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Abstract. Knowing how to identify terrain types is especially important in the 
autonomous navigation, mapping, decision making and detect landings areas. A 
recent area is in cooperation and improvement of autonomous behavior between 
robots. For example, an unmanned aerial vehicle (UAV) is used to identify a 
possible landing area or used in cooperation with other robots to navigate in 
unknown terrains. This paper presents a computer vision algorithm capable of 
identifying the terrain type where the UAV is flying, using its rotors’ downwash 
effect. The algorithm is a fusion between the frequency Wiener-Khinchin adapted 
and spatial Empirical Mode Decomposition (EMD) domains. In order to increase 
certainty in terrain identification, machine learning is also used. The system is 
validated using videos acquired onboard of a UAV with an RGB camera. 
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1   Introduction 

Nowadays, Unmanned Aerial Vehicles (UAVs) have a huge impact in the area of 
research and industry. In the research area since it is a recent topic and therefore little 
studied. In the area of industry, being a lightweight and low-power robot, it can be used 
in various situations, such as precision agriculture, emergency landings and rescue 
missions. 
 
In this case, the task of the UAV is to cooperate with the Unmanned Surface Vehicle 
(USV) so that it reaches its intended destination. This is the purpose of this paper. 
 
With an RGB camera mounted on the UAV it is possible to receive the images from 
the outside from the effect of the downwash caused by the UAV. This effect is only felt 
at low altitudes and has unique effects on the terrain (e.g. the circular wave effect on 
the water terrain). 
 
Two different techniques were merged to classify the terrain type: Wiener-Khinchin 
Theorem and Empirical Mode Decomposition (EMD). These techniques, although well 
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developed for 1-D signals, are seldom applied in image processing domain. Thus, many 
of the following questions are still unknown: How to apply both algorithms for image 
processing? Is it necessary to evaluate the whole image or may it be necessary to find 
methods to reduce computational complexity? Knowing that the EMD technique 
decomposes the signal into several intrinsic mode functions (IMFs), which of the IMFs 
best classifies the type of terrain? How can the Wiener-Khinchin theorem and the EMD 
algorithm complement each other? These challenges are addressed throughout this 
work and how they have been resolved to have the best results possible. 

2   Contribution to Industrial and Service Systems 

The behavior of different terrains when exposed to wind turbulence (downwash effect) 
is discernable and, by processing that behavior using Wiener-Khinchin (W-K) and 
EMD filters, we can generate singular results to identify a terrain type. Exploiting this 
knowledge, a novel terrain classifier is proposed and presented as a scalable service 
that can be used simultaneously by several applications and systems. Therefore, the 
herein presented work is focused on the Industrial and Service Systems domain, 
specifically, in Robotics and Integrated Manufacturing and Signal Processing topic. 

3   Related Work 

UAV applications is a topic that lately has arisen a lot and is becoming more 
important in several areas and is predicted that it will soon have a great impact on 
society [1]. One of the areas that is causing a great impact is in the area computer vision 
with the aim of making an UAV in an autonomous robot. For this, and concretely in 
this paper, the UAV must be able to capture, process and analyze the images of the 
environment in order to classify the type of terrain where it is flying over. Many 
researchers have proposed several methods in the classification of terrain, such as 
texture algorithms [2], [3], [4], [5], color information [6] and other types of sensors that 
help in the classification decision, such as LIDAR type sensors [7], [8], [9]. Currently, 
on terrain classification using the downwash effect concept there are two recent works 
[10], [11]. The first one, used the concept of optical flow to detect the dynamic features 
of an image (Lucas Kanade algorithm [10]), from an RGB camera that was placed in 
an UAV. The objective of this work was to decide whether the terrain under study was 
water or not water. However, it takes at best 4 seconds to classify whether the terrain is 
water-type or not. Thus, it forces the UAV to hover in a steady position to classify the 
terrain. Another work that exploits the downwash effect to classify the type of terrain, 
takes advantage, not only of the dynamic part but also the static part of the image. In 
relation to [10], this work in addition to classifying water-type terrains can also 
differentiate vegetation and sand terrains in real time (less than 0.03 second). To 
classify the terrain type, the algorithm uses the Gabor concept [11] to remove the static 
texture of the terrain, complementing with the concept of optical flow (Farneback 
algorithm [11]) to remove the dynamic part of the terrain under study.  



Color information was also used in [6] to classify four types of terrain. Converting 
each pixel of the image by the square root of the three channels of the pixel itself, the 
result will emphasize the color that most represents the type of terrain (e.g., blue for 
water). Other methods that rely on laser scanners also proved to differentiate between 
water and non-water terrain with good accuracy [7], [8], [9]. However, shallow water 
terrain will increase the decision error due to laser reflection and thus the sensor 
classifies as non-water-type terrain. 

4   Proposed Model 
 
Two algorithms were used in the proposed classifier: Wiener-Kinchin (W-K) and 
Empirical Mode Decomposition (EMD). Since these two techniques are independent 
of each other (one works in the spatial domain and the other in the frequency domain), 
it is possible to operate in parallel mode to increase the processing speed. From the 
proposed classifier model, as depicted in Figure 1, it is possible to identify six 
fundamental stages: 

 
1. Rectified Image: For the proposed classifier to be generic enough to work for 

all RGB cameras (depending on the resolution), it is first necessary to calibrate 
the image and mitigate its distortion; 

 
2. Dimensionality reduction: To increase the classification speed only a small 

piece (i.e., region delimited by the red square) of information was extracted in 
the image (in this case the information was taken in a square format); 

 
3. Empirical Mode Decomposition (EMD) filter: In the spatial domain, the EMD 

algorithm is applied in the image; 
 

4. Computation of the first Three IMFs: Having the EMD obtained previously, 
the first three Intrinsic Mode Functions (IMFs) are taken to analyze the signal 
coming from the terrain under study; 

 
5. Wiener-Khinchin (W-K) filter: Vertical and horizontal projections are applied 

to the thresholded image, extracting unique features that help differentiate the 
different types of terrains; 

 
6. Terrain Classification: Certain decisions can be improved by using machine 

learning [12], [13], [14]. It will contribute to a more automated and 
reproducible process and possibly to increase the decision accuracy. 

 
 



 
 
 
Fig. 1. Proposed terrain classifier model. 
 
Five different terrain types representing the most common natural landscapes were 
selected to be the output of the proposed classifier: lake, pool, vegetation, dirt and sand 
terrains. When exposed to wind turbulence (downwash effect) distinct behaviors 
emerge according to the type of terrain. For instance, in water-like terrains, a circular 
wave movement outwards a center point is observed. In the vegetation, the movement 
occurs linearly from the inside to the outside. In sand and dirt, the movement is almost 
static. 

5   Experimental Results 
 
5.1   Empirical Mode Decomposition 

According to Huang [15], [16], the principle of EMD is to decompose the signal into 
several frequencies, called Intrinsic Mode Functions (IMFs) and each IMF represents a 
zero-mean AM-FM function [17]. EMD is performed as follows: 
 

1. Initialize vector h(t) and k(t) for a given image I; 
2. Get local maxima and minima from h(t) to build an upper s+(t) and a lower s(t) 

envelopes; 
 

3. Calculate the mean envelope: 

meanenvelope = 0.5 x [s +(t) + s -(t)] (1) 
 

4. The mean is subtracted from signal c(t) (initially c(t) is equal to vector h(t)): 



c(t) = c(t) - meanenvelope (2) 
 

5. c(t) is verified against a defined threshold. If it is above it, then h(t) = c(t) and 
repeat step 2-4. If it is below, then an IMF is found and h(t)= k(t) - c(t); k(t)= 
c(t); and repeat the steps 2-4 to find the next IMF. 

 
Only the first three IMFs and the baseline are taken. Next, two heuristics are computed 
to identify the terrain: the number of local maximums given by an IMF and the number 
of times the IMF has crossed zero along the vector. These two heuristics were calculated 
for a set of 332 frames. From Fig. 2 it is possible to identify 5 clusters representing a 
terrain type. Despite the positive results, there are a few outliers. To improve accuracy, 
EMD was complemented with the Wiener-Khinchin filter. 
 

a)                                                                    b) 
 
 
 
 
 
 
 
 
 
 
 
 

c) 
 
Fig. 2. Intrinsic Mode Function – The zero crossings in relation to the total number of local 
maxima. a) IMF-A; b) IMF-B; c) IMF-C. 
 
5.2   Wiener-Khinchin Filter 
 
The Wiener-Khinchin filter (W-K) is performed in the frequency domain while the 
algorithm in section 5.1 is presented in the spatial domain. To increase computational 



speed, the algorithm is not used in the total image but only in sub-region of it. To 
compare different types of terrain, it is necessary to compute the average value from 
that sub-region and normalize it apply general thresholds. As the Wiener-Khinchin 
theorem uses the concept of energy in the frequency domain, it becomes intuitive to 
normalize according to energy. These same values were then passed to the frequency 
domain. Next, frequency values are signal crossed with themselves. Finally, an inverse 
transform is performed. In last, it is possible to use the same heuristic characteristics 
that were used in section 5.1. This algorithm was also applied to the same set of 332 
frames (90 frames are pool water, 35 frames are lake, 74 frames are vegetation, 55 
frames are sand and 78 frames are dirt). As depicted in Fig. 3, with the Wiener filter it 
is also possible to clearly identify the five terrain types. However, lakes present greater 
uncertainty. Due to this situation, to increase the probability of a correct classification, 
machine learning was also added to the proposed model. 
 
5.3   Classification  
 
To automate the classification process, feed-forward neural network (NN) was used. 
Several tests were done to assess the best combination between the Wiener-Khinchin 
filter and Empirical Mode Decomposition. The first step was to create a neural network 
composed of two layers: the first layer is hidden and contains 10 neurons; the second 
layer contains 5 neurons that represents the terrain types.  
 

 
 
Fig. 3. Wiener-Kinchin Filter – Number of times the signal crosses the zero in relation 
to the total number of local maxima. 
 
A sigmoidal function was used as activation function and the final classification of the 
terrain under study is validated by the neuron that gives a greater result (the training 
dataset was composed by 334 samples, from which 70% were for training, 15% for 
testing and 15% for validation). Table 1 was produced showing the classification 



accuracy in all possible combinations. The best was the Wiener-Khinchin filter with 
the first IMF, yielding a 93% terrain classification accuracy. 
 
6   Conclusions 
 
The goal of this work was to design a terrain classifier using two algorithms that exploit 
the UAV’s downwash effect. The two algorithms are the Wiener-Khinchin filter and 
Empirical Mode Decomposition. It was proved throughout this work that both 
algorithms worked well together by presenting good results in the terrain classification. 
Regarding the EMD algorithm, it was emphasized that, despite the high accuracy in the 
NN decision, the probability of correctly classifying a terrain worsens from IMF to IMF 
and therefore it is always better to use the first IMF. However, it is always possible to 
improve certainty in the decision and therefore the EMD algorithm was complemented 
with the theory of Wiener-Khinchin. With this addition, the certainty in the 
classification of terrains managed to extend to 93%. 
 

 
Table 1.  Combination of the two algorithms developed for the proposed classifier. 
 
Combination W-K IMF-A IMF-B IMF-C Result 

1 x    90.0 % 
2  x   88.0 % 
3   x  74.0 % 
4    x 74.0 % 
5 x x   93.0 % 
6 x  x  77.0 % 
7 x   x 82.0 % 
8  x   79.0 % 
9  x  x 85.0 % 
10   x x 84.0 % 
11 x x   82.0 % 
12 x x  x 81.3 % 
13 x  x x 80.0 % 
14  x x x 83.3 % 
15 x x x x 84.0 % 
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