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Chemoinformatic approaches to predict the viscosities of ionic 

liquids and ionic liquid-containing systems 
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To my parents 

Abstract: Modelling, predicting and understanding the factors 

influencing the viscosities of ionic liquids and related mixtures are 

sequentially checked in this work. The Molecular maps of atom-level 

properties (MOLMAP codification system) is adapted for a 

straightforward inclusion of ionic liquids and mixtures where they are 

a part of them. Random Forest models have been tested on this 

context and an optimal model was selected. The interpretability of the 

selected Random Forest model is highlighted with selected structural 

features that might contribute to identify low viscosities. The 

constructed model is able to recognize the influence of different 

structural variables, temperature, and pressure for a correct 

classification of the different systems. The codification and 

interpretation systems are highlighted in this work. 

Introduction 

The generally high viscosity of ionic liquids (ILs) is a relevant 

constraint to their general implementation in conventional 

domains of applicability, ex: solvents in extractions and synthesis, 

[1-3] materials, [4] cellulose handling, [5] lubricants, [6] bio-active 

components/carriers, [7] CO2 capture and utilization, [8] heat 

transfer fluids [9] among diverse different applications. ILs present 

heterogeneous structural characteristics and unique dynamic 

behaviour, which is a challenge for the scientific community to 

predict their properties and, in the case of this work, the viscosities. 

[10-17] The enormous number of possible combinations of a 

cation with an anion [18,19] paves the way for the straightforward 

application of chemoinformatic approaches. The possibility of 

combining a pattern recognition methodology with the unique 

features of ILs is illustrated with examples of compatibility with the 

two complementary/different concepts on melting points, [20-25] 

and viscosities [26-29] prediction of these two fundamental 

properties of ILs. 

The situation, respective mixtures, comprises different 

perspectives. [30,31] The viscosity of ILs-containing systems is 

modulated by the presence of organic solvents, mostly leading to 

lower viscosities. The behaviour of combinations of ILs is partially 

explained by the ideal Arrhenius model, and exceptions are 

highlighted. A plausible explanation consists on a non-random 

distribution of components in a system with the irregularities 

depending on each specific ion involved. This perspective 

highlights the different behaviour of a single component in the 

context of a multi ion system and the influence within an IL-based 

mixture. [32] Temperature changes are fundamental on ILs 

viscosities. [33] Pressure has a much lower impact, as for any 

neat liquid; however, systematic incremental values modify 

progressively the ILs behaviour. [34]  

 

The viscosity prediction/understanding is a challenge for any 

common IL-based system; [35] however, various attempts have 

been made with diverse levels of insight. [36,37] Automatic 

prediction and knowledge-development of IL-based systems 

require a solid codification system in order to include 

configurations of different number/nature/distribution of 

components, and a straightforward curation. [38] The MOLMAP 

codification system, was constructed for the classification of 

chemical reactions without any assignment of the reaction centre. 

[39] The concept was applied for the prediction of chemical 

reactivity, with the codification of examples that do not react, 

usually not available in databases, solved with the creation of 

MOLMAP of virtual components with encoded bonds that don’t 

react or have been created during the reaction. This is based on 

a contrast/operation between the MOLMAP codes of product and 

reagent. [40] Other examples illustrate the capacity/flexibility of 

this technology on the resolution of multiple phenomena. [41-45] 

The work herein presented consists on the combination of the, 

MOLMAP codification system with the description-based 

application on multi-component systems considering different 

distribution of element/components within an IL mixture/system, 

accounting for each component’s molar fraction, in order to 

predict viscosities. Moreover, we explain the relationship property 

characteristic based on Random Forest (RF). Other codification 

systems are valid on their own fields of application. [46] 

Results and Discussion 

The work here described comprise the modelling of the viscosity 

of ionic liquids and their mixtures. It has been tested the Random 

Forest algorithm to find an intelligible relationship between the 

characteristics of a certain system, encoded by MOLMAP 

technology, and the property of interest, the viscosity. 
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The Random Forest algorithm is based on a set of decision trees. 

Each tree is a sequential partition of objects of the training set, 

from parent nodes into child nodes. Each partition is obtained with 

a logical rule from a selected descriptor. The child nodes are 

purer, regarding the evaluated property, when compared with the 

parent nodes. The variability among trees is assured considering 

that each tree is built with a random-selected subset of the train 

objects, the remaining not used systems are the Out of Bag 

objects (OOB). The other variability factor concerns to mtry value, 

the number of random descriptors, from the complete pool of 

variables that are tested at each node of a given tree. The final 

class for a given object is the one obtained my majority of votes 

from the complete set of trees. 

The MOLMAP encoding technology mark in a map (Self 

organizing map Kohonen neural network), in certain positions, 

atoms of a given system, according atomic properties profile, 

accounting the molar fractions from the component that a certain 

atom belong. Identical procedure is carried out for components 

instead of atoms, however in this case the localization in 

component’s map is based on a component-property’s profile The 

first step on RF modelling is optimization, (Table 1/Experimental 

section chapter F). 

Table 1. RF-Model optimization 

 

Diverse parameters have been considered such as the number of 

randomly chosen descriptors tested at each node of a tree in 

Random Forest (mtry value), descriptor’s dimension and 

neighbourhood influence. The optimized model corresponds 

respectively to mtry = 27 and descriptor’s dimension 20x20 for 

atoms + 12x12 for components + 50xTemperature + 50xPressure 

and 1-0.5 as a winning neuron-neighbourhood influence 

(Experimental section – D).  

The criteria of selection involve high value of Out of Bag OOB 

accuracy, highest rate of processing and simplest way of 

interpretability. 

The selected model has been externally validated with v1 and v2 

sets (conception criteria, described in E - Experimental Section), 

three-fold cross-validation (Table 2), randomization of the classes 

in the training set and consequent verification of predictive ability 

- The OOB accuracy for the best of five randomized models is 

0.201, the corresponding v1 and v2 accuracy is 0.169 and 0.153 

respectively. Differently, for the optimized model, OOB, v1 and v2 

predictions are accurate an indication that an inner order is pre-

settled between the structure descriptor-set and viscosity. 

 

The RF algorithm estimates a value of probability for a given 

prediction based on the fraction of trees that credit a class. 

Threshold measures have been considered, based on probability, 

in order to group different systems, with higher probabilities for a 

concrete class correlating with incremental values of accuracy - 

Tables 3 & 4. 
 

Table 3. Test Set v1 - 1st order restriction 

 

20x20A+12x12C (1-0.5) 

mtry-A 27 35 75 150 
Accuracy 

OOB-B 0.8222 0.8226 0.8226 0.8247 

20x20A+18x18C (1-0) 

A 27 35 75 150 

B 0.7685 0.7765 0.7952 0.8053 

20x20A+18x18C (1-0.5) 

A 27 35 75 150 

B 0.8226 0.8205 0.8248 0.8243 

25x25A+12x12C (1-0.5) 

A 27 35 75 150 

B 0.8157 0.8181 0.8205 0.8226 

25x25A+15x15C (1-0) 

A 27 35 75 150 

B 0.7642 0.7763 0.7902 0.8025 

25x25A+15x15C (1-0.5) 

A 27 35 75 150 

B 0.8177 0.8200 0.8208 0.8231 

30x30A+12x12C (1-0) 

A 27 35 75 150 

B 0.7543 0.7634 0.7937 0.7965 

 30x30A+12x12C (1-0.5) 

A 27 35 75 150 

B 0.8149 0.81469 0.8164 0.8147 

 
Table 2. Modelling and validation results 

   
Form of validation Accuracy 

train 1 

out of bag 0.822 

V1 - 1st order restriction 0.720 

V2 - 2nd order restriction 0.642 

cross validation (3-fold) 0.792 

Number of Objects Treshold Probability Accuracy 

795 > 0.216 0.7195 
   

716 > 0.4 0.757 
   

662 > 0.45 0.7855 

607 > 0.5 0.8056 

529 > 0.55 0.845 

478 > 0.6 0.864 

   

436 > 0.65 0.8784 

374 > 0.7 0.9118 

312 > 0.75 0.9295 

263 > 0.8 0.9354 
   

209 > 0.85 0.9474 

150 > 0.9 0.9733 
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Table 4. Test Set v2 - 2nd order restriction 

 

 

The sensitivity and predictability among a given class for the 

different datasets have been determined (Supporting Information) 

and the results highlight that class A and F, with less neighbor 

classes lead to higher values of these parameters. Higher 

representation of a given class in the training set is another factor 

leading to better performances of that given class along the 

different datasets. 

 
 
Beyond bulk predictive criteria the RF selected model is able to 
distinguish different structural profiles/patterns, figures 2-7 
highlight this concept.  
 
The NC4-average-chain and NC10-long-chain MIM ILs illustrate 
in a straightforward form the influence of pressure on viscosity. 
The ratio of increment is practically identical. The augment in 
absolute value is higher for NC10 MIM ILs - Figure 2.  
 
Molecular Dynamics simulations [34] represent a straightforward 
form to structurally explain this effect on NC4-MIM cation. When 
submitted to 5000/6000 bars of pressure the alkyl chain bends, 
the cations get close to each other and the viscosity increases. 
On this work is speculated that the fraction of bending will be more 
substantial on longer chains. Considering our own observations 
on experimental data, part of this observation is adjusted to 
experimental reality. 
 
The selected model is able to sense the gradation of classes with 
the pressure increment - Figure 2, even the number of examples 
at high pressure, submitted to the model is not too high. 

Figure 2. Effect of Pressure on viscosity of ILs of different chain length on cation 

When the alkyl chain dimension on MIM ILs increases from C1 to 
C2 the viscosity is reduced.  From C3 on, the viscosity increases. 
[14] Prediction model captures the increment in a straightforward 
manner - Figure 3. 
 
At this T, P conditions, regarding NTf2 anions, there is no 
imidazolium cations of alkyl chain dimension values near C10, in 
this context, prediction model learns with specific examples 
involving different temperatures and pressures considering 
diverse combinations of cation and anion for a 
correct/straightforward classification of NC10MIM.NTf2. 

  
Figure 3. Effect of chain length on MIM-IL-cation’s viscosity class 

 
 
The RF model presents the capacity to learn the effect of different 
proportions on mixtures of ILs - Figure 4. It’s the case of ILs that 

Number of 
Objects Treshold Probability Accuracy 

366 > 0.216 0.6421 

311 > 0.4 0.6881 

276 > 0.45 0.7428 

247 > 0.5 0.7652 

210 > 0.55 0.8238 

189 > 0.6 0.8466 

172 > 0.65 0.8663 

150 > 0.7 0.9 

113 > 0.75 0.9292 

84 > 0.8 0.9286 

71 > 0.85 0.9296 

47 > 0.9 0.9362 
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share identical cation and different anions. Consistent with 
reference. [33a] 
 
Similar behaviour is observed when the mixture shares a common 
anion. [54] 
 
When the mixture contains two different cations and two different 
anions the model learns/predicts a correct gradation of viscosities 
in all the situations verified and leads to a correct assignment of 
classes on most situations. [31] 
 
 

 
Figure 4. Mixtures of ILs. Effect of 1) same cation, 2) equal anion, 3) different 
cation and anion 
 

The RF model learns the generalized rule that, the increment of 
the proportion of a non-charged solvent - in IL-based mixture - 
Figure 5 - decreases its viscosity. [16] However there are few 
exceptions to this rule, [54] the model learns with the 
examples/exceptions of the training set, however it is impossible 
to predict the correct class of viscosity for the few 
exceptions/examples on similar situation in the validation v1 set.  
The model captures the different effect of T on viscosities of IL-
solvent. 
 

 
 

Figure 5. Effect of molecular solvents on IL systems 
 

The increment of temperature reduces the viscosity on IL-based 
systems. The degree of influence is different considering the 
structure of the system - Figure 6. The RF model presents 
predictive ability evaluating correctly the structural effect on 
viscosity. 

 
Figure 6. Effect of temperature on MIM-ILs viscosity class 

 
 
Concerning the anion influence, Figure 7, the hydrogen-bond-
interaction-based anions lead to higher viscosities, fluorine-based 
anions to intermediate values and N-based delocalized anions to 
lower viscosities [33a] with the minimum values obtained with the 
dicyanamide anion. [53] The RF model captures the correct 
gradation of viscosities and predict, in a straightforward form, the 
class of the isothiocyanate ion. 
 

 

Figure 7. Influence of different anions on ILs viscosity 

 
The ten most influent descriptors selected by the RF model, 
(Table 5) comprise common atoms/components.  
 
The meaning and a visual interpretation of each descriptor is 
carried out in the Supporting Information, 
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Table 5. The most influent descriptors from RF model  
 
 
 
This form of codification accounts for the physico-chemical 
characteristics of atoms/components and, for a specific descriptor 
the standard rule is that diverse components/atoms that contain 
similar physicochemical profile share the winning neuron. The 
neighbour neurons account for the value of a particular descriptor 
position-Experimental section - D. This physico-chemical profile 
indexing procedure is straightforward and may resolve hidden 
relations gathering different items. This application resolves 
mixture and related system-inclusion in the context of information 
curation. [38] 
 
The interpretation of relevant and meaningful descriptors 

(Experimental Section - G) reveals indicative and intelligible 

relationships - Figures S1-S7 (Supporting Information). 

The viscosity class depend effectively on the corresponding value 

of the average descriptor. The winning position and neighbour 

cells influence the final value.  

The straightforward interpretation of the RF model (Figures S1-

S7 Supporting information and Results and Discussion) leads to 

the conclusion that structural features such as: neutral 

components, the presence of specific anions such as 

dicyanamide, as the best illustrative example, delocalization of 

charge/small-size chain on both cation and anion, and proper CO2 

levels contribute to a clear viscosity reduction. 

Conclusions 

A novel codification system has been designed in order to include 

Ionic Liquids and their mixtures in a global model. A Random 

Forest model has been optimized for the modelling and prediction 

of viscosities. The interpretative system from Random Forest 

information permits to unveil the influence of a given descriptor on 

the viscosity of a given system. This method adds value to the 

Random Forest algorithm solving previous interpretability 

limitations 

The Random Forest model is able to identify correct 

characteristics, leading to viscosity reduction such as  the 

presence of molecular components, dicyanamide and bistriflimide 

as anions, non-centred delocalized charge, considerable CO2 

levels and small chains on both anion and cation. 

 
This work contributes to computer-assisted research for generic 
characteristics influencing a given property value.  
 

Experimental Section 

A - Database structuration 

NIST ILThermo database [47] gathers information on diverse 

features of a generic IL and related systems. A work-selection 

involves 13798 samples including single IL systems, mixtures 

IL/IL and IL/Organic compound. A system includes different 

components, a component is an ion or a molecule. The work 

environment Chemfinder [48] has been the platform to conclude 

this aspect of the project. This work-selection includes structural 

information, viscosity, temperature, pressure and molar fractions. 

The structural information is encoded in smiles form. 

B - Clean-up and extraction of information 

The structures have been standardized following the sequence 1) 

Mesomerize 2) Add explicit Hydrogens and 3) Clean three-

dimensional structures. Ion/Molecule and atomic properties have 

been extracted from the file: a) weight, b) surface area, c) volume 

and d) polarizabilities within a component and i) hydrogen bond 

donor, ii) hydrogen bond acceptor, iii) total charge, iv) 

polarizabilities, v) sigma charge, vi) pi charge, vii) orbital 

electronegativity sigma, viii) hindrance and ix) atomic number 

from elements. The programs standardizer and cxcalc from 

Chemaxon [49] have been tested on this sequence for 

standardization of chemical structures and estimation of atomic 

and component properties.  

All the properties have been normalized considering the formula: 

𝑃𝑟𝑜𝑝. 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑃𝑟𝑜𝑝 − 𝑚𝑖𝑛

𝑚𝑎𝑥 − 𝑚𝑖𝑛
 

Equation 1: Prop – original value of the property, min – minimum 

value of the property considering all the objects 

components/elements, max – maximum value of the property. 

 

C - Kohonen Neural Network training 

Two different types of Kohonen Neural Networks have been 

trained - atoms and components, which have been organized 

considering their properties profile, characterized on the previous 

section.  5000 components have been randomly chosen - 2413 

anions, 2307 cations and 280 molecules. 10000 atoms have been 

selected in an identical form - 4500 atoms from cation, 4000 from 

anion and 1500 atoms from molecules. The component’s 

Kohonen NNs comprise 12x12 (C1-C144 component 

descriptors), 15x15 (C1-C225 component descriptors) and 18x18 

(C1-C324 component descriptors) Self-Organizing maps (SOMs). 

20x20 (A1-A400 atom descriptors), 25x25 (A1-A625 atom 

Most relevant 
descriptors-

order 
Descriptor 

  

MeanDecreaseAccuracy 
  

1 A312 25.79 

2 A162 25.34 

3 C18 24.97 

4 A161 24.61 

5 A143 24.30 

6 A59 23.98 

7 A180 23.41 

8 A264 23.29 

9 A96 22.75 

10 A361 22.57 
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descriptors) and 30x30 (A1-A900 atom descriptors) are the 

dimensions of element’s SOMs. 

 

D - System’s codification method 

First step: MOLMAP (MOLecular Maps of Atom level Properties) 

for atoms/components 

MOLMAP descriptors encode the presence/absence of specific 
atom or component types in the system. The atom/component 
types are defined by Kohonen neural networks on the basis of 
empirical physicochemical properties of atoms or even 
components. 
 

MOLMAPs applied to this work involve atoms and components. 

Each component/atom (item) of a system was submitted to the 

respective trained Kohonen Neural Network – Self Organizing 

Map (SOM) obtained in the previous C-Section. Each item 

activates a neuron (a wining position in the SOM). The program 

CUTMAPZ3N converts the Kohonen Neural Network profile (atom 

or component’s activation profile) into a MOLMAP pattern 

(numerical representation of activation in a grid), each winning 

neuron/activation represents a specific/concrete value, the 

respective neighbour neurons activate a different/lower value.  

Second step: System codification 

The next step includes the two-level conversion of compound 

molar fraction to component correspondence and that converted 

molar fraction weighting for the respective MOLMAPs of atoms of 

a component (by multiplication). Identical procedure for MOLMAP 

of component. The weighted MOLMAPs of a certain type (atoms 

or component) are summed up for all components of a system, 

resulting in unified MOLMAPs, one for atoms and another for the 

components of a system. 

 

E - Training and validation setup 

The original 13798 samples have been reduced and a compact 

8501-sample remained. The criteria of deletion involve 

redundancies and incoherencies. The reduced set was distributed 

into a 7706-system training set (tr) and a 795-system validation 

set (v1). This validation set includes systems with non-identical 

MOLMAP and/or temperature and/or pressure profile when 

compared to the training set. This is the first level of restriction 

evolving tr an v1 sets. The second level of restriction comprises a 

v2 validation set of 366 systems, from v1, where, at least one 

component is not present in a generic system of the training set. 

[46c]. The v2 dataset is included in v1 collection of systems. The 

integral pool of systems includes different: 611 ILs, 288 cations, 

99 anions, 45 molecules. Temperature interval from 253-438 K. 

Pressure range [0.07-300MPa]. Check Supporting Information for 

a detailed datasets composition’s report. 

F - Random forest classification model - RF - Model building 

Classification models have been constructed comprising six 

different levels of viscosity - Class A: 0.28-20.59 mPa.s, Class B: 

20.6-51.6 mPa.s, Class C: 51.7-122.9 mPa.s, Class D: 123-414 

mPa.s, Class E: 415-1035.5 mPa.s and Class F: 1036-140000 

mPa.s. The concept of these six classes considers different 

classes with substantial representation in order to the Random 

Forest – RF algorithm learn general rules. This algorithm has 

been tested to find a straightforward link between the codification 

system/descriptors and the viscosities of IL-based systems. The 

R environment [50] has been used as a platform to build up the 

models. The optimization comprises descriptor’s dimensions and 

neighbourhood influence: /20x20/-/30x30/ as /dimension/ interval 

for elements /12x12/-/18x18/ for components, and {1-0} or {1-0.5} 

concerning {winning neuron-neighbour neuron weights for 

activation} and to conclude the mtry verification (27-150). 

 

The out of bag OOB [51] accuracy of the training set was verified 

as criteria to select the optimum model: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑠𝑒𝑡

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑦𝑠𝑡𝑒𝑚𝑠
 

Equation 2 

 

The chosen model comprehends a measure of descriptor-

importance, predictive ability for validation set and probability of 

prediction. [52] 

 

G - Interpret RF model 

The ten most relevant descriptors selected by RF model and the 

form of codification developed in chapters C and D have been 

combined: 

The trained Kohonen neural networks in chapter C create an 

output file with information of item position on the network. This 

position corresponds to a contribution on a determined descriptor 

- chapter D. Each concrete system has their own patterns of 

activation component/atom with the weight of molar fractions 

embedded. Each concrete item (component/atom) on this context 

has its own value and situation for description. Each specific 

item/descriptor contributor has the influence of the neighbourhood 

cells in a selective proportion. 

The items (atoms or components) of a generic system, of v1 

validation set, mapped on a winning or neighbour neuron are 

gathered in excel file. This procedure is carried out for a given 

descriptor of the ten most important for the viscosity model. The 

value of activation, the predicted and experimental classes of that 

item are included. The systems/items are divided in different 

sheets according to the experimental class and tested by 

Equation 3, and it permits to recognize all items of a given system 

and when a different system starts being evaluated. The 

application of that equation permits the determination, on the next 

step, of the average value of that descriptor for the correct 

assignments considering a given class (A-F). The final step 

consists on finding a straightforward/intelligible relationship 

between descriptor/property, a significant pattern between the 

different classes of viscosity and the value of the descriptor. 
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𝑆𝑦𝑠𝑡𝑒𝑚𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟 = 𝐼𝐹(𝑂𝑅 (𝐴𝑁𝐷(𝐼2

= 𝐼1; 𝑁𝑂𝑇(𝐼2 = 𝐼3)); 𝐴𝑁𝐷(𝐼2 = 𝐼1; 𝐼2

= 𝐼3)) ; 0; 𝐼𝐹(𝐴𝑁𝐷(𝑁𝑂𝑇(𝐼2 = 𝐼1); 𝑁𝑂𝑇(𝐼2

= 𝐼3)); 𝑀2; 𝐼𝐹(𝐴𝑁𝐷(𝑁𝑂𝑇(𝐼2 = 𝐼1); 𝐼2

= 𝐼3; 𝑁𝑂𝑇(𝐼3

= 𝐼4)); 𝑆𝑈𝑀(𝑀2: 𝑀3); 𝐼𝐹(𝐴𝑁𝐷(𝑁𝑂𝑇(𝐼2

= 𝐼1); 𝐼2 = 𝐼3; 𝐼3

= 𝐼4; 𝑁𝑂𝑇(𝐼4 = 𝐼5)); 𝑆𝑈𝑀(𝑀2: 𝑀4); … 

Equation 3: I System where an M item belongs with a certain 

value   

H - Measures of Validation/Probability 

 

-Viscosity class-randomization in the training set, model-build-up 

and prediction for validation sets 

-3-fold cross validation 

-Out of bag OOB prediction 

- v1 and v2 predictions 

- Probability of correct assignment 

- Sensitivity within a given class (Supporting Information): 

Percentage of a given experimental class objects, effectively 

classified as that class by the model. 

- Predictability for a given class (Supporting information): 

Percentage of objects classified as a given class that effectively 

belong to that class experimentally. 

 
I - Experimental Procedure/Figure 

 

Figure 1. Schematic representation of the experimental procedure  
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