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Abstract: Currently, sustainability is considered a priority by society, with the household appliances 

being one of the economic sectors involved in achieving sustainability. However, the existence of 

several issues (e.g., energy and water consumption, reliability, initial cost, and illuminance, among 

others) together with the diversity of brands and models on the market, make the consumer’s 

decisions regarding sustainable options difficult, according to their concerns and related to each 

sustainability dimension (economic, environmental, and social). By combining evolutionary 

algorithms (EA) with multicriteria techniques, it is possible to achieve sustainable solutions for the 

consumer based on their requirements. In this paper, a method is presented to support the consumer 

by obtaining a set of sustainable household appliances on the market that suit their preferences, 

concerns, and needs. By using a case study to apply the approach developed here, a set of 

sustainable appliances from the market is obtained, where several benefits are achieved (e.g., energy 

and water consumption savings, avoidance of CO2 emissions) during the lifecycle of each appliance, 

chosen from the appliance’s industry. 

Keywords: sustainability; energy efficiency; cyberphysical system; decision support systems; 

lifecycle cost analysis (LCCA); multi-attribute value theory (MAVT); multi-objective optimization; 

soft computing; evolutionary algorithm 

 

1. Introduction 

According to [1–4], the consumption of energy should be reduced in order to achieve 

sustainability. Approximately 38% of the final energy consumption is related to the building sector, 

and from that percentage, approximately 18% is related to the residential sector [4], which thereby 

represents a relevant sector for which to achieve sustainability. 

With regard to household appliances, some measures have been made not only in Europe but in 

other world regions as well, in order to promote sustainability in this sector. 

One of such measures, adopted in this context, is mandatory labeling [5–8], which allows 

informing the consumers about information related to each electrical appliance, such as heat capacity 

(air conditioner), water and energy consumption (dryer machine), and initial investment (lighting), 
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among others. The goal of such a measure is to adjust each available solution to the consumer’s needs 

[6–8]. 

Besides energy labeling, there are also eco-design policies, with both acting as essential tools to 

drive the shift from a “linear economy” to a more “circular” one that also promotes sustainable 

development [9,10]. 

Furthermore, and by including eco-design and energy labeling measures, the European Union 

has changed the way that our products are designed, bringing substantial reductions in terms of 

greenhouse gas (GHG) emissions and the corresponding consumption costs [4,5]. 

By 2020, and based on [9], the European Commission estimates that the energy consumption 

costs for each household in Europe will be approximately reduced by €300 per year, due to the 

adoption of such policies, with GHG emissions also seeing a reduction of approximately 319 

megatons of CO2 (equivalent) per year. 

According to some studies, which include the EU’s recommendations, increasing the durability, 

reparability, and recyclability of the products and, in particular, electrical appliances, represents an 

opportunity to improve eco-design and energy labeling measures with respect to the promotion of a 

circular economy [3–6]. 

Although sustainability is a goal to be achieved, the circular economy is a way to achieve such 

an end, therefore being a road map that should lead society to reach sustainability [4]. However, some 

studies argue that the circular economy will not be enough to achieve sustainability [4,8], since it only 

focuses on technological progress to solve economic and environmental problems, making it a 

“weaker” sustainability approach [9,10]. 

On the other hand, the rise of new developments resulting from the combination of information 

technologies with decision support systems, together with new business models of product service 

systems as well, could also help to satisfy the need for cultural change in order to reach a “stronger” 

sustainability approach [5,8,9]. 

The circular economy is a means to achieve sustainability since it helps (directly and indirectly) 

meeting targets of the Sustainable Development Goals defined by the United Nations [11]. 

As mentioned before, energy labeling policies, as well as eco-design, are essential tools to drive 

the shift to a circular economy [12]. 

Several studies regarding the circular economy and sustainable development issues have been 

developed by considering several contexts (e.g., market surveillance of resource efficiency [9], energy 

renewables [13], circular economy performance indicators [12,13]). 

In recent years, several entities, including governments, associations, and manufactures, have 

also used measures in an attempt to sensitize the population to the problem of energy efficiency in 

the residential sector [14–16]. 

Despite the existence of such measures, it becomes difficult for a decision-agent (consumer) to 

acquire the best solution adjusted to its needs and preferences, given the diversity of options from 

the market (brands and models) as well as the diversity of the appliance’s own features [14–16]. 

In this sense, the use of multicriteria techniques can support the consumer in making sustainable 

choices that not only address the consumer’s preferences, but also their concerns and needs according 

to three dimensions of sustainability, namely economic, environmental, and social wellbeing. In 

addition, the use of multi-attribute value theory (MAVT), combined with optimization techniques, 

could also help to define the consumer’s decision space and the corresponding objective functions in 

order to maximize the three objective functions mentioned above. 

Based on previous work, evolutionary algorithms (EA) and, more specifically, the non-

dominated sorting genetic algorithm II (NSGAII) have been successfully deployed to solve 

optimization problems with more efficiency than other methods by providing different and feasible 

solutions, given their stochastic nature [17–22]. 

Therefore, this work presents an integrated method, based on NSGAII and MAVT, with the aim 

of supporting the decision-agent (consumer) in finding sustainable solutions from the market based 

on different needs and concerns. 
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The method proposed here can also provide other sustainable (optimal) and alternative 

solutions to the consumer. 

The applicability of the proposed approach will be demonstrated through a case study, where a 

set of sustainable (and alternative) solutions is obtained, given the consumer’s issues, which include 

preferences and needs, on behalf of their economic, social, and environmental wellbeing. 

The presented approach also includes economic (e.g., budget), social (e.g., minimum value of air 

conditioner heat capacity), and environmental (e.g., CO2 emissions) constraints, related to each 

energy service (household appliance) considered in this work. 

This paper is organized as follows: Section 2 contains the literature review and the paper’s 

contribution. Section 3 contains the research method used, namely the adopted criteria regarding the 

three dimensions considered in this approach, the problem formulation, the strengths, weaknesses, 

and limitations of the work, and ending with a brief presentation of NSGAII. Section 4 presents and 

discusses the obtained results. Section 5 presents the conclusions and further work. 

2. Literature Review and Paper’s Contribution 

2.1. Literature Review 

Methods based on simulation (e.g., [23]) are commonly applied to simulate a restricted set of 

alternatives. 

Other approaches are mainly economic, allowing consumers therefore to acquire the highest 

energy savings for the same initial investment (e.g., [17,18]), while others exploit issues based on the 

building’s thermal performance by using evolutionary algorithms to optimize the building’s 

parameters, thereby achieving GHG emission savings, among other perceived benefits (e.g., [22,23]), 

with some of them being also integrated with technologies (e.g., [24,25]) 

However, such approaches can be considered somehow limited because they do not consider 

other important issues (e.g., environment, energy labeling, and consumer’s satisfaction, among 

others) to achieve solutions suitable for the consumer’s needs. They also do not account for the criteria 

regarding each household appliance existing on the market, which can differ based on the number of 

household building occupants. 

Presently, some works have created multicriteria decision-making (MCDM) approaches to 

support consumers with measures regarding buildings by accounting for energy efficiency and 

comfort in buildings (e.g., [6,26]), while other approaches were performed by ranking the different 

available options (e.g., [23]). 

Some approaches promote sustainable measures by using the game theory model to maximize 

environmental and utility objectives with respect to the energy production sector (e.g., [21]), while 

other works promote sustainability measures by using fuzzy logic applied to the transportation sector 

while considering not only environmental issues (pollution), but also customer satisfaction (e.g., [21]). 

In the literature, other MCDM models can be found as well as multiple-attribute value theory 

(MAVT) methods that allow combining optimization with multicriteria methods in order to obtain 

feasible solutions through according to a set of criteria (e.g., [18–20]). 

However, these methods do not account for the different criteria regarding each household 

appliance, from the market, suitable for the consumer’s needs. 

Optimization methods based on metaheuristics have been also considered to solve energy 

problems by providing feasible solutions, such as genetic algorithms (GAs) (e.g., [20,22]) and particle 

swarm optimization (PSO) (e.g., [19,24]), among others. 

However, such methods are not integrated as a combined approach to enable selection, from the 

market, of a set of sustainable appliances for the consumer (decision-agent) that are based on a set of 

criteria. 

2.2. Paper’s Contribution 
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Based on the literature discussed above, there is a gap regarding sustainable measures for 

buildings, involving household appliances, that allow supporting a household consumer in choosing 

a set of sustainable solutions from the market. 

Therefore, the main contribution of this paper is the design of an approach to support a 

consumer to identify sustainable options for household appliances that exist on the market that 

attends to their needs, as well as a set of requirements, namely: 

1) Maximization of a consumer’s economic wellbeing (water and energy consumption savings, 

investment savings, etc.); 

2) Maximization of a consumer’s social wellbeing through their preferences (e.g., design, quality 

perceived, noise, and number of functions, among others); 

3) Maximizing the consumer’s environmental wellbeing (avoidance of CO2 emissions, water 

savings); 

4) Providing a methodology that allows obtaining several alternative sustainable solutions, which 

allow tackling some contingencies that eventually may occur (e.g., an out-of-stock electrical 

appliance initially recommended by the method). 

In order to fulfill the previously identified gap, this work presents a decision support approach 

that provides the consumer (decision-agent) with a set of household appliances obtained from the 

market according to their preferences and needs. 

The method presented here also promotes the circular economy by promoting sustainable 

options that exist on the market.  

The presented approach also includes economic (e.g., budget), social (e.g., minimum value of air 

conditioner heat capacity), and environmental (e.g., CO2) restrictions related to each energy service 

(household appliance type) considered in this study. 

3. Material & Research Method 

3.1. Problem Statement and Case Study 

The problem presented in this work considers a household consumer (decision-agent) who 

wants to acquire different electrical appliances, existing in the market, for their household.  

Thus, and regarding the case study used in this work, seven different energy services/electrical 

appliances to be acquired by the consumer were considered, namely dryer machine, lighting, air 

conditioner, dishwasher machine, electric oven, washing machine, and refrigerator. 

The same consumer had a restricted budget of €2500, to acquire seven types of household 

appliances, with the goal of achieving a set of sustainable equipment that maximized their social, 

environment, and economic wellbeing according to a set of three relative importance weights, 

respectively ��  (economics), ��  (social), and ��  (environment). In this case study, these were 

considered using values of 0.65, 0.25, and 0.1, respectively. 

In total, the building has four occupants. Given the consumer’s intention to buy an air 

conditioner, the corresponding cooling and heating needs were calculated based on the 

corresponding room area (living room). 

Regarding the remaining assumptions, they are presented on Table 1, with the emission factor 

obtained from [27], while the consumer’s usage profile is presented on Table 2, based on a Portuguese 

study [7]. 

Such a profile was adopted and based on a typical consumer’s profile, considering the work in 

[7] and regarding the use of each household appliance type to be acquired. 

However, the consumer can also create their own usage profile based on their needs or using 

the profile shown in this work by default. 

Table 1. Emission factor and other assumptions considered in this work. 

Emission Factor (gCO2/kWh) 675.00 Discount Factor (%) 7.00 

Lifecycle (usage phase) (years): 10.00 Annual Factor 7.03 
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Electrical Energy tariff ( .Elect ) (€/kWh) 0.16 Water tariff (
2H O ) (€/m3) 1.19 

Table 2. Consumer usage profile (considered). 

Energy Service 
Hours 

Day Week Month Year 

Dryer machine 1.5 4.0 15.0 183.0 

Washing machine 1.2 4.3 16.0 189.0 

Fridge/freezer 11.0 76.3 329.1 4007.0 

Oven (electric) 1.1 1.9 8.0 97.0 

Dishwasher machine 1.0 4.1 16.0 193.0 

Air conditioning 2.1 12.1 47.0 587.0 

Lighting 5.0 35.2 150.1 1823.0 

Energy Service 
Usage Frequency 

Day Week Month Year 

Dryer machine 1 3 14 185 

Washing machine 1 2 14 181 

Fridge/freezer 1 6 28 359 

Oven (electric) 1 2 7 94 

Dishwasher machine 1 3 14 189 

Air conditioning 1 4 22 276 

Lighting 1 6 28 359 

Both set of assumptions shown on Tables 1 and 2, were considered when performing a lifecycle 

cost assessment (LCCA) related to each individual solution/appliance, which is described on next 

section. 

3.2. Dataset 

Based on the data presented before, namely the consumer’s profile presented in Table 2, as well 

as the remaining assumptions, it was some calculations were performed using an LCCA approach in 

order to achieve savings for each appliance, regarding energy and water consumption, for each 

appliance considered in the decision space (Figure 1). The lifecycle period was also considered in this 

study (10 years). This was done by using the consumer profile, as considered in Table 2, and by 

comparing the consumption from each candidate solution (regarding each energy service) with the 

corresponding less-efficient one in terms of energy consumption, considered here as a “standard 

solution”. 

Data from the appliance’s market was also considered, such as initial investment, brand and 

model, power, and noise, among other appliance issues regarding each appliance, and based on the 

criteria, as presented in Table 3. 

In Appendix A, the adopted attributes regarding each obtained solution are presented. 

In Appendix B, the final attribute values based on MAVT are presented. 

3.3. Proposed Approach 

The method presented in this work has been designed to support a consumer who intends to 

purchase, from the market, a set of appliances for their household (Figure 1). 

This set is formed by individual solutions regarding each energy service to be acquired and is 

obtained from a group of candidate solutions previously selected using MAVT according to the 

consumer’s preferences, needs and concerns, and regarding each sustainability dimension (Figure 1).  
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Figure 1. Proposed method. 

Such an approach can be better described through a detailed view, as presented in Figure 2. The 

first phase starts with pre-selection of a set of potential solutions  ijx  from the market and based on 

specific criteria. Although the corresponding attributes/criteria remain the same, the corresponding 

values vary according to the number of occupants. 

The adopted criteria used here allows for the pre-selection of household appliances available in 

the market, so the decision space can be reduced by considering only these options that are adjusted 

to the consumer needs as well as through increasing the efficiency of NSGAII by acquiring optimal 

and feasible solutions within less time.  

 

Figure 2. Model proposed (detailed view). 
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According to Figure 2, the first stage starts with the pre-selection of a set of candidate solutions 

 ijx , existing in the market, which are based on specific criteria and according to the number of 

occupants of the building. Regarding the adopted criteria, it is the same, with the corresponding 

attribute’ values varying based on the occupant number. An example of such criteria, considering the 

case studied in this work, is shown on Table 1. 

Therefore, each candidate solution  ijx  is then considered as an option i related to household 

appliance type j, to be bought from the market by the consumer. 

By considering a consumer’s profile, (e.g., Table 2), the approach involves performing a lifecycle 

cost assessment (LCCA) regarding each household appliance in order to calculate the respective 

savings as regarding energy consumption (  
,. i jE Cons ijS x ), water consumption (  

,2 . i jH OCons ijS x ), and the 

initial investment (  
,i jinv ijS x ). The equivalent CO2 emissions were then calculated according to [26]. 

All of the parameters mentioned above, are savings, and they result from the comparison of the 

efficient and the related standard solution (less sustainable one). 

Through the diversity of issues related to each energy service and household appliance, together 

with the consumer’s economic, environmental, and social concerns, a set of attributes was defined 

based on the consumer’s preferences and related to each appliance type/energy service for the three 

problem dimensions considered, i.e., A—Economics, B—Social, and C—Environment. Such 

attributes are shown in Table 3. 

Table 3. Adopted criteria to define problem dimensions according to the household appliance (energy 

service) type. 

Household 

Appliance 

Type 

Dimension 

Ref. 

Dimension 

Ref. 

Dimension 

Ref. A—

Economics 
B—Social 

C—

Environment 

Ilu—light 

Energy 

Efficiency 

Labeling 

Ilu.A1 
Durability 

[h) 
Ilu.B1 

CO2e 

(Avoided) 

emissions 

during the 

usage phase  

Ilu.C1 

    

Percentage of 

recycling 

material [%) 

Ilu.C2 

Energy Cons. 

Savings 

(Lifecycle—

Usage Phase) 

[€] 

Ilu.A5 

Color 

Rendering 

Index (CRI) 

[%) 

Ilu.B5 

CO2e 

(Avoided) 

emissions 

during the 

production 

phase 

Ilu.C3 

AC—Air 

Conditioning 

Energy 

Efficiency 

Labeling 

(Heating) 

AC.A1 

Noise 

(Indoor) 

[dB) 

AC.B1 

CO2e 

(Avoided) 

emissions 

during the 

production 

phase 

AC.C1 

    

Products can 

be repaired by 

other 

professionals 

AC.C2 
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Energy 

Efficiency 

Labeling 

(Cooling) 

AC.A6 

Customer 

Service 

(Warranty) 

AC.B9 

CO2e 

(Avoided) 

emissions 

during the 

usage phase 

AC.C3 

FE—Oven 

(Electric) 

 

Energy 

Efficiency 

Labeling 

FE.A.1 Design FE.B1 

CO2e 

(Avoided) 

emissions 

during the 

usage phase 

FE.C.1 

    

Accessibility 

(Product 

repaired by 

other people) 

FEC2 

Investment 

cost[€) 
FE.A.5 

Perceived 

Satisfaction 

(by other 

clients) 

FE.B.5 

CO2e 

(Avoided) 

emissions 

during the end 

use phase 

FE.C.3 

MLL—

Dishwasher 

Energy 

Efficiency 

Labeling 

MLL.A.1 Design MLL.B.1 

CO2e 

(Avoided) 

emissions 

during the 

usage phase 

MLL.C.1 

    

CO2e 

(Avoided) 

emissions 

during the end 

use phase 

MLL.C2 

    Durability MLL.C3 

Water Cons. 

Savings 

(Lifecycle—

Usage phase) 

[€) 

MLL.A.6 

Perceived 

Satisfaction 

(by other 

clients) 

MLL.B.6 

Water 

Consumption 

(Lifecycle—

Usage phase) 

MLL.C.4 

The preferences regarding the social dimension were based on previous works from [20,28], as 

well as the ones from the economics dimension. The ones from the environmental dimension were 

chosen based on the works of [29]. 

Besides the energy efficiency classification label implicit in the attributes presented on Table 3 

and referring to each energy service/appliance type considered, all the adopted attributes can be 

applied into other regions. In this case, the European Union’s Energy Labelling Framework 

regulation (2017/1369) was adopted, considering previous research from [20,28,29]. However, with 

the corresponding adjustments mentioned before, it can be applied into other regions around the 

world. 

The consumption profile was derived by making a set of assumptions based on the hours, which 

was then extrapolated to a weekly and year base. However, the consumer can also establish their 

own usage profile based on their needs, or even by using the profile considered in this case study as 

default values. 

As mentioned before, MAVT is employed to support the consumer by assessing a set of 

alternative solutions based on a set of attributes. These attributes were established on behalf of the 

three considered dimensions of sustainability (Table 3). Based on Figures 1 and 2, a mathematical 

model was then defined to obtain the objective functions to be further optimized using NSGAII. 
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Through these attributes (Table 3), it a decision variable �
��

(���)
 was established that is related to 

each alternative solution/appliance i regarding a certain appliance type/energy service j . This 

variable is defined based on criteria � , associated with the energy service/appliance type j and 

problem dimension �  considered (A–Economics, B–Social, and C–Environmental), i.e., 

      1 2 1 2 1 2, ,.. , ,.. , ,..
A B Cj j j

jt j j jn j j jn j j jng A A A B B B C C C   (1) 

with 

          , , 1, 2, .., 7 1, 2, .. 1, 2, .. 1, 2, .. , t,
j j j jA B C gg A B C j t n n n n j         

. 
(2) 

The numbers 
jA

n , 
jBn , and 

jCn  are regarded with respect to index t as the number of the last 

criteria � associated to energy service/appliance type j and problem dimension � . 

Following the notation presented above and according to the criteria established before (Table 

3) as well as the assumptions shown in Tables 1 and 2, regarding the case study considered here, the 

corresponding decision variable regarding each considered attribute ����
(���)

� can be aggregated and 

framed into a set of pay-off/behavior tables regarding each energy service j. An example of this table 

is shown in Figure 3a regarding the energy service/appliance type “Air Conditioning”. The 

corresponding table, regarding the corresponding decision values  ( )
( )jtg

ij ijv x , can be achieved 

using MAVT, and the following relation: 

 ( ) ( ) ( ) ( )
( ) / , ( ) , \ 0jt jt jt jtg g g g

ij ij ij ij ij ijx v x w x v x i j      (3) 

where 

( ) ( )

( )( )

( ) ( )

( ) ( )

( )

jt jt

jt

jt jt

g g

ij ij worstg

ij ij g g

ij best ij worst

x x
v x

x x

 
 
 
 

. (4) 

Since each decision value  ( )
( )jtg

ij ijv x  works with different scales and units, an expression was 

used to define the relation between the new and the previous value of �
��

(���)
, respectively ���

(�)
����

(���)
� 

and ���
(�)
����

(���)
�   ( ) ( )(1). ., ( ) ( )jt jtg g

ij ij ij iji e v x v x , by also using the corresponding worst and best 

results for a given criterion ���, i.e., 

 ( ) ( ) ( ) ( )(1) (2) (1) (2)( ) ( ) / ( ), ( ) , \ 0jt jt jt jtg g g g

ij ij ij ij ij ij ij ijv x v x w v x v x i j      (5) 

where 

   
   

( ) ( )(1)

( )(2)

( ) ( )
( )

jt jt

ijijjt

jt jt

ij ij

g g

ij worst ijg

ij ij g g

better ij worst ij

v x v x
v x

v x v x

 
   

 
 

. (6) 

The new values of 
( )

( )jtg

ij ijv x  ( ) ( )(2). . ( ) ( )jt jtg g

ij ij ij iji e v x v x  fill a new evaluation table belonging 

to each energy service j. On Figure 3b, an example is shown of a table regarding the energy service 

“Lighting”. 
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Figure 3. Example of evaluation table (Air Conditioner energy service)): (a) ��
(���)

; (b) ��� ���
(���)

�. 

Through the value attributes mentioned before, and by using an additive model to aggregate 

them, a unique model was obtained, represented by an aggregated objective function which was 

further optimized using the NSGAII algorithm. 

As it referred to earlier, the nature of this problem is combinatorial, with the number of 

combinations being dependent on the size of the sample (22 million combinations considered in this 

case study). 

Additionally, there is a set of constraints that will be considered here to adjust the consumer 

needs and obtain feasible solutions. These constraints are presented below.  

Thus, the problem p here can be presented as follows:  

 

 

max , / , ,

/ ( ) ( ), ( ), ( )

m

T

m A B C

V x c m A B C

subject to x X c V x V x V x V x



 
 

(7) 

with x being the decision variable vector, which is defined as 

 ( ) (B ) ( )
: , , t,i,jt jt jtA C

ij ij ijx X x x x x j     (8) 

where 

          1,..,10 1,2,..,7 1,.., 1,.., 1,.., , ,
j j j j j jA B C A B Cj j t n n n n n n         (9) 

with ( )AV x , ( )BV x , and ( )CV x  being the objective functions related to each considered 

sustainability dimension, i.e., A—Economics, B—Social, and C—Environment. 

Each aggregate objective function is given by 

 ( ) ( )

1 1

( ) ( ) / , , ( ) , , t,
gj j

jt jt

j

nn
g g

g j j j j j g
j t

V x v x w g A B C v x n n j
 

      (10) 

Thus, and through (10), the corresponding objective functions regarding each sustainability 

dimension can be defined as 

( )

1 1

:max ( ) ( )
Aj j

jt

nn
A

A j j
j t

Economic Well being V x v x
 

   (11) 

(B )

1 1

:max ( ) ( )
Bj j

jt

nn

B j j
j t

Social Well being V x v x
 

   (12) 
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 ( )

1 1

:max ( ) 1 ( )
Bj j

jt

nn
C

B j j
j t

Environment Well being V x v x
 

    (13) 

The first and third objective functions are based on the works from [21] and [29] respectively. 

The second objective function (Social Wellbeing), is defined based on the attributes established in this 

work. 

Through the use of an additive model developed using MAVT, we have combined the value 

functions ( )AV x , ( )BV x , and ( )CV x  into a unique aggregated expression which will be the 

model’s objective function. This objective function will be pondered by a weigh factor ���� , 

expressing, therefore, the relative importance given by the consumer to each sustainability 

dimension, thus resulting in 

   ( ), ( ), ( ) . ( ) . ( ) . ( )Total A B C A A B B C CV x V V x V x V x V x V x V x      . ) 
 

(14) 

Therefore, and based on Expression (3), Expression (13) can be described as 

 
 
 

 
 

 
. . . . . .

melhor . . melhor . . melhor .

( ) ( ) (B ) (B ) (C ) (C )

( ) ( ) (B ) (B ) (C )
1 1

. . . 1

jt jt jt jt jt jt
A Bj j

efect j pior j efect j pior j efect j pior j

jt jt jt jt jt

j pior j j pior j j p

A An n

Total A B CA A
t t

x x x x x x
V x

x x x x x x
  

 

     
      
     
   

 
 

.

(C )
1 1

Cj j

jt

ior j

nn

j t 

   
           

  (15) 

which is subject to a set of constraints regarding economic, social, and environment wellbeing 

dimensions, namely 

Economic—Budget 

     
dim

4 25

1 . 2 .
1 1

2

: ( )
j

j

nn
A A

j j disp ij i disp
j j

j

r I x available budget x x 
 



      
(16) 

Lighting Comfort (minimum illuminance)  

 15

1
2 1 min:

B
x

r K E
A

  (17) 

Heating/Cooling Requirements 

 23

3 2 . .( .):
B

th Aquec projr x Q  (18) 

 24

4 2 . .( .):
B

th Arref projr x Q  (19) 

Environment—Noise 

 

 

 

 

 

11

21

61

71

51 1 .1

52 2 .2

56 6 .6

57 7 .7

:

:

/ 5 2,3,4,5,7

:

:

B

i def

B

i def

B

i def

B

i def

r x Noise

r x Noise

c i e j

r x Noise

r x Noise

 

 


 







  (20) 

Water Consumption 

2

2

( .3.6.)
61 3

( .7.5.)
62 7

: 1/

: 1/

A
i H O MLR

A
i H O MLL

r x C

r x C





  


  


 (21) 
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3.4. Strengths, Weakness, and Limitations of the Work 

The approach presented here uses a lifecycle cost assessment (LCCA) method to predict the cost 

regarding each solution during its usage phase and according to the consumer’s profile.  

However, the LCCA calculations only accounts for the cost in terms of water and CO2 emissions 

involved, and do not consider the materials involved in the production and final phase of the product 

itself. Further developments regarding this issue should be accounted for in future. 

Issues such as the minimal lighting illuminance requirements, the dishwasher capacity, and the 

air conditioner thermal power (among others) are also accounted for in order to support the 

consumer with suitable appliances from the market and according to their needs. 

Besides the economic and environmental concerns, the consumer’s social preferences, such as 

comfort requirements related to different dimensions (thermal, acoustic, and visual) are also 

considered here together with different preferences regarding such issues as the (perceived) quality 

of the product and reliability, among others. The consumer’s relative importance, regarding each 

dimension (economics, social, and environment) are also accounted for here. 

Another advantage from the use of this approach is the diversity (although still optimal) of 

solutions from the market, which allows facing a contingency problem with the availability regarding 

a specific appliance (e.g., when it is out of stock). 

However, the model to calculate the consumer’s needs in terms of the air conditioner capacity 

needs to account not only for the dimensions of the divisions to be climatized but also other issues 

(e.g., wall materials, the windows, the façade orientation) to increase the precision in obtaining the 

results by using the model. 

Still regarding the lack of precision in the estimation of air conditioner capacity, the model 

should also account for the dynamics in terms of interdependence between air conditioner and the 

new lighting system, since that a new lighting system could impact the requirements in terms of 

building’s thermal needs. 

Regarding the weakness and strengths already discussed here, there were some limitations 

within this work. One had to do with dimensions of the database (and, therefore, the sample) that 

was used, and by considering only the Portuguese market, although the main purpose here was (as 

an initial phase) to validate the proposed model. 

Some attributes used here are only adjusted to the European Union context (e.g., the use of 

European Union’s Energy Labelling Framework as an energy label classification framework), which 

brings about the requirement to make necessary (and future) adjustments of the method to account 

for other contexts with respect to the countries or regions involved. 

The lack of previous research studies on this topic, given the issues referred to before, also 

represents a limitation, due to the lack of other approaches to be used as a mean to compare the 

obtained results for example. Therefore, such limitations have allowed for the identification of new 

gaps in the literature, which point to the need for further developments. 

3.5. The Optimization Method Non-Dominated Sorting Genetic Algorithm II (NSGAII) 

As it mentioned before, NSGAII was used in this work as a multiobjective optimization method 

based on evolutionary algorithms. The motivation for its use is based on its success in other 

approaches, which are related to problems of the same nature, in addition with its perceived 

advantages [19,29]. 

Thus, the method presented in this work uses NSGAII to deal with a set of candidate solutions, 

which are assessed by using an approach of multicriteria analysis integrated with MAVT. 

Regarding NSGAII and the individual’s codification, the adopted was realistic given the nature 

of the decision variables used in this work. 

The corresponding individual’s framework is presented as follows in Figure 4. 
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Figure 4. Individual framework. 

According to [21,29], the NSGA’s iteration process, applied here, uses several steps (Figure 5) 

consisting of initialization, crossover, and selection. Parameters such as the size of population, the 

iteration size, and crossover rate were determined empirically through a robustness analysis together 

with statistical analysis. 

 

Figure 5. Non-dominated sorting genetic algorithm II (NSGAII) flowchart. 
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Based on Figure 5, the stopping criterion is defined by the variable “gen” regarding the 

maximum number of generations of NSGAII. 

After the achievement of the feasible solutions/individuals, regarding each generation, they are 

selected from the parents and offspring. The last solution, results from the application of crossover 

and mutation. The process is finished, whenever the maximum number of iterations (defined by the 

user as a stop criteria) is surpassed.  

The corresponding Pareto frontier is then obtained when we are dealing with a NSGAII with 

two objective functions, while a Pareto surface is found when we are dealing with a NSGAII with 

three objective functions. 

4. Results and Discussion 

The proposed model was then applied to the case study considered here. After defining the 

calculations according to LCCA, and regarding each individual solution as well as the corresponding 

attributes according to MAVT (Appendix A and B), the optimization process took place using the 

NSGAII algorithm. The corresponding algorithm was then coded on MATLAB software, by 

accounting for the following parameters: 

 Selection method: tournament  

 Crossover method: double point 

 Mutation method: random mutation (one point) 

The remaining parameters, namely the initial population, crossover, and mutation rate, were 

established after several trials. 

The first parameter to be tested was the stopping criterion “max number of generations”, where 

several runs were performed considering the corresponding values of 80 and 90 (Figure 6a,b 

respectively). 

A maximum number of iterations (generations) of 80 was also defined, which was achieved 

given the neglectable difference obtained between the corresponding Pareto fronts (Figure 6a,b) 

regarding both scenarios, i.e.,; Economics & Environment (ωA = 0.65, ωB = 0.00, and ωC = 0.35) and 

Economics & Social (ωA = 0.65, ωB = 0.35, and ωC = 0.00), 

Other parameters were also determined, such as the size of population (150 individuals), the size 

of tournament (10), the rate of crossover (0.75), and the rate of mutation (0.25).  

In order to better analyze the fitness behavior considering different values of mutation and the 

crossover rate, a robustness test was performed considering two scenarios and regarding the 

considered case study, i,e., Economics & Environment (ωA = 0.65, ωB = 0.00, and ωC = 0.35) and 

Economics & Social (ωA = 0.65, ωB = 0.35, and ωC = 0.00)). The fixed parameters were the size of 

population (100 individuals) and the size of the tournament (12 individuals). 

The rates regarding the mutation and crossover operators were then changed by performing 

several trials of crossover and mutation values (Table 4). 

Table 4. Crossover’s and mutation values considered. 

Trial 
Crossover 

Value 

Mutation 

Value 

1 0.75 0.15 

2 0.75 0.25 

3 0.85 0.15 

4 0.85 0.25 

All the trials shown in Table 4, were executed by setting a maximum number of iterations (90). 

The respective results are shown on Figure 7a,7b, for each considered scenario. It is noted that a 

small change in the value of each parameter, has a negligible effect in the obtained results, 

considering both scenarios. 
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Therefore, the parameters NSGAII that were used to show the sustainable results obtained in 

this case study, were tournament size (10), max iteration (90), population size (100), mutation rate 

(0.1) and crossover rate (0.9). 

 

Figure 6. Pareto frontier regarding the 80th and 90th generations. (a) (ωA = 0.65; ωB = 0.35; ωC = 

0.00); (b) (ωA = 0.65; ωB = 0.00; ωC = 0.35). 

 

Figure 7. Pareto frontier considering different values of crossover and mutation rate. (a) (ωA = 0.65; 

ωB = 0.35; ωC = 0.00); (b) (ωA = 0.65; ωB = 0.00; ωC = 0.35), 

After performing NSGAII calculations, a Pareto frontier is obtained by accounting for the 

scenarios described above for Economics vs, Social (ωA = 0.65, ωB = 0.35, and ωC = 0.00) and Economics 

vs, Environment (ωA = 0.65, ωB = 0.00, and ωC = 0.35) (Figure 8a,b respectively). 
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Figure 8. Pareto frontier: (a) (ωA = 0.65; ωB = 0.35; ωC = 0.00); (b) (ωA = 0.65; ωB = 0.00; ωC = 0.35). 

Each point (or node) represents a global sustainable solution of the problem formed by a set of 

sustainable (and individual) solutions (household appliances) regarding each appliance type to be 

acquired by the consumer. 

Although the Economic wellbeing decreases, the Social one increases (Figure 8a), with the same 

trade-off, being observed in Figure 8b, by considering only Economic and Environmental wellbeing 

dimensions. 

Regarding the case study considered here and based on both trade-offs presented above, a 

scenario was considered with three dimensions and their corresponding consumer’s relative 

importance, represented by the corresponding weights, i.e., ωA = 0.65, ωB = 0.25, and ωC = 0.10. 

The corresponding Pareto surface is obtained in Figure 9. 

 

Figure 9. Pareto surface (ωA = 0.65; ωB = 0.25; ωC = 0.10). 

Based on the obtained Pareto surface (Figure 9), the crowding distance that resulted from each 

individual solution is higher in the region where the Economic dimension has more dominance, 

followed by the Social and, at last, the Environmental one. Such an order of dominance between each 

dimension of sustainability is somehow expected, given the relative importance values (weight) 

considered in this case for each dimension (ωA = 0.65, ωB = 0.25, and ωC = 0.10). 

One of the nodes from that region is shown on Table 5, regarding a sustainable solution obtained 

by considering a budget constraint of €2500 and a consumer lifecycle of 10 years. 

Table 5. One of sustainable solutions achieved from the Pareto surface (ωA = 0.65, ωB = 0.25, and ωC = 

0.10). 
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Electrical 

Household 

Appliance 

Standard 

Solution 

Total 

Invest, 

(€) 

Sust. 

sol. 

Total 

Invest 

(€) 

Inv. 

Saving 

(€) 

Energy 

Consump. 

Savings 

(€) 

Water 

Consump. 

(avoided) 

(l) 

CO2 

Emissions 

(avoided) 

(kg) 

Manuf. 
Model  

Type 

Light 16.88 49.04 5.35 62.20 - 27.60 Phillips LEDspo 

Air 

conditioning 
352.00 279.00 69.00 1319.50 - 1322.60 Samsung  AQV09 

Refrigerator 234.00 399.00 −265.00 709.30 - 9.72 Becken Bc2016 I 

Washing 

machine 
272.20 249,90 −33,00 5.60 322.10 95.10 INDESIT  EWE71 

Dishwasher 

machine 
310.00 349.00 −39.00 3.20 423.00 6.90 LG DF212F 

Oven 171.00 701.00 −28.30 2.82 - 2.33 Electrolux EZC243 

Clothes 

dryer 
368.00 449.00 −68.00 10.20 - 1.82 Bosch  WTE841 

Total 1724.80 2475.94 −262.65 2112.30 745.10 1458.90 - - 

The avoided CO2 emissions for each appliance are also shown, and they result from the 

comparison between the “sustainable” solution achieved and the “less sustainable” one, i.e., the 

standard solution. 

The investment as well as the consumption savings were also obtained based on the difference 

between the “sustainable” solution achieved and the “less sustainable” one, and by also considering 

the lifecycle period regarding each energy service. Therefore, the corresponding monetary flows were 

then discounted to the present period in order to calculate the present value of each investment as 

well as each consumption value regarding the sustainable and less sustainable solutions. 

Considering the results presented on Table 5, the consumer can achieve energy savings of 

around €2112.30 regarding the considered lifecycle. 

Based on this value, we can estimate a consumption average value of 211.23 €/year (previous 

result divided by the considered lifecycle), which is lower than the average value of 300 in [9), 

although still significant, thus highlighting the importance of achieving energy savings during the 

lifecycle of each equipment.  

During the considered lifecycle, the consumer can also avoid 1458.90 kg of CO2 emissions and 

avoid consumption of approximately 745.10 liters of water, with both resulting in savings. 

5. Conclusions & Future Work 

In this paper, a decision support method was presented to provide sustainable household 

appliances from the market to a consumer by considering three dimensions of sustainability, namely, 

economics, social, and environmental wellbeing. 

The proposed approach has made use of a set of established criteria, in order to pre-select a set 

of candidate solutions from the market, and by following the consumer requirements. The use of such 

criteria (adjustable to each consumer’s requirements), allows for definition of the decision space, 

composed by a set of candidate solutions according to each type of appliance to be considered by the 

consumer.  

Additional criteria were used and integrated with MAVT in order to model the consumer 

preferences according to the three problem dimensions presented here. The main purpose of these 

procedures was to maximize consumer wellbeing by acting on the three problem dimensions referred 

to above, and according to the relative importance given by the consumer. 

After modeling the preferences of the consumer, where the ecological impact (e.g., CO2 and 

water savings) and economic issues (energy consumption and initial investment savings) based on 

the lifecycle cost assessment (LCCA) of each household appliance were also taken into account, 

NSGAII was then applied to maximize the three objective functions referred to earlier. 



Appl. Sci. 2020, 10, 3206 18 of 24 

The method presented in this work allows for maximizing all three dimensions of sustainability 

by acquiring a set of sustainable (and alternative) appliances from the market suitable for each 

consumer’s preferences and concerns. This also allows the consumer to achieve a set of savings 

regarding energy consumption, CO2 emissions, and water consumption. 

There are some limitations, as pointed out earlier, as well as weaknesses that could be improved 

in the model in future, in order to make it more precise and suitable for the consumer.  

Thus, and based on the limitations mentioned before, all of the adopted attributes can be used 

in other regions, although with necessary adjustments, given the existence of some differences 

regarding the region or country involved (e.g., energy labeling classification frameworks). 

Besides the limitations identified earlier, which can be used as a basis to develop future work, 

the approach developed here can also be extended into other energy services with a relevant impact 

in terms of sustainable development, such as regarding information technology equipment (e.g., 

computers, printers, among others). 

Furthermore, the use of indicators, such as the European Smart Readiness Indicator (SRI), can 

also be considered here as a future development by integrating the method developed in this paper 

into the SRI framework in order to better adjust each building (and it units) to each consumer’s needs. 
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Figure A1. Definition of the attribute table associated with the options available in the market, 

considered in this work. 
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Appendix B 

 

Figure 1. Definition of the table of values associated with the options available in the market that was considered in this work. 
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