 5.1: Variation in the latency in issuing X509v3 extended certificates.

time considerably. For that reason, we can see a difference of one second between multi-

signatures with 2048 bits of key size and threshold signatures with 2048 bits of key size.

We can conclude that the latency suffers the most when we use threshold signatures,

especially when we increase the key size. Threshold signatures increase latency due

to the signature reconstruction process through the signature shares in the verification

algorithm, which is more complex than the RSA, RSA/PSS or ECDSA processes.

5.2.2 Latency variation in the issuing process

One interesting aspect in all requests to the Blockchain-Enabled DPKI is the variation

in the latency of request responses. Figure 5.1 represents an example of this variation.

We can see a significant variation in the latency between different executions, where the

minimum and maximum values differ in almost two seconds. We believe this is due

to the validation and committing of transaction blocks in the Hyperledger Fabric (HLF)

transaction flow, mainly in the ordering process by the ordering service. The ordering

process used is BFT, which decreases the performance of the system, since it has to wait

for a quorum of 3f + 1 responses for each consensus round, and it is normal if different

executions require a different number of messages, varying the final latency.

74

5.2. X509V3 CERTIFICATE ISSUING FOR EXTERNAL CLIENTS

5.2.3 Impact in the size of issued X509v3 certificates

1 2 4 6 10
0

5

10

15

Endorsers (n)

Si
ze

of
is

su
ed

ce
rt

ifi
ca

te
(k

b)

RSA2048 Traditional certificate signature
RSA4096 Traditional certificate signature

RSA2048 Threshold signatures
RSA2048 Multi-signatures
RSA4096 Multi-signatures

Figure 5.2: Number of Endorsers and size of issued certificates.

Figure 5.2 shows the relation between the size in KB of traditional certificates and

Blockchain-Enabled DPKI certificates with multi-signatures or threshold signatures. Since

we are working with multi-signatures and threshold signatures, issued X509v3 certifi-

cates contain all signatures in extensions. Therefore their size will increase considerably,

mainly due to the signatures or signature shares (threshold signatures) and extra informa-

tion. Besides the signatures being stored in the certificate, the Peer ID of the endorser that

generated a specific signature is also stored in a <key, value> type of storage. Another

important reason why the certificates have a bigger size is that we also stored the original

X509v3 certificate generated by the Proxy before the addition of the signatures created by

the endorsers. This facilitates the validation of the certificate and its signatures by other

entities. The size increases considerably and it is optional.

5.2.4 Impact of the number of endorsers

As we mentioned in Section 5.2.1, threshold signatures add one second in the latency of

certificate issuing when compared to the usage of multi-signatures, which we also can see

in Figure 5.3. We can also verify that increasing the number of endorsers does not increase

the latency as it would be expected. This shows that increasing the number of endorsers,

which means increasing the number of signature generations and validations, and the

75

CHAPTER 5. EXPERIMENTAL EVALUATION AND ANALYSIS

2 4 6 8 10
0

1

2

3

4

Endorsers (n)

L
at

en
cy

p
er

ce
rt

ifi
ca

te
is

su
in

g
(s

)

RSA2048 Threshold signatures
RSA2048 Multi-signatures

Figure 5.3: Latency in issuing X509v3 extended certificates with a variable number of
Endorsers.

communication with the endorsers, does not affect the total latency like the ordering

service and threshold signatures do.

5.2.5 Impact of the number of normal peers

Endorsers (n)
Total nodes(l)

6 6 6 6 6

2.8

3

3.2

3.4

3.6

6 10 15 20 25

L
at

en
cy

p
er

ce
rt

ifi
ca

te
is

su
in

g
(s

)

Figure 5.4: Latency in issuing X509v3 extended certificates with a variable number of
Regular Peers.

76

5.2. X509V3 CERTIFICATE ISSUING FOR EXTERNAL CLIENTS

In the previous evaluations, all the peers in the Blockchain network were endorsers, all

signing DPKI content. To analyze how the latency changes with more peers, we executed

tests where the number of endorsers was static while increasing the number of total peers,

where non-endorsing peers just validate the final transaction blocks and store them in

their local ledgers.

Figure 5.4 shows the results obtained with different numbers of normal peers while

using multi-signatures RSA with a key size of 4096 bits. We can see that the number

of normal peers does not increase considerably the total latency of the requests. This

proves that most of the latency is due to the transaction and DPKI-content signatures,

ordering service, and the endorsement steps in transactions, which are not affected by

normal peers, that just receive the final transaction blocks at the end of each transaction.

5.2.6 Comparison with the Issuing Process in a Conventional PKI Solution

Nº Signers/Endorsers Latency (ms)

EJBCA PKI 1 348

Blockchain-Enabled DPKI Multi-Signatures 1 2756

Blockchain-Enabled DPKI Multi-Signatures 4 3298

Blockchain-Enabled DPKI Threshold-Signatures 4 4438

Table 5.3: Comparison with the issuing process in a conventional PKI

In order to have a comparison with the traditional issuing of X509 certificates, we run,

on the same machine where the Blockchain network and Proxy were running, a docker

container with an EJBCA PKI [15]. We used simple configurations, enough to enable

requests regarding certificate issuing given a CSR. It is worth mentioning that we did

not take in consideration the time to enroll an entity, which happens in real PKIs, since

our solution also does not take that into consideration. We just analyzed the automated

process, where an already registered entity sends a CSR in order to receive a newly issued

X509 certificate.

Table 5.3 shows the obtained results, comparing the latency when issuing a certificate

in the traditional EJBCA PKI and our Blockchain-Enabled DPKI. Even with only one en-

dorser and, therefore, one signature, the issuing of certificates in the Blockchain-Enabled

DPKI has more than two seconds of latency than the EJBCA PKI. These results were

expected before developing the prototype, since the characteristics and improvements

that our model provides have a tradeoff of performance due to the previously mentioned

steps, such as the ordering process, communication steps between peers in transactions,

and others.

77

CHAPTER 5. EXPERIMENTAL EVALUATION AND ANALYSIS

5.3 Revocation of certificates and CRL Issuing

2 4 6 8 10
0

1

2

3

4

5

Endorsers (n)

L
at

en
cy

p
er

ce
rt

ifi
ca

te
re

vo
ca

ti
on

(a
nd

C
R

L
G

en
er

at
io

n)
(s

)

RSA2048 Threshold signatures
RSA2048 Multi-signatures

Figure 5.5: Performance of Threshold Signatures and Multi-Signatures in the revocation
of certificates.

Certificate revocation and CRL generation is another important component of a PKI. Our

Blockchain-Enabled DPKI implements a simple form of revocation of certificates and CRL

Issuing. The process was previously explained in Chapter 4 and has a similar number of

steps compared to the certificate issuing function. Figure 5.5 shows results with multi-

signatures and threshold signatures, and different numbers of endorsers. The latency is

similar to the latency in certificate issuing, shown in Figure 5.3, mainly when using RSA

multi-signatures with a key size of 2048 bits. One aspect that makes this function have

a bigger latency, is that the Proxy is running the REST API and logic in Java language,

and when it obtains the new CRL and endorsers signatures, in order to insert them in

the newly issued CRL, uses a Golang program to do so, this is because Golang enables a

greater manipulation of already issued X509v3 certificates, CRLs, and other X509 content.

Regarding the difference in latency between multi-signatures and threshold signatures,

it is rather the same that the one shown in Figure 5.3, which was already commented in

Section 5.2.4.

78

5.4. OCSP REQUESTS

5.4 OCSP Requests

2 4 6 8 10
0

0.5

1

1.5

2

2.5

Endorsers (n)

L
at

en
cy

p
er

O
C

SP
re

qu
es

t
(s

)

RSA2048 Threshold signatures
RSA2048 Multi-signatures

Figure 5.6: Performance of OCSP processing when using Threshold Signatures and Multi-
Signatures.

Both of the previously evaluated functions in our Blockchain-Enabled DPKI write data

to the ledger of the Blockchain. The system also provides OCSP requests, that do not

write data into the ledger. Figure 5.6 shows the latency when calling OCSP requests.

Since there are no write operations in the ledger, transactions are not submitted to the

ordering service, decreasing the total latency considerably. The chaincode obtains and

returns the current stored CRL so the endorsers can sign it and insert their signatures in

the response of the OCSP. There is still a difference of approximately 1 second between

multi-signatures and threshold signatures as it was seen in the other requests. With 10

endorsers and threshold signatures, we see a decrease in the latency, but we believe this

is due to the variations mentioned previously in Section 5.2.2.

5.5 Summary

In this chapter, we described the evaluations executed over the presented and imple-

mented prototype. We made requests through the most important functions of the proto-

type, through an external client, in order to obtain certificates, OCSP responses, and CRL

issued by the Blockchain-Enabled DPKI.

We analyzed and commented on the following topics:

• Variations in the latency when switching between multi-signatures and threshold

signatures, and cryptographic algorithms.

79

CHAPTER 5. EXPERIMENTAL EVALUATION AND ANALYSIS

• Comparison against traditional X509v3 certificate issuing, when a single entity (CA)

signs and issues the certificate.

• Variation in the latency of requests due to the Blockchain transaction flow.

• Impact in the size of issued X509v3 certificates due to the addition of multi-signatures

or threshold signatures through extensions.

• Impact of the number of endorsers in the latency of certificate issuing and revoca-

tion, CRL issuing, and OCSP responses.

• Impact of the number of normal peers that just validate and store issued certificates

and CRLs.

• General latency in CRL issuing and OCSP responses.

We can confirm that the time to issue certificates is mainly affected by the HLF trans-

action flow, in the communication required between peers and the ordering service BFT

algorithm. Besides, when using threshold signatures the time has a greater increase when

compared with multi-signatures due to the complexity in the threshold signatures al-

gorithm. The latency observed in the executed evaluations was expected since we are

working with a Blockchain network, which contains complex processes, a BFT order-

ing service, and multi-signatures or threshold signatures instead of the traditional one

signature. We believe that the drawback of the observed latency does not overlap the

benefits that this system offers. The same applies to the increased latency when using

threshold signatures. We believe their benefits regarding reduced storage size and smaller

transaction content overlap the latency added.

We may conclude that the developed prototype offers the mentioned improvements

over the traditional PKIs while still having an acceptable latency.

80

C
h
a
p
t
e
r

6
Conclusion and Final Remarks

6.1 Conclusion

The dissertation addressed the design, implementation, and evaluation of a Blockchain-

Enabled DPKI (Decentralized PKI) solution, based on a permissioned-oriented collab-

orative consortium model. The proposal and its design options are leveraged by a set

of service planes and their internal components, supported in the Hyperledger Fabric

(HLF) Blockchain platform. In our proposed solution for the addressed PKI framework

model, X509v3 certificates are issued and managed following security invariants and

processing rules, with trust and consistency metrics, defined and consistently executed

by Blockchain peers, under the scrutiny of smart contracts. In this way, X509v3 certifi-

cates are issued cooperatively, using multi-signatures or group-oriented threshold-based

Byzantine fault-tolerant (BFT) signatures. The smart contracts executed by the DPKI

peers dictate their participation in issuing, signing, attestation, validation and revoca-

tion processes. Any peer can validate certificates verifying its consistent state, stabilized

in closed blocks in a Meckle-tree structure, maintained consistently with integrity guar-

antees in the Blockchain. All state-transition operations on managed certificates are

also executed with ordering guarantees, provided by BFT consensus and communication

primitives.

Externally, the proposed DPKI solution can be used by applications as a PKI service. It

offers the conventional functions and operations found in the PKIX framework standard

model for management of X509 certificates. In this we include the provided functions

as we find in the PKIX architectural model, such as access and download of certificates’

revocation status information, certificates and CRLs publication and retrieval, support

for certificate signing requests (CSRs) and possibility for managing and obtaining the

issued certificates in the standardized format Base 64 PEM encoding. However, our

81

CHAPTER 6. CONCLUSION AND FINAL REMARKS

solution also provides extensions in the X509v3 representation model, to support issuing

with multi-signed public-key signatures, as well as, cooperative byzantine-fault-tolerant

threshold digital signatures for trust-enforcement. Those extensions can be regulated by

the expressiveness support of the provided smart-contracts.

A particular case for the use of our DPKI solution as a service is the provision of their

functions for other Blockchain-enabled applications. In our approach and implementa-

tion, this is naturally supported for applications executing in different channels of the

HLF Blockchain platform, running the DPKI in a specific service channel.

We have implemented the proposed solution by producing an available prototype

and that can be used for research and experimental studies by interested researchers and

developers. The prototype implements the design assumptions and all the components

discussed in the dissertation, being ready to run as a Cloud-Blockchain enabled environ-

ment. The available prototype can also be seen as a base platform for future developments

in providing full-fledged PKI management functions for a cooperative and decentralized

certification authority model, following our design considerations.

We also conducted an extensive experimental evaluation over the developed platform.

Our observations show that careful selection and the implementation of the components

in the proposed solution is able to support the validation of our initial hypothesis and con-

cerns. Moreover, the specific experimental evaluation and analysis on the performance

of certificates’ issuing, the cost of provided cryptographic services and the overall oper-

ation, reveals interesting results, comparing with conventional operations supported by

centralized PKIs, showing the validity of the solution.

6.2 Future Work

We believe that we addressed the initially expected objective and related contributions

to our dissertation. In the current implementation, some optimizations can be done to

enhance the current prototype, considering some open-issues and future research work

trends.

As open-issues we emphasize the following concerns:

• Deployment of the current implementation in a cloud-of-clouds environment, as a

new testbench where the Blockchain peers can run in different virtual or dedicated

machines from different service providers;

• Repetition of the initially conducted experimental evaluation and criteria, in this

new testbench environment;

• Conduction of more experimental evaluations under more scalability requirements

and assessment criteria, following the initial evaluation rational already addressed

in the dissertation.

As future-work directions, we summarize the following ideas:

82

6.2. FUTURE WORK

• Regarding threshold signatures, currently, there is no way of generating new signa-

ture shares when a new endorser joins the network. This an aspect that could be

improved in order to have a secure way to re-generate signature shares.

• Another concern related to the generation of threshold signature shares is the fact

that there is one dealer that generates and returns all the shares. This is a centralized

approach that could be improved by having a procedure where several entities

generate different shares in a byzantine fault tolerance fashion.

• Transaction signatures and DPKI content signatures use different key pairs and

certificates. The certificates used in transactions are still generated by a utility of

Hyperledger Fabric. A possible improvement is the possibility to use the same gener-

ated key pairs and certificates for both DPKI signatures and transaction signatures.

• Smart contracts are another aspect of the implementation that may be improved

in the future, mainly regarding necessary reconfigurations throughout the system

lifetime and improving expressiveness conditions for certificate issuing. The deter-

mination and usage of certificate trust levels by smart contracts is another aspect

that should be explored in future work. As well as the generation of Blockchain

Public-Key Certificate States (BCS) by peers inside the Blockchain network.

• The application scenario related to internal clients was not fully explored due to

time restrictions. A direction for future work would be exploring the participa-

tion of internal clients and benchmarking when different channels, with different

purposes, use the implemented Blockchain-Enabled DPKI.

83

Bibliography

[1] M. Al-Bassam. “SCPKI: A Smart Contract-based PKI and Identity System.” In: Pro-
ceedings of the ACM Workshop on Blockchain, Cryptocurrencies and Contracts (2017),

pp. 35–40. doi: https://dl.acm.org/citation.cfm?doid=3055518.3055530.

[2] C. Allen, A. Brock, V. Buterin, J. Callas, D. Dorje, C. Lundkvist, P. Kravchenko, J.

Nelson, D. Reed, M. Sabadello, G. Slepak, N. Thorp, and H. T. Wood. “Decentral-

ized Public Key Infrastructure, Web-of-Trust Info.” In: Rebooting Web of Trust Design
Workshop, San Francisco USA (2015). url: https://github.com/WebOfTrustInfo/

rwot1-sf.

[3] Amazon Blockchain Service. url: https : / / aws . amazon . com / pt / partners /

Blockchain/.

[4] L. Axon and M. Goldsmith. “PB-PKI: A Privacy-aware Blockchain-based PKI.”

In: (2017). doi: https://www.researchgate.net/publication/318870515_PB-

PKI_A_Privacy-aware_Blockchain-based_PKI.

[5] J. Benet. “IPFS - Content Addressed, Versioned, P2P File System.” In: (). url:

https://ipfs.io/ipfs/QmR7GSQM93Cx5eAg6a6yRzNde1FQv7uL6X1o4k7zrJa3LX/

ipfs.draft3.pdf.

[6] A. Bessani, J. Sousa, and E. Alchieri. “State machine replication for the masses with

BFT-SMART.” In: Proceedings of the International Conference on Dependable Systems
and Networks (June 2014), pp. 355–362. doi: 10.1109/DSN.2014.43.

[7] A. Bessani, J. Sousa, and M. Vukolić. “A Byzantine Fault-tolerant Ordering Service

for the Hyperledger Fabric Blockchain Platform.” In: Proceedings of the 1st Workshop
on Scalable and Resilient Infrastructures for Distributed Ledgers. SERIAL ’17. ACM,

2017, 6:1–6:2. url: http://doi.acm.org/10.1145/3152824.3152830.

[8] E. Buchman. “Tendermint: Byzantine Fault Tolerance in the Age of Blockchains.”

In: (2016). url: https://allquantor.at/Blockchainbib/pdf/buchman2016tendermint.

pdf.

[9] M. Castro and B. Liskov. “Practical Byzantine Fault Tolerance.” In: Proceedings of
the Third Symposium on Operating Systems Design and Implementation (1999). url:

http://pmg.csail.mit.edu/papers/osdi99.pdf.

85

https://doi.org/https://dl.acm.org/citation.cfm?doid=3055518.3055530
https://github.com/WebOfTrustInfo/rwot1-sf
https://github.com/WebOfTrustInfo/rwot1-sf
https://aws.amazon.com/pt/partners/Blockchain/
https://aws.amazon.com/pt/partners/Blockchain/
https://doi.org/https://www.researchgate.net/publication/318870515_PB-PKI_A_Privacy-aware_Blockchain-based_PKI
https://doi.org/https://www.researchgate.net/publication/318870515_PB-PKI_A_Privacy-aware_Blockchain-based_PKI
https://ipfs.io/ipfs/QmR7GSQM93Cx5eAg6a6yRzNde1FQv7uL6X1o4k7zrJa3LX/ipfs.draft3.pdf
https://ipfs.io/ipfs/QmR7GSQM93Cx5eAg6a6yRzNde1FQv7uL6X1o4k7zrJa3LX/ipfs.draft3.pdf
https://doi.org/10.1109/DSN.2014.43
http://doi.acm.org/10.1145/3152824.3152830
https://allquantor.at/Blockchainbib/pdf/buchman2016tendermint.pdf
https://allquantor.at/Blockchainbib/pdf/buchman2016tendermint.pdf
http://pmg.csail.mit.edu/papers/osdi99.pdf

BIBLIOGRAPHY

[10] CoinMarketCap - All Cryptocurrencies. url: https://coinmarketcap.com/all/

views/all/.

[11] Consensus Algorithms: The Root Of The Blockchain Technology. url: https : / /

101Blockchains.com/consensus-algorithms-Blockchain/.

[12] Counterparty. url: https://counterparty.io.

[13] O. Dib, K.-L. Brousmiche, A. Durand, E. Thea, and E. B. Hamida. “Consortium

Blockchains: Overview, Applications and Challenges.” In: International Journal on
Advances in Telecommunications (2018). doi: https://www.researchgate.net/

publication/328887130_Consortium_Blockchains_Overview_Applications_

and_Challenges.

[14] DigiNotar Incident Report. url: https://www.onderzoeksraad.nl/nl/media/

attachment/2018/7/10/rapport_diginotar_en_summary.pdf.

[15] EJBCA. url: https://www.ejbca.org/docs/EJBCA_6.15.1_Documentation.

html.

[16] C. Ellison and B. Schneier. “Ten Risks of PKI: What You’re not Being Told about

Public Key Infrastructure.” In: Computer Security Journal Volume XVI, Number 1
(2000). url: https://www.schneier.com/academic/paperfiles/paper-pki.

pdf.

[17] Ethereum Project. url: https://www.ethereum.org.

[18] Ethereum Proof of Stake. url: https://github.com/ethereum/wiki/wiki/Proof-

of-Stake-FAQs.

[19] N. Fazio and A. Nicolosi. “Cryptographic Accumulators: Definitions, Construc-

tions and Applications.” In: (2003). doi: https://www.researchgate.net/

publication/235923578_Cryptographic_Accumulators_Definitions_Constructions_

and_Applications.

[20] C. Fromknecht and D. Velicanu. “CertCoin : A NameCoin Based Decentralized

Authentication.” In: (2014). doi: https://www.semanticscholar.org/paper/

CertCoin- %3A- A- NameCoin- Based- Decentralized- System- 6- Fromknecht-

Velicanu/72889440eaeb7a1a17a8be830feff236b5a62b67.

[21] F. Godinho. “Bringing Order into Things. Decentralized and Scalable Ledgering

for the Internet-of-Things.” In: (). url: http://hdl.handle.net/10362/55172.

[22] G. Greenspan. “MultiChain Private Blockchain.” In: (). url: https : / / www .

multichain.com/download/MultiChain-White-Paper.pdf.

[23] History of Risks Threat Events to CAs and PKI. url: http://wiki.cacert.org/

Risk/History.

[24] How Hackers Hijacked a Bank’s Entire Online Operation. url: https://www.wired.

com/2017/04/hackers-hijacked-banks-entire-online-operation/.

86

https://coinmarketcap.com/all/views/all/
https://coinmarketcap.com/all/views/all/
https://101Blockchains.com/consensus-algorithms-Blockchain/
https://101Blockchains.com/consensus-algorithms-Blockchain/
https://counterparty.io
https://doi.org/https://www.researchgate.net/publication/328887130_Consortium_Blockchains_Overview_Applications_and_Challenges
https://doi.org/https://www.researchgate.net/publication/328887130_Consortium_Blockchains_Overview_Applications_and_Challenges
https://doi.org/https://www.researchgate.net/publication/328887130_Consortium_Blockchains_Overview_Applications_and_Challenges
https://www.onderzoeksraad.nl/nl/media/attachment/2018/7/10/rapport_diginotar_en_summary.pdf
https://www.onderzoeksraad.nl/nl/media/attachment/2018/7/10/rapport_diginotar_en_summary.pdf
https://www.ejbca.org/docs/EJBCA_6.15.1_Documentation.html
https://www.ejbca.org/docs/EJBCA_6.15.1_Documentation.html
https://www.schneier.com/academic/paperfiles/paper-pki.pdf
https://www.schneier.com/academic/paperfiles/paper-pki.pdf
https://www.ethereum.org
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQs
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQs
https://doi.org/https://www.researchgate.net/publication/235923578_Cryptographic_Accumulators_Definitions_Constructions_and_Applications
https://doi.org/https://www.researchgate.net/publication/235923578_Cryptographic_Accumulators_Definitions_Constructions_and_Applications
https://doi.org/https://www.researchgate.net/publication/235923578_Cryptographic_Accumulators_Definitions_Constructions_and_Applications
https://doi.org/https://www.semanticscholar.org/paper/CertCoin-%3A-A-NameCoin-Based-Decentralized-System-6-Fromknecht-Velicanu/72889440eaeb7a1a17a8be830feff236b5a62b67
https://doi.org/https://www.semanticscholar.org/paper/CertCoin-%3A-A-NameCoin-Based-Decentralized-System-6-Fromknecht-Velicanu/72889440eaeb7a1a17a8be830feff236b5a62b67
https://doi.org/https://www.semanticscholar.org/paper/CertCoin-%3A-A-NameCoin-Based-Decentralized-System-6-Fromknecht-Velicanu/72889440eaeb7a1a17a8be830feff236b5a62b67
http://hdl.handle.net/10362/55172
https://www.multichain.com/download/MultiChain-White-Paper.pdf
https://www.multichain.com/download/MultiChain-White-Paper.pdf
http://wiki.cacert.org/Risk/History
http://wiki.cacert.org/Risk/History
https://www.wired.com/2017/04/hackers-hijacked-banks-entire-online-operation/
https://www.wired.com/2017/04/hackers-hijacked-banks-entire-online-operation/

BIBLIOGRAPHY

[25] HydraChain. url: https://github.com/HydraChain/hydrachain.

[26] Hyperledger Fabric. url: https://www.hyperledger.org/projects/fabric.

[27] Hyperledger Iroha. url: https://github.com/hyperledger/iroha.

[28] IETF PKI Issues Draft. url: https://tools.ietf.org/html/draft-iab-web-

pki-problems-01#section-3.2.1.

[29] Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List
(CRL) Profile. url: https://tools.ietf.org/html/rfc5280.

[30] M. Y. Kubilay, M. S. Kiraz, and H. A. Mantar. “CertLedger: A New PKI Model with

Certificate Transparency Based on Blockchain.” In: (October, 2018). url: https:

//arxiv.org/abs/1806.03914.

[31] C. Kuhlman, B. Bollen, S. Davis, and D. Middleton. “Hyperledger Burrow.” In:

(2017). url: https://www.hyperledger.org/wp-content/uploads/2017/06/

HIP_Burrowv2.pdf.

[32] B. Laurie, A. Langley, and E. Kasper. “Certificate Transparency.” In: (2013). url:

http://www.rfc-editor.org/rfc/pdfrfc/rfc6962.txt.pdf.

[33] T. Lee, C. Pappas, P. Szalachowski, and A. Perrig. “Towards Sustainable Evolu-

tion for the TLS Public-Key Infrastructure.” In: Proceedings of the 2018 on Asia
Conference on Computer and Communications Security (2018), pp. 637–649. issn:

978-1-4503-5576-6. doi: https://dl.acm.org/citation.cfm?id=3196520.

[34] K. Lewison and F. Corella. “PomCor: Backing Rich Credentials with a Blockchain

PKI.” In: (2016). doi: https://pomcor.com/techreports/BlockchainPKI.pdf.

[35] Livepeer: Open Source Video Infrastructure Services, Built On The Ethereum Blockchain.

url: https://livepeer.org.

[36] Maersk and IBM Introduce TradeLens Blockchain Shipping Solution. url: https:

/ / www . maersk . com / en / news / 2018 / 06 / 29 / maersk - and - ibm - introduce -

tradelens-Blockchain-shipping-solution.

[37] P. Martins. Introdução à Blockchain. First. FCA, 2018. isbn: 9789727228874.

[38] S. Matsumoto and R. M. Reischuk. “IKP: Turning a PKI Around with Decentralized

Automated Incentives.” In: 2017 IEEE Symposium on Security and Privacy (2017).

doi: https://ieeexplore.ieee.org/document/7958590.

[39] P. Maymounkov and D. Mazières. “Kademlia: A Peer-to-Peer Information System

Based on the XOR Metric.” In: IPTPS ’01 Revised Papers from the First International
Workshop on Peer-to-Peer Systems ().

[40] D. Mazières. “The Stellar Consensus Protocol: A Federated Model for Internet-

level Consensus.” In: (). url: https://www.stellar.org/papers/stellar-

consensus-protocol.pdf.

[41] Medrec. url: https://medrec.media.mit.edu.

87

https://github.com/HydraChain/hydrachain
https://www.hyperledger.org/projects/fabric
https://github.com/hyperledger/iroha
https://tools.ietf.org/html/draft-iab-web-pki-problems-01#section-3.2.1
https://tools.ietf.org/html/draft-iab-web-pki-problems-01#section-3.2.1
https://tools.ietf.org/html/rfc5280
https://arxiv.org/abs/1806.03914
https://arxiv.org/abs/1806.03914
https://www.hyperledger.org/wp-content/uploads/2017/06/HIP_Burrowv2.pdf
https://www.hyperledger.org/wp-content/uploads/2017/06/HIP_Burrowv2.pdf
http://www.rfc-editor.org/rfc/pdfrfc/rfc6962.txt.pdf
https://doi.org/https://dl.acm.org/citation.cfm?id=3196520
https://doi.org/https://pomcor.com/techreports/BlockchainPKI.pdf
https://livepeer.org
https://www.maersk.com/en/news/2018/06/29/maersk-and-ibm-introduce-tradelens-Blockchain-shipping-solution
https://www.maersk.com/en/news/2018/06/29/maersk-and-ibm-introduce-tradelens-Blockchain-shipping-solution
https://www.maersk.com/en/news/2018/06/29/maersk-and-ibm-introduce-tradelens-Blockchain-shipping-solution
https://doi.org/https://ieeexplore.ieee.org/document/7958590
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
https://medrec.media.mit.edu

BIBLIOGRAPHY

[42] S. Nakamoto. “Bitcoin: A Peer-to-Peer Electronic Cash System.” In: (). url: https:

//bitcoin.org/bitcoin.pdf.

[43] Namecoin. url: https://www.namecoin.org.

[44] K. Olson, M. Bowman, J. Mitchell, S. Amundson, D. Middleton, and C. Montgomery.

“Sawtooth: An Introduction.” In: (2018). url: https://www.hyperledger.org/

wp-content/uploads/2018/01/Hyperledger_Sawtooth_WhitePaper.pdf.

[45] On Public and Private Blockchains. url: https://blog.ethereum.org/2015/08/

07/on-public-and-private-Blockchains/.

[46] OpenCA Guide. url: https://www.openca.org/projects/openca/docs/openca-

guide.pdf.

[47] Openchain. url: https://www.openchain.org.

[48] OpenPGP Message Format. url: https://tools.ietf.org/html/rfc4880.

[49] OpenSSL. url: https://www.openssl.org.

[50] OpenSSL PKI Documentation. url: https://pki-tutorial.readthedocs.io/en/

latest/.

[51] Provenance. url: https://www.provenance.org/whitepaper.

[52] Public-Key Infrastructure (X.509) (PKIX). url: https://datatracker.ietf.org/

wg/pkix/about/.

[53] Quorum. url: https://www.jpmorgan.com/global/Quorum.

[54] Rebooting the Web of Trust Movement. url: https://www.weboftrust.info/.

[55] RFC 4949 - Internet Security Glossary. url: https://tools.ietf.org/html/

rfc4949.

[56] A. Shamir. “How to share a secret.” In: Communications of the ACM, Volume 22 Issue
11 (1979), pp. 612–613. doi: https://dl.acm.org/citation.cfm?doid=359168.

359176.

[57] Smart Contracts on Blockchains. url: https://www.ibm.com/blogs/Blockchain/

2018/07/what-are-smart-contracts-on-Blockchain/.

[58] SMTP Extension for Internationalized Email. url: https://tools.ietf.org/html/

rfc6531.

[59] W. Stallings. Network Security Essentials - Applications and Standards. Sixth. Pearson-

Prentice Hall, 2016. isbn: 0133370437.

[60] Standard for the format of ARPA Internet Text Messages. url: https://tools.ietf.

org/html/rfc822.

[61] C. Stathakopoulou and C. Cachin. “Threshold Signatures for Blockchain Sys-

tems.” In: RZ3910 (2017). doi: https://domino.research.ibm.com/library/

cyberdig.nsf/papers/CA80E201DE9C8A0A852580FA004D412F.

88

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://www.namecoin.org
https://www.hyperledger.org/wp-content/uploads/2018/01/Hyperledger_Sawtooth_WhitePaper.pdf
https://www.hyperledger.org/wp-content/uploads/2018/01/Hyperledger_Sawtooth_WhitePaper.pdf
https://blog.ethereum.org/2015/08/07/on-public-and-private-Blockchains/
https://blog.ethereum.org/2015/08/07/on-public-and-private-Blockchains/
https://www.openca.org/projects/openca/docs/openca-guide.pdf
https://www.openca.org/projects/openca/docs/openca-guide.pdf
https://www.openchain.org
https://tools.ietf.org/html/rfc4880
https://www.openssl.org
https://pki-tutorial.readthedocs.io/en/latest/
https://pki-tutorial.readthedocs.io/en/latest/
https://www.provenance.org/whitepaper
https://datatracker.ietf.org/wg/pkix/about/
https://datatracker.ietf.org/wg/pkix/about/
https://www.jpmorgan.com/global/Quorum
https://www.weboftrust.info/
https://tools.ietf.org/html/rfc4949
https://tools.ietf.org/html/rfc4949
https://doi.org/https://dl.acm.org/citation.cfm?doid=359168.359176
https://doi.org/https://dl.acm.org/citation.cfm?doid=359168.359176
https://www.ibm.com/blogs/Blockchain/2018/07/what-are-smart-contracts-on-Blockchain/
https://www.ibm.com/blogs/Blockchain/2018/07/what-are-smart-contracts-on-Blockchain/
https://tools.ietf.org/html/rfc6531
https://tools.ietf.org/html/rfc6531
https://tools.ietf.org/html/rfc822
https://tools.ietf.org/html/rfc822
https://doi.org/https://domino.research.ibm.com/library/cyberdig.nsf/papers/CA80E201DE9C8A0A852580FA004D412F
https://doi.org/https://domino.research.ibm.com/library/cyberdig.nsf/papers/CA80E201DE9C8A0A852580FA004D412F

BIBLIOGRAPHY

[62] P. Szalachowski, L. Chuat, T. Lee, and A. Perrig. “RITM: Revocation in the Middle.”

In: (2016). url: https://arxiv.org/abs/1604.08490.

[63] Tezos. url: https://tezos.com.

[64] Z. Wang, J. Lin, Q. Cai, Q. Wang, J. Jing, and D. Zha. “Blockchain-based Certificate

Transparency and Revocation Transparency.” In: (2018). doi: https://fc18.ifca.

ai/bitcoin/papers/bitcoin18-final29.pdf.

[65] Web of Trust. url: https://www.mywot.com.

[66] A. Yakubov, W. Shbair, A. Wallbom, D. Sanda, and R. State. “A Blockchain-Based

PKI Management Framework.” In: IEEE/IFIP man2block 2018 (2018). doi: https:

//www.researchgate.net/publication/323692746_A_Blockchain-Based_PKI_

Management_Framework.

[67] P. Zimmerman. “Why I Wrote PGP.” In: Original 1991 PGP User’s Guide (up-
dated in 1999) (1999). url: https://www.philzimmermann.com/EN/essays/

WhyIWrotePGP.html.

89

https://arxiv.org/abs/1604.08490
https://tezos.com
https://doi.org/https://fc18.ifca.ai/bitcoin/papers/bitcoin18-final29.pdf
https://doi.org/https://fc18.ifca.ai/bitcoin/papers/bitcoin18-final29.pdf
https://www.mywot.com
https://doi.org/https://www.researchgate.net/publication/323692746_A_Blockchain-Based_PKI_Management_Framework
https://doi.org/https://www.researchgate.net/publication/323692746_A_Blockchain-Based_PKI_Management_Framework
https://doi.org/https://www.researchgate.net/publication/323692746_A_Blockchain-Based_PKI_Management_Framework
https://www.philzimmermann.com/EN/essays/WhyIWrotePGP.html
https://www.philzimmermann.com/EN/essays/WhyIWrotePGP.html

A
n
n
e
x

I
Blockchain-Enabled DPKI Chaincode

Listing I.1: Annex: Excerpt of the PKI Chaincode Properties and Functions

1 / / c o n t r a c t ex t ended p r o p e r t i e s
2 type ExtendedContractPropert ies s t r u c t {

3 ContractId s t r i n g . . .

4 ContractVersion int . . .

5 Channel s t r i n g . . .

6 Avai lableFunct ions [] [] s t r i n g . . .

7 InstalledOnNodes [] s t r i n g . . .

8 SignatureType s t r i n g . . .

9 SigningNodes [] Node . . .

10 ConsensusType s t r i n g . . .

11 ConsensusNodes [] Node . . .

12 ExpiresOn s t r i n g . . .

13 ValidFrom s t r i n g . . .

14 ProviderSignature s t r i n g . . .

15 DeployedOn s t r i n g . . .

16 }

17

18 / / More p r o p e r t i e s cou ld be added
19 type PKIPropert ies s t r u c t {

20 / / B lockcha in −Enabled DPKI P r o x i e s Endpoints
21 ProxiesEndpoints map[s t r i n g] s t r i n g . . .

22 / / C e r t i f i c a t e s i s s u e d with t h i s c h a i n c o d e can be l ong t o a CA
23 CanBelongToCA bool . . .

24 / / Max e x p i r a t i o n t ime o f i s s u e d c e r t i f i c a t e s
25 MaxExpirationTime int64 . . .

26 / / X509v3 e x t e n s i o n s t h a t a r e a c c e p t e d with t h i s c h a i n c o d e (e . g . Key u s a g e s)
27 Poss ib leExtens ions [] s t r i n g . . .

28 msTimeBetweenCRLUpdates int64 . . .

29 / / S i g n a t u r e t y p e used by e n d o r s e r s t o s i g n t h e i s s u e d c e r t i f i c a t e s

91

ANNEX I. BLOCKCHAIN-ENABLED DPKI CHAINCODE

30 / / (m u l t i s i g n a t u r e or t h r e s h o l d s i g n a t u r e)
31 PKISignatureType s t r i n g . . .

32 / / S i g n a t u r e a l g o r i t h m used by e n d o r s e r s t o s i g n PKI c o n t e n t
33 / / (i f us ing m u l t i s i g)
34 Multis igSignatureAlgori thm s t r i n g . . .

35 SigningNodesPKIMultiSigPublicKeys map[s t r i n g] s t r i n g . . .

36 SigningNodesPubKeysSignatures map[s t r i n g]map[s t r i n g] s t r i n g . . .

37 / / I f a l l e n d o r s e r s p u b l i c k e y s a r e s i g n e d by a l l e n d o r s e r s
38 / / (so t h e PKI s e r v i c e s may s t a r t)
39 / / I n s p i r e d in PGP . E n do r s e r s s i g n o t h e r e n d o r s e r ’ s p u b l i c k e y s
40 / / so t h e s e k e y s ga in t r u s t in t h e system . True i f a l l e n d o r s e r s
41 / / p u b l i c k e y s have been endor s ed by a l l e n d o r s e r s . PKI f u n c t i o n s
42 / / can be c a l l e d i f t h i s i s t r u e .
43 / / I f us ing t h r e s h o l d s i g t h i s i s t r u e in t h e s t a r t
44 / / We assume t h a t a l l e n t i t i e s a c c e p t t h e ag r e ed t h r e s h pub key .
45 AllPublicKeysEndorsed bool . . .

46 / / Thre sho ld P u b l i c Key (i f us ing t h r e s h o l d s i g n a t u r e s)
47 SigningNodesPKIThreshSigPublicKey s t r i n g . . .

48 / / S e r i a l number used f o r t h e next i s s u e d c e r t i f i c a t e .
49 / / I t i s incremented a t each p r o c e s s .
50 CurrentSerialNumber int64 . . .

51 }

52

53

54 / *
55 * This i s c a l l e d when t h e c h a i n c o d e i s i n s t a n t i a t e d by t h e B l o c k c h a i n network
56 * /
57 func (s * SmartContract) I n i t . . . {

58

59 / / S t o r e s t h e p r o p e r t i e s
60

61 . . .

62

63 return shim . Success (n i l)

64 }

65

66

67 / *
68 To o b t a i n t h e c h a i n c o d e p r o p e r t i e s (e . g . ex t ended and PKI− r e l a t e d)
69 * /
70 func (s * SmartContract) ge tContrac tDef in i t ion . . . {

71 . . .

72 }

73

74 . . .

75

76 / * *
77 * This f u n c t i o n i s t o be c a l l e d by system c h a i n c o d e (e s c c)
78 t o i d e n t i f y s i g n i n g method f o r t r a n s a c t i o n p r o p o s a l s .
79 * /

92

80 func (s * SmartContract) getEndorsementMethod . . . {

81

82 / / gen c o m p o s i t e key (EXTENDED_CONTRACT_PROPERTIES)
83 . . .

84

85 / / r e t u r n endorsement method
86 endorsementMethod := [] byte (extProps . SignatureType)

87 return shim . Success (endorsementMethod)

88 }

89

90 / * *
91 * This f u n c t i o n i s t o be c a l l e d by system c h a i n c o d e (e s c c)
92 t o i d e n t i f y s i g n i n g method f o r PKI c o n t e n t .
93 * /
94 func (s * SmartContract) getPKISignatureMethod . . . {

95

96 / / gen c o m p o s i t e key (PKI_PROPERTIES)
97 . . .

98

99 / / r ead ex t ended props
100 . . .

101

102 / / r e t u r n endorsement method
103 endorsementMethod := [] byte (pkiProps . PKISignatureType)

104 return shim . Success (endorsementMethod)

105 }

106

107

108 / *
109 Check i f a l l e n d o r s e r s have t h e i r p u b l i c k e y s s i g n e d by a l l o t h e r e n d o r s e r s
110 * /
111 func (s * SmartContract) checkEndorsersPubKeySignatures . . . {

112

113 / / o b t a i n s i g n a t u r e s from e n d o r s e r s r e g a r d i n g o t h e r e n d o r s e r s p u b l i c k e y s
114 . . .

115 var pkiProps PKIPropert ies

116 pkiPropsAsBytes , e r r := APIstub . GetState (pkiPropsCompositeKey)

117 i f e r r != n i l {

118 return shim . Error (e r r . Error ())

119 }

120 e r r = json . Unmarshal (pkiPropsAsBytes , &pkiProps)

121 i f e r r != n i l {

122 return shim . Error (e r r . Error ())

123 }

124 . . .

125

126 / / c h e c k i f a l l e n d o r s e r s p u b l i c k e y s a r e s i g n e d by a l l e n d o r s e r s
127 / / and r e t u r n i f they ar e or not
128 . . .

129 }

93

ANNEX I. BLOCKCHAIN-ENABLED DPKI CHAINCODE

130

131 / *
132 Only t o be used by e n d o r s e r s t o s i g n t h e p u b l i c k e y s o f o t h e r e n d o r s e r s
133 For multi − s i g n a t u r e s . In t h r e s h o l d s i g n a t u r e s , s i n c e t h e r e i s on ly one
134 p u b l i c key , i t i s assumed t h a t a l l p e e r s t r u s t t h a t p u b l i c key
135 Args :
136 Arg0 : p e e r id A o f t h e owner o f t h e p u b l i c key t o s i g n
137 Arg1 : p u b l i c key o f A t o s i g n
138 Arg2 : p e e r id B o f t h e p e e r s i g n i n g t h e p u b l i c key
139 Arg3 : p e e r B s i g n a t u r e o f t h e p u b l i c key o f A (s e c u r i t y)
140 * /
141 func (s * SmartContract) signEndorserPubKey . . . {

142

143 / / v e r i f y a r g s . . .
144

145 / / v e r i f y s i g n a t u r e
146 . . .

147

148

149 / / s t o r e s i g n a t u r e
150 . . .

151

152 / / i f a l l e n d o r s e r s p u b l i c k e y s a r e s i g n e d by a l l o t h e r e n d o r s e r s
153 / / " a c t i v a t e " PKI s e r v i c e s (f u n c t i o n s)
154

155 }

156

157

158 / * *
159 This f u n c t i o n i s used t o g a t h e r s i g n a t u r e s from t h e e n d o r s e r s o f x509 c e r t i f i c a t e
160 i s s u e d by a proxy or i n t e r n a l c l i e n t
161 This f u n c t i o n may a l s o , and should , e x e c u t e v a l i d a t i o n s a gr e ed
162 by t h e Blockcha in −Enabled DPKI p a r t i c i p a n t s
163 * /
164 func (s * SmartContract) s i g n X 5 0 9 C e r t i f i c a t e . . . {

165

166 / / v e r i f y a r g s
167

168 / / Check i f a l l e n d o r s e r s pub k e y s ar e s i g n e d by t h e o t h e r e n d o r s e r s
169 / / (in t h r e s h s i g we assume t h a t t h e p u b l i c key i s t r u s t e d
170 / / and a c c e p t e d by a l l p a r t i c i p a n t s)
171

172 block , _ := pem . Decode ([] byte (clientCertPemWithBreakLines))

173 c l i e n t C e r t , _ := x509 . P a r s e C e r t i f i c a t e (block . Bytes)

174

175 / *
176 Examples o f Smart Contrac t v a l i d a t i o n s
177 * /
178 i f c l i e n t C e r t . IsCA && ! pkiProps . CanBelongToCA {

179 return shim . Error (" C e r t i f i c a t e s for CA i s p o s s i b l e with t h i s chaincode ")

94

180 }

181 . . .

182

183

184 / / E . g . t e s t i f max e x p i r a t i o n t ime i s a c c e p t e d
185 / / or i f c e r t a i n e x t e n s i o n s ar e a c c e p t e d
186 . . .

187

188 / / I f a l l v e r i f i c a t i o n s ar e v a l i d , t h e c e r t i f i c a t e PEM i s r e t u r n e d so
189 the endorsers r e c e i v e the output and sign i t , endorsing the c e r t i f i c a t e

190 . . .

191 }

192

193

194 / * *
195 This f u n c t i o n i s used t o g a t h e r s i g n a t u r e s from t h e e n d o r s e r s
196 o f a c l i e n t ’ s s e l f s i g n e d c e r t i f i c a t e .
197 This f u n c t i o n may a l s o , and should , e x e c u t e v a l i d a t i o n s a gr e ed
198 by t h e Blockcha in −Enabled DPKI p a r t i c i p a n t s
199 This i s s i m i l a r t o t h e normal s i g n X 5 0 9 C e r t i f i c a t e f u n c t i o n
200 but i t can have d i f f e r e n t v e r i f i c a t i o n s
201 * /
202 func (s * SmartContract) s i g n C l i e n t S e l f S i g n e d X 5 0 9 C e r t i f i c a t e . . . {

203 / / v e r i f y a r g s
204

205 / / Check i f a l l e n d o r s e r s pub k e y s ar e s i g n e d by t h e o t h e r e n d o r s e r s
206 / / (in t h r e s h s i g we assume t h a t t h e p u b l i c key i s t r u s t e d
207 / / and a c c e p t e d by a l l p a r t i c i p a n t s)
208 . . .

209

210 / / I f us ing m u l t i s i g , p k i methods can only be c a l l e d i f a l l e n d o r s e r s m u l t i s i g
211 / / pub k e y s ar e endor s ed (s i g n e d by a l l e n d o r s e r s)
212 . . .

213

214 block , _ := pem . Decode ([] byte (clientCertPemWithBreakLines))

215 c l i e n t C e r t , _ := x509 . P a r s e C e r t i f i c a t e (block . Bytes)

216 . . .

217

218 / *
219 Check i f i t i s in f a c t s e l f s i g n e d
220 * /
221 i f c l i e n t C e r t . I s s u e r . S t r i n g () != c l i e n t C e r t . Sub jec t . S t r in g () {

222 logger . Debugf (" C e r t i f i c a t e i s not s e l f signed ")

223 return shim . Error (" C e r t i f i c a t e i s not s e l f signed ")

224 }

225

226

227 / *
228 V e r i f y s i g n a t u r e
229 * /

95

ANNEX I. BLOCKCHAIN-ENABLED DPKI CHAINCODE

230 . . .

231

232

233 / / S i m i l a r t o t h e p r e v i o u s s i g n X 5 0 9 C e r t i f i c a t e f u n c t i o n
234 . . .

235 }

236

237 / * *
238 This f u n c t i o n i s used t o g a t h e r s i g n a t u r e s from t h e e n d o r s e r s o f a c l i e n t ’ s CSR ,
239 in c a s e he wants t o use t h e CSR t o i s s u e with ano ther PKI
240 This f u n c t i o n may a l s o , and should , e x e c u t e v a l i d a t i o n s a gr e ed
241 by t h e Blockcha in −Enabled DPKI p a r t i c i p a n t s . This i s s i m i l a r t o t h e normal
242 s i g n X 5 0 9 C e r t i f i c a t e f u n c t i o n . I t may have d i f f e r e n t v a l i d a t i o n s
243 * /
244 func (s * SmartContract) signClientCSR . . . {

245 / / v e r i f y a r g s
246

247 / / Check i f a l l e n d o r s e r s pub k e y s ar e s i g n e d by t h e o t h e r e n d o r s e r s
248 / / (in t h r e s h s i g we assume t h a t t h e p u b l i c key i s t r u s t e d
249 / / and a c c e p t e d by a l l p a r t i c i p a n t s)
250 . . .

251

252 block , _ := pem . Decode ([] byte (clientCSRPemWithBreakLines))

253 clientCSR , e r r := x509 . P a r s e C e r t i f i c a t e R e q u e s t (block . Bytes)

254 . . .

255

256 / *
257 V e r i f y s i g n a t u r e
258 * /
259 c s r S i g E r r o r := clientCSR . CheckSignature ()

260 i f c s r S i g E r r o r != n i l {

261 logger . Debugf (" Cl ient ’ s CSR s ignature i s not va l id ")

262 return shim . Error (" Cl ient ’ s CSR s ignature i s not va l id ")

263 }

264

265 / *
266 Other v a l i d a t i o n s
267 * /
268

269 / /
270

271 / /
272

273 / / Return CSR so t h e e n d o r s e r s may s i g n i t , e n d o r s i n g i t
274 }

275

276

277 / * *
278 OCSP Reques t
279 Check c e r t i f i c a t e a g a i n s t t h e s t o r e d CRL

96

280

281 oc sp s t a t u s : 0 − good ; 1 − r ev o ke d ; 2 − unkown
282 Response may a l s o c o n t a i n a t r u s t l e v e l i f t h e c h a i n c o d e s u p p o r t s i t
283

284 OCSP Response i s then s i g n e d by each e n d o r s e r in t h e ESCC component
285 * /
286 func (s * SmartContract) ocspRequest . . . {

287 / / v e r i f y a r g s
288

289 / / cer tToCheckSer ia lNumber , e r r := s t r c o n v . Ato i (a r g s [0])
290

291 / / Check i f a l l e n d o r s e r s pub k e y s ar e s i g n e d by t h e o t h e r e n d o r s e r s
292 / / (in t h r e s h s i g we assume t h a t t h e p u b l i c key i s t r u s t e d
293 / / and a c c e p t e d by a l l p a r t i c i p a n t s)
294 . . .

295

296 / / Get CRL from t h e l e d g e r
297 . . .

298

299 / / f i n d c e r t i f i c a t e in CRL and c h e c k i f i t i s p r e s e n t (r e vo ke d)
300 . . .

301

302 / / r e t u r n OCSP s t a t u s (and o p t i o n a l l y t r u s t l e v e l)
303 . . .

304 }

305

306

307 / *
308 Get CRL
309 * /
310 func (s * SmartContract) getCRL . . . {

311

312 / / Check i f a l l e n d o r s e r s pub k e y s ar e s i g n e d
313 / / by t h e o t h e r e n d o r s e r s (i f m u l t i s i g)
314 . . .

315

316 / / Get CRL from B l o c k c h a i n ’ s Ledger and r e t u r n i t
317 . . .

318 }

319

320 / * *
321 Revoke C e r t i f i c a t e
322 Input a r g s :
323 c l i e n t ’ s c e r t i f i c a t e PEM (s e r i a l number only cou ld be used i n s t e a d)
324 nonce used in s i g n a t u r e
325 s i g n a t u r e r e g a r d i n g t h e c e r t i f i c a t e pem or ser ia lNumber with t h e c l i e n t ’ s
326 p r i v a t e key c o r r e s p o n d i n g t o t h e p u b l i c key p r e s e n t in t h e
327 c e r t i f i c a t e t o be r e vo k ed
328 t ime t o use in t h e r e v o c a t i o n (g iven by Proxy or
329 i n t e r n a l c l i e n t so i t i s t h e same in a l l f u n c t i o n s i m u l a t i o n s

97

ANNEX I. BLOCKCHAIN-ENABLED DPKI CHAINCODE

330 * /
331 func (s * SmartContract) revokeX509Cert i f i cate . . . {

332

333 / / Check i f a l l e n d o r s e r s pub k e y s ar e s i g n e d by t h e o t h e r e n d o r s e r s (i f m u l t i s i g)
334 . . .

335

336 c l i e n t C e r t , _ := x509 . P a r s e C e r t i f i c a t e (block . Bytes)

337

338 certPemAndNonce := clientCertPemWithBreakLines + requestNonce

339

340 / / V e r i f y c l i e n t s i g n a t u r e (c l i e n t i n v o k i n g t h i s t r a n s a c t i o n must
341 / / be t h e owner o f t h e c e r t i f i c a t e t o be r ev o ke d)
342

343

344 / / Update CRL, now with a new r ev o ke d c e r t i f i c a t e e n t r y
345 . . .

346

347

348 / / Return new CRL so i t i s s i g n e d by t h e e n d o r s e r s (by t h e ESCC component)
349 . . .

350 }

351

352 / * *
353 Get c e r t i f i c a t e
354 Input a r g s :
355 s u b j e c t I d o f c e r t i f i c a t e t o o b t a i n
356 * /
357 func (s * SmartContract) getX509Certif icateBySerialNumber . . . {

358

359

360 / / Search c e r t i f i c a t e in t h e B l o c k c h a i n ’ s Ledger
361 / / with t h e s p e c i f i e d s e r i a l number
362 . . .

363 }

364

365 / * *
366 S t o r e c e r t i f i c a t e . I t i s used by a Proxy or i n t e r n a l c l i e n t t o s t o r e a c e r t i f i c a t e
367 t h a t was endor s ed / s i g n e d by t h e e n d o r s e r s , t h e r e f o r e be ing c o m p l e t e l y i s s u e d by
368 t h e Blockcha in −Enabled DPKI . This i s used b e c a u s e a f t e r a Proxy / I n t e r n a l C l i e n t
369 g a t h e r s t h e e n d o r s e r s s i g n a t u r e s , i t needs t o send t h e i s s u e d c e r t i f i c a t e
370 with a l l t h e s i g n a t u r e s back t o t h e B l o c k c h a i n t o be s t o r e d in t h e l e d g e r ,
371 c o m p l e t i n g t h e i s s u i n g p r o c e s s .
372 Input a r g s :
373 x509v3 c e r t i f i c a t e pem
374 * /
375 func (s * SmartContract) s t o r e X 5 0 9 v 3 C e r t i f i c a t e . . . {

376

377

378 / / V e r i f y t h a t t h e e n d o r s e r s in f a c t s i g n e d t h e r e c e i v e d c e r t i f i c a t e
379 / / b e f o r e s t o r i n g i t in t h e l e d g e r

98

380 . . .

381

382 }

383

384 / * *
385 S t o r e Signed CSR
386 S t o r e a CSR t h a t was s i g n e d by t h e e n d o r s e r s
387 S i m i l a r t o t h e s t o r e X 5 0 9 v 3 C e r t i f i c a t e f u n c t i o n
388 Input a r g s :
389 c s r pem
390 Map<Str ing , S t r ing > o f t h e e n d o r s e r s s i g n a t u r e s
391 (Format i s <EndorserID , EndorserSignatureRegardingCSR >)
392 This f u n c t i o n can v e r i f y i f t h e CSR was in f a c t s i g n e d by t h e
393 e n d o r s e r s by v a l i d a t i n g t h e r e c e i v e d s i g n a t u r e s
394 * /
395 func (s * SmartContract) storeSignedCSR . . . {

396

397 / / I t shou ld v e r i f y t h a t t h e e n d o r s e r s in f a c t s i g n e d t h e
398 / / r e c e i v e d CSR b e f o r e s t o r i n g i t in t h e l e d g e r
399 . . .

400

401 }

402

403 / * *
404 S t o r e Signed S e l f S igned Cert
405 S t o r e a S e l f S igned Cert t h a t was s i g n e d by t h e e n d o r s e r s
406 S i m i l a r t o t h e s t o r e X 5 0 9 v 3 C e r t i f i c a t e f u n c t i o n
407 Input a r g s :
408 s e l f s i g n e d c e r t pem
409 Map<Str ing , S t r ing > o f t h e e n d o r s e r s s i g n a t u r e s
410 (Format i s <EndorserID , E n d o r s e r S i g n a t u r e R e g a r d i n g S e l f S i g n e d C e r t >)
411 This f u n c t i o n can v e r i f y i f t h e CSR was in f a c t
412 s i g n e d by t h e e n d o r s e r s by v a l i d a t i n g t h e r e c e i v e d s i g n a t u r e s
413 * /
414 func (s * SmartContract) s toreS ignedSel fS ignedCert . . . {

415

416

417 / / I t shou ld v e r i f y t h a t t h e e n d o r s e r s in f a c t s i g n e d t h e
418 / / r e c e i v e d CSR b e f o r e s t o r i n g i t in t h e l e d g e r
419 . . .

420

421 }

422

423 / / Support f u n c t i o n s
424 . . .

425

426 }

99

	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Introduction
	Context and Motivation
	Problem Statement
	Objective and Contributions
	Document Structure

	Related Work
	Background
	Public Key Infrastructure
	PKI and PKIx
	PKI Implementations

	Web-of-Trust Models
	Blockchain
	Blockchain Characteristics and Foundations
	Blockchain Trends
	Blockchain Platforms
	Decentralized Ledgering with Resilient Group Signatures

	Blockchain-Enabled PKI Approaches
	Background
	PB-PKI
	Blockchain-Based PKI Management Framework
	IKP
	CertCoin
	PomCor: Backing Rich Credentials with a Blockchain PKI
	Blockchain-Based Certificate and Revocation Transparency
	SCPKI
	Other Approaches

	Discussion

	System Model and Architecture
	Application Scenario
	System Model
	Entities
	Interactions
	Requirements

	Reference Architecture
	Software Architecture Components
	Base Hyperledger Fabric
	Extended Hyperledger Fabric
	Blockchain-Enabled DPKI Proxy

	Adversary Model Considerations
	Summary

	System Implementation
	Prototype Overview and Technologies
	Prototype Implementation
	Blockchain Network
	DPKI Proxy
	DPKI Chaincode
	DPKI Signatures
	Bootstrap Signatures
	Internal Clients
	X509v3 Certificates and CRL Extensions

	Summary

	Experimental Evaluation and Analysis
	Evaluation Environment
	X509v3 Certificate Issuing for External Clients
	Cryptographic operations and their impact on the system
	Latency variation in the issuing process
	Impact in the size of issued X509v3 certificates
	Impact of the number of endorsers
	Impact of the number of normal peers
	Comparison with the Issuing Process in a Conventional PKI Solution

	Revocation of certificates and CRL Issuing
	OCSP Requests
	Summary

	Conclusion and Final Remarks
	Conclusion
	Future Work

	Bibliography
	Blockchain-Enabled DPKI Chaincode

