
  

  

Abstract—Graphene-based materials have been extensively 

explored in recent years as valuable candidates as the key 

material for novel structures in the field, among many other 

applications, of sensing devices. Reduced Graphene Oxide 

(rGO) is a type of chemically derived graphene, with equivalent 

optical properties but easier to be synthetized. This work reports 

a study about the applicability of rGO as a support for gold 

nanoparticles (AuNPs). The resulting AuNPs-rGO composites 

are studied in terms of spectral light transmission and plasmonic 

resonance as a possible sensing element for a photonic protein 

sensor device. 

INTRODUCTION 

Because of its interesting optical, thermal and mechanical 
properties, graphene has found during the last years its path in 
a large variety of biosensing applications [1]. Recently, 
reduced Graphene Oxide (rGO) has been proposed and studied 
as a nanocomposite in conjunction with gold nanoparticles [2] 
and also proposed as a biosensing element for aflatoxins [3]. 
rGO is studied in this work in conjunction with the local 
surface plasmonic resonance (LSPR) produced by gold 
nanospheres (AuNPs) and we present results about light 
transmission and absorption of rGO decorated with AuNPs, 
evaluating the possibility of using this material as the sensing 
element for a protein sensor device.  

 The proposed device structure is depicted in Figure 1. It is 
a plasmonic structure based on the LSPR interaction of Au 
nanoparticles, embedded into a matrix of rGO. After proper 
functionalization with selective antibodies, and for a tuned 
wavelength, light transmission is controlled by slight changes 
of the refractive index induced by the biomarker 
concentration. The use of a functionalized surface based on 
rGO, allows an improvement of the biocompatibility and a cost 
reduction. Integration with an a-Si:H photodetector allows the 
quantification of biomarker fingerprint on the sensing surface. 
The optoelectronic readout is performed by a pin a-Si:H 
photodiode. The goal of the work hereby presented is the study 
of the plasmonic properties of the AuNPs-rGO composites for 
different light wavelength and nanosphere dimension. The 
focus of this study is on the LSPR absorption profile, measured 
by UV-Vis spectroscopic analysis. A theoretical analysis is 
also presented, based on the Mie theory, about the LSPR of 
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AuNPs with different dimension, diluted in water and in 
composition with rGO. 

 

 

Figure 1. Schematics of the LSPR sensor based on rGO+AuNPS light 
trasmission properties 

I. SIMULATION: MIE ANALYSIS 

A. Theory 

 Even if the plasmonic phenomena were known since the 
ancient ages, a first theoretical explanation, based on general 
electromagnetic approach, has been presented only in the 
beginning of the XX century by Gustave Mie [4]. This theory 
is still a solid basis for a satisfactory understanding of these 
phenomena and it is extensively reported [5]. According to the 
Mie theory, the interaction between light and the nanospheres 
can be described in terms of the extinction efficiency (Qext), 
defined as the ratio of the cross-section for light extinction 
process, to the geometrical section area of the spherical 
particle. Light extinction is defined as the sum of the two 
processes describing light absorption and scattering, 
introducing the analogue quantities of absorption (Qabs) and 
scattering (Qsca) efficiency. The Mie theory can be directly 
applied only to the special case of a spherical particle, 
admitting an extension to the case of a core-shell sphere. It 
describes in a very complete way the extinction of a plane 
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wave without any restriction to the particle size. The Mie 
analysis requires the values of the complex refractive index 
(n,k) for the metal and the surrounding medium. Optical 
properties for metals and dielectrics, necessary for our 
simulations, have been taken by literature [6,7,8,9]. 

B. Simulations 

A Direct Mie analysis has been used to simulate the LSPR 
of gold nanospheres embedded in Graphene, rGO and, for 
comparative purpose, in a colloidal solution [10]. As expected, 
our results show that the wavelength for the LSPR peak 
depends strongly on the nanoparticle radius. It is also possible 
to detect an increasing multipolar response and a peak 
broadening for large sphere radius. On the other hand, a sharp 
and localized peak can be observed when the NPs radius is 
small. When the size of the NPs is as small as 20 nm, 
absorption is the dominant phenomena and the most part of 
light extinction for these cases is due to the enhance absorption 
caused by the LSPR. The simulated light extinction for Au 
nanospheres with a radius in the range 10-130 nm embedded 
in Graphene, rGO and distilled water is depicted in Figure 2. 
The resonance peaks wavelength and width vary greatly with 
the surrounding medium. In rGO the peak is located in the red 
part of the spectrum, in the 600-700 range, depending on the 
NP size. This result is of greatly importance for our projected 
applications, as the spectral sensitivity of a-Si:H is still good 
in this range, becoming much lower when entering in the 
infrared region (wavelengths above 700 nm). The extinction 
efficiency of a 40 nm nanosphere covered by a thin layer of 
rGO with increasing thickness is presented in Figure 3. The 
rGO cladding layer produces the effect of red-shifting the 
LSPR peak, proportionally to the cladding thickness. 

 

 

II. EXPERIMENTAL 

A Preparation of rGO   

A modified Hummer’s method [11] was used to synthesize 

GO, in which graphite powder (1.0 g) is poured into a solution 

of NaNO3 (0.5 g) in concentrated H2SO4 (30 mL) and cooled 

to 0 ºC. KMnO4 (3.0 g) is then added, during which the 

temperature of the mixture was maintained below 20 ºC. 

Successively, the mixture is stirred at 35 ºC for 1 h, and then 

diluted with deionized water (46 mL) by keeping the 

temperature at 85 ºC and then increasing it to 100ºC for 30 

min. Warm deionized water (140 mL) is then added to the 

 

 

 

Figure 2. Extinction efficiency, calculated by Mie analysis, for gold 
nanospheres with radius between 10 and 130 nm embedded in graphene, 
rGO and diluted in water.  

 

Figure 3. Extinction efficiency, calculated by Mie analysis, for gold 
nanospheres with 40 nm radius covered by a rGO cladding layer 
with thickness between 0 and 40 nm diluted in water. 



  

mixture, followed by the dropwise addition of a 50% aqueous 

solution of H2O2 (15 mL), and the solution is stirred for 30 

min. The mixture is then centrifuged and washed with a 5% 

aqueous solution of HCl (1 L) to remove metal ions, followed 

by deionized water (1 L) to remove the acid. The dry GO 

powder is finally obtained after heating the filtrate for 12 h at 

60˚C. Reduced Graphene Oxide (rGO) is synthesized by a 

solvothermal method. In a typical synthesis, GO is dispersed 

into ethylene glycol (60 mL) and sonicated for 1 h, followed 

by the subsequent addition of aqueous NH3 (1.6 mL), and 

stirred again for 1 h. rGO is mixed with AuNPs by ball milling 

technique. Figure 4 displays the SEM (Scanning Electron 

Microscopy) image of the produced rGO.  

 

B. Preoparation of rGO-AuNPs composite 

To prepare the rGO-AuNPs composite, a set of commercially 

available gold spherical nanoparticles with radius in the 20-

50 nm range were used [12]. To achieve a uniform dispersion 

AuNPs and rGO were mixed through a mechanical process, 

with a ultrasonic bath at 44 kHz for 15 minutes, and with a 

sonicator at 20 kHz, for 1 minute. The rGO concentration in 

the resulting colloidal solutions (3 mL) ranges from 0.5 to 4 

mg for solutions containing 5.8×10-5 g/mL of gold.  

 

C. UV-Vis measurements 

Although, no modification in the LSPR wavelength was 

detected for nanoparticles with radius less than 40 nm, the 

influence of the rGO coupling to AuNPs could be clearly 

observed for 50 nm radius nanoparticles. Figure 5 shows the 

light absorption profile in the visible range, for different 

concentrations of rGO. The presence of rGO results in a 

general reduction of light transmission over the entire 

spectrum, in comparison to the solutions containing 

exclusively AuNPs. The LSPR peak, to be ascribed to the 

plasmonic behavior of the nanospheres is well defined in all 

the measured cases. The central wavelength for this 

plasmonic resonance is red shifted by the AuNP-rGO 

coupling, as reported in Figures 5 and 6, where the peak 

wavelength is plotted as a function of the rGO concentration. 

This is in accordance with the simulation results described in 

Figures 2 and 3. Comparing the simulation and the 

experimental results we can conclude that even if there is no 

complete covering of the AuNP by the rGO (that is the 

cladding has by no means a uniform thickness, as 

simplistically assumed in the Mie analysis) the plasmonic 

resonance wavelength is affected by the difference in the 

refractive index introduced by the rGO. If no rGO is 

introduced, the observed LSPR is almost in perfect agreement 

with the simulated data. The red shifting caused by the 

increasing rGO concentration can be ascribed to a better and 

more complete cladding of the nanoparticles. It should be 

noted that the resonance peak remains unique and we cannot 

observe superposition of two separate peaks related to the 

cladded or not-cladded NPs.  
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Figure 5. Measured absorption profile of the rGO+AuNP colloidal 

solution with different concentration of rGO 
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Figure 6. LSPR wavelength measured by UV-VIS absorption of 

rGO+AuNP colloidal solution, as a function of the rGO concetration. 

Nanoparticle radius is 50 nm. 

 

 
 

Figure 4. SEM image of the rGO used in the experimental measurements.  

 



  

III. CONCLUSION 

Considering that the AuNP-RGO composite is a promising 

candidate as a support for antibodies functionalization as the 

sensing layer if a photonic biosensor, we have demonstrated 

that it is possible to obtain a uniform mixture of AuNP and 

rGO using mechanical process like ultrasonic bath or 

ultrasonic sonication. Anyway, when the AuNP diameter is 

smaller than 100 nm no modification of the LSPR response 

can be observed. For 100 nm AuNP the mixture with rGO 
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cause a red shift of the LSPR and the red shift depends on the 

RGO concentration. On the way for a biosensor application, 

future work will focus on an efficient method for 

functionalization with antibodies and the deposition of the 

composite on top of a photodiode photo-active surface. 

 

REFERENCES 

 

[8] K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. 

Rossinelli, and D. J. Norris. “Plasmonic films can easily be better: Rules and 

recipes”, ACS Photonics 2, 326-333 (2015) 

[9] Schmiedova, Veronika, et al. "Physical Properties Investigation of 

Reduced Graphene Oxide Thin Films Prepared by Material Inkjet Printing." 

Journal of Nanomaterials 2017 (2017). 

[10] A. Fantoni, M. Fernandes, Y. Vygranenko, P. Louro, M. Vieira, E.C. 

Alegria, et alt... “A Simulation Study of Surface Plasmons in Metallic 

Nanoparticles: Dependence on the Properties of an Embedding a‐Si: H 

Matrix”, Physica Status Solidi (a), 215(3), 1700487 (2018). 

[11] Chen, J., Yao, B., Li, C., & Shi, G. (2013). “An improved Hummers 

method for eco-friendly synthesis of graphene oxide”. Carbon, 64, 225-229. 
[12] BBI Solutions, 73 Ty Glas Avenue Cardiff, UK  

https://www.bbisolutions.com  

                                                           


