
Analysis of GraphQL performance: a case
study

MAFALDA ISABEL FERREIRA LANDEIRO
Julho de 2019

Analysis of GraphQL performance: a case study

Mafalda Isabel Ferreira Landeiro

Dissertation to obtain a Master’s degree in Informatics Engineering,
Area of Specialization in Software Engineering

Academic supervisor: Isabel de Fátima Silva Azevedo

Enterprise supervisor: José Carlos Sousa

Porto, July 2019

ii

iii

However, difficult life may seem,
there is always something you can do and succeed at.

It matters that you do not just give up.
(Stephen Hawking)

iv

v

Dedication

To my family

To my boyfriend

To Bia

vi

vii

Resumo

Atualmente os aplicativos da Web têm um papel relevante, com um grande número de

aparelhos conectados à Internet e os dados são transmitidos entre plataformas distintas a um

ritmo sem precedentes. Vários sistemas e plataformas de tipos diferentes, como web e móveis,

exigem que os aplicativos se adaptem de maneira rápida e eficiente às necessidades dos

consumidores.

Em 2000, o Representation State Transfer (REST) foi apresentado e foi rapidamente adotado

pelos desenvolvedores. No entanto, devido ao crescimento dos consumidores e às

necessidades distintas, este estilo arquitetónico, na forma como é utilizado, revelou algumas

fragilidades relacionadas com o desempenho e flexibilidade das aplicações. Estas são ou podem

ser endereçadas com GraphQL. Apesar de ser uma tecnologia recente, já é usada por grandes

empresas como Facebook, Netflix, GitHub e PayPal.

Recentemente, uma plataforma do INESC TEC, denominada IRIS, enfrentou os mesmos

problemas de desempenho e a possibilidade de adoção do GraphQL foi considerada. Várias

alternativas com GraphQL foram estudadas e analisadas de forma a verificar se poderiam

beneficiar o IRIS em termos de desempenho e flexbilidade.

Uma das conclusões deste estudo é que todas as alternativas testadas revelam, no geral,

melhores resultados de desempenho, tendo em consideração o tempo de resposta e o tamanho

da resposta. No entanto, a utilização de uma alternativa constituída apenas por GraphQL

apresenta-se como a melhor solução para melhorar o desempenho e flexibilidade de uma

aplicação.

Palavras-chave: GraphQL, REST, Webservice, Performance

viii

ix

Abstract

Web applications today play a significant role, with a large number of devices connected to the

Internet, and data is transmitted across disparate platforms at an unprecedented rate. Many

systems and platforms of different types, such as web and mobile, require applications to adapt

quickly and efficiently to the needs of consumers.

In 2000, the Representation State Transfer (REST) was introduced, and the developers quickly

adopted it. However, due to the growth of consumers and the different needs, this architectural

style, in the way it is used, revealed some weaknesses related to the performance and flexibility

of the applications. These are or can be addressed with GraphQL. Despite being a recent

technology, it is already used by big companies like Facebook, Netflix, GitHub, and PayPal.

Recently, an INESC TEC platform, called IRIS, faced the same performance problems and the

possibility of adopting GraphQL was considered. Several alternatives with GraphQL were

studied and analyzed to see if they could benefit IRIS in terms of performance and flexibility.

One of the conclusions of this study is that all of the alternatives tested show, overall, better

performance results, taking into account response time and response size. However, the use of

an alternative consisting solely of GraphQL is the best solution to improve the performance and

flexibility of an application.

Keywords: GraphQL, REST, Webservice, Performance

x

xi

Acknowledgment

This thesis would not have been possible without the cooperation and goodwill of those directly

and indirectly involved in the project. I want to express my sincere thanks to all.

To ISEP, where all my academic path was made, and that transmitted me all the necessary

knowledge for being capable of concluding a project like this.

To INESC TEC, to allow me to conjugate my thesis with my daily job and to give me the possibility

to dedicate some time to this project.

To my academic supervisor, Professor Isabel Azevedo, for being not only a great supervisor,

guiding my work and debating some ideas, but also for giving me such positive energy and

motivation, during all the thesis. Thank you for all the patience and availability. After two years,

we made it!

To my enterprise supervisor, José Carlos Sousa, for backing me up during this journey and

supporting me in all the decisions made.

To the executive director of INESC TEC, Professor Gabriel David, for providing me the time and

space need to dedicate to this thesis and for giving me some guidance about possible

alternatives to explore.

To my colleagues in INESC TEC, specially to: Jaime Dias, for all the time helping me and the

openness to discuss some ideas; to Fábio Alves, for sharing opinions about this document; to

Soraia Ramos, it was enjoyable that we were doing the thesis at the same time and had shared

so much, even though we are from distinct areas.

To my family, for keeping on supporting me in all the moments and believing in my abilities.

Thank you for being always there for me.

To my boyfriend, the most significant support of all this journey. Thank you for all the patience

and for believing in me all the time. You were the essential key of all my positive mind and

strength to finish this project.

To Bia, my cat, because there is no better company for writing than her. Thank you for lending

me a paw!

xii

xiii

Table of Contents

1 Introduction ... 1

1.1 Context ... 1

1.2 Problem .. 2

1.3 Objectives ... 3

1.4 Methodology ... 3

1.5 Organization ... 4

2 Context ... 7

2.1 INESC TEC .. 7

2.2 Problem ... 11

2.3 Value analysis .. 13
2.3.1 Business and Innovation Process .. 13
2.3.2 Value Offer and Proposition ... 18
2.3.3 Canvas Business Model ... 20

3 State of the Art ... 23

3.1 REST ... 23

3.2 GraphQL ... 25
3.2.1 Schema .. 27
3.2.2 API creation .. 29
3.2.3 Adoptions overview ... 31

3.3 Comparison between REST and GraphQL.. 33

3.4 Adopted technologies ... 36

4 Design .. 39

4.1 Requirements Analysis .. 40
4.1.1 System Actors .. 40
4.1.2 Requirements .. 40

4.2 Possible Approaches .. 42

4.3 Prototyping ... 45
4.3.1 Prototype 1 – GraphQL standalone ... 46
4.3.2 Prototype 2 – REST with GraphQL .. 49

5 Implementation ... 53

5.1 Common implementation .. 53

5.2 Prototype 1 – GraphQL standalone ... 59

5.3 Prototype 2 – REST with GraphQL .. 61

xiv

6 Tests and Solution Evaluation .. 65

6.1 Measurements to Evaluate .. 65

6.2 Hypotheses and Evaluation Methodology ... 66
6.2.1 Hypotheses .. 66
6.2.2 Evaluation Methodology ... 67

6.3 Experimentation and Evaluation ... 68
6.3.1 Technical quality ... 68
6.3.2 Performance... 71

7 Conclusion ... 77

7.1 Work Done and Difficulties Found ... 77

7.2 Future Work ... 78

7.3 Contributions .. 79

References ... 81

Appendixes ... 85

Appendix A – GraphQL Schema .. 86

Appendix B – Prototype 1 POM ... 90

Appendix C – Prototype 2 POM ... 93

Appendix D – Acceptance tests .. 95

Appendix E – Example of a sensor configuration .. 100

Appendix F – Descriptive statistics (quantitative data) for time 102

Appendix G – Descriptive statistics (quantitative data) for size 107

xv

List of Figures

Figure 1 - Activities in R&TD programs of INESC TEC, from (INESC TEC, 2017) 8

Figure 2 - IRIS home page... 8

Figure 3 - IRIS sessions on the first six months of 2018 and 2019 ... 9

Figure 4 - IRIS integration with different platforms ... 10

Figure 5 - Component diagram of IRIS ... 10

Figure 6 - Searching projects on IRIS .. 11

Figure 7 - Response time and size of a simple search on IRIS .. 12

Figure 8 - Response time and size of search on IRIS after defining responses 13

Figure 9 - New Concept Development Model, from (Vacek, 2012) ... 14

Figure 10 - AHP tree of idea selection .. 16

Figure 11 - VC on a longitudinal perspective ... 19

Figure 12 - Canvas Business Model for Analysis of GraphQL Performance: a Case Study......... 21

Figure 13 - REST web services types according to (Terzić et al., 2017) 24

Figure 14 - GraphQL timeline ... 25

Figure 15 - Advantages and disadvantages of GraphQL, adapted from (Brito et al., 2019) 26

Figure 16 - Interactions of using GraphQL ... 27

Figure 17 - Architecture of Monet before and after GraphQL, from (Shtatnov and

Ranganathan, 2018) ... 31

Figure 18 – Graphic with network performance results obtain by Vázquez-Ingelmo 36

Figure 19 - Solution idea .. 39

Figure 20 - Solution use case.. 41

Figure 21 - Solution approaches mind map ... 42

Figure 22 - AHP tree of approaches selection .. 43

Figure 23 - Database model for the projects module .. 46

Figure 24 - Component diagram of Prototype 1 .. 47

Figure 25 - Deployment diagram of Prototype 1 ... 48

Figure 26 - Module layer of Prototype 1 .. 49

Figure 27 - Component diagram of Prototype 2 .. 50

Figure 28 - Deployment diagram of Prototype 2 ... 51

Figure 29 - Module Layer of Prototype 2 ... 52

Figure 30 – Online OpenAPI specification of project API ... 54

Figure 31 – Entities class diagram .. 57

Figure 32 - Sequence diagram of a query in prototype 1 .. 61

Figure 33 - Sequence diagram of a query in prototype 2 .. 63

Figure 34 - Experimental life cycle, adapted from (Gomes, 2018) .. 66

Figure 35 - Results of unit testing .. 70

Figure 36 - Code coverage results .. 70

Figure 37 - Load testing results .. 71

Figure 38 - Sensors view from PRGT .. 72

Figure 39 - Average of response time by API ... 74

xvi

Figure 40 - Average of response size by API ... 74

Figure 41 - Summary of means - time and size .. 76

xvii

List of Tables

Table 1 - Scale for Comparison on AHP, adapted from (Saaty and Vargas, 1991) 16

Table 2 - Comparison matrix of idea selection .. 16

Table 3 - Comparison matrix of idea selection with the sum .. 17

Table 4 - Comparison matrix of idea selection normalized with a relative priority 17

Table 5 - Comparison matrix of idea selection for knowledge .. 17

Table 6 - Comparison matrix of idea selection for efficiency .. 17

Table 7 - Comparison matrix of idea selection for costs .. 17

Table 8 - Benefits/Sacrifices of project .. 18

Table 9 - Similarities and differences between REST and GraphQL found by Stubailo 34

Table 10 - Similarities and differences between REST and GraphQL found by Guillen-Drija 35

Table 11 - Functional requirements ... 41

Table 12 - Comparison matrix of approaches selection... 43

Table 13 - Comparison matrix of approaches selection with the sum 44

Table 14 - Comparison matrix of approaches selection normalized with a relative priority 44

Table 15 - Comparison matrix of approaches selection for architectural complexity 44

Table 16 - Comparison matrix of approaches selection for efficiency....................................... 44

Table 17 - Comparison matrix of approaches selection for time ... 45

Table 18 - Classification of different levels of complexity ... 68

Table 19 - Example of acceptance test .. 71

Table 20 - Mean results for requests with complexity low .. 73

Table 21 - Mean results for requests with complexity normal .. 73

Table 22 - Mean results for requests with complexity high... 74

Table 23 – Differences’ analysis between the current solution and prototype 1 (Tukey’s HSD

test) .. 75

Table 24 – Differences’ analysis between the current solution and prototype 2 (Tukey’s HSD

test) .. 75

xviii

xix

List of Code Snippets

Code 1 - Example of a GraphQL schema .. 28

Code 2 - Example of query and fragment .. 29

Code 3 - Mutation example ... 29

Code 4 - Maven dependencies required to build a GraphQL API .. 30

Code 5 - Example of bean to handle with the root query field.. 30

Code 6 - Example of bean to represent GraphQL complex types .. 30

Code 7 - Example of OpenAPI Specification, adapted from (Open API Initiative, 2017) 37

Code 8 – JSON OpenAPI specification of projects API ... 55

Code 9 – Command to convert a JSON Open API specification file to a GraphQL Schema 55

Code 10 – Main file of GraphQL Schema ... 55

Code 11 – Financing Entity GraphQL Schema .. 56

Code 12 – Security configuration ... 58

Code 13 - Example of GraphQL API response layout ... 58

Code 14 - Application properties for GraphQL and GraphiQL of prototype 1 59

Code 15 - Project function repository .. 60

Code 16 - Financing entity resolver of prototype 1 ... 60

Code 17 - Application properties for GraphQL and GraphiQL of prototype 2 62

Code 18 - Example of a method from a query resolver ... 62

Code 19 - Financing entity resolver of prototype 2 ... 63

Code 20 - Example of a unit test of prototype 1 .. 69

Code 21 - Example of an integration test of prototype 1 and 2 .. 70

Code 22 - Query request for complexity low ... 72

Code 23 - Query request for complexity normal ... 73

Code 24 - Query request for complexity high .. 73

xx

xxi

List of Acronyms and Symbols

AHP Analytic Hierarchy Process

ANOVA Analysis of Variance

API Application

CRUD Create, Read, Update and Delete

DI Developer Interface

DX Developer Experience

FEI Front End of Innovation

HATEOAS Hypermedia As The Engine Of Application State

HSD Honestly Significantly Different

HTTP Hypertext Transfer Protocol

INESC TEC Institute of Systems and Computer Engineering, Technology and Science

IRIS INESC TEC Research Information System

ISEP Porto School of Engineering

JDBC Java Database Connectivity

JPA Java Persistence API

JSON JavaScript Object Notation

JVM Java Virtual Machine

NCD New Concept Development

POM Project Object Model

R&D Research and Development

R&DT Research and Technology Development

REST Representational State Transfer

SDL Schema Definition Language

SQL Structured Query Language

xxii

UI User Interface

URI Uniform Resource Identifier

URL Uniform Resource Locator

XML eXtensible Markup Language

YAML YAML Ain’t Markup Language

1

1 Introduction

What if I fall?
Oh, but my darling, what if you fly?

(Erin Hanson)

This chapter presents the project developed during the master’s degree in Informatics
Engineering, area of specialization in Software Engineering, at Porto School of Engineering
(ISEP). Firstly, there is a brief contextualization and characterization of the problem studied.
Then, the primary goals are introduced, and the applied methodologies. Lastly, it describes the
structure of the document.

1.1 Context

In the last few years, there has been a growth of Web Applications usage and increasing

necessity of obtaining fast responses flexibly, to give to the application consumers the best

experience possible. Architectures that include services as data management/producers are

usually because of the need to centralize the core of applications and to interconnect with

multiple systems and a variety of platforms types.

Once introduced, Representational State Transfer (REST) was quickly adopted by developers,

because of its main features: scalability, interoperability, simplicity, and extensibility (Fielding

and Taylor, 2000). However, on big organizations that have to deal with complex entities and

requests, this architectural style started to reveal some drawbacks.

In 2015, Facebook presented GraphQL, a query language that can improve flexibility,

performance, and memory use of applications (APIs) (Porcello and Banks, 2018). Leaving behind

the necessity of multiple endpoints calls and defining which data the client wants to receive,

quickly gain some fans, and it started to question the possibility of this be the end of REST.

2

Some studies were made comparing the two technologies using different criteria. Some

similarities between them were pointed out, as well as the lack of maturity of GraphQL (Stubailo,

2017). Guillen-Drija analyzed some quality attributes and concluded that, in atomic calls, REST

presents better performance, while GraphQL deals better with overfetching and underfetching

(Guillen-Drija et al., 2018). Vázquez-Ingelmo described best networking response times with

GraphQL (Vázquez-Ingelmo et al., 2017).

Other companies, like Netflix (Shtatnov and Ranganathan, 2018), GitHub (Torikian et al., 2016),

and Paypal (Stuart, 2018), have also started to adopt GraphQL as an alternative to REST APIs,

and they presented their conclusions highlighting the benefits that technology brought to them.

1.2 Problem

At Institute of Systems and Computer Engineering, Technology and Science (INESC TEC), there

is a web platform called INESC TEC Research Information System (IRIS) with one year, that

allows managing information, such as research and human resources data, from the

organization.

In this application, there are different levels of complexity in searching for information, mainly

on the project management area, and the actual solution presents some performance issues. It

is known that if the response time is longer than ten seconds, users will lose their attention

(Möller, 2010). This web application has a backend that follows the REST architecture, and the

frontend is one of the primary consumers from the REST APIs available.

A lot of new features have been added to IRIS, and the necessity to integrate with distinct

platforms has also been growing, especially for the project management module. The use of

REST APIs started to present some issues related to data querying, such as:

 The necessity to call more than one endpoint to obtain the necessary data;

 Each consumer has its necessities, and it is receiving more than the necessary data;

 Performance issues also affected by the previous points.

Some temporary solutions were considered, like adapting the server response to supply most

of the data required in only one request. However, that brought an increase in the response

size and only a slight improvement in performance.

Besides, some studies prove that REST APIs have been used to answer the necessities of distinct

consumers, but even following the best practices, this solution does not present the ideal

elasticity, since in some cases can require a lot of endpoints requests or receive additional data

(Vázquez-Ingelmo et al., 2017). Thus, a more flexible solution with better performance is aimed.

Although the recent developments with GraphQL, there is a lack of understanding about the

possibility to conjugate its flexibility with performance.

3

1.3 Objectives

To improve the flexibility of applications, the use of GraphQL can bring some benefits (Nordic

APIs, 2017). GraphQL is a query language developed by Facebook, that allows to query and

manipulate data (Facebook Inc., 2018), but also a specification and a set of tools.

Although, there are some wrong ideas that this language is a replacement to REST, comparing

each other it is possible to find out that they can work well together, empowering data searches

(Sturgeon, 2017), but the evidence is scarce.

So, the main goal of this thesis is to explore the use of GraphQL for data querying to improve

both the performance and flexibility of the API. A solution is to be developed and assessed. The

analysis of the introduction of the mentioned technology in search of data will mitigate the

uncertainty related to the following research question:

 Can GraphQL improve searching performance, while also providing flexibility, when

compared to the existing solution?

Exploring the issue may provide a better solution to apply to IRIS and similar software

applications or leave more outlined.

1.4 Methodology

For achieving the objectives (section 1.3), the following methodological phases were followed:

 Problem interpretation: improve the understanding of the current problems and

possible and desirable improvements, not only to the web application in use for testing

but also reported in the literature;

 State of the art: obtain the information need about the subjects in the study: REST and

GraphQL and analyze some of the work done by researchers and conclusions reached

by real cases that tried the transition from REST to GraphQL. Since GraphQL is a recent

technology, there are only a few scientific papers related to the subject of this thesis so

that it will be used grey literature;

 Value analyses: study the value of this project and define it;

 Explore technologies: considering the alternatives for improving data request

performance, explore the best practices to apply, using GraphQL;

 Design: define requirements to implement on the two prototypes that will be used for

testing (GraphQL standalone solution and GraphQL with REST solution);

4

 Implementation: taking into consideration the design, implement the two distinct

approaches in a coherent solution;

 Test and experimentation: establish the criteria of experimentation and apply it on

tests and test the features implemented on each solution;

 Result analysis: compare the results obtain by the new solutions and compare with the

results of the previous implementation, to highlight potential applications and to

identify limitations.

1.5 Organization

Here a brief outline of the content of each of the X chapters:

 Introduction: It gives a general presentation of the subject studied for this thesis. It is

made a contextualization and description of the problem that motivates this project,

followed by a definition of the objectives and the methodology used to achieve them.

Finally, it is described the structure of the document;

 Context: the information about the institution and application where the solution of

this thesis will be applied is shown in this chapter. There is also a more in-depth

presentation of the problem and the definition of the project value, including a detailed

analyzation of the product value, with focus on the business and innovation process,

the value offer, the value proposition, and the canvas business model;

 State of the Art: in this chapter, some essential knowledge about REST and GraphQL is

presented. It also contains a summary of three studies that compares them and the

conclusions that they achieved. After that, there is a brief description of GraphQL

adoption by three companies that early used REST (Netflix, GitHub, and PayPal) and the

highlights of that process. At the end there is a short presentation of some of the

remaining technologies that were also used;

 Design: This chapter includes a requirements analysis to define the architecture and

design of the solution. In this chapter exists detail about the system actors, functional

requirements, and other requirements necessary for the project. It also contains the

design of the prototypes that are going to be compared. All the architectural decisions

and justifications can be found in this chapter;

 Implementation: the implementation of the prototypes is described in this section,

with the UML diagrams that represent them and mention the issues found during their

development;

5

 Tests and Solution Evaluation: this chapter has expressed the tests of each solution,

and it is presented what and how they are going to be validated. There is also a

subsection for comparing results;

 Conclusion: the last chapter provides the conclusions about the describe work in this

document, mentions some of the difficulties found, what can be done in the future and

the contribution this thesis gave to the specific case of IRIS.

At the end of the document, some appendixes can provide more detail information about some

work done during this project, namely:

 Appendix A – GraphQL Schema;

 Appendix B – Prototype 1 POM;

 Appendix C – Prototype 2 POM;

 Appendix D – Acceptance tests;

 Appendix E – Example of a sensor configuration;

 Appendix F – Descriptive statistics (quantitative data) for time;

 Appendix G – Descriptive statistics (quantitative data) for size.

6

7

2 Context

You cannot go back and change the beginning,
but you can start where you are and change the ending.

(C. S. Lewis)

The chapter aims to provide some knowledge about the institution involved in this thesis, which

allows to contextualize the problem and present it with better detail. In the end, it makes the

value analysis of the project solution.

2.1 INESC TEC

The Institute of Systems and Computer Engineering, Technology and Science (INESC TEC) is a

private institution, categorized as an interface between the academic and business worlds

(INESC TEC, 2017), that focus on four areas:

 Scientific research and technological development;

 Technology transfer;

 Advanced consulting and training;

 Pre-incubation of new technology-based companies.

It has thirteen Research and Development (R&D) Centres sorted on four domains: Computer

Science, Industry and Innovation, Networked Intelligent Systems and Power and Energy, and it

8

present a continuous growing on activities in Research and Technology Development (R&TD)

programs (Figure 1).

Figure 1 - Activities in R&TD programs of INESC TEC, from (INESC TEC, 2017)

The growth of activities led to the creation of a new web platform, which is IRIS (Figure 2), to

manage scientific data, but also other types of data that indirectly influence the scientific

activities like the researchers’ personal information.

Figure 2 - IRIS home page

9

This platform is available to all the integrated researchers of the institution (about 842

researchers) and non-integrated with exclusive access (about 253 researchers), so currently

1095 users can access IRIS. Since November 2017 till June of 2019, there are 8155 distinct

sessions created. Between November and December 2017, 923 sessions were created and

comparing the first six months of 2018 with the first six months of 2019 (Figure 3), there is a

growth of sessions. In January 2018, there is a vast number of sessions, because IRIS was being

presented to the researchers, but the monthly sessions of 2018 would be between 250-300. At

the beginning of 2019, the mean was still, but with the conclusion of the project management

module, the number of sessions increased.

Figure 3 - IRIS sessions on the first six months of 2018 and 2019

IRIS is a relatively new solution that was made available at the end of 2017, with the possibility

of managing and consulting data about the researchers, their projects, and their publications,

but some problems have started to become evident. A lot of new features has been added, with

a growing necessity to integrate with distinct platforms, as shown in Figure 4. IRIS has been

assuming an essential role as an integrative platform.

814

243

348

212

289

208
267

297

571 591
537 528

JANUARY FEBRUARY MARCH APRIL MAY JUNE

IRIS sessions on the first six months of 2018 and 2019

2018 2019

10

Figure 4 - IRIS integration with different platforms

The architecture used on IRIS (Figure 5) has a backend that uses REST APIs, implemented with

Spring, and a frontend that consumes them, developed using Angular (User Interface) and it

has a module of authorization that is also a REST API (Spring).

Figure 5 - Component diagram of IRIS

11

2.2 Problem

One of the latest modules of the application presented on the previous section is the project

management area that involves a variety of users’ profiles like project controllers, human

resources technicians, projects managers, research units’ coordinators, project team members,

and others. This module also integrates with:

 uOne: is a platform that aids on daily project tasks management, in order to help the

management of the teamwork;

 Intranet: provides the information about the project proposal;

 Website: consumes information about the projects to show to the public;

 Repository: stores all the documentation of the project.

On IRIS, there are different levels of complexity in data queries, mainly in this area (Figure 6).

The use of REST APIs started to present some issues like the necessity to call more than one

endpoint to obtain the necessary data, the fact that each consumer has its necessities and it is

receiving excess data and the effect on the performance of the process.

Figure 6 - Searching projects on IRIS

It is necessary to call six distinct endpoints for the search represented in Figure 6, namely, to

obtain the table result presented in Figure 6:

 /projectAPI/getProjectByOIBase: returns the information about project ID, short

name, contract reference, begin date, preview end date, and end date, based on the

project ID defined on search;

12

 /projectAPI/getTypologyById: returns the information about typology, based on the

typology ID provided by the endpoint before;

 /projectAPI/getClassTypologyById: returns the information about the class of

typology, based on the class typology ID provided by the typology endpoint;

 /projectAPI/getFinancingEntityById: return the information about the financing entity,

based on the financing entity ID provided by the typology endpoint;

 /projectAPI/getTeamByProjectId: return the information about the team of the

project, based on the project ID defined on search;

 /personalInformation/getCollaboratorInformationByIdRH: return the information of

the project coordinator, based on the idRH (collaborator internal number) provided by

the team endpoint;

The actual solution presents some performance issues like it is possible to notice with the case

presented in Figure 7. Using the most simple search of a project, the sum of the response time

is bigger than ten seconds, a value that is associated with loss of attention (Möller, 2010).

Figure 7 - Response time and size of a simple search on IRIS

Some temporary solutions were taking into consideration, like adapting the server response to

supply most of the data required in only one request. However, that brought an increase of the

response size and only an improvement of performance, like it is possible to see on the results

2561

1675

225 129

7990

900

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

M
ill

is
ec

o
n

d
s

(m
s)

Reponse Time

3,76
2,82

0,8 0,66

19,82

1,11

0

5

10

15

20

25

K
ilo

b
yt

es
 (

kB
)

Response Size

13

present on Figure 8, where it was made the same simple search reference before, and it makes

only one call to the projects endpoint.

Figure 8 - Response time and size of search on IRIS after defining responses

Also, some studies show that REST APIs have been used to answer the necessities of distinct

consumers, but even following the best practices, this solution does not present the ideal

elasticity, since in some cases can require a lot of endpoints requests or receive unnecessary

data (Vázquez-Ingelmo et al., 2017). Thus, a more flexible solution with better performance is

aimed.

2.3 Value analysis

The value analysis is a process of analysis and evaluation of a product or a service that leads to

an increase in its value with the lowest cost possible but keeping the quality.

In this subsection, the business and innovation process is presented, using the New Concept

Development (NCD) Model. Then, the value offer and proposition, and the canvas business

model of this project are described.

2.3.1 Business and Innovation Process

The NCD Model grants a common language and the characterization of the key elements that
allow defining the Front End of Innovation (FEI) of a project/product. The NCD model (Figure 9)
is composed of three areas:

 Engine: accounts for the vision, strategy, and culture by which the FEI is driven;

 Five elements keys: the opportunity identification, opportunity analysis, idea

generation, and enrichment, idea selection and concept definition;

 External environmental factors.

3818

0

1000

2000

3000

4000

5000

Project Endpoint

M
ill

is
ec

o
n

d
s

(m
s)

Reponse Time

53,13

0

10

20

30

40

50

60

Project Endpoint

K
ilo

b
yt

es
 (

kB
)

Response Size

14

Figure 9 - New Concept Development Model, from (Vacek, 2012)

Using Peter Koen’s model, this project has the following five keys elements:

 Opportunity identification

With the creation of new features using REST APIs on IRIS, which will be continuously

evolving, and the necessity of integration with distinct applications, there is a need to

guarantee that the consumer of data presents the best performance and it is flexible

enough to satisfy each consumer.

Some methods/techniques/tools that can be used to analyze this essential element can be

the technology trend analysis, which helps to collect data about which direction the

company is going technically, and the road mapping, that can aid to find opportunities in

the strategy adopted.

 Opportunity analysis

For this project, the opportunity analysis occurs on a niche, which is the service responsible

for the development of intern software of INESC TEC. The main questions are:

o How much relevant is to improve performance and flexibility?

o Can this expand to other REST APIs of INESC TEC?

o Can this solution be so independent of our business type, that can be used by

other organizations?

o How can we improve the performance and flexibility of the API?

15

The methods/techniques/tools applied in this key element can be the ones mentioned in

the element before. In significant scenarios, it can be used the project charter to set the

expectations, resources, and what are the expected outcomes that can provide a guideline

in this process.

 Idea generation and enrichment

The improve of REST APIs performance, and flexibility can be made by using a

technology/tool capable of giving fast answers to the requests, and that allows each

consumer to define the information that needs. However, the use of that technology/tool

can be made on different ways: improve the capacity of the REST API, define endpoints for

each request with the information need (Bulked REST API) or explore the use of GraphQL.

The mechanisms for communicating core competencies, core capabilities, and shared

technologies broadly throughout the corporation and the inclusion of people with different

cognitive styles on the idea enrichment team can be used to analyze this key element.

 Idea selection

The Analytic Hierarchy Process (AHP) is a method that allows making complexes decisions

based on significant attributes and considering the distinct alternatives. For selecting the

idea to apply on this project, it was used this method. It was taking into consideration three

different attributes:

o Knowledge: the ability to apply a specific solution;

o Efficiency: how much this solution can improve the problems of the current

solution;

o Costs: the implementation of this alternative bring more costs like licenses,

specialized hardware, and the necessity of formation.

Thus, it was considering the hierarchy shown in Figure 10.

16

Figure 10 - AHP tree of idea selection

After that, it was defined the priorities among each attribute (Table 2), where it was

classified the efficiency more critical, followed by the knowledge and the costs in the end.

The scale of comparison used is the one present in Table 1, defined by (Saaty and Vargas,

1991).

Table 1 - Scale for Comparison on AHP, adapted from (Saaty and Vargas, 1991)

Scale Degree of preference

1 Equal importance

3 Moderate importance of one factor over another

5 Strong or essential importance

7 Very strong importance

9 Extreme importance

2,4,6,8 Values for inverse comparison

Table 2 - Comparison matrix of idea selection

 Knowledge Efficiency Costs

Knowledge 1 1/3 5

Efficiency 3 1 7

Costs 1/5 1/7 1

The next step is to normalize the matrix of Table 2 and calculate the relative priority of each

attribute (Table 3 and Table 4).

Which solution must
be tested to improve
the performance and
flexibility of REST API?

Knowledge

GraphQL

Improve REST API

Bulked REST API

Efficiency

GraphQL

Improve REST API

Bulked REST API

Costs

GraphQL

Improve REST API

Bulked REST API

17

Table 3 - Comparison matrix of idea selection with the sum

 Knowledge Efficiency Costs

Knowledge 1 1/3 5

Efficiency 3 1 7

Costs 1/5 1/7 1

SUM 21/5 31/21 13

Table 4 - Comparison matrix of idea selection normalized with a relative priority

 Knowledge Efficiency Costs Relative Priority

Knowledge 5/21 7/31 5/13 0,2828

Efficiency 15/21 21/31 7/13 0,6434

Costs 1/21 3/31 1/13 0,0738

Then, it should evaluate the consistency of the relative priorities (Equation 1).

𝜆𝑚𝑎𝑥 =
21

5
× (0,2828) +

31

21
× (0,6434) + 13 × (0,0738) = 3,0967

𝐼𝐶 = (𝜆𝑚𝑎𝑥 − 𝑛) ÷ (𝑛 − 1) = (3,0967 − 3) ÷ (3 − 1) = 0,0484

𝑅𝐶 = 𝐼𝐶 ÷ 0,58 = 0,0484 ÷ 0,58 = 0,08 < 0,1, 𝑠𝑜 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡.

Equation 1 - Relative Priorities Evaluation of idea selection

The next phase is the definition of the comparison matrix for each attribute, with each

alternative (Table 5, Table 6, and Table 7).

Table 5 - Comparison matrix of idea selection for knowledge

 GraphQL Improve REST API Bulked REST API Priority Vector

GraphQL 1 1/2 1/2 0,5371

Improve REST API 2 1 1 0,2314

Bulked REST API 2 1 1 0,2314

Table 6 - Comparison matrix of idea selection for efficiency

 GraphQL Improve REST API Bulked REST API Priority Vector

GraphQL 1 9 7 0,7791

Improve REST API 1/9 1 5 0,1610

Bulked REST API 1/7 1/5 1 0,0599

Table 7 - Comparison matrix of idea selection for costs

 GraphQL Improve REST API Bulked REST API Priority Vector

GraphQL 1 2 2 0,5

Improve REST API 1/2 1 1 0,25

Bulked REST API 1/2 1 1 0,25

18

Finally, it is obtained the composed priority for the alternatives and choose the best one

(Equation 2).

(
𝟎, 𝟓𝟑𝟕𝟏
𝟎, 𝟐𝟑𝟏𝟒

𝟎, 𝟕𝟕𝟗𝟏 𝟎, 𝟓
𝟎, 𝟏𝟔𝟏𝟎 𝟎, 𝟐𝟓

𝟎, 𝟐𝟑𝟏𝟒 𝟎, 𝟎𝟓𝟗𝟗 𝟎, 𝟐𝟓
) × (

𝟎, 𝟐𝟖𝟐𝟖
𝟎, 𝟔𝟒𝟑𝟒
𝟎, 𝟎𝟕𝟑𝟖

) = (
𝟎, 𝟔𝟗𝟎𝟏
𝟎, 𝟏𝟖𝟕𝟓
𝟎, 𝟏𝟐𝟐𝟒

)

Equation 2 - Calculation of the best alternative of idea selection

The idea selected was to explore GraphQL, which allows to improve performance and

flexibility of APIs and study the best integration of this technology on the current

architecture.

For analyzing this key element, it can also be considerate the usage of anchored scales,

based on technical success probability and strategic fit.

 Concept definition

In the final element, it is going to be found as a solution that incorporates GraphQL, which

will improve the performance and flexibility of the REST API.

The methods/techniques/tools that can be used to analyze this key element can be the

initial engagement of the customer in real product tests and understanding and

determining the performance capability limit of the technology.

2.3.2 Value Offer and Proposition

For any business, the key is the creation of value and its activity based on exchanging a set of

products (tangibles) or services (intangibles) that add value for its customers or clients (Nicola

et al., 2012).

The value for the customer, for this project, presents the benefits/sacrifices of Table 8.

Table 8 - Benefits/Sacrifices of project

 Product/Service Relationship

Benefits Product quality
Reliability

Technical competence
Image
Trust

Sacrifices Price Time
Effort
Energy

The solution developed in this project has a price to be used. In exchange, it has quality and,

since it is found online, it also offers reliability.

19

In the relationship domain, the qualified staff, and the image and trust are associated with the

use of this solution by an innovation center, which is INESC TEC. However, some time, effort,

and energy are needed to apply this solution to the APIs of the organization.

Using a longitudinal perspective (Figure 11), the customer wants a solution to improve its REST

APIs, with quality, from an organization that can trust, even though it can be expensive.

At the point of trade, all the benefits are essential since it is needing to have the sacrifice of

paying. At post-purchase, the relationship is significant, to aid some difficulties that customer

may find during the implementation of the solution, which requires time, effort, and energy.

After use, the customer will benefit from all the advantages that the product offers; however,

it can be needing to spend some time updating the solution or change some details.

Figure 11 - VC on a longitudinal perspective

Regarding the value proposition, the product developed in this project is a solution for data

searches that will use GraphQL, improve the performance and flexibility of the REST APIs, giving

to all the consumers an API with the best performance and flexibility and improve the users’

satisfaction.

The project presented is an innovative study that can be used by any software development

company that wants to improve the performance and flexibility of its APIs, and it uses REST.

After use

Redemption Value: Improvement of API performance, after applying the solution found during this study

Post-purchase

Received Value: Solution to improve REST
API

Performance value: Customer expects an
efficient tool

Delivered value: API with better
performance and increase of consumers

and users satisfaction

At the point of trade

Transaction Value: Most of studies does
not compare benefits of using GraphQL

standalone and GraphQL with REST

Acquisition Value: Improve API
performance

Exchange Value: -

Pre-purchase

Desired Value: Solution to improve performance and flexibility
of REST APIs

Expected Value: Solution to improve performance and
flexibility of REST APIs, using GraphQL

20

2.3.3 Canvas Business Model

When a business idea is built, some questions must be asked, such as:

 Who are the clients?

 What do they value?

 How can we reach them?

 What skills do we need?

 What kind of partnership do we pretend?

The Canvas Business Model is a useful tool to answer those questions systematically

(Osterwalder and Pigneur, 2011). This model divided into the following areas:

 Key partners: Definition of who are the key patterns/suppliers and what are the

motivations for the partnerships;

 Key activities: Clarification of what key activities the value proposition requires, and

which activities are the most important in distribution channels, customer

relationships, and others;

 Value proposition: Determination of what value is going to be delivery to the customer

and which of his needs is being satisfied;

 Customer relationship: Identification of what relationship the target customer expects

and how to integrate it on business;

 Customer segment: Characterization of the customers;

 Key resource: Exposition of what key resources are needed, and which ones are the

most important for the different areas;

 Distribution channel: Definition of which channels can be used to reach the customers,

how much they cost and how they are used;

 Cost structure: Exposition of what most cost in the business and which

activity/resource is the most expensive;

 Revenue stream: Interpretation how much the customers are willing to pay, in which

way they want to pay and how much this contributed to the overall revenues.

Figure 12 illustrates the Canvas Business Model created for the project of this Thesis.

21

Figure 12 - Canvas Business Model for Analysis of GraphQL Performance: a Case Study

22

The product developed during this project has one customer segments: the software companies

that want to improve their REST APIs.

The customers expected to find this solution on a website, with all the information need and

the possibility to clarify some doubts. This product will give them the possibility to improve their

APIs and, consequently, improve the consumers and users’ satisfaction.

It should be made some marketing in software companies, engineering colleges, and IT

conferences to reach the customers.

The INESC TEC is also the key partner since their collaboration is necessary to test the

prototypes and define the best solution. GraphQL can be considered a key partner as well

because the improvement will be made using their technology.

The main cost structures are the specialized software engineers, and the hardware needs to

develop and support the product.

Finally, the solution architecture will be available to the customer by one only payment.

23

3 State of the Art

Once you stop learning, you start dying.
(Albert Einstein)

This chapter intends to present some essential knowledge about the two technologies that are

the subject of study in this thesis: REST and GraphQL. After that, it is described three studies

made to compare them and, lastly, the summary of GraphQL adoption by three companies

(Netflix, GitHub, and PayPal).

3.1 REST

Representational State Transfer (REST) is an architectural style used in distributed hypermedia

systems (Fielding and Taylor, 2000). According to Fielding and Taylor, the constraints of this

style are the following ones:

 Client-Server: the importance of the separation of concerns principle is represented.

The client knows the available services, and it sends requests to the server, which can

be executed or declined. That allows applications following this style to have portability

and to evolve the components separately;

 Stateless: the communication between client and server must have all the necessary

information. State date is not stored on the server side. The client is the one who should

control all the information in order to be understood by the server. This feature adds

visibility, reliability, and scalability to REST;

 Cache: it is possible to reuse data from similar previous requests;

24

 Uniform Interface: described as “the central feature that distinguishes the REST

architectural style” (Fielding and Taylor, 2000), the definition of the connection

established between client and server is made by the identification of resources, its

manipulation, self-descriptive messages and hypermedia as the application state

system;

 Layered System: another constraint to improve scalability as multilayer systems are

composed of distinct layers to isolate units by its responsibilities;

 Code-On-Demand: the clients can have the ability to download and execute the code

on the client side, which is an optional feature of this style.

Nowadays, web services are very used to exchange data among different web systems.

A RESTful web service is a web service implementation that follows the constraints referred to

section 3.1. The requests to this type of web services make through Hypertext Transfer Protocol

(HTTP) methods, and the information exchange between the client and server can be in

eXtensible Markup Language (XML), HTTP or JavaScript Object Notation (JSON).

Usually, the organization is in two distinct forms, present in Figure 13. In the monolithic form,

some units are not independent of the core of the application that they belong to, while in the

microservice form, there are small independent units with a few sets of responsibilities.

Figure 13 - REST web services types according to (Terzić et al., 2017)

The core principles of a REST API are the following:

 Resource addressability: each resource is identified by a Uniform Resource Identifier

(URI) and represents a domain concept;

 Resource representations: clients work with resource representations;

 Uniform interface: for managing resources, it is used the methods defined by the HTTP

protocol;

 Statelessness: each interaction between client and server are unique;

25

 Hypermedia As The Engine Of Application State (HATEOAS): resources are related to

each other, so the client must know the links between them.

3.2 GraphQL

In 2012, Facebook was facing some performance issues on their mobile applications and

realized that they needed to optimize how data was sent to client applications, which led to the

creation of GraphQL. It was only production-ready, outside the company, in 2016, and it has

been used by Facebook, Netflix, GitHub, PayPal, Airbnb, among others (Porcello and Banks,

2018). Figure 14 presents a GraphQL timeline with the main events.

Figure 14 - GraphQL timeline

GraphQL is a query language for APIs, that allows reducing the number of requests need to

obtain the desired data, and it grants the components or users to define their data requests

and expected responses. This query language, located on the application layer, is transport

agnostic, even though is commonly served over HTTP (Porcello and Banks, 2018), and

“compatible with any backend that follows the protocol’s specification” (Vázquez-Ingelmo et

al., 2017).

It also considered as a “specification for client-server communication”, and it follows the

presented design principles (Porcello and Banks, 2018):

 Hierarchical: like a hierarchical graph, the fields used on the queries combine with

others;

 Product-centric: one of the main goals is to satisfy the data needs of the client;

 Strong typing: there is a GraphQL type system, in the GraphQL Server, that validated

the schema of the data request;

 Client-specified queries: clients can only consume what the GraphQL server allows

them to;

26

 Introspective: this language can query the server of GraphQL type system. For example,

the GraphiQL online-IDE uses this to allow the developers to get to know the GraphQL

schemas (Wittern et al., 2018).

This query language presents a lot of benefits and only a few disadvantages, as it is possible to

verify in Figure 15.

Figure 15 - Advantages and disadvantages of GraphQL, adapted from (Brito et al., 2019)

The fundamental interactions when using GraphQL (Wittern et al., 2018) are visible in Figure

16.

Advantages

•Strongly typed, so it is possible to have better
error messages;

•Enables client-specified queries, which allows
the server to have better understand of
clients' needs;

•Data model is hierarchical, then can retrieve
data from multiple sources with only one
request;

•The consumers can inspect the types and
fields at runtime (introspection);

•Reduce the number of versioning, since fields
can be deprecated and adding new ones do
not lead to a relevant change in the API.

Disadvantages

•Does not support private information;

•Complex caching;

•Complex queries can affect performance,

since it will consume server resources.

27

Figure 16 - Interactions of using GraphQL

It is necessary to define a GraphQL Schema, that characterizes the types, relations, and

operations allowed to execute with the data. That is how the GraphQL Server knows how and

which data will be exposed to the GraphQL Client.

The GraphQL Client can explore the schema in order to acquire knowledge about the exposed

data types and the possible operations. Then, using a JavaScript Object Notation (JSON), it will

send queries to the server, defining already what operations need to perform and which data

is expected to return. In order to obtain data for a specific field, there is a function called

resolver, that returns the information in the type and shape specified by the schema. They are

asynchronous, and it can be used to obtain data from distinct providers: REST APIs, database,

or others.

After receiving this request, the GraphQL Server checks if the request agrees with the GraphQL

Schema and, in this case, executes it and returns the data to the client or an error.

3.2.1 Schema

The GraphQL Schema is essential because, without it, neither the client or the server knows

how to communicate. Thus, this schema design is one of the first steps when implementing a

GraphQL API. It is necessary to use the Schema Definition Language (SDL), which is language

28

and framework agnostic, so it does not matter which technologies are being used to develop

the applications. These schemas are text documents that specify the available types and their

relations, the entry points, queries, and mutations. Code 1 shows an example of a GraphQL

schema.

schema {
 query: Query
 mutation: Mutation
}

type User {
 id: ID!
 userName: String
 name: String
 projects: [Project]!
}

type Project {
 id: ID!
 name: String
 responsible: User
 subProjects: [Project]
 team: [User]!
}

type Query {
 listProjects(of: String): [Project]!
 user(userName: String): User
 projectTeam(name: String): [User]!
 users: [User]!
}

type Mutation {
 createProject(responsible: String, name: String): Project
 createUser(userName: String, name: String): User
 addUserToTeam(name: String, userName: String): Project
}

Code 1 - Example of a GraphQL schema

At the root of the document, it is described the schema that is divided into:

 Query: it is a root GraphQL type because it is the type that maps the operations

available to fetch data, which types define on the schema;

 Mutation: it is defined the same way as Query, but it has the purpose to write data,

following the types described in the schema.

Every GraphQL schema must have a Query type, but it is optional to have a Mutation type. In

queries and mutations, the input parameters are named, so the order is not important when a

request is made since by specifying the name of the parameter, the system automatically match

them.

Queries are used for getting data from a GraphQL API. These describe the data that a client

request to a GraphQL server, and it should also specify the units of data by the field which the

JSON response has to return. When a query is successful, the return contains the “data” key. In

case of unsuccessful, it contains the “error” key and details about the error.

29

To simplify the process of defining the expected data format and to make it reusable by other

queries, it is used fragments. Code 2 shows a request to obtain all the users, expecting only

their identifiers (id and userName), which are in the fragment.

query {
 users {
 userIdentification
 }
}

fragment userIdentification on User {
 id
 username
}

Code 2 - Example of query and fragment

Mutations are defined the same way as queries, but they can cause side-effects since they can

change data on the server.

Code 3 reproduces the call of a mutation that will create a project and expected the username

of the responsible as return data.

mutation {
 createProject(responsible: “someone”, name: “project 1”) {
 responsible {
 username
 }
 }
}

Code 3 - Mutation example

The declared types, the User and Project, are GraphQL Object Types, which means that they are

a type with some defined fields. Each type has its fields, like id, userName, and name from User,

which indicates that they can only make part of any GraphQL Query that uses the User type. On

the example schema, there is also String, which is classified as a scalar type so it cannot have

sub-selections on queries. The fields that have an exclamation mark after their types cannot be

null. Thus, the GraphQL service has always to return a value when those fields are queried.

Finally, the ones that have square brackets represent an array of the type indicated between

them; for example, the field projects of User is a list of Project objects.

3.2.2 API creation

GraphQL can be implemented on different programming languages and using distinct

frameworks to integrate with. Because of the context of this project, it will be present how a

GraphQL API can be developed with Java, more specifically, using Spring Boot (baeldung, 2017)

and Maven, since it is the build automation tool used on INESC TEC project.

Firstly, it is necessary to create a Maven Project and include on the dependencies the ones

presented in Code 4. With that, Spring Boot will automatically set up the handlers and expose

the GraphQL service on the endpoint /graphql, which accept POST requests, with the GraphQL

30

Payload on the body. If there is a need to modified the endpoint, that can be done using the

application.properties file.

<dependency>
 <groupId>com.graphql-java</groupId>
 <artifactId>graphql-spring-boot-starter</artifactId>
 <version>5.0.2</version>
</dependency>
<dependency>
 <groupId>com.graphql-java</groupId>
 <artifactId>graphql-java-tools</artifactId>
 <version>5.2.4</version>
</dependency>

Code 4 - Maven dependencies required to build a GraphQL API

The library graphql-java-tools is responsible for processing the GraphQL Schema files, in order

to build the structure and wired the beans that will be used by Spring. The schema files must

have the extension .graphqls, and they should be in any path inside the project. As mention on

3.2.1, the schema file must have one root query and, optionally, one root mutation across all

the schema files, but it can exist more than one file, dividing the schema into modules.

Unlike the schema definition, in the Spring context can be defined more than one bean to

handle the root query. Each bean must implement GraphQLQueryResolver, and it should exist,

on these beans, a method with the same name of every field in the root query of the scheme.

Each method must have any parameters that exist on the equivalent of GraphQL schema, and

it could also include a final parameter of type DataFetchingEnvironment. The example of Code

5 represents the bean that will handle the listProjects field on the schema presented in Code 1.

public class Query implements GraphQLQueryResolver {
 private ProjectDao projectDao;
 public List<Project> listProjects(string of) {
 return projectDao.listProjects(of);
 }
}

Code 5 - Example of bean to handle with the root query field

The system automatically maps all the simple types defined on the GraphQL Schema to their

equivalent Java types. The complex types must be represented by a Java bean, which will

directly map the fields using the fields name, but the name of the Java class cannot have the

name used on the GraphQL type. Code 6 is an example of a complex type defined in Code 1.

public class User {
 private String id;
 private String userName;
 private String name;
 private List<Project> projects;
}

Code 6 - Example of bean to represent GraphQL complex types

For implementing a mutation, it is applied the logic mention before for the creation of queries,

but, in this case, it should be used GraphQLMutationResolver instead of GraphQLQueryResolver.

31

Finishing all the implementation and running the Spring Boot application, it is possible to start

consuming the GraphQL API.

3.2.3 Adoptions overview

As mentioned in subsection 3.2, some companies are using GraphQL, and some of them have

shared the conclusions that achieved since the adoption of this technology. This thesis

highlights the experiences of Netflix, GitHub, and PayPal.

Netflix has an internal application, called Monet, responsible for managing the creation and

assembly of ads, in order to reach external platforms such as The New York Times and YouTube

(Shtatnov and Ranganathan, 2018).

Monet was designed with a React User Interface (UI) layer, accessed by REST APIs. When the

evolution of the application started, the use cases become more complex, and it started to

appear some problems, like network bandwidth bottlenecks. After some ideas to correct that

problems, the use of a middle layer using GraphQL turns out to be the best solution (Figure 17),

because of its robust ecosystem and powerful third-party tooling.

Figure 17 - Architecture of Monet before and after GraphQL, from (Shtatnov and Ranganathan, 2018)

On Netflix blog entry’s, it is identified the following benefits, after using that solution for about

six months:

 Main problem solution: solve network bandwidth bottleneck;

 Redistributing load and payload optimization: the server to server calls are very low

latency and high bandwidth, improving eight times the performance, comparing with

calls made from client to server. With the possibility of client defining the data need for

each request, pages started receiving 200KB of data, instead of 10MB;

 Reusable abstractions: GraphQL has allowed to defined data and how it relates to the

system, so it does not need to worry about business logic related to data join

operations;

32

 Chaining type systems: with the definition of entities on GraphQL server, it is easy to

generate the TypeScript types, which allows hooking the checks into the build process,

preventing issues before deploying wrong code;

 Developer Interface (DI) / Developer Experience (DX): using the GraphQL query

wrapper, the components implemented on UI only need to describe the data it needs,

and the wrapper takes care of all the concerns;

 Handling failures: when any resolver of GraphQL query fails, the ones that succeeded

return data to the client;

 Simplify backend end data model: there is no concern on modeling for the client and,

commonly, the backend provides a (Create, Read, Update and Delete) CRUD interface

to raw entities;

 Testing components: since GraphQL query is translatable into stubs for the test, it is

possible to test resolvers from React components.

Even though the reported benefits, there were some problems during the transition, such as

the fact that resolvers of GraphQL run isolated, so the network requests were being duplicated.

This problem was solved to recur to a caching layer between the resolvers and the REST APIs.

Another problem was the fact that GraphQL was not allowing to debug through the browser’s

network tab.

The solution was to add logs to GraphQL response payload, exposing this information to the

client. The last difficulty report was the casting objects, but, since they were using TypeScript,

adjusting the methods to require the object properties was smooth.

GitHub has made a total transformation from its REST API to GraphQL, in order to improve its

API scalability and API specification (Torikian et al., 2016).

Analyzing their REST API, they concluded that 60% of the requests made to their database tier

were made by their API, mainly because of most requests required to navigate through the

hypermedia to get all the information need. The second problem was found during the auditing

of their endpoints in preparation for an APIv4 since it was tough to collect some meta-

information about their endpoints.

The transition began on the backend team of GitHub, especially on the implementation of emoji

reactions on comments. After that initial exploration, the frontend team was interested in

GraphQL too, and they have achieved a better way to access user data and to improve the

efficiency of its presentation on the website.

The main advantages pointed by GitHub are the type of safety, introspection, generated

documentation, and predictable responses.

33

PayPal was another company that introduced GraphQL into its technology stack (Stuart, 2018).

The PayPal Checkout had REST APIs, in the beginning, that started to bring problems, since web,

mobile apps, and their users were not considered on REST principles’. The increase of round

trips from the client to the server, to get all the fundamental data, lead to a processing and

rendering time boost as well.

So, the developers built an orchestration API that returns the required data, but this solution

also has performance issues. After that, they attempted to build a Bulk REST API, which is a real-

time orchestration that allows the clients to delineate the size and shape of the response.

However, that solution was not perfect, since it requires that the client have in-depth

knowledge about how the APIs work.

Then, they tried GraphQL, and went “all-in” with it, considering that brought productivity to

developers, better performance to the app and happiness to the users. The particular aspects

considered as the best part of GraphQL adoption are the next ones:

 Performance: with one single round trip, it is possible to get precisely the necessary

data;

 Flexibility: clients, not servers; define the shape and size of data

 Developer productivity: the process of learning this technology is easy, and there are

useful tools available;

 Evolution: it allows them to make better choices when developers are deprecating or

evolving their APIs because they are aware of which fields are being used by their

clients.

To conclude, these three examples represent how GraphQL as a middle layer or even

standalone can bring performance optimization to APIs.

3.3 Comparison between REST and GraphQL

At the first released of GraphQL, some enthusiasts claimed that would be the end of REST, that

lead to some studies about how they can be compared and in which cases one can be a better

choice than another.

Taking into consideration that GraphQL was built to optimize a REST API, it is easy to point some

aspects where this query language exceeds that architectural style.

Three characteristics are evidence as REST drawbacks, according to (Porcello and Banks, 2018),

when the comparison is made:

34

 Overfetching: the client does not specify the responses of a REST API, but with the

information available that can be useful for distinct consumers, this leads to getting

data that is not needed;

 Underfetching: even though the response can bring many data, sometimes, the detail

of some fields needs the calling of other endpoints and so on, turning the user

experience a lot slower;

 Managing REST Endpoints: it is common the change of what the client wishes and that

leads to an adjustment in the endpoints, between the backend and frontend teams.

Despite this, it is required to go deeper to compare them.

For this thesis, it was analyzed three different studies, that target the comparison between

GraphQL and REST, taking into consideration distinct aspects. The choice of these three studies

was made based on their relationship with the project context and how they can support the

hypotheses evaluated. Stubailo focuses on some properties of an API as resources, Uniform

Resource Locator (URL) routes vs. GraphQL schemas and route handlers vs. resolvers (Stubailo,

2017), while Guillen-Drija target some quality attributes like time response, the use of memory,

overfetching and others (Guillen-Drija et al., 2018). Vázquez-Ingelmo target the request size and

network response times (Vázquez-Ingelmo et al., 2017).

Table 9 presents the similarities and differences found by Stubailo. It was concluded that they

share a lot of universal concepts, but some essential aspects may dictate the use of one instead

of the other.

Table 9 - Similarities and differences between REST and GraphQL found by Stubailo

 REST GraphQL

Resources Identification Yes Yes

HTTP Usage Yes Yes

JSON Response Yes Yes

Object Identify Endpoint Separate from how is
fetch

Determination of Shape
and Size

Server Client

URL routes vs.
GraphQL schemas

List of Operations List of Endpoints List of fields (at Query
and Mutation)

The distinction between
Reading and Writing

Yes Yes

Multiple Calls to Relate
Resources

Yes No

First-class Concept No Yes

Modify Reading into
Writing/ Writing into
Reading

HTTP verbs Keyword in the query

Route handlers vs.
resolvers

Function Call Endpoints Fields

Handle Networking
Boilerplate

Using frameworks or
libraries

Using frameworks or
libraries

35

 REST GraphQL

Number of Handler/
Resolver Calls

One by each request Many by each query

Response Build By developer By GraphQL execution
library

GraphQL looks good to implement an API quickly, that can return complex data, decreasing the

time waste in the implementation of multiple endpoints to be able to respond to the client

requests. However, on the other hand, REST is already mature, with many tools and integrations.

The results of the study made by Guillen-Drija are in Table 10.

Table 10 - Similarities and differences between REST and GraphQL found by Guillen-Drija

Sub
characteristic

Metric REST GraphQL

Average Standard
deviation

Error Average Standard
deviation

Error

Temporal
behaviour

Response
time

11,13 3,77 0,69 16,23 4,22 0,77

Throughput
(calls)

149,63 11,05 2,02 190,7 7,01 1,28

Resources
usage

Memory
usage (bytes)

588,6 65,69 11,99 156,33 5,37 0,98

Cache usage

Overfetching
(bytes)

688,67 116,28 21,23 79,33 15,49 2,83

Underfetching
(made calls)

4 0,68 0,12 1 0 0

Capacity of
software

Capacity
(answered
calls/made
calls)

1 1

Speed under
stress (ms)

970,17 123,36 22,52 1138,97 88,74 16,20

The main conclusions are:

 Because of the cache usage in REST, usually, this style will present a better speed on

response time than the GraphQL;

 With the detail that the requests made with GraphQL can have, this language presents

an advantage on underfetching and overfetching;

 On atomic calls, REST offers better speed of response;

 The GraphQL handles better with the use of memory.

36

Considering the network response time represented on Figure 18 and the total size of 13,90 KB

(GraphQL) against the 26,66 KB (REST), the implementation of the GraphQL API improves the

performance of the system and reduces the memory usage.

Figure 18 – Graphic with network performance results obtain by Vázquez-Ingelmo

In conclusion, even though the two technologies share some similar points and it cannot be

stated as replacement of each other, GraphQL presents better flexibility, response times, and

use of memory comparing with REST.

3.4 Adopted technologies

This subsection exposes some technologies involved in the implementation of the solution to

this project. The aim is to give the reader a brief presentation about them, not to concentrate

on the study of the available technologies that could use in this context. All the choices are

based on the developer's experience and the technological stack of the institution.

OpenAPI

The OpenAPI specification, which is the new name for the Swagger specification, is a

specification for machine-readable that allows to produce and consume REST APIs (Open API

Initiative, 2017).

Its files are commonly used by other applications, for example, the Swagger-Codegen, to

generate code and some code documentation automatically. The use of this specification can

help on the design of applications and improve the development time and costs since it is

possible to generate the code.

The snippet Code 7 presents an example of an OpenAPI specification file. This file can be on

JSON, or YAML Ain’t Markup Language (YAML) format and presents a hierarchy form.

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10

N
et

w
o

rk
 r

es
p

o
n

se
 t

im
e

(s
ec

o
n

d
s)

Network requests

Network performance: REST API vs GraphQL API

REST GraphQL

37

{
 “swagger”: “2.0”.
 “info”: { (…) },
 “host”: “petstore.swagger.io”,
 “basePath”: “/api”,
 “schemes”: [
 “http”
],
 “consumes”: [
 “application/json”
],
 “produces”: [
 “application/json”
],
 “paths”: {
 “/pets”: {
 “get”: {
 “description”: “Returns all pets from the system that the user
has access to”,
 “produces”: [
 “application/json”
],
 “responses”: {
 “200”: {
 “description”: “A list of pets.”,
 “schema”: {
 “type”: “array”,
 “items”: { (…) }
(…)

Code 7 - Example of OpenAPI Specification, adapted from (Open API Initiative, 2017)

Spring

Spring is an open source framework for Java, created by Rod Johnson, based on some patterns

dependency injection and inversion of control (Pivotal, 2019). Several modules compose it, so

this framework is used for a diversity of services like aspect-oriented programming,

authentication and authorization, data access, messaging, testing, remote access, and others.

On version 5.0, it adds end to end support for reactive and servlet-based apps on the Java

Virtual Machine (JVM) and provides some streamlining on developing modern applications. It

also allows to integrate with GraphQL and improve the implementation of APIs using it, using

Spring Boot, which makes easy to create stand-alone Spring-based applications ready to

execute with fewer configurations.

GraphQL Java

GraphQL-Java is a library to implement a GraphQL Server using Java, and it bases on GraphQL

Java Engine, which focuses on executing queries (Marek and Baker, 2019). This library goes

further than that, and with the GraphQL Java Spring Boot adapter, it is possible to expose the

GraphQL API via Spring Boot, over HTTP. It requires at least the Java version 8, and it is available

on Maven Central repository.

Swagger2GraphQL

Swagger2GraphQL is a tool that helps to convert an existing Swagger schema (OpenAPI

specification) to GraphQL types, setting the resolvers with HTTP calls to the endpoints of the

38

REST API. By consulting the GraphQL API, it is possible to extract the GraphQL schema generated

from the conversion (Krivtsov, 2016).

39

4 Design

Every adventure requires a first step.
(Cheshire Cat)

In this chapter is presented the prototypes’ architecture and possible alternatives, taking in

consideration the requirements defined.

All the designs shown in this section has the goal to achieve a technologic solution for the idea

present in Figure 19.

Figure 19 - Solution idea

40

4.1 Requirements Analysis

Requirements are a specification of what the system must contain and how it should behave,

including the user and developer’s views (Wiegers and Beatty, 2013).

The requirements analyze as the main goal to understand and to document what the

stakeholders need, so the product that will be delivery matches the expectations.

Without this process, it is challenging to design software that will correspond to what the client

asks for.

At this chapter, it is defined the system actors and the requirements of this project.

4.1.1 System Actors

The identification of system actors is essential to define their necessities. However, the

application user is commonly defined as there is a “monolithic group with similar characteristics

and needs” (Wiegers and Beatty, 2013). It must be defined the multiple user classes, their roles,

and privileges.

The present thesis wants to analyse the performance of data searches, and it will apply its tests

to an application that already exists: IRIS. When we are talking about the system actors of an

API, it is possible to classify them into two classes:

 Direct data consumers: the ones that see information through the API result (JSON

format, for example);

 Indirect data consumers: users that access the data through other applications that

integrated with this one.

On IRIS case, these users can present distinct privileges because of its roles. On projects module,

a controller and a project responsible will access all the information of the project, but a team

member will only get necessary information about it so that the complexities of the request can

be affected by users’ roles. Even though these differences, for this thesis, they share the same

goal: obtain information.

4.1.2 Requirements

The functional requirements describe the main functionalities that the system must offer to the

identified system actors.

41

Taking that into consideration and due to the primary goal of this thesis, the solution developed

only have one main requirement: allow data searches. Table 11 identifies the requirement of

the solution and possible subdivisions.

Table 11 - Functional requirements

Identification Description

FR01 The user shall be able to search for data about projects, by their attributes in a

fast way.

FR01.1 The user shall be able to search direct data about projects (data available on the

project entity), by their attributes in a fast way.

FR01.2 The user shall be able to search indirect data about projects (data available on

other entities related to the project entity), by their attributes in a fast way.

Therefore, Figure 20 represents the only functional requirement of the solution.

Figure 20 - Solution use case

In addition to the functional requirements, it can also exist other requirements that should be

taking in consideration during the development of the system, in order to guarantee some

particularities related with data, external interfaces or quality attributes, for example.

As a data requirement, it is necessary that the solution consumes the information presented in

a Structured Query Language (SQL) Server database.

As external interface requirement, data is requested via HTTP requests.

As quality attributes, it must consider the following ones:

42

 Performance: the developed solution shall answer to each request with the best time

possible. It excepted a short response time when it is a simple request;

 Safety: since it will be some sensitive information involved, the solution shall only

provide information after authentication;

 Interoperability: the solution shall be able to be consulted by the IRIS UI.

4.2 Possible Approaches

To study the performance and flexibility of GraphQL APIs comparing with REST APIs, there are

a diversity of possible approaches. Taking into consideration the previous knowledge stated in

the chapter 3, it can be idealized three distinct approaches (Figure 21):

 GraphQL standalone: assuming the ideas that GraphQL represents globally a better

performance and flexibility than REST, a GraphQL API would be able to improve these

measures;

 REST with GraphQL: analyzing the GraphQL adoption by Netflix, the integration of the

two technologies can improve the current solution;

 GraphQL on complex queries + REST on simple queries: the studies of Guillen-Drija and

Vázquez-Ingelmo support this approach, since simple requests have better

performance using REST and complex queries, where multiple endpoints are needed,

presents better performance using GraphQL. However, this approach can lead to one

of the advantages of GraphQL, shown in subsection GraphQL, that complex queries can

consume many server resources.

Figure 21 - Solution approaches mind map

For selecting the solution approaches to apply on this project, it was used the AHP method1. It

was taking into consideration three different attributes:

 Architectural Complexity: the complexity that the approach presents;

1 The AHP is a method that allows making complexes decisions, based on significant attributes and considering the distinct
alternatives.

43

 Efficiency: how much this approach can contribute to finding a better solution;

 Time: the time needs to implement the approach since the time for developing the

thesis is limited.

Thus, it was considering the hierarchy shown in Figure 22.

Figure 22 - AHP tree of approaches selection

The definition of the priorities among each attribute is presented in Table 12, where it was

classified the efficiency more critical, followed by the architectural complexity and the time in

the end. The scale of comparison used is the one present in Table 1, on subsection Business and

Innovation Process.

Table 12 - Comparison matrix of approaches selection

 Architectural Complexity Efficiency Time

Architectural Complexity 1 1/3 5

Efficiency 3 1 7

Time 1/5 1/7 1

The next step is to normalize the matrix of Table 12 and calculate the relative priority of each

attribute (Table 13 and Table 14).

Which approach/es
must be applied to

this project?

Architectural
Complexity

GraphQL standalone

REST with GraphQL

GraphQL on complex
queries + REST on

simple queries

Efficiency

GraphQL standalone

REST with GraphQL

GraphQL on complex
queries + REST on

simple queries

Time

GraphQL standalone

REST with GraphQL

GraphQL on complex
queries + REST on

simple queries

44

Table 13 - Comparison matrix of approaches selection with the sum

 Architectural Complexity Efficiency Time

Architectural Complexity 1 1/3 5

Efficiency 3 1 7

Time 1/5 1/7 1

SUM 21/5 31/21 13

Table 14 - Comparison matrix of approaches selection normalized with a relative priority

 Architectural Complexity Efficiency Time Relative Priority

Architectural Complexity 5/21 7/31 5/13 0,2828

Efficiency 15/21 21/31 7/13 0,6434

Time 1/21 3/31 1/13 0,0738

Then, it should evaluate the consistency of the relative priorities (Equation 3).

𝜆𝑚𝑎𝑥 =
21

5
× (0,2828) +

31

21
× (0,6434) + 13 × (0,0738) = 3,0967

𝐼𝐶 = (𝜆𝑚𝑎𝑥 − 𝑛) ÷ (𝑛 − 1) = (3,0967 − 3) ÷ (3 − 1) = 0,0484

𝑅𝐶 = 𝐼𝐶 ÷ 0,58 = 0,0484 ÷ 0,58 = 0,08 < 0,1, 𝑠𝑜 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡.

Equation 3 - Relative Priorities Evaluation of approaches selection

The next phase is the definition of the comparison matrix for each attribute, with each

alternative (Table 15, Table 16, and Table 17).

Table 15 - Comparison matrix of approaches selection for architectural complexity2

 GraphQL
standalone

REST with
GraphQL

GraphQL on complex
queries + REST on simple
queries

Priority
Vector

GraphQL standalone 1 4 9 0,7132

REST with GraphQL 1/4 1 4 0,2199

GraphQL on complex
queries + REST on simple
queries

1/9 1/4 1 0,0669

Table 16 - Comparison matrix of approaches selection for efficiency

 GraphQL
standalone

REST with
GraphQL

GraphQL on complex
queries + REST on simple
queries

Priority
Vector

GraphQL standalone 1 5 9 0,7352

REST with GraphQL 1/5 1 4 0,1994

GraphQL on complex
queries + REST on simple
queries

1/9 1/4 1 0,0654

2 In the matrix for architectural complexity, the bigger the number, the simpler is the architecture of the approach.

45

Table 17 - Comparison matrix of approaches selection for time

 GraphQL
standalone

REST with
GraphQL

GraphQL on complex
queries + REST on simple
queries

Priority
Vector

GraphQL standalone 1 1 5 0,4545

REST with GraphQL 1 1 5 0,4545

GraphQL on complex
queries + REST on simple
queries

1/5 1/5 1 0,2121

Finally, it is obtained the composed priority for the alternatives and choose the bests ones

(Equation 4).

(
𝟎, 𝟕𝟏𝟑𝟐
𝟎, 𝟐𝟏𝟗𝟗

𝟎, 𝟕𝟑𝟓𝟐 𝟎, 𝟒𝟓𝟒𝟓
𝟎, 𝟏𝟗𝟗𝟒 𝟎, 𝟒𝟓𝟒𝟓

𝟎, 𝟎𝟔𝟔𝟗 𝟎, 𝟎𝟔𝟓𝟒 𝟎, 𝟐𝟏𝟐𝟏
) × (

𝟎, 𝟐𝟖𝟐𝟖
𝟎, 𝟔𝟒𝟑𝟒
𝟎, 𝟎𝟕𝟑𝟖

) = (
𝟎, 𝟕𝟎𝟖𝟑
𝟎, 𝟐𝟐𝟒𝟎
𝟎, 𝟎𝟕𝟔𝟕

)

Equation 4 - Calculation of the best alternative of approaches selection

The approaches selected were the GraphQL standalone and the REST with GraphQL.

4.3 Prototyping

Prototyping is the phase that follows the requirements analysis and solution design (Rettig,

1994). In this context, the prototype is the implementation of simple functionalities to evaluate

the advantages and disadvantages of the implemented architecture/technology, with a focus on

performance.

Since this thesis aims to study the performance of solutions with GraphQL and compare them

with the one that uses REST (current solution), it was decided to make two different prototypes

with distinct and alternative architectures. Because of the previous knowledge and the

technologies’ stack of the team where these prototypes are implemented, Java and the Spring

framework will be used for the development of GraphQL API.

46

All the information used by the prototypes will be available on a SQL Server database, which is

the one used on INESC TEC and consume some data of the tables present on Figure 23, which is

a short and incomplete view of the database model of the Projects module.

The Project entity is the main one where all the information that classified the project is

contained. The Typology entity is an institution classification that allows organizing some

information about the programs, financing and founds involved on the project. The

FinancingEntity entity is one of the aspects that constitutes the Typology and represents the

entity that is financing the project. The TypologyClass entity is also part of the Typology and

represents a generic aggrupation of the typologies, accordingly with the sources. Finally, the

Team entity is the definition of the responsible and the internal order where the costs will be

imputed, inside each INESC TEC research center that works in the project.

Figure 23 - Database model for the projects module

4.3.1 Prototype 1 – GraphQL standalone

The prototype defined as 1 is the solution that aims to replace the use of REST API for a GraphQL

API when data searches are done. Since the current solution follows the OpenAPI specification,

this file can be used to convert the existing API into a GraphQL schema, using the tool

Swagger2GraphQL.

47

This solution has three components (Figure 24):

 Projects (GraphQL-Spring API): which is the API responsible for receiving the requests

by data consumers and deal with them and to authenticate the clients;

 Security (Spring Security): which is the module responsible for the authentication and

access control of the API;

 SQL Server Database (Database): which is the database that contains the information

available. This component already exists; it will be used for data querying by the

prototype.

Figure 24 - Component diagram of Prototype 1

These three components will be on distinct servers (Figure 25):

 GraphQL Spring Server (Tomcat Server): is the solution server and it will be using

Tomcat;

 Security (Spring Security): is the module responsible for the authentication and access

control, running on Tomcat too;

 Database Server (Microsoft Server): the server where the database is.

48

Figure 25 - Deployment diagram of Prototype 1

The Projects API will have distinct layers (Figure 26), in order to define responsibilities and

organized the implementation:

 Service: responsible for receiving an answer to the HTTP requests and is composed of

two segments:

o Resolver: the one that defines which query will execute and what data is

necessary, that is the reason why it communicates with the Repository

segment;

o Exception Handler: controls the exceptions that may occur and treats them, so

can be used by Resolver to answer to some requests.

 Data: in control of all the data management and presents the next segments:

o Entity: has the types defined on GraphQL schema and mapped to Java’s

objects;

o Repository: deals with the operations with the database, to obtain all the

necessary data, on the formats defined on Entity.

 Security: responsible for authentication and access control management.

49

Figure 26 - Module layer of Prototype 1

The access to the database it will be made using Spring Data so it can be used the CRUD

repositories that automatically generate the methods find, save, count, and delete for each

entity. Thus, the implementation of resolvers will be simple; only have to call the repositories

of each entity. The module Spring Data was considered since it is a layer that already exists and

can be reused.

In conclusion, for developing the GraphQL API, it will be used some tools to optimize the

implementation, such as Spring and Swagger2GraphQL.

4.3.2 Prototype 2 – REST with GraphQL

The prototype defined as 2 is the solution whose goal is to use a middle layer, between the REST

API and the consumer, with a GraphQL API, when data searches are done. Like prototype 1,

Swagger2GraphQL will be used to create the GraphQL schema, but it will not be made any

adjustments, because this API will work as an intermediate between the REST API and the client.

The solution will be composed of three components (Figure 27):

 Projects_GraphQL (GraphQL-Spring API): which is the API responsible for receiving the

requests by data consumers and ask for data to the Projects_REST. It will also

authenticate the clients;

50

 Projects_REST (REST-Spring API): which is the current solution and it will answer to a

request made by Projects_GraphQL;

 Security (Spring Security): which is the module responsible for the authentication and

access control of each API;

 SQL Server Database (Database): which is the database that contains the information

available.

Figure 27 - Component diagram of Prototype 2

These three components will be on distinct servers (Figure 28):

 GraphQL Spring Server (Tomcat Server): is the solution server and it will be using

Tomcat;

 REST Spring Server (Tomcat Server): is the current solution server and it will be using

Tomcat;

 Security (Spring Security): is the module responsible for the authentication and access

control, running on Tomcat too;

 Database Server (Microsoft Server): the server where the database is.

51

Figure 28 - Deployment diagram of Prototype 2

The Projects_GraphQL API will have two layers (Figure 29) since it is only an intermediate:

 Service: responsible for receiving an answer to the HTTP requests and is composed of

two segments:

o Resolver: the one that defines which query will execute and which endpoint of

Projects_REST should be called;

o Exception Handler: controls the exceptions that may occur and treats them, so

can be used by Resolver to answer to some requests.

 Security: responsible for authentication and access control management.

52

Figure 29 - Module Layer of Prototype 2

To conclude, for developing the GraphQL wrapper, it will be used the same tools of prototype

1, but there are some differences in architecture and the responsibility of GraphQL API.

53

5 Implementation

It always seems impossible until it is done.
(Nelson Mandela)

At this chapter, it explains some details about the implementation of the prototypes specified

in the chapter before. For developing the prototypes were taking into consideration some

aspects in order to produce a scalar, flexible, and secure prototypes, following the good

practices of software development.

5.1 Common implementation

Even though it is developed two distinct prototypes with different architectures; there are some

similar tasks during their development.

One of them is the generation of a GraphQL Schema that represents the model used on the

REST API and the queries available. As mentioned in the section before, the current REST API

follows the OpenAPI specification so that it can be consulted about all the operations available

in the API (Figure 30). This specification can be represented as well as a JSON file (Code 8) and

through there can identify the endpoints of the application, which are represented by the path

tag, and also the entities involved, that are defined inside the definitions tag.

54

Figure 30 – Online OpenAPI specification of project API

{
 “swagger”: “2.0”.
 “info”: { (…) },

 “host”: “iris.inesctec.pt:8081”,
 “basePath”: “/”,
 (…)
 “paths”: {
 (…)

“/projetoAPI/getProjectById”: {
 “get”: {
 (…)
 “summary”: “Get project by id”,
 (…)
 “parameters”: [
 {
 “name”: “idProject”,
 (…)
 “type”: “integer”,
 (…)
 }
],
 “responses”: {
 “200”: {
 “description”: “OK”,
 “schema”: {
 “$ref”: “#/definitions/ResponseEntity”
 }
 },
 (…)
 }
 }
 },
(…)
“definitions”: {
 “ProjectDTO”: {
 “type”: “object”,
 “properties”: {
 “beginDate”: {
 “type”: “string”,
 “example”: “yyyy-MM-dd HH:mm:ss”

55

 },
 “cae”: {
 “type”: “string”
 },
(…)

Code 8 – JSON OpenAPI specification of projects API

With this information, it is possible to use a tool called Swagger2GraphQL, that uses the

information contained on the OpenAPI specification and turns it into a GraphQL Schema,

identifying all the queries and mutations, by the path tag of specification, and types, using the

definitions tag. To do this conversion, it must be created a JavaScript project, imported the tool

using the NPM3, added the JSON OpenAPI specification file of projects API, and then executed

the command of Code 9.

./node_modules/swagger-to-graphql/bin/swagger2graphql –swagger=./projetosAPI.json
> ./projetosAPI.graphqls

Code 9 – Command to convert a JSON Open API specification file to a GraphQL Schema

This generation is useful for starting the adoption of GraphQL when there are only REST APIs.

However, it generates one GraphQL Schema will all the information, which is a problem when

the REST API is extensive. To improve the scalability and organization of the GraphQL Schema,

the file was divided into multiple files4, where which one represents a type with all the queries

associated. The schema has the main file, which is the Project.graphqls (Code 10) and then other

files (Code 11) with the definitions of the types and the extend of the main query type, in order

to add the queries available of the correspondent type to the main query defined on

Project.graphqls.

schema {
 query: Query
}

type Project {
 projectId: ID!
 beginDate: String!
 contractReference: String
 (…)
}

The Root Query for the application
type Query {
 projectsAll: [Project]!
 projectById(projectId: ID!): Project
 projectByOIBase(OIBase: String!): Project
}

Code 10 – Main file of GraphQL Schema

type FinancingEntity {
 entityId: ID!
 entityAcronym: String
 entityName: String
 entityNameEN: String
 country: Country

3 Packager manager for JavaScript modules
4 All the GraphQL Schema available at Appendix A – GraphQL Schema

56

 valBegin: String
 valEnd: String
 createUser: String
 createDate: String
 modifyUser: String
 modifyDate: String
}

extend type Query {
 financingEntityById(financingEntityId: ID!): FinancingEntity
}

Code 11 – Financing Entity GraphQL Schema

Having the GraphQL Schema defined, it is possible to move to the next steps of the

implementation.

Another point in common between the prototypes is the entities definition. The types used

during the implementation needed to be transformed into Java classes and respect the rules of

the model defined for the project API. As mention on section Prototyping, there is a complex

model defined, having the module of the project management at INESC TEC as a base. However,

to simplify the study, only some of the entities will be used (Figure 31). This simple version of

the model allows us to have all the need information to do a project search by the parameters

available on IRIS, such as:

 Project attributes: id, short name, OI Base, CAE, begin and end date;

 Structure attributes: id and initials;

 Typology class attributes: id and acronym;

 Financing entity attributes: id and acronym;

 Institution attributes: id and short name;

 Tec4 attributes: id and short name;

 Team attributes: coordinator;

 Project participation attributes: idRH.

All the information available with these entities will allow to have distinct outputs.

57

Figure 31 – Entities class diagram

58

Another component in common is the security one. There is a framework from Spring that

allows customizing the authentication and access-control of an application. This framework,

called Spring Security, is used on the implementation of the prototypes since it allows to define

authentication on specific paths and HTTP methods.

The integration of GraphQL with Spring supplies the API through the path /graphql, so it can be

easily defined who can access it. Code 12 is represented the java class responsible for all the

management of the API authentication and access control. The userDetailsService is responsible

for creating the users and associated them with roles. The configure method is where is defined

who can access determinate paths.

@Configuration
public class SecurityConfig extends WebSecurityConfigurerAdapter {

 @Bean
 public UserDetailsService userDetailsService() {

 User.UserBuilder users = User.withDefaultPasswordEncoder();
 InMemoryUserDetailsManager manager = new InMemoryUserDetailsManager();

 manager.createUser(users.username(“username”).password(“password”)
 .roles(“USER”).build());
 return manager;
 }

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http.csrf().disable().authorizeRequests()
 .antMatchers(“/graphql”).access(“hasAnyRole(‘USER’)”).and()
 .httpBasic().and().sessionManagement()
 .sessionCreationPolicy(SessionCreationPolicy.STATELESS);
 }
}

 Code 12 – Security configuration

The error handler is also shared between the prototypes. To format the GraphQL response in a

layout that is composed by the data and the errors information (Code 13), similar to REST API

responses, it is needed to specify the error handler, in order to group all the client and server

errors in the correct JSON structure, which is represented in the project with the Java class,

GraphQLErrorAdapter.

{
 "data": {
 "projectByOIBase": {
 "projectId": "18809",
 "typology": null,
 }
 },
 "errors": [
 {
 "message": "Typology not found",
 (…)
 }
]
}

Code 13 - Example of GraphQL API response layout

59

5.2 Prototype 1 – GraphQL standalone

Prototype 1 represents the full replacement of the REST API for a GraphQL API to data querying.

This prototype was implemented following the steps mention on the section API creation.

However, the schema was generated from the OpenAPI specification of the REST API to manage

the projects, as referred on the section before.

Some libraries5 are fundamental to the implementation of the prototype:

 Spring Boot Data Java Persistence API (JPA): for manipulating the data of the database;

 Microsoft Java Database Connectivity (JDBC) Driver for SQL Server: to connect with

the database;

 Spring Boot Security: for managing the authentication and the access-control;

 GraphQL Spring Boot UI: to consult the schema and test requests using an online

platform;

 GraphQL Spring Boot: for using the integration of Spring Boot with the GraphQL;

 GraphQL Java Tools: to aid on mapping the GraphQL Schema into Java objects;

 Spring Boot Test: for testing the application.

The resources folder of the solution presents some crucial functions:

 The GraphQL schema files must be inside of it, for Spring use them;

 The integration of Spring with GraphQL also requires the definition of some properties

(Code 14) to know the endpoint to GraphQL API and, when it is used, the endpoint for

GraphiQL as well;

 The connection to the database is defined on a properties file to locate on this folder.

GraphQL
graphql.servlet.mapping=/graphql
graphql.servlet.enabled=true
graphql.servlet.corsEnabled=true

GraphiQL
graphiql.mapping=/graphiql
graphiql.endpoint=/graphql
graphiql.enabled=true
graphiql.cdn.enabled=true
graphiql.cdn.version=0.11.11

Code 14 - Application properties for GraphQL and GraphiQL of prototype 1

5 Maven Project Object Model (POM) file available at Appendix C – Prototype 2 POM

60

On the data layer, it is specifying all the entities need to consult the database, and that has a

correspondent type on the GraphQL Schema. It also contains the repositories (Code 15), that

are interfaces that manage, between the application and the database, all the CRUD operations,

using the CRUDRepository of Spring Data, and the custom queries, defined using the tag

@Query.

@Repository
public interface ProjectFunctionRepository extends CrudRepository<ProjectFunction, Long>
{

 @Query(value = "SELECT * FROM ProjectFunction where name = ?1", nativeQuery = true)
 ProjectFunction getProjectFunctionByName(String name);

}

Code 15 - Project function repository

On the service layer, it defined the exceptions that the prototype own, to have better feedback

when an exception occurs, and the consumer understands the reason. Furthermore, this layer

contains the resolvers. The type of resolvers can be separated into two:

 The main resolver: where all the queries defined on the schema has their behavior

translate into a Java method. This class must implement GraphQLQueryResolver in

order to do so. Using the prefix get plus the name of the query, automatically there is

an association between the method and the query. For this prototype, the behavior

implemented is to query the information on the database, using the repositories and

then return the information, when it exists, or the exception otherwise;

 The auxiliary resolvers: where it is defined how a specific type from the schema will get

the value of one attribute which type is another one declared on the schema (Code 16).

@Component
public class FinancingEntityResolver implements GraphQLResolver<FinancingEntity> {

 @Autowired
 private CountryRepository countryRepository;

 public Country getCountry(FinancingEntity financingEntity) {
 Optional<Country> result =

countryRepository.findById(financingEntity.getCountryId());
 if(result.isPresent()){
 return result.get();
 }else{
 throw new CountryNotFoundException("Country not found",

financingEntity.getCountryId().toString());
 }
 }
}

Code 16 - Financing entity resolver of prototype 1

Figure 32 is presented the flow of a data querying request on prototype 1. The consumer makes

a POST request with the query to executed and the expected output. That is treated for the

QueryResolver, which is the main resolver, and the information is search on the database,

through the repository. After getting the information, the resolver will check if there is data to

61

return or not. If there is, even though it is not presented on the sequence diagram, it will go

through all the need auxiliary resolvers to obtain all the information need and retrieve it to the

consumer. If there is no data to return, then the main resolver returns the exception to the

consumer.

In conclusion, prototype 1 uses the GraphQL directly connected with the database for data

querying.

5.3 Prototype 2 – REST with GraphQL

Prototype 2 describes the use of GraphQL to optimize the flexibility of the REST API to data

querying. As the prototype mentioned in the section before, this was also implemented

following the steps mention on the section API creation and with a schema generated from the

OpenAPI specification of the REST API.

The libraries6 that are fundamental for the implementation of the prototype are the same from

prototype 1, except the Spring Boot Data JPA and the Microsoft JDBC Driver for SQL Server,

since this API will not connect with the database.

Taking that into consideration, the resources folder of the solution is only constituted by the

GraphQL schema files and the integration of the Spring with GraphQL (Code 17).

GraphQL
graphql.servlet.mapping=/graphql
graphql.servlet.enabled=true
graphql.servlet.corsEnabled=true

6 Maven POM file available on Appendix C – Prototype 2 POM

Figure 32 - Sequence diagram of a query in prototype 1

62

GraphiQL
graphiql.mapping=/graphiql
graphiql.endpoint=/graphql
graphiql.enabled=true
graphiql.cdn.enabled=true
graphiql.cdn.version=0.11.11

Code 17 - Application properties for GraphQL and GraphiQL of prototype 2

On the data layer, it is only specified the entities that have an equivalent type on the GraphQL

Schema.

On the service layer, it is defined as the exceptions that the prototype own, as the prototype 1.

Furthermore, this layer contains the resolvers. The type of resolvers can be separate in two, like

the prototype described on the section before, but with distinct behavior:

 The main resolver: for this prototype, the behavior implemented is to query the

information on the REST API, using the HTTP requests and then return the information,

when exists, or the exception otherwise (Code 18);

public Project getProjectById(Long projectId) {
 HttpHeaders headers = createHeaders("username","password");

 headers.setAccept(Arrays.asList(MediaType.APPLICATION_JSON));
 HttpEntity<String> entity = new HttpEntity<String>("parameters", headers);

 UriComponentsBuilder builder = UriComponentsBuilder
 .fromHttpUrl("https://iris.inesctec.pt/projetoAPI/getProjectById");

 builder.queryParam("idProject", projectId);

 ResponseEntity<Project> result = restTemplate.exchange(builder.build().encode()
 .toUri(), HttpMethod.GET, entity,Project.class);

 Project project = result.getBody();
 if(Objects.nonNull(project)){
 return project;
 }else{
 throw new ProjectNotFoundException("Project not found", projectId.toString());
 }
}

Code 18 - Example of a method from a query resolver

 The auxiliary resolvers: with the same responsibility defined on the prototype 1, but

the query is made using a REST web service (Code 19).

@Component
public class FinancingEntityResolver implements GraphQLResolver<FinancingEntity> {

 public Country getCountry(FinancingEntity financingEntity) {
 HttpHeaders headers = createHeaders("username","password");

 headers.setAccept(Arrays.asList(MediaType.APPLICATION_JSON));
 HttpEntity<String> entity = new HttpEntity<String>("parameters", headers);

 UriComponentsBuilder builder = UriComponentsBuilder
 .fromHttpUrl("https://iris.inesctec.pt/projetoAPI/getCountryById");

 builder.queryParam("idCountry", financingEntity.getCountryId());

 ResponseEntity<Country> result = restTemplate.exchange(builder.build().encode()

63

 .toUri(), HttpMethod.GET, entity,Country.class);

 Country country = result.getBody();
 if(Objects.nonNull(country)){
 return country;
 }else{
 throw new CountryNotFoundException("Country not found",

financingEntity.getCountryId().toString());
}

}
}

Code 19 - Financing entity resolver of prototype 2

The flow of a data querying request on prototype 2 is presented at Figure 33. The consumer

makes a POST request with the query to executed and the expected output, like the prototype

1. That request is treated for the QueryResolver, which is the main resolver, and the information

is search on the REST API, through an HTTP request. Having the information, the QueryResolver

checks if there is data to return or not. If there is nothing to return, then the main resolver

returns the exception to the consumer. If there is data, even though is not presented on the

sequence diagram, the application will go through all the need auxiliary resolvers to obtain all

the information need, making more requests to the REST API, and retrieve it to the consumer.

In conclusion, prototype 2 uses the GraphQL to auxiliary the flexibility of the REST API, which

can bring improvements on the size of the request.

Figure 33 - Sequence diagram of a query in prototype 2

64

65

6 Tests and Solution Evaluation

Have no fear of perfection, you will never reach it.
(Salvador Dali)

The experimentation and evaluation have as main goal to validate if the solution presented in

this thesis resolves the problem presented. For this, it is necessary not only to test the final

solution, but also its implementation.

In order to validate the proposed solution, it is needed to define which measurements will be

evaluated, hypotheses will be tested and how this process will be made.

In this chapter, it is presented all the testing and solution evaluation and justified all the

conclusions from the obtained results.

6.1 Measurements to Evaluate

The measurements to evaluate allows defining which concepts are necessary to be taken into
consideration when a solution is being evaluated. There are many measurements, but it should
be chosen the one that is related to the proposed solution and its requirements.
For validate the proposed solution, it is required to take into consideration the following
measurements, based on the requirements presented on Requirements Analysis and the
problem explained on Problem:

 Technical quality (accuracy): all the solutions must be tested, in order to discard the

influence of bad implementation on the result analysis;

 Performance: the primary goal of this thesis is to find a solution that presents a better

performance, so this is a crucial measure, which will be evaluated observing the next

measures, taking into account tests with distinct complexities:

66

o Time: the response times of the API must be improved, thus studying them, it

can be found the one solution that presents better results;

o Size: the response size can also affect performance since it can exist solutions

that deal better with short and straightforward API’s responses than with more

complex and bigger ones.

These measures will help on evaluating and analyzing the different solutions presented on this

project, allowing to define the one that is the best response to the problem and the advantages

and disadvantages of each one.

6.2 Hypotheses and Evaluation Methodology

The experimentation process had an experimental life cycle (Figure 34) that started with an

exploratory analysis to observe the data (observations of the environment). This analysis was

made during the problem characterization (Problem) and the studying of state of the art (State

of the Art). After that, the hypotheses were constructed, followed by the experimentation

phase with the data analysis and the attempt to obtain conclusions (Gomes, 2018).

Figure 34 - Experimental life cycle, adapted from (Gomes, 2018)

6.2.1 Hypotheses

The hypotheses formulation for this project was made after the definition of the problem and

the exploration of state of the art. The hypothesis is a valid assumption that can be made by

the exploration of a set of data, and it should be validated. During its construction, it is defined

as two types of hypotheses (Manso, 2003):

 H0: null hypothesis, usually conservative;

Exploration

Hypotheses
construction

Experiment,
data gathering

Data analysis

Conclusions

67

 H1: alternative hypotheses.

The specify hypotheses for this thesis are the following ones:

 H01: REST API presents the same performance as a GraphQL API;

 H02: REST API has the same performance as a solution that uses REST with GraphQL;

 H1: REST API demonstrates better performance in atomic calls than GraphQL API;

 H2: GraphQL API offers better performance than REST API when multiple endpoints are

consulted;

 H3: The integration of GraphQL with a REST API shows better performance results than

a REST API standalone.

The hypotheses H01 and H02 are conservative, so it is considered that it will not be any

differences between the solutions.

The H1 is formulated, taking into consideration the study presented by Guillen-Drija, described

on Comparison between REST and GraphQL. This hypothesis recognizes that GraphQL API will

not have better performance than REST API when a simple request is made.

Like the hypothesis H1, H2 is also constructed looking for the results of the experiment of

Vázquez-Ingelmo, demonstrated in the same section. The H2 complements analyses the

performance on complex requests, where GraphQL should present better performance.

Lastly, H3 is a hypothesis that derived from the implementation of GraphQL with REST API made

by Netflix, introduced on Adoptions overview. This hypothesis is the reason why an architecture

of prototype 2 (Prototype 2 – REST with GraphQL) was considered.

6.2.2 Evaluation Methodology

In order to evaluate the hypotheses presented in the previous section and considering the

measurements defined (Measurements to Evaluate), it must be defined as the methodology

used. All the solutions described in this thesis will be tested on IRIS’s environment.

The technical quality of each solution was debugged by the typical software engineering tests

like unit tests and integration (JUnit), code coverage (JaCoCo), loading tests (Apache JMeter),

and acceptance tests.

With technical quality ensured, it is possible to test the performance and validated the

hypotheses formulated. For the time and size, it was used a tool called PRTG Network Monitor,

that allows sending a distinct request to the APIs, with a defined interval. The analysis of these

two measures permits to test the behavior of each solution for these measures. Those metrics

68

were evaluated, taking into consideration requests with distinct complexities. The request

complexity was classified, taking into consideration the number of endpoints, on the case of

the REST API, or types, on GraphQL API, that has to be consumed in order to obtain all the

necessary data. Table 18 presents the classification of complexity that will be used during the

tests.

Table 18 - Classification of different levels of complexity

Complexity Classification Number of Endpoints/Entities to Achieve all the Information

Low 1

Normal Between 2 and 4

High More than 5

After collecting all the results from each measure, statistical tests were made. The statistical

tests grant to take a decision, using the data observed on specific experimentation. There are

parametric and non-parametric tests, so it is necessary to analyze, for example, the results

numbers, if they are quantitative or qualitative or if they are independent or not.

For this project, the solutions are not executed together. Thus, it can be classified as

independent. The same measures were tested on different samples so that it can be used the

parametric test Analysis of Variance (ANOVA) or the non-parametric tests: Kruskal-Wallis test

or Mood’s test (XLSTAT, 2019). Since the tests were made based on some distribution, it was

used ANOVA to test the hypotheses. Other benefits that ANOVA tests have been the better

controlling of type 1 error and allow to compare multiple groups.

6.3 Experimentation and Evaluation

Following the evaluation methodology defined on Evaluation Methodology, it is necessary to

test and evaluate the prototypes created and compare them with the current solution. This

evaluation will allow concluding which one represents a better solution for the problem

demonstrated on subsection Problem.

6.3.1 Technical quality

The first step in experimentation is to test the technical quality of the two prototypes. It is vital

to ensure that the results of each solution are not affected by bad development.

The technical quality is established by unit and integration tests, code coverage, loading tests,

and acceptance tests. The core of the two prototypes is similar, so the unit testing is identical

as well. The main unit tests apply to the solutions involve the resolvers and test the following

aspects:

 Return lists of data with the correct dimension;

69

 Return lists or objects with the right data for each attribute;

 Return the custom exception, when the information is not available;

 Validation of methods inputs (null, empty).

To keep the tests valid through time, on the unit testing of each resolver, the information

expected is simulate using mock objects. On prototype 1, the return from the methods of the

repository are simulated and, on prototype 2, the REST API responses are mocked. On Code 20,

an example of a unit test used on prototype 1 is presented, to test the throw of a custom

exception.

@Test(expected = ProjectNotFoundException.class)
public void whenFindProjectById_thenReturnProjectNotFoundException() {
 // given
 Optional<Project> projectOptional = Optional.empty();

 when(projectRepository.findById(new Long(1))).thenReturn(projectOptional);

 // then
 queryResolver.getProjectById(new Long(1));
}

Code 20 - Example of a unit test of prototype 1

The other tests that use JUnit are the integration tests, that test the possibility of integration of

the API with other systems, like a consumer, database, and REST API. The relation with API

consumer is equal on the two prototypes, so the tests are equal. In these tests are tested the

status of API response and the response format, example on Code 21. Prototype 1 is tested the

integration of the GraphQL API with the SQL Server database. Prototype 2 is tested the

integration of the GraphQL API with the REST API.

@Test
public void testGetProjectByProjectId() throws Exception {
 String query = "query{\n" +
 " projectById(projectId:\"18809\"){\n" +
 " projectId\n" +
 " title\n" +
 " shortName\n" +
 " OIBase\n" +
 " typology{\n" +
 " typologyDescription\n" +
 " }\n" +
 " teams{\n" +
 " coordinator\n" +
 " oi\n" +
 " shortName\n" +
 " totalBudget\n" +
 " }\n" +
 " }\n" +
 "}";

 GraphQLQuery graphlqlQuery = new GraphQLQuery();
 graphlqlQuery.setQuery(query);

 HttpHeaders headers = createHeaders("username", "password");
 headers.setAccept(Arrays.asList(MediaType.APPLICATION_JSON));

 HttpEntity<Object> entity = new HttpEntity<Object>(graphlqlQuery, headers);

70

 ResponseEntity<String> results =

restTemplate.exchange("http://localhost:8080/graphql",
 HttpMethod.POST, entity, String.class);

 assertEquals(results.getStatusCode(),HttpStatus.OK);

}

Code 21 - Example of an integration test of prototype 1 and 2

All the tests are passing correctly (Figure 35) and, using the JaCoCo, the code coverage of the

functional code 7 is around 90% on the two prototypes (Figure 36). Since entities and

repositories do not contain functional code, they are excluded from the code coverage.

Figure 35 - Results of unit testing

Figure 36 - Code coverage results

Even though the guarantee of the correct functional behavior of the prototypes and a good

percentage of code tested, some non-functional requirements must be supported too.

JMeter is the tool used to make the load tests. For each query available in the prototypes, it

was created a load test. Each test considers a concurrent number of requests, define as 550

since is the mean of active users of IRIS and it cannot has a response size more prominent than

53 kilobytes and a response time bigger than 20 seconds, which are some values similar to REST

API responses (see INESC TEC). There is also a data JSON assertion to verify the correct format

of responses. The result of the load test is 100% correct for the two prototypes (Figure 37).

7 Code with custom behavior. For example, getters and setters are not included.

71

Figure 37 - Load testing results

Finally, using the GraphiQL interface, some acceptance tests8 were manually made, in order to

validate the correct behavior of the API (example in Table 19).

Table 19 - Example of acceptance test

Data

Test Number 1

Test Goal Validate the result from searching for a project using OI.

Input Search OI “PG08011” and expected project id, title, and short name as a result.

Expected output A JSON object with project id, title, and short name.

Real Results

Prototype 1 A JSON object with project id, title, and short name.

Prototype 2 A JSON object with project id, title, and short name.

It can conclude that the prototypes have technical quality since they have success in functional

and non-functional tests.

6.3.2 Performance

After measuring and evaluate the technical quality of the prototypes, it is needed to test the

performance. The performance was measured using distinct request complexities, as

mentioned on Evaluation Methodology, and it is evaluated using metrics of time and size. In

order to obtain the information need, it was used the PRTG tool, which allows creating sensors

8 Consult acceptance tests on Appendix D – Acceptance tests

72

(Figure 38). These sensors have a specific configuration9 associated that makes a request to an

API from time to time and registers the response time and the response size.

Figure 38 - Sensors view from PRGT

To create a table with a sample of results, using distinct complexities, it was used the following

query requests to the GraphQL APIs (prototype 1 and 2):

 Complexity low (Code 22)

query {
 financingEntityById(financingEntityId:4) {
 entityName
 entityAcronym
 }
}

Code 22 - Query request for complexity low

 Complexity normal (Code 23)

query {
 projectByOIBase(OIBase:”PG08011”) {
 OIBase
 shortName
 typology {
 typologyId
 }
 beginDate
 expectedEndDate
 title
 description
 proposalId
 }
}

9 Consult example of configuration file on Appendix E – Example of a sensor configuration

73

Code 23 - Query request for complexity normal

 Complexity high (Code 24)

query {
 projectByOIBase(OIBase:”PG08011”) {
 OIBase
 beginDate
 expectedEndDate
 contractReference
 teams {
 coordinator
 oi
 coordinate
 structure {
 sigla

}
 }
 typology {
 typologyDescription
 typologyClass {
 designation
 }
 financingEntity {
 entityAcronym
 }
 }
 }
}

Code 24 - Query request for complexity high

PGRT generates a report with the necessary information and using the data mention on the

subsection INESC TEC for the current solution; it generates the Table 20, Table 21 and Table 22,

with the mean of the requests time and size for each API, accordingly with the request

complexity.

 Complexity low (Table 20)

Table 20 - Mean results for requests with complexity low

 Time (ms) Size (kB)

Current solution 129 0,66

Prototype 1 203 0,13

Prototype 2 195 0,07

 Complexity normal (Table 21)

Table 21 - Mean results for requests with complexity normal

 Time (ms) Size (kB)

Current solution 4236 6,58

Prototype 1 255 0,98

Prototype 2 480 1,15

74

 Complexity high (Table 22)

Table 22 - Mean results for requests with complexity high

 Time (ms) Size (kB)

Current solution 13480 28,97

Prototype 1 2070 0,77

Prototype 2 830 1,51

With this information, it is possible to observe that any API do not share the same response

time or size in the distinct complexities’ cases. Observing Figure 39, the prototypes generally

present better response time than the current solution, except on complexity low, where

prototype 1 has the worst result than the others. On Figure 40, it can be concluded that the

prototypes improve the response size significantly comparing with the current solution.

Figure 39 - Average of response time by API

Figure 40 - Average of response size by API

0

2000

4000

6000

8000

10000

12000

14000

16000

Complexity low Complexity
normal

Complexity high

M
ill

is
ec

o
n

d
s

(m
s)

Average of response time by API

Current Solution

Prototype 1

Prototype 2

0

5

10

15

20

25

30

35

Complexity low Complexity normal Complexity high

K
ilo

b
yt

e
(k

B
)

Average of response size by API

Current Solution

Prototype 1

Prototype 2

75

Using the experimentation results and applying the ANOVA testing10, it is possible to classify

as accurate of false the hypotheses specify on subsection Hypotheses:

 H01: REST API presents the same performance as a GraphQL API;

This hypothesis is false since neither the response time or the response size are similar

between the current solution and the prototype 1. Comparing each other, with a

confidence interval of 95% and the Tukey’s Honestly Significantly Different (HSD) test,

they are significantly distinct in response time and response size (Table 23).

Table 23 – Differences’ analysis between the current solution and prototype 1 (Tukey’s HSD test)

Measure

Difference Standardized
difference

Critical
value

Pr
>
Diff

Significant Lower
bound
(95%)

Upper bound (95%)

Time 5710 4 2 0 Yes ||||||||||||||||||

Size 11 3 2 0 Yes ||||||||||||||||||

 H02: REST API has the same performance as a solution that uses REST with GraphQL;

This hypothesis is also false since neither the response time or the response size are

similar between the current solution and prototype 2. Comparing each other, with the

test mention before, they are significantly distinct in response time and response size

(Table 24).

Table 24 – Differences’ analysis between the current solution and prototype 2 (Tukey’s HSD test)

Measure

Difference Standardized
difference

Critical
value

Pr
>
Diff

Significant Lower
bound
(95%)

Upper bound (95%)

Time 5520 3 2 0 Yes |||||||||||||||||

Size 11 3 2 0 Yes |||||||||||||||||

 H1: REST API demonstrates better performance in atomic calls than GraphQL API;

The hypothesis can only be considered valid if we give more significant weight to the

time measure. The response time is better on the REST API; however, the response size

is better in GraphQL API. This can be concluded observing the mean results on

experimentation with complexity low, presented before.

 H2: GraphQL API offers better performance than REST API when multiple endpoints are

consulted;

10 See descriptive statistics in Appendix F – Descriptive statistics (quantitative data) for time and Appendix G – Descriptive statistics
(quantitative data) for size

76

This hypothesis is correct because it presents better response time and size on requests

with complexity normal and high, which are the ones that involve more than one

endpoint/entity. On complexity normal, the GraphQL API is 93% better at the response

time and 85% better at the response size. Looking at the complexity high, prototype 1

is 84% better at the response time and 97% better at the response size.

 H3: The integration of GraphQL with a REST API shows better performance results than

a REST API standalone.

Like the H1, this condition can have distinct classifications, accordingly with the weight

given to the time and size measures. On normal and high complexities, prototype 2 is

better. However, on low complexities, the response time is better 33%.

Taking into consideration that, globally the prototypes present better performance than the

current solution, the comparison between them is hard, since they are not significantly different.

The mean of response size is equal. However, to give a response about a possible

implementation to solve the performance issue of IRIS, the result of ANOVA testing is clear: the

prototype 1 presents the best performance (Figure 41), considering all the complexities.

Figure 41 - Summary of means - time and size

0

2

4

6

8

10

12

14

0

1000

2000

3000

4000

5000

6000

7000

Current Solution Prototype 1 Prototype 2

M
ea

n
s

LS

Summary of means - Time and Size

Response Time Response Size

77

7 Conclusion

It is fine to celebrate success, but it is more important to heed the lessons of failure.
(Bill Gates)

This section summarizes what it was done, difficulties found, but also future work and

contributions.

7.1 Work Done and Difficulties Found

This document presents all the steps made in order to find a solution for a performance issue

related to a REST API. All these steps were made accordingly with the methodology defined in

the subsection Methodology.

Firstly, it was analyzed the problem that the INESC TEC have on a platform responsible for the

management of data, called IRIS. The problem was apparent: the response time of REST API

was not right and attached to that, the response size was bigger than need as well. Then, a

process to find a solution was followed, which is described on the subsection Business and

Innovation Process. There were three possible solutions on the table, and the decision was to

take a step into GraphQL.

This technology is new to the stack of the team, and it has also involved some time in learning

how it works, and the best practices associated with it. Due to the limit time to present the

thesis, the learning curve had to be short, and it was possible since GraphQL is simple and easy

to learn.

78

All the learning helped on building the State of the Art, mainly on the GraphQL description. The

description of REST and GraphQL helped on understanding the core principles of each one and

how one could improve the other. Besides that, there are some documented adoptions of

GraphQL made by known companies like Netflix, GitHub, and PayPal, which help to understand

the process that a possible transformation from REST to GraphQL would require.

One of the main difficulties during this thesis was the lack of scientific papers related with the

subject, and the way to work around that was to explore grey documentation and be always

attentive to the new papers that could be published during the execution of the thesis.

Although the difficulties, it was created state of the art with enough information to consider

distinct design alternatives and build some hypotheses to validate.

Another difficulty was the extension of the work related to the designs that could be

implemented. The most two promising prototypes were implemented and with good technical

quality (tests presented on section Technical quality). The two prototypes use GraphQL, and

they reveal to be, on the overall, better in terms of performance than the current solution.

The research question of this thesis was:

Can GraphQL improve searching performance, while also providing flexibility, when

compared to the existing solution?

Even though the flexibility was not taking into consideration for testing, the GraphQL presents

better flexibility on API requests, a fact that has been proved, for example, on the study made

by Stubailo. For the tests made, only one endpoint was requested for all the GraphQL APIs with

no more data than needed. Giving a developer perspective, there is no need to worry about

what each consumer may want; all the information is available, so they manage by themselves

their necessities. However, the question has an answer now: yes, GraphQL can improve

searching performance, considering the measures time and size, as it is proved on the chapter

of Tests and Solution Evaluation.

In conclusion, the analysis of GraphQL performance brought a response to the integration of

GraphQL with REST and the adoption of GraphQL, highlighting the benefits that this technology

can bring in terms of performance to APIs.

7.2 Future Work

GraphQL is a recent technology, so there are many details to explore. Related to the thesis, the

analyze of performance should be tested on more APIs, and the alternative of design not

implemented should be explored too. The evaluation proved that REST APIs have a better

response time in atomic calls than GraphQL APIs, so the alternative could be an integrative

solution that can bring together the best of each solution.

79

The performance was studied using specific technologies (Java and Spring Boot) and, in order

to validate the overall performance, should be discarded the influence of technologies used to

implement the APIs. It is also necessary to explore performance with distinct types of

complexities. In this study, the complexity was related to the endpoints/entities to query;

however, it can also be explored request sizes, for example.

To sum up, this is one more step towards the impact of using GraphQL could bring. However,

there is a lot to explore still.

7.3 Contributions

The context of this thesis was applied to INESC TEC, mainly on the IRIS platform. Since it was a

new technology, the team acquired some knowledge about it and learned how it could

contribute to the implementation of APIs.

After this thesis, the prototype selected as the one that presented the best performance was

not applied on production yet. However, it will be beneficial for a diversity of functionalities

that are planned to be implemented and, since GraphQL can be used by distinct programming

languages, this alternative can be also considered to others platforms that struggle with the

same problem.

80

81

References

baeldung (2017) Getting Started with GraphQL and Spring Boot [Online]. Available at

https://www.baeldung.com/spring-graphql (Accessed 15 May 2019).

Brito, G., Mombach, T. and Marco Tulio Valente (2019) ‘Migrating to GraphQL: A Practical

Assessment’, 2019 IEEE 26th International Conference on Software Analysis, Evolution and

Reengineering (SANER), Hangzhou, China, IEEE, pp. 140–150 [Online]. DOI:

10.1109/SANER.2019.8667986 (Accessed 30 May 2019).

Facebook Inc. (2018) GraphQL: A query language for APIs. [Online]. Available at

http://graphql.org/ (Accessed 17 October 2018).

Fielding, R. T. and Taylor, R. N. (2000) ‘Principled design of the modern Web architecture’,

Proceedings of the 2000 International Conference on Software Engineering. ICSE 2000 the New

Millennium, pp. 407–416 [Online]. DOI: 10.1145/337180.337228 (Accessed 31 October 2018).

Gomes, E. F. (2018) ‘Experimental design’, Moodle ISEP [Online]. Available at

https://moodle.isep.ipp.pt/mod/resource/view.php?id=139142 (Accessed 1 February 2019).

Guillen-Drija, C., Quintero, R. and Kleiman, A. (2018) GraphQL vs REST: una comparación desde

la perspectiva de eficiencia de desempeño., [Online]. DOI: 10.13140/RG.2.2.25221.19680

(Accessed 1 December 2018).

INESC TEC (2017) INESC TEC [Online]. Available at https://www.inesctec.pt/en/institution

(Accessed 22 February 2019).

Krivtsov, R. (2016) ‘Moving existing API from REST to GraphQL’, Open GraphQL [Online].

Available at https://medium.com/open-graphql/moving-existing-api-from-rest-to-graphql-

205bab22c184 (Accessed 20 January 2019).

Manso, E. (2003) ‘Experimentation in Software Engineering’, Oporto [Online]. Available at

https://www.infor.uva.es/~manso/disexperoporto-web.pdf (Accessed 1 February 2019).

8
2

82

Marek, A. and Baker, B. (2019) GraphQL Java [Online]. Available at https://www.graphql-

java.com/ (Accessed 20 January 2019).

Möller, S. (2010) ‘Usability Engineering’, in Möller, S. (ed), Quality Engineering: Qualität

kommunikationstechnischer Systeme, Berlin, Heidelberg, Springer Berlin Heidelberg, pp. 57–74

[Online]. DOI: 10.1007/978-3-642-11548-6_4 (Accessed 10 October 2018).

Nicola, S., Ferreira, E. P. and Ferreira, J. J. P. (2012) ‘A novel framework for modeling value for

the customer, an essay on negotiation’, International Journal of Information Technology &

Decision Making, vol. 11, no. 03, pp. 661–703 [Online]. DOI: 10.1142/S0219622012500162.

Nordic APIs (2017) eBook Released: GraphQL or Bust | Nordic APIs | [Online]. Available at

https://nordicapis.com/ebook-released-graphql-bust/ (Accessed 17 October 2018).

Open API Initiative (2017) OpenAPI [Online]. Available at https://www.openapis.org/ (Accessed

26 December 2017).

Osterwalder, A. and Pigneur, Y. (2011) Business Model Generation: Inovação em Modelo de

Negócios, 1a., Rio de Janeiro, Alta Books [Online]. (Accessed 1 February 2019).

Pivotal (2019) Spring [Online]. Available at https://spring.io/ (Accessed 20 January 2019).

Porcello, E. and Banks, A. (2018) Learning GraphQL - Declarative Data Fetching for Modern Web

Apps, 1st edn, O’Reilly [Online]. Available at

http://shop.oreilly.com/product/0636920137269.do (Accessed 25 November 2018).

Rettig, M. (1994) ‘Prototyping for Tiny Fingers’, Commun. ACM, vol. 37, no. 4, pp. 21–27 [Online].

DOI: 10.1145/175276.175288.

Saaty, T. L. and Vargas, L. G. (1991) Prediction, Projection and Forecasting: Applications of the

Analytic Hierarchy Process in Economics, Finance, Politics, Games and Sports, Springer

Netherlands [Online]. Available at https://www.springer.com/kr/book/9789401579544

(Accessed 1 February 2019).

Shtatnov, A. and Ranganathan, R. S. (2018) ‘Our learnings from adopting GraphQL’, Netflix

TechBlog [Online]. Available at https://medium.com/netflix-techblog/our-learnings-from-

adopting-graphql-f099de39ae5f (Accessed 9 February 2019).

Stuart, M. (2018) ‘GraphQL: A success story for PayPal Checkout’, PayPal Engineering [Online].

Available at https://medium.com/paypal-engineering/graphql-a-success-story-for-paypal-

checkout-3482f724fb53 (Accessed 17 January 2019).

Stubailo, S. (2017) GraphQL vs. REST [Online]. Available at

https://blog.apollographql.com/graphql-vs-rest-5d425123e34b (Accessed 3 December 2018).

Sturgeon, P. (2017) GraphQL vs REST: Overview | Phil Sturgeon [Online]. Available at

https://philsturgeon.uk/api/2017/01/24/graphql-vs-rest-overview/ (Accessed 17 October

8
3

83

2018).

Terzić, B., Dimitrieski, V., Kordić (Aleksić, S., Milosavljevic, G. and Luković, I. (2017) ‘MicroBuilder:

A Model-driven Tool for the Specification of REST Microservice Architectures’, Int. Conf. on

Information Society and Technology [Online]. DOI:

https://doi.org/10.1080/17517575.2018.1460766 (Accessed 10 January 2019).

Torikian, G., Black, B., Swinnerton, B., Somerville, C., Celis, D. and Daigle, K. (2016) The GitHub

GraphQL API [Online]. Available at https://githubengineering.com/the-github-graphql-api/

(Accessed 17 January 2019).

Vacek, J. (2012) ‘Innovation management’, Technology, UWB, Faculty of Economics [Online].

Available at https://www.slideshare.net/amibiriba/innovation-management-11735406

(Accessed 1 February 2018).

Vázquez-Ingelmo, A., Cruz-Benito, J. and García-Peñalvo, F. J. (2017) ‘Improving the OEEU’s

Data-driven Technological Ecosystem’s Interoperability with GraphQL’, Proceedings of the 5th

International Conference on Technological Ecosystems for Enhancing Multiculturality, TEEM

2017, New York, NY, USA, ACM, pp. 89:1–89:8 [Online]. DOI: 10.1145/3144826.3145437

(Accessed 17 October 2018).

Wiegers, K. and Beatty, J. (2013) Software Requirements, 3rd edn, Redmond, Washington,

Microsoft Press [Online]. (Accessed 20 January 2019).

Wittern, E., Cha, A. and Laredo, J. A. (2018) ‘Generating GraphQL-Wrappers for REST(-like) APIs’,

Mikkonen, T., Klamma, R., and Hernández, J. (eds), Web Engineering, Lecture Notes in Computer

Science, Springer International Publishing, pp. 65–83 [Online]. (Accessed 20 January 2019).

XLSTAT (2019) Which statistical test should you use? [Online]. Available at

https://help.xlstat.com/customer/en/portal/articles/2062457-which-statistical-test-should-

you-use-?b_id=9202 (Accessed 17 February 2019).

8
4

84

8
5

85

Appendixes

86

Appendix A – GraphQL Schema

schema {
 query: Query
}

type Project {
 projectId: ID!
 beginDate: String!
 contractReference: String
 description: String
 descriptionEN: String
 effectiveEndDate: String
 expectedEndDate: String!
 financingRate: Float
 subInvestmentRate: Float
 ohRate: Float
 provRetentionRate: Float
 inesctecIncome: Float
 observations: String
 OIBase: String!
 shortName: String!
 title: String
 titleEN: String
 totalIncome: Float
 typology: Typology
 url: String
 proposalId: String
 teams: [Team]!
 projectInstitutions: [ProjectInstitution]
 tec4Project: [TEC4Project]
 cae: String
 userCG: String
 createUser: String
 modifyUser: String
 createDate: String
 modifyDate: String
}

type Country {
 countryId: ID!
 countryAcronym: String
 countryCode: String
 countryDesignation: String
 countryDesignationEN: String
 createUser: String
 createDate: String
 modifyUser: String
 modifyDate: String
}

type FinancingEntity {
 entityId: ID!
 entityAcronym: String
 entityName: String
 entityNameEN: String
 country: Country
 valBegin: String
 valEnd: String
 createUser: String
 createDate: String
 modifyUser: String
 modifyDate: String
}

type Institution {
 institutionId: ID!
 contactEmail: String
 contactName: String
 contactTelephone: String

87

 institutionType: InstitutionType
 name: String
 shortName: String
 url: String
 nif: String
 cae: String
 address: String
 country: String
 city: String
 zipcode: String
 organizationalGroup: String
}

type InstitutionType {
 institutionTypeId: ID!
 name: String
}

type ProjectFunction {
 projectFunctionId: ID!
 name: String
}

type ProjectInstitution {
 institution: Institution
 project: Project
 approvedBudget: Float
 approvedCoFinancing: Float
 approvedFinancing: Float
 financingRate: Float
 confidential: Boolean
 projectInstitutionFunction: ProjectInstitutionFunction
 createUser: String
 modifyUser: String
 createDate: String
 modifyDate: String
}

type ProjectInstitutionFunction {
 projectInstitutionFunctionId: ID!
 name: String
}

type ProjectParticipation {
 projectParticipationId: ID!
 beginDate: String
 contributionProposal: Float
 contributionExecution: Float
 dedication: Float
 endDate: String
 highlight: Boolean
 idRH: Float
 professionalName: String
 projectFunction: ProjectFunction
 project: Project
 validated: Boolean
 eligible: Boolean
 affectation: Float
 createUser: String
 modifyUser: String
 createDate: String
 modifyDate: String
}

type Source {
 sourceId: ID!
 sourceAcronym: String
 sourceName: String
 sourceNameEN: String
 valBegin: String
 valEnd: String

88

 createUser: String
 createDate: String
 modifyUser: String
 modifyDate: String
}

type Structure {
 idEstrutura: ID!
 idTipoEstrutura: Float
 sigla: String
 nome: String
 nomeEN: String
 descricao: String
 descricaoEN: String
 telefone: String
 email: String
 cor: String
 oi: String
}

type Team {
 project: Project
 structure: Structure
 coordinator: Float
 oi: String
 coordinate: Boolean
 shortName: String
 totalBudget: Float
 cdBudget: Float
 cbBudget: Float
 createUser: String
 modifyUser: String
 createDate: String
 modifyDate: String
}

type TEC4 {
 tec4Id: Float
 beginDate: String
 endDate: String
 champion: String
 shortName: String
 description: String
 descriptionEN: String
 observations: String
 responsible: String
}

type TEC4 {
 tec4Id: Float
 beginDate: String
 endDate: String
 champion: String
 shortName: String
 description: String
 descriptionEN: String
 observations: String
 responsible: String
}

type Typology {
 typologyId: ID!
 typologyDescription: String
 typologyDescriptionEN: String
 observations: String
 typologyClass: TypologyClass
 financingEntity: FinancingEntity
 timecards: Boolean
 complements: Boolean
 valBegin: String
 valEnd: String

89

 createUser: String
 createDate: String
 modifyUser: String
 modifyDate: String
}

type TypologyClass {
 typologyClassId: ID!
 acronym: String
 designation: String
 designationEN: String
 source: Source
 valBegin: String
 valEnd: String
 createUser: String
 createDate: String
 modifyUser: String
 modifyDate: String
}

The Root Query for the application
type Query {
 projectsAll: [Project]!
 projectById(projectId: ID!): Project
 projectByOIBase(OIBase: String!): Project
 financingEntityById(financingEntityId: ID!): FinancingEntity
 teamByProjectId(projectId: ID!): [Team]
 typologyById(typologyId: ID!): Typology
 typologyClassById(typologyClassId: ID!): TypologyClass

}

90

Appendix B – Prototype 1 POM

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>pt.inesctec</groupId>
 <artifactId>prototype1</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>jar</packaging>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
 <java.version>1.8</java.version>
 <mssqlJDBC.version>6.1.0.jre8</mssqlJDBC.version>
 </properties>

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>2.0.3.RELEASE</version>
 </parent>

 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-security</artifactId>
 </dependency>
 <dependency>
 <groupId>com.graphql-java</groupId>
 <artifactId>graphiql-spring-boot-starter</artifactId>
 <version>5.0.2</version>
 </dependency>

 <dependency>
 <groupId>com.graphql-java</groupId>
 <artifactId>graphql-spring-boot-starter</artifactId>
 <version>5.0.2</version>
 </dependency>
 <dependency>
 <groupId>com.graphql-java</groupId>
 <artifactId>graphql-java-tools</artifactId>
 <version>5.2.4</version>
 </dependency>
 <dependency>
 <groupId>commons-codec</groupId>
 <artifactId>commons-codec</artifactId>
 <version>1.9</version>
 </dependency>

 <dependency>
 <groupId>javax.xml.bind</groupId>
 <artifactId>jaxb-api</artifactId>
 <version>2.3.0</version>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>

91

 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>com.microsoft.sqlserver</groupId>
 <artifactId>mssql-jdbc</artifactId>
 <version>7.0.0.jre8</version>
 </dependency>
 <dependency>
 <groupId>org.projectlombok</groupId>
 <artifactId>lombok</artifactId>
 <version>1.18.4</version>
 <scope>provided</scope>
 </dependency>

 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 <plugin>
 <groupId>org.jacoco</groupId>
 <artifactId>jacoco-maven-plugin</artifactId>
 <version>0.8.2</version>
 <configuration>
 <excludes>
 <exclude>**/*pt/inesctec/prototype1/App.class</exclude>
 <exclude>**/*pt/inesctec/prototype1/App**</exclude>
 <exclude>**/*pt/inesctec/prototype1/data/entity/**</exclude>
 <exclude>**/*pt/inesctec/prototype1/config/**</exclude>
<exclude>**/*pt/inesctec/prototype1/service/exceptionHandler/GraphQLErrorAdapter.class</e
xclude>
 </excludes>
 </configuration>
 <executions>
 <execution>
 <goals>
 <goal>prepare-agent</goal>
 </goals>
 </execution>
 <!-- attached to Maven test phase -->
 <execution>
 <id>report</id>
 <phase>test</phase>
 <goals>
 <goal>report</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <groupId>com.lazerycode.jmeter</groupId>
 <artifactId>jmeter-maven-plugin</artifactId>
 <version>2.7.0</version>
 <executions>
 <execution>
 <id>jmeter-tests</id>
 <goals>
 <goal>jmeter</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <jmeterExtensions>
 <artifact>kg.apc:jmeter-plugins-casutg:2.4</artifact>

 <artifactId>kg.apc:jmeter-plugins-extras-libs:1.3.1</artifactId>

 </jmeterExtensions>

92

<testFilesDirectory>${project.basedir}/src/test/jmeter</testFilesDirectory>

<resultsDirectory>${project.basedir}/src/test/jmeter</resultsDirectory>
 <downloadExtensionDependencies>false</downloadExtensionDependencies>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

93

Appendix C – Prototype 2 POM

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>pt.inesctec</groupId>
 <artifactId>prototype2</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>jar</packaging>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
 <java.version>1.8</java.version>
 <mssqlJDBC.version>6.1.0.jre8</mssqlJDBC.version>
 </properties>

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>2.0.3.RELEASE</version>
 </parent>

 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-security</artifactId>
 </dependency>
 <dependency>
 <groupId>com.graphql-java</groupId>
 <artifactId>graphiql-spring-boot-starter</artifactId>
 <version>5.0.2</version>
 </dependency>

 <dependency>
 <groupId>com.graphql-java</groupId>
 <artifactId>graphql-spring-boot-starter</artifactId>
 <version>5.0.2</version>
 </dependency>
 <dependency>
 <groupId>com.graphql-java</groupId>
 <artifactId>graphql-java-tools</artifactId>
 <version>5.2.4</version>
 </dependency>
 <dependency>
 <groupId>commons-codec</groupId>
 <artifactId>commons-codec</artifactId>
 <version>1.9</version>
 </dependency>

 <dependency>
 <groupId>javax.xml.bind</groupId>
 <artifactId>jaxb-api</artifactId>
 <version>2.3.0</version>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.projectlombok</groupId>

94

 <artifactId>lombok</artifactId>
 <version>1.18.4</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 <plugin>
 <groupId>org.jacoco</groupId>
 <artifactId>jacoco-maven-plugin</artifactId>
 <version>0.8.2</version>
 <configuration>
 <excludes>
 <exclude>**/*pt/inesctec/prototype2/App.class</exclude>
 <exclude>**/*pt/inesctec/prototype2/App**</exclude>
 <exclude>**/*pt/inesctec/prototype2/data/entity/**</exclude>
 <exclude>**/*pt/inesctec/prototype2/config/**</exclude>
<exclude>**/*pt/inesctec/prototype2/service/exceptionHandler/GraphQLErrorAdapter.class</e
xclude>
 </excludes>
 </configuration>
 <executions>
 <execution>
 <goals>
 <goal>prepare-agent</goal>
 </goals>
 </execution>
 <!-- attached to Maven test phase -->
 <execution>
 <id>report</id>
 <phase>test</phase>
 <goals>
 <goal>report</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 <plugin>
 <groupId>com.lazerycode.jmeter</groupId>
 <artifactId>jmeter-maven-plugin</artifactId>
 <version>2.7.0</version>
 <executions>
 <execution>
 <id>jmeter-tests</id>
 <goals>
 <goal>jmeter</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <jmeterExtensions>
 <artifact>kg.apc:jmeter-plugins-casutg:2.4</artifact>
 <artifactId>kg.apc:jmeter-plugins-extras-libs:1.3.1</artifactId>
 </jmeterExtensions>

<testFilesDirectory>${project.basedir}/src/test/jmeter</testFilesDirectory>

<resultsDirectory>${project.basedir}/src/test/jmeter</resultsDirectory>
 <downloadExtensionDependencies>false</downloadExtensionDependencies>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

95

Appendix D – Acceptance tests

Data

Test Number 1

Test Goal Validate the result from searching for a project using OI.

Input Search OI “PG08011” and expected project id, title, and short name as a result.

Expected output A JSON object with project id, title, and short name.

Real Results

Prototype 1 A JSON object with project id, title, and short name.

Prototype 2 A JSON object with project id, title, and short name.

Data

Test Number 2

Test Goal Validate the result from searching for a project using OI that does not exist.

Input Search OI “PG08000” and expected project id, title, and short name as a result.

Expected output JSON object without data and with a project not found exception.

Real Results

Prototype 1 JSON object without data and with a project not found exception.

Prototype 2 JSON object without data and with a project not found exception.

Data

Test Number 3

Test Goal Validate the result from searching for a project using OI with the wrong format.

Input Search OI 8000 and expected project id, title, and short name as a result.

Expected output JSON object without data and with an exception.

Real Results

Prototype 1 JSON object without data and with an exception.

Prototype 2 JSON object without data and with an exception.

Data

Test Number 4

Test Goal Validate the result from searching for a project using project ID.

Input Search ID 1 and expected project id, title, and short name as a result.

Expected output A JSON object with project id, title, and short name.

Real Results

Prototype 1 A JSON object with project id, title, and short name.

Prototype 2 A JSON object with project id, title, and short name.

Data

Test Number 5

Test Goal Validate the result from searching for a project using a project ID that does not
exist.

Input Search ID 500000 and expected project id, title, and short name as a result.

Expected output JSON object without data and with a project not found exception.

Real Results

Prototype 1 JSON object without data and with a project not found exception.

Prototype 2 JSON object without data and with a project not found exception.

96

Data

Test Number 6

Test Goal Validate the result from searching for a project using project ID with the wrong
format.

Input Search ID “xpto” and expected project id, title, and short name as a result.

Expected output JSON object without data and with an exception.

Real Results

Prototype 1 JSON object without data and with an exception.

Prototype 2 JSON object without data and with an exception.

Data

Test Number 7

Test Goal Validate the result from searching for all the projects.

Input Search all and expected project id, title, and short name as a result.

Expected output A JSON object with project id, title, and short name.

Real Results

Prototype 1 A JSON object with project id, title, and short name.

Prototype 2 A JSON object with project id, title, and short name.

Data

Test Number 8

Test Goal Validate the result from searching a financing entity using entity ID.

Input Search ID 1 and expected entity id and entity acronym as a result.

Expected output A JSON object with project id, title, and short name.

Real Results

Prototype 1 A JSON object with entity id and entity acronym.

Prototype 2 A JSON object with entity id and entity acronym.

Data

Test Number 9

Test Goal Validate the result from searching a financing entity using entitiy ID that does not
exist.

Input Search ID 999999 and expected entity id and entity acronym as a result.

Expected output JSON object without data and with a financing entity not found exception.

Real Results

Prototype 1 JSON object without data and with a financing entity not found exception.

Prototype 2 JSON object without data and with a financing entity not found exception.

97

Data

Test Number 10

Test Goal Validate the result from searching a financing entity using entity ID with the
wrong format.

Input Search ID “xpto” and expected entity id and entity acronym as a result.

Expected output JSON object without data and with an exception.

Real Results

Prototype 1 JSON object without data and with an exception.

Prototype 2 JSON object without data and with an exception.

Data

Test Number 11

Test Goal Validate the result from searching for a team using project ID.

Input Search ID 1 and expected project id, structure acronym, coordinator, and short
name as a result.

Expected output A JSON object with project id, structure acronym, coordinator, and short name.

Real Results

Prototype 1 A JSON object with project id, structure acronym, coordinator, and short name.

Prototype 2 A JSON object with project id, structure acronym, coordinator, and short name.

Data

Test Number 12

Test Goal Validate the result from searching for a team using project ID that does not exist.

Input Search ID 999999 and expected project id, structure acronym, coordinator, and
short name as a result.

Expected output JSON object without data and with a team not found exception.

Real Results

Prototype 1 JSON object without data and with a team not found exception.

Prototype 2 JSON object without data and with a team not found exception.

Data

Test Number 13

Test Goal Validate the result from searching a team using project ID with the wrong format.

Input Search ID “xpto” and expected project id, structure acronym, coordinator, and
short name as a result.

Expected output JSON object without data and with an exception.

Real Results

Prototype 1 JSON object without data and with an exception.

Prototype 2 JSON object without data and with an exception.

98

Data

Test Number 14

Test Goal Validate the result from searching a typology using typology ID.

Input Search ID 1 and expected typology id, typology class id, and typology description
as a result.

Expected output A JSON object with typology id, typology class id, and typology description.

Real Results

Prototype 1 A JSON object with typology id, typology class id, and typology description.

Prototype 2 A JSON object with typology id, typology class id, and typology description.

Data

Test Number 15

Test Goal Validate the result from searching a typology using typology ID that does not
exist.

Input Search ID 999999 and expected typology id, typology class id, and typology
description as a result.

Expected output JSON object without data and with a typology not found exception.

Real Results

Prototype 1 JSON object without data and with a typology not found exception.

Prototype 2 JSON object without data and with a typology not found exception.

Data

Test Number 16

Test Goal Validate the result from searching a typology using typology ID with the wrong
format.

Input Search ID “xpto” and expected typology id, typology class id, and typology
description as a result.

Expected output JSON object without data and with an exception.

Real Results

Prototype 1 JSON object without data and with an exception.

Prototype 2 JSON object without data and with an exception.

Data

Test Number 17

Test Goal Validate the result from searching a typology class using typology class ID.

Input Search ID 1 and expected typology class id and typology description as a result.

Expected output A JSON object with typology class id and acronym.

Real Results

Prototype 1 A JSON object with typology class id and acronym.

Prototype 2 A JSON object with typology class id and acronym.

99

Data

Test Number 18

Test Goal Validate the result from searching a typology class using typology class ID that
does not exist.

Input Search ID 999999 and expected typology class id and acronym as a result.

Expected output JSON object without data and with a typology class not found exception.

Real Results

Prototype 1 JSON object without data and with a typology class not found exception.

Prototype 2 JSON object without data and with a typology class not found exception.

Data

Test Number 19

Test Goal Validate the result from searching a typology class using typology class ID with
the wrong format.

Input Search ID “xpto” and expected typology class id and acronym as a result.

Expected output JSON object without data and with an exception.

Real Results

Prototype 1 JSON object without data and with an exception.

Prototype 2 JSON object without data and with an exception.

100

Appendix E – Example of a sensor configuration

101

102

Appendix F – Descriptive statistics (quantitative data) for time

103

104

105

106

107

Appendix G – Descriptive statistics (quantitative data) for size

108

109

110

111

