

Addressing landscape connectivity in biodiversity conservation strategies in the African Sahel

Marisa Carvalho Naia

Mestrado em Biodiversidade, Genética e Evolução Departamento de Biologia 2018/2019

Orientador José Carlos Brito, Investigador Principal, CIBIO **Coorientador** Sílvia Carvalho, Investigador Auxiliar, CIBIO

Todas as correções determinadas pelo júri, e só essas, foram efetuadas. O Presidente do Júri,

Porto, ____/__/___

"... deserts are superb evolutionary laboratories of nature. For that alone, they merit conservation." David Ward, in The Biology of Deserts

Acknowledgments/Agradecimentos

The past year was a mixture of learning and fulfilment. This thesis, with all its challenges, would not be accomplished without the help of many people. For that, I am extremely grateful.

To José Carlos Brito, my main supervisor. Above all, thank you for the trust, the knowledge and the incredible opportunities along the year. It was (and still is!) a pleasure to work in all these different subjects that stimulated my scientific growth. Thank you for all the fruitful discussions, for your contagious motivation and dedication and for always being present to clear any doubt or to discuss any aspect.

To Sílvia Carvalho for all the support and constructive criticisms. For the opportunity to present our work in a conference and for the critical points that significantly improved this thesis. It was a pleasure to learn and work with such a hard-working scientist.

To Virgilio Hermoso for accepting me in Solsona and allowing the enriching experiencing of working in CTFC. Thank you for the scientific inputs and for always explaining the core of the assumptions.

To Pedro Tarroso for the patience with my macOS, birds and African shape problems and for always keeping the good mood.

To the GGWI people for all the comments and suggestions and for spreading hope about publishing.

To the BIODESERSTS research group for all the field work that made this thesis possible and for allowing such an easy integration.

To my Master colleagues, was a pleasure to spend the last two years with you. Thank you for the monthly Bacchanalia, for the francesinhas, the after-lunch coffees and the field trips. You help me to de-stress and made this work much easier.

To my dearest housemates – Guilherme, Miguel, Sara, Selma and Vitor – for the company, conversations, game nights and car trips. Moving to Casa da Vila was the best decision l've made in the past year. My sincerely thank you.

Ao Fábio Martins pelas discussões de estatística e ecologia, mas principalmente pela amizade e pelas longas conversas. És um exemplo a nível pessoal e científico.

Às minhas Deprimidas – Ana, Ricardina e Silvana – pelo estímulo de nunca desistir. Obrigada pelos desabafos das nossas "thesis life", pelos momentos de descontração e por partilharem comigo este percurso desde o seu início. Ao Diogo "Eduardo" e ao Jorge "Nassa" agradeço a boa disposição e amizade.

Ao Bernardo sobretudo pela paciência nas horas de maior stress e por sempre teres acreditado, apoiado e dado força em todas as partes desta tese.

À Margarida "Gui" por sempre me dizeres para fazer uma pausa no estudo, por perguntares e te interessares pelo meu trabalho.

Finalmente, à minha família pelo apoio incondicional que me ajudou a chegar aqui. Aos meus pais por sempre terem acreditado que devemos seguir os nossos sonhos e fazer o que nos faz feliz. Muito obrigada pela educação, carinho, amor e por terem apoiado cada passo desta tese. O meu profundo obrigado. À minha irmã, a minha rolemodel e parceira de viagens, que me ensinou que não existe barreiras que não consigamos alcançar. Obrigada pela ajuda a nível pessoal e científico, por seres uma inspiração e ensinares a nunca desistir. À minha avó pelo amor e carinho. Aos meus tios, Vítor e Xana, e primas, Adriana e Gabriela, por todo o apoio e companhia. À Vicky o meu eterno obrigado pelos momentos de companhia e ternura.

Manuscript II of the thesis had the support of the Erasmus + programme of the European Union.

Co-funded by the Erasmus+ Programme of the European Union

Resumo

Atualmente a biodiversidade enfrenta a sexta extinção em massa, onde fatores antropogénicos, tais como a perda e fragmentação do habitat e as alterações climáticas, são os principais impulsionadores. A eco-região do Sael é uma zona de transição entre a região do Paleártico e Afro-tropical que exibe uma grande diversidade de espécies. No entanto, são várias as ameaças que atualmente afetam a biodiversidade, tais como o aumento da população humana e de infra-estruturas, as alterações no coberto vegetal e no uso do terreno e as alterações climáticas. As alterações nos habitats favoráveis para as espécies podem conduzir ao seu isolamento populacional e a um aumento do risco de extinção. A conectividade da paisagem pode mitigar os efeitos negativos promovidos pela fragmentação dos habitats, possibilitando a dispersão de indivíduos e a persistência de metapopulações. Esta tese foca-se em dois casos de estudo que têm como intuito aperfeiçoar metodologias para a conservação em regiões áridas e encontrar as melhores abordagens para alcançar os objetivos de conservação para a biodiversidade no Sael. No primeiro estudo, as grandes alterações no coberto vegetal e no uso do terreno devido à Iniciativa da Grande Muralha Verde do Saara e do Sael (Muralha) foram mapeadas tendo em conta a distribuição dos vertebrados de forma a perceber quais as espécies que serão mais afetadas pelas mudanças na conectividade regional. A fragmentação do habitat criada pela Muralha irá promover um efeito barreira para as espécies adaptadas às regiões áridas e desérticas e a elevada atividade antropogénica na região poderá vir a criar impactos a curto prazo em várias outras espécies. É necessário garantir corredores de dispersão providos de habitats favoráveis ao longo da Muralha para mitigar os seus efeitos. No segundo estudo, múltiplos cenários foram testados para entender a localização de áreas prioritárias à conservação de vertebrados de água doce na Mauritânia. Diferentes regras de conectividade foram aplicadas para entender o seu impacto na seleção de áreas prioritárias e um novo método foi desenvolvido para realçar a importância das zonas a montante na rede hidrográfica. As áreas prioritárias para a conservação de espécies dependentes de água foram selecionadas levando em consideração a conectividade através da rede hidrográfica. O novo método realça a importância de considerar as zonas a montante para assegurar a proteção das conexões entre as unidades de gestão, articulando a proteção de ecossistemas terrestres e de água doce. Os dois estudos desenvolvidos mostram por um lado que a falta de conectividade numa iniciativa à escala internacional poderá gerar impactos negativos para espécies que não estão adaptadas a um habitat particular, aumentando o seu risco de extinção. Por outro lado, considerar a conectividade na definição de novas áreas prioritárias para a conservação à escala local poderá atenuar os efeitos do isolamento de espécies. A atual fragmentação dos habitats requere a implementação da conectividade como uma estratégia central para a conservação da biodiversidade no Sael. Ambos os estudos realçam a importância de preservar a conectividade para garantir, a longo prazo, a conservação de espécies e populações adaptadas a regiões áridas.

Palavras-chave: corredores, fragmentação, *hotspots* de biodiversidade, persistência, planeamento de conservação, regiões áridas

Abstract

Global biodiversity is currently facing the sixth mass extinction, where human-related factors, such as habitat loss and fragmentation and climate change, act as the main drivers. The Sahel ecoregion is a transition zone between the Palearctic and Afrotropical realms exhibiting high diversity of species. However, it is undergoing many threats that affect local biodiversity, such as increasing human population and infrastructures, land-cover and land-use changes, and climate change. The changes in suitable habitats for species may lead to their isolation and increased extinction risk. Landscape connectivity could mitigate the negative effects promoted by habitat fragmentation, by allowing the dispersal of individuals and the persistence of metapopulation structures. The present research focuses on two case studies that aim to improve conservation methodologies in arid regions and to find the best approaches to achieve conservation goals for biodiversity conservation in the Sahel. In the first study, the massive land-use and land-cover changes created by the Great Green Wall for the Sahara and the Sahel Initiative (Wall) were mapped against terrestrial vertebrate distribution to understand which species are going to be mostly affected by the regional connectivity changes. The habitat fragmentation created by the Wall will promote a barrier effect for desert-adapted species and the strong anthropogenic activities in the area can have short-term impacts in many others. Ensuring dispersal corridors with suitable habitats along the Wall are needed to mitigate its effects. In the second study, the location of priority areas for conservation of freshwater vertebrates was tested for multiple scenarios in Mauritania. Different connectivity rules were addressed to understand their impact in the priority areas selected and a new framework was presented to emphasise the importance of hydrologic upstream areas. Priority areas for conservation for water-dependent species were selected taking into account freshwater connectivity. The new framework highlights the importance of considering upstream areas to ensure the protection of connections between management units within their hydrological context, linking freshwater and terrestrial ecosystem protection. The two studies developed show that on the one hand, the lack of connectivity in a large international scale can negatively impact species not adapted to a particular habitat, increasing its extinction risk. On the other hand, addressing connectivity in the definition of new priority areas for conservation in local scale can help to mitigate the effects of species isolation. The current habitat fragmentation demands connectivity as a core strategy for biodiversity conservation in the Sahel. Both studies emphasise the importance of preserving connectivity to ensure long-term conservation of species and populations adapted to arid regions.

Keywords: arid region, biodiversity hotspots, conservation planning, corridors, fragmentation, persistence

Table of contents

Acknowledgments/Agradecimentos	i
Resumo	iii
Abstract	v
Chapter I: General introduction	1
1.1. Global biodiversity crisis	1
1.2. Landscape connectivity: a key point to persistence	2
1.3. Biodiversity in deserts and arid regions	5
1.4. The African Sahel as a case study	6
1.5. Objectives	8
1.6. References	8
Chapter II: Manuscript I	19
Abstract	19
2.1. Introduction	20
2.1.1. A colossal Wall	20
2.2. Material and methods	.21
2.2.1. Definition of the Wall location	21
2.2.2. Species list	.22
2.2.3. Species biogeographic affinity and conservation status	22
2.2.4. Species richness	23
2.3. Results and discussion	23
2.3.1. Overlooked biodiversity impacts	.23
2.3.2. Recommendations to minimise biodiversity impacts	29
2.4. References	30
Chapter III: Manuscript II	.35
Abstract	35
3.1. Introduction	36
3.2. Material and methods	38
3.2.1. Study area	38
3.2.2. Data sources and processing	.41
3.2.2.1. Planning units	41
3.2.2.2. Conservation features	42
3.2.3. Identify priority areas for freshwater biodiversity conservation	43
3.2.3.1. Cost penalty	.44
3.2.3.2. Connectivity framework	.45
3.2.3.3. Connectivity scenarios	46

3.3. Results
3.3.1. Priority areas for conservation excluding connectivity
3.3.2. Influence of water residency time in connectivity between Gueltas49
3.3.3. Importance of connectivity of Gueltas within the full hydrographic network 50
3.4. Discussion
3.4.1. Methodological improvements and constraints53
3.4.2. Importance of water residency time and connectivity54
3.4.3. Implications for local conservation56
3.5. Conclusions
3.6. References
Chapter IV: Final discussion65
4.1. Major findings65
4.2. Future work
4.3. References
Chapter V: Appendices71
5.1. Supplementary material – Manuscript I71
5.2. References

Table index

Chapter III

Table 3.1 | List of Gueltas present in the study area and their location and characteristics. Information on seasonality comes from Vale et al. (2015). The proportion of threats was calculated by the sum of all threats in each Guelta (Campos et al., 2016; Vale et al., 2015) divided by the total number considered by the IUCN Threats Table 3.2 | List of species/taxa included in the study (fishes, amphibians and aquatic reptiles) and the number of observations in the 59 Gueltas......43 Table 3.3 | Methods summary table, depicting detailed information used in each prioritisation scenario according to the three objectives. N - Number; NDWI -Normalised difference water index; CP - Connectivity penalty; BLM - Boundary length Table 3.4 | Example of the calculation of the connectivity index in equation 4. Numbers Table 3.5 | Results summary table, depicting the results information used in each prioritisation scenario for the normalised difference water index (NDWI) calculated for scenarios A - E, the Achieved connectivity index calculated according to equation 4 and

Chapter VI

Figure index

Chapter I

Chapter II

Figure 2.1 | (A) Location of the Sahel among all African ecoregions; (B) mean precipitation in Africa, depicting the location of the Wall, and (C) the human footprint index in the African continent and within the Wall intervention zone, expressed as a percentage of the relative human influence (high values and red colour stand for higher human footprint (Venter et al., 2018).....20 Figure 2.2 | (A) Location of the Great Green Wall (Wall) and respective intervention zone. (B) Number of terrestrial vertebrate species in each taxonomic group (amphibians, reptiles, birds and mammals) occurring in the Wall intervention zone (N = 1,275) and percentage in relation to the terrestrial vertebrates present in Africa (N = 6,041)......21 Figure 2.3 | Geographical representation of biogeographic affinities. Sahara endemic includes species whose distribution reaches the northern part of the Wall intervention zone, Sahel endemic includes species whose distribution transverses latitudinally the Wall, Savannah endemic includes species whose distribution reaches the southern part of the Wall, and Wall endemic includes species whose distribution occurs $\geq 75\%$ within Figure 2.4 | Percentage of the African range of species that are within the Wall intervention zone (N = 1,275). Representation by taxonomic group, where the size of each circle represents the amount of species in each range category. A total of 236

Chapter III

connections between Gueltas and sub-catchments; and (C) connections between subcatchments......47 Figure 3.5 | Results of the planning units selected as priority for conservation when i) excluding connectivity (scenario A), ii) considering the influence of water residency time in connectivity (scenarios B - E), and iii) considering the influence of connectivity between upstream connections in the full hydrographic network (scenarios F - H). Planning unites presented had a selection frequency over 50% in 100 runs in Marxan. For details in each scenario see Table 3.1. Black line in scenarios F - G - H depicts the location of Lac Gabou Ramsar site......51 Figure 3.6 | Spatial prioritisation results of the number of planning units selected as priority for conservation in the different scenarios (A - H). Scenario A excluded connectivity, scenarios B, C, D and E use connectivity between Gueltas, while scenarios F, G and H use connectivity between Gueltas and sub-catchments. For details in each scenario see Table 3.3......52 Figure 3.7 | Trade-off between the connectivity achieved in all scenario solutions, calculated in equation 4 and the associated cost retrieved from the connections selected Figure 3.8 | Seven Gueltas selected in all scenarios with a selection frequency of 100%

List of abbreviations

BLM	Boundary length modifier
CBD	Convention on Biological Diversity
СР	Connectivity penalty
DEM	Digital elevation model
DNA	Deoxyribonucleic acid
eDNA	Environmental DNA
GPS	Global Positioning System
ha	Hectare
IUCN	International Union for Conservation of Nature
Km	Kilometre
m	Meter
mm	Millimetre
Муа	Million years ago
N	Number
NDWI	Normalised difference water index
NW	Northwest
PU	Planning unit
S	South
SAV	Savannah
SDGs	United Nations Sustainable Development Goals
SHL	Sahel
SHR	Sahara
SPF	Species penalty factor
UNCCD	United Nations Convention to Combat Desertification
USD	United States Dollars
UTM	Universal Transverse Mercator
W	Weighting factor
WCP	Water Residency Time – Hydrologic Connectivity
WGS	World Geodetic System
WWF	World Wildlife Fund
ZSL	Zoological Society of London

Chapter I: General introduction

1.1. Global biodiversity crisis

Global biodiversity is facing an unprecedented loss, currently considered the sixth mass extinction (Dirzo and Raven, 2003; Ceballos *et al.*, 2010). Recently, the World Wildlife Fund (WWF) together with the Zoological Society of London (ZSL) published an indicator of the state of the global biological diversity, presented in the Living Planet Index (WWF, 2018; Fig. 1.1), showing the average rate of vertebrate species population changes over time. Between 1970 and 2014, there was an overall decline in 60% of population sizes of vertebrates from all species across the globe (WWF, 2018).

Habitat fragmentation and degradation is one of the main drivers of biodiversity loss (Dirzo and Raven, 2003; Secretariat of the Convention on Biological Diversity, 2010, 2014; Joppa et al., 2016), responsible for creating a matrix of small isolated habitat patches and increasing the edge effects (Haddad et al., 2015; Fig. 1.2). Moreover, isolation plays a crucial role in decreasing populations' viability by reducing genetic diversity due to genetic drift and contributing to inbreeding depression, decrease the fitness of individuals and loss of evolutionary and adaptive potential (Tanaka, 2000; Frankham, 2005; Allentoft et al., 2009). Climate change is a global concern of this century, impacting from individuals to biomes and is known to alter natural systems, changing interspecific relations and testing physiological tolerances (Griffis-Kyle et al., 2018; Li et al., 2018). Species are expected to shift their ranges to more favourable habitats or adjust to the new conditions by phenotypic plasticity (Sinervo et al., 2010; Davies et al., 2012). In addition, extinction is expected when a species has low dispersal abilities and fails to adjust or adapt (Thomas et al., 2004). Both habitat fragmentation and climate change are human-related factors leading to populations declines and species extinction, which will affect ecosystem functioning and, in its turn, human welfare (Dirzo and Raven, 2003; Pimm, 2008; Dirzo et al., 2014; Haddad et al., 2015).

Biodiversity, apart from the aesthetic value, provides direct economic benefits essential to humankind (Singh, 2002). Therefore, there are growing concerns about its protection and preservation. The Convention on Biological Diversity (CBD) adopted the Strategic Plan for Biodiversity 2011-2020 to reverse global biodiversity loss and enhance its benefits for people (CBD, 2010). Among the Strategic Plan, the Aichi Biodiversity Targets encompasses twenty ambitious targets, including the expansion of the global protected area network to 17% of the world's land cover by 2020 (Aichi Target 11), aiming to protect ecologically representative and well-connected terrestrial and freshwater areas. An effective management of protected areas and corridors between

them will allow to achieve different goals proposed by CBD, namely the reduction of biodiversity pressures and the improvement of biodiversity status, from genes to ecosystems (CBD, 2010).

Figure 1.1 | The Global Living Planet Index from 1970 to 2014. Average abundance of 16,704 vertebrate populations representing 4,005 species monitored across the globe declined by 60%. The black line represents the index values and the shaded areas represent the statistical certainty surrounding the trend, ranging from -50% to -67%. Adapted from WWF (2018).

1.2. Landscape connectivity: a key point to persistence

The negative impacts that habitat loss and fragmentation have on biodiversity led to the recognition of the importance of spatial conservation prioritisation studies (Margules and Sarkar, 2007; Moilanen *et al.*, 2009). Identifying new sites for biodiversity protection should follow a systematic conservation planning approach and fulfil two main objectives: representation and persistence (Margules and Pressey, 2000). Representation ensures that protected areas include all levels of organisation, representing the full variety of biodiversity of a defined region. Persistence ensures the long-term survival of conservation features, either taxa, habitats or climate regions, and the preservation of viable populations and the natural processes (Margules and Pressey, 2000). Protected areas have been used as a core strategy for many years and, if well-managed, they can reduce the rate of habitat loss (Geldmann *et al.*, 2013; Watson *et al.*, 2014) and maintain species population levels over time, including threatened species (Taylor *et al.*, 2011;

Butchart *et al.*, 2012; Spooner *et al.*, 2018). Incorporating connectivity in the protected area design helps to maximise its effectiveness and efficiency (Shafer, 1999). By combining protected areas with landscape corridors for species dispersal, the effects of habitat fragmentation and climate change over biodiversity can be mitigated.

Landscape connectivity was defined by Taylor et al. (1993) as "the degree to which the landscape facilitates or impedes movements among resource patches". Structural connectivity focus on the spatial configuration of the landscape, evaluating the physical continuity of the habitat, such as corridors (Tischendorf and Fahrig, 2000). However, it is independent from biological responses to the landscape (Tischendorf and Fahrig, 2000; Dehaghi et al., 2018). Differently, functional corridors take into account species behaviour to the landscape, assessing the migration pathways that species would take between suitable habitat patches (Taylor et al., 2006; Dehaghi et al., 2018). Connectivity can differ depending on the type of landscape that dispersal processes takes place (Baguette et al., 2013). Terrestrial landscapes are usually patchy as a result of natural barriers to habitat continuity or anthropogenic habitat fragmentation (Haddad et al., 2015), creating a resistance matrix with an associated cost to species dispersal. Each individual with different habitat requirements will disperse through layers with lower cost to reach suitable habitats. On the other hand, in freshwater and marine systems, riverscape and seascape respectively, connectivity is mostly made through water, where non-aquatic environments represent the resistance landscape (Pringle, 2003). In riverscape connectivity, individuals can passively disperse downstream due to water currents, creating a source-sink metapopulation dynamics, where the upstream populations act as a source and the downstream act as a sink (Baguette et al., 2013). Generally, single individuals, with enough time and dispersal capacity, can move through the landscape to reach a favourable area or even a different population. A strong network of habitat corridors promoted by landscape connectivity will allow species shifts and the recolonization of new habitats creating a metapopulation dynamics (Hanski, 1998). The extinction risk is expected to decrease as periodical inputs of new genes from adjacent populations contribute to increased genetic variability and potentially to genetic adaptation to environmental changes (Massot et al., 2008; Fig. 1.2). Although, promoting artificial connectivity may emerge as a threat to biodiversity due to the attenuation of natural physical barriers for species (Jackson and Pringle, 2010). Increasing artificial connectivity can easily enhance the propagation of invasive species and pollutants. In arid regions, increasing hydrological connectivity through irrigation, mobilized toxic elements such as contaminants and pesticides used in agriculture (Jackson and Pringle, 2010). At population level, species may disperse across a homogenized landscape, decreasing the differentiation between populations of the same species. This process will

potentially lead to loss of genetic diversity and evolutionary units (Dowell *et al.*, 2016). Globally, there is a progressive increase of well-connected protected areas network, although additional efforts are needed to achieve the Aichi Target 11 (Saura *et al.*, 2019). For their importance in biodiversity conservation and for their susceptibility on the propagation of threats, such as fire, invasive species and pathogens (Slimberloff and Cox, 1987), the protection of corridors is crucial to mitigate the effects of species isolation and maintain local diversity (Damschen and Brudvig, 2012).

Figure 1.2 | Scheme depicting the different effects of habitat loss and fragmentation in species and populations, which leads to an increase in extinction risk. Landscape connectivity as a measure to mitigate the negative effects of habitat loss and fragmentation, represented by the green arrow. Adapted from van Andel and Aronson (2012).

Different strategies in conservation planning have been developed to incorporate connectivity in order to design more connected reserve systems (Daigle *et al.*, 2018):

i) Connectivity as conservation features establishes connectivity pathways in the landscape as a target for the spatial prioritisation. Hence, a minimum amount of that habitat needs to be select as priority area for conservation;

ii) Connectivity as spatial dependencies incorporates a penalty cost for protecting one site and not adjacent areas to which it is connected. This will reduce isolated areas selected, trying to increase the aggregation of the priority areas selected;

iii) Connectivity as a cost uses an inverse distance cost to define more desirable areas (*e.g.* areas suitable for connectivity) as cheaper to protected compared to less desirable areas, increasing its probability of being selected as priority for conservation.

For instance, when considering priority areas for aquatic species, it is desirable to decrease the cost of water layers that connect important wetlands for species;

iv) Connectivity-based objective function includes a persistence metric into an objective function that will run the optimisation processes. Metapopulation information, such as fecundity and mortality, can inform about the probability of persistence in an area and influence the result of priority areas selected.

Spatial conservation prioritisation has been drawn in response to global biodiversity crisis, which is particularly alarming in largely intact areas, such as deserts (Durant *et al.*, 2014; Iknayan and Beissinger, 2018). Habitat connectivity is essential for arid-adapted populations, since connectivity is highly limited due to the instability and the temporal variation of natural resources, such as water, primary production and shelter (Shkedy and Saltz, 2000). Therefore, there is an urgent need to identify areas predicted to be severely affected by climate change (Loarie *et al.*, 2009; Murphy *et al.*, 2015; Li *et al.*, 2018), which harbour unique threatened species, by allowing migration movements between populations, thus avoiding population fragmentation and isolation.

1.3. Biodiversity in deserts and arid regions

Deserts and arid regions cover 17% of the world's land mass (Fig. 1.3) and are often perceived as homogeneous, bare areas with low biodiversity (Durant et al., 2012). The temperature can reach extreme values during the day, and fall below freezing point during the night, however it is the aridity and the lack of precipitation that define deserts (Ward, 2016). Average precipitation is low, unpredictable and highly variable in space and time (Zeng, 2003). Despite the small amount of primary productivity (Durant et al., 2014), desert areas harbour high biodiversity, comprising threatened and endemic species (Brito and Pleguezuelos, 2019) crucial to provide ecosystem services in those regions (Safriel et al., 2005). The extreme abiotic factors promote highly evolutionary distinct species that exhibit adaptations to current harsh conditions (Brito and Pleguezuelos, 2019), although as they are already experiencing their physiological limits, are more susceptible to climate change (Vale and Brito, 2015; Iknayan and Beissinger, 2018; Li et al., 2018). Climate change is the major threat affecting deserts and arid ecosystems (Loarie et al., 2009), although other human induced factors are emerging. In Africa, livestock grazing and the increase of greenhouse gases are considered the most important causes of desertification (Hutchinson et al., 2018). Although desertification may be perceived as a natural process, nowadays have a strong influence from human activities (Giannini, 2010). Increase in desertification affected millions of people around the world (Hutchinson et al., 2018), creating a negative perspective that deserts and arid

regions are a spreading disease, instead of a natural ecosystem which contribute to the Earth's biological, landscape and cultural diversity. The highlight given to biodiversity hotspots (Myers *et al.*, 2000) has neglected desert and arid ecosystems, consequently, attracting less financial support to these areas (Durant *et al.*, 2014). Although, its biodiversity have a unique evolutionary history (Brito and Pleguezuelos, 2019) and are currently threatened by many anthropogenic factors. Therefore, these ecosystems should also be under conservation focus.

Figure 1.3 | Global distribution of deserts (hyper-arid) and arid regions, following the aridity index (average annual precipitation/potential evapo-transpiration). Adapted from Ward (2016).

1.4. The African Sahel as a case study

The arid Sahel (Arabic for "shore") is a transition zone between the Palearctic and Afrotropical realms, which extends for 3,000,000 km² between the Sahara Desert to the north and the sub-humid savannahs to the south (Le Houérou, 1980), and together with the Sahara, they represent the two major ecoregions in Africa (Dinerstein *et al.*, 2017). The age of the Sahara-Sahel is still debatable, ranging from at about 7 million years ago (Mya) (Schuster *et al.*, 2006) to about 2 - 3 Mya in western areas (Zhang *et al.*, 2014). Nonetheless, it is known that this region experienced strong climatic and land-cover oscillations along the history, characterised by dry-wet cycles, since the Pliocene, which allowed successive expansions and contractions, where the Sahara-Sahel limit suffered different shifts (Le Houérou, 1997; Foley *et al.*, 2003; Gasse, 2006). In the last humid period, grasslands, scrublands and mega-lakes covered the majority of North Africa (Prentice *et al.*, 2000; Giannini *et al.*, 2008; Holmes, 2008; Kröpelin *et al.*, 2008). At the Mid-Holocene, a gradual decline in precipitation levels contributed to the aridification of

the Sahara-Sahel and to the turnover between humid and desert-adapted species (Holmes, 2008; Kröpelin *et al.*, 2008). Currently, the Sahel climate is characterised by a long dry season and a short humid season. Similar to other arid regions, precipitation is the most important factor controlling the Sahel ecosystem and its scarcity and unpredictability increases northwards. The landscape is characterised by sparse vegetation with shrubs and annual and perennial grasses, closely related with the seasonality in precipitation (Le Houérou, 1980).

The climatic oscillations and geographic shifts that shaped Sahel into what it is today, had consequences on biodiversity patterns (Le Houérou, 1997). Moreover, the distribution of biodiversity appears to be linked to environmental changes (Brito et al., 2016), inducing allopatric diversification and speciation events (Brito et al., 2014). The steep climatic gradients within short distances, as precipitation and habitat types, favours high species richness (Da et al., 2018), particularly in southern regions, and harbours endemic and threatened species (Brito et al., 2016; Vale et al., 2019). Humid-adapted species still persist in isolated unchanged environments, known as climatic refugia (Anthelme et al., 2008; Trape, 2009; Vale et al., 2015; Velo-Antón et al., 2018). Mountains gather favourable conditions for species persistence due to the high geodiversity (Da et al., 2018) and often retain water during the dry season, allowing suitable conditions for species survival (Vale et al., 2015). Although, the unique biodiversity present in the Sahel transition zone is facing threats that can affect its viability. The Sahel has undergone severe droughts since the late 1960s (Zeng, 2003) leading to low productivity, soil erosion and increase of aridification (Foley et al., 2003; Ahmed et al., 2008; Schwalm et al., 2017). The effects of low precipitation can have enormous consequences in the future, as its positively correlated with a decrease in primary productivity and consequently, decrease in local food sources (e.g. Barros et al., 2018), as this region is identified one of the global hotspots for climate change effects (Diffenbaugh and Giorgi, 2012). Moreover, increases in human activities, such as overhunting, livestock grazing, wood collection and exploitation of natural resources, and the predicted increase of human African population (Hutchinson et al., 2018) are expected to become a serious threat to its biodiversity (Brito et al., 2014, 2016; Duncan et al., 2014). Long-term conflicts, socio-economic instability and the remoteness of certain regions (Brito et al., 2014, 2018) along with the scarce scientific attention (Durant et al., 2014), contributes to the lack of information available for species diversity and distribution in Sahara-Sahel. All these factors together with increasing effects of climate change (Loarie et al., 2009) are threatening this low resilience region.

1.5. Objectives

Landscape connectivity is an important parameter in biodiversity conservation strategies and can be applied in local and broader scales. Specifically, the present thesis focuses on two case studies:

i) Manuscript I: the ongoing Great Green Wall for the Sahara and the Sahel Initiative (www.greatgreenwall.org) is an international collaboration initiative that aims to change the habitats in arid regions through afforestation. This large-scale program can have massive effects in the landscape and consequently, in species adapted to arid environments. Currently, with a global growing interest for afforestation programs to mitigate the effects of climate change (Bastin *et al.*, 2019) is it time to evaluate its impacts on overlooked biodiversity, particularly how it affects landscape connectivity disruption for arid species and to understand how they can be reversed.

ii) Manuscript II: *Gueltas* are mountain rock pools that harbour endemic and threatened species and are essential for the survival of species in arid regions (Vale *et al.*, 2015). Incorporating connectivity as spatial dependencies (Daigle *et al.*, 2018) between these priority freshwater sites in local conservation strategies is important to account for species dispersal and consequent its persistence, allowing the maintenance of a metapopulation dynamics and mitigate extinction risks.

Accomplishing these two different works will help to improve conservation methodologies and advise policymakers with the best approaches to achieve conservation goals for biodiversity in this arid region.

1.6. References

- Ahmed, A., Yasuda, H., Hattori, K., Nagasawa, R., 2008. Analysis of rainfall records (1923–2004) in Atar–Mauritania. Geofizika 25, 53–64.
- Allentoft, M. E., Siegismund, H. R., Briggs, L., Andersen, L. W., 2009. Microsatellite analysis of the natterjack toad (*Bufo calamita*) in Denmark: Populations are islands in a fragmented landscape. Conserv. Genet. 10, 15–28. doi.org/10.1007/s10592-008-9510-8
- Anthelme, F., Waziri, M. M., Maley, J., 2008. Elevation and local refuges ensure persistence of mountain specific vegetation in the Nigerien Sahara. J. Arid Environ. 72, 2232–2242. doi.org/10.1016/j.jaridenv.2008.07.003
- Baguette M., Blanchet S., Delphine L., Stevens, V. M., Turlure, C., 2013. Individual dispersal, landscape connectivity and ecological networks. Biol. Rev. 88, 310–326. doi.org/10.1111/brv.12000

- Barros, M. I., Brito, J. C., Campos, J. C., Mappes, T., Qninba, A., Sousa, F. V., Boratyński, Z., 2018. The effect of rainfall on population dynamics in Sahara-Sahel rodents. Mammal Res. 63, 485–492. doi.org/10.1007/s13364-018-0377-x
- Bastin, J. F., Finegold, Y., Garcia, C., Mollicone, D., Rezende, M., Routh, D., Zohner, C.
 M., Crowther, T. W., 2019. The global tree restoration potential. Science. 265, 76– 79. doi.org/10.1126/science.aax0848
- Brito, J. C., Durant, S. M., Pettorelli, N., Newby, J., Canney, S., Algadafi, W., Rabeil, T., Crochet, P. A., Pleguezuelos, J. M., Wacher, T., de Smet, K., Gonçalves, D. V., da Silva, M. J. F., Martínez-Freiría, F., Abáigar, T., Campos, J. C., Comizzoli, P., Fahd, S., Fellous, A., Garba, H. H. M., Hamidou, D., Harouna, A., Hatcha, M. H., Nagy, A., Silva, T. L., Sow, A. S., Vale, C. G., Boratyński, Z., Rebelo, H., Carvalho, S. B., 2018. Armed conflicts and wildlife decline: Challenges and recommendations for effective conservation policy in the Sahara-Sahel. Conserv. Lett. e12446. doi.org/10.1111/conl.12446
- Brito, J. C., Godinho, R., Martínez-Freiría, F., Pleguezuelos, J. M., Rebelo, H., Santos, X., Vale, C. G., Velo-Antón, G., Boratyński, Z., Carvalho, S. B., Ferreira, S., Gonçalves, D. V., Silva, T. L., Tarroso, P., Campos, J. C., Leite, J. V., Nogueira, J., Álvares, F., Sillero, N., Sow, A. S., Fahd, S., Crochet, P. A., Carranza, S., 2014. Unravelling biodiversity, evolution and threats to conservation in the Sahara-Sahel. Biol. Rev. 89, 215–231. doi.org/10.1111/brv.12049
- Brito, J. C., Pleguezuelos, J. M., 2019. Desert Biodiversity—World's Hot Spots/Globally Outstanding Biodiverse Deserts, in: Reference Module in Earth Systems and Environmental Sciences. Elsevier, pp. 1–12. doi.org/10.1016/B978-0-12-409548-9.11794-4
- Brito, J. C., Tarroso, P., Vale, C. G., Martínez-Freiría, F., Boratyński, Z., Campos, J. C., Ferreira, S., Godinho, R., Gonçalves, D. V., Leite, J. V., Lima, V. O., Pereira, P., Santos, X., da Silva, M. J. F., Silva, T. L., Velo-Antón, G., Veríssimo, J., Crochet, P. A., Pleguezuelos, J. M., Carvalho, S.B., 2016. Conservation Biogeography of the Sahara-Sahel: Additional protected areas are needed to secure unique biodiversity. Divers. Distrib. 22, 371–384. doi.org/10.1111/ddi.12416
- Butchart, S. H. M., Scharlemann, J. P. W., Evans, M. I., Quader, S., Aricò, S., Arinaitwe, J., Balman, M., Bennun, L. A., Bertzky, B., Besançon, C., Boucher, T. M., Brooks, T. M., Burfield, I. J., Burgess, N. D., Chan, S., Clay, R. P., Crosby, M. J., Davidson, N. C., de Silva, N., Devenish, C., Dutson, G. C. L., Fernández, D. F. D., Fishpool, L. D. C., Fitzgerald, C., Foster, M., Heath, M.F., Hockings, M., Hoffmann, M., Knox, D., Larsen, F. W., Lamoreux, J. F., Loucks, C., May, I., Millett, J., Molloy, D., Morling, P., Parr, M., Ricketts, T. H., Seddon, N., Skolnik, B., Stuart, S. N., Upgren,

A., Woodley, S., 2012. Protecting important sites for biodiversity contributes to meeting global conservation targets. PLoS One 7, e32529. doi.org/10.1371/journal.pone.0032529

- CBD, 2010. Strategic Plan for Biodiversity 2011-2020. Further information related to the technical rationale for the Aichi Biodiversity Targets, including potential indicators and milestones. Conv. Biol. Divers. (available at: http://www.cbd.int/doc/%0Dmeetings/cop/cop-10/information/cop-10-inf-12-rev1-en.%0Dpdf; accessed in 14/11/2018).
- Ceballos, G., García, A., Ehrlich, P. R., 2010. The Sixth Extinction Crisis Loss of Animal Populations and Species. J. Cosmol. 8, 1821–1831.
- Da, S. S., García Márquez, J. R., Sommer, J. H., Thiombiano, A., Zizka, G., Dressler, S., Schmidt, M., Chatelain, C., Barthlott, W., 2018. Plant biodiversity patterns along a climatic gradient and across protected areas in West Africa. Afr. J. Ecol. 56, 641– 652. doi.org/10.1111/aje.12517
- Daigle R. M., Metaxas A., Balbar A., McGowan J., Treml E. A., Kuempel C. D., Possingham H. P., Beger M., 2018. Operationalizing ecological connectivity in spatial conservation planning with Marxan Connect. bioRxiv 315424, 1-23. doi.org/10.1101/315424
- Damschen, E. I., Brudvig, L. A., 2012. Landscape connectivity strengthens local-regional richness relationships in successional plant communities. Ecology 93, 704–710. doi.org/10.1890/11-1797.1
- Davies, N. B., Krebs, J. R., West, S. A., 2012. An introduction to behavioural ecology, 4th edition. Oxford. doi.org/10.1037/026600
- Dehaghi, I. M., Soffianian, A., Hemami, M. R., Pourmanafi, S., Salmanmahiny, A., Wu, G.M., 2018. Exploring structural and functional corridors for wild sheep (*Ovis orientalis*) in a semi-arid area. J. Arid Environ. 156, 27–33. doi.org/10.1016/j.jaridenv.2018.04.009
- Diffenbaugh, N. S., Giorgi, F., 2012. Climate change hotspots in the CMIP5 global climate model ensemble. Clim. Change 114, 813–822. doi.org/10.1007/s10584-012-0570-x
- Dinerstein, E., Olson, D., Joshi, A., Vynne, C., Burgess, N. D., Wikramanayake, E., Hahn, N., Palminteri, S., Hedao, P., Noss, R., Hansen, M., Locke, H., Ellis, E. C., Jones, B., Barber, C. V., Hayes, R., Kormos, C., Martin, V., Crist, E., Sechrest, W., Price, L., Baillie, J. E. M., Weeden, D., Suckling, K., Davis, C., Sizer, N., Moore, R., Thau, D., Birch, T., Potapov, P., Turubanova, S., Tyukavina, A., De Souza, N., Pintea, L., Brito, J. C., Llewellyn, O. A., Miller, A. G., Patzelt, A., Ghazanfar, S. A., Timberlake, J., Klöser, H., Shennan-Farpón, Y., Kindt, R., Lillesø, J. P. B., Van

Breugel, P., Graudal, L., Voge, M., Al-Shammari, K. F., Saleem, M., 2017. An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm. Bioscience 67, 534–545. doi.org/10.1093/biosci/bix014

- Dirzo, R., Raven, P. H., 2003. Global state of biodiversity and loss. Annu. Rev. Environ. Resour. 28, 137–167. doi.org/10.1146/annurev.energy.28.050302.105532
- Dirzo, R., Young, H. S., Galetti, M., Ceballos, G., Isaac, N. J. B., Collen, B., 2014. Defaunation in the Anthropocene. Science 345, 401–406. doi.org/10.1126/science.1251817
- Dowell S. A., Portik D. M., de Buffrénil V., Ineich I., Greenbaum E., Kolokotronis S. O., Hekkala E. R., 2016. Molecular data from contemporary and historical collections reveal a complex story of cryptic diversification in the *Varanus (Polydaedalus) niloticus* species group. Mol. Phylogenet. Evol. 94, 591–604. doi.org/10.1016/j.ympev.2015.10.004
- Duncan, C., Kretz, D., Wegmann, M., Rabeil, T., Pettorelli, N., 2014. Oil in the Sahara: Mapping anthropogenic threats to Saharan biodiversity from space. Philos. Trans.R. Soc. B Biol. Sci. 369. doi.org/10.1098/rstb.2013.0191
- Durant, S. M., Pettorelli, N., Bashir, S., Woodroffe, R., Wacher, T., De Ornellas, P., Ransom, C., Abáigar, T., Abdelgadir, M., El Alqamy, H., Beddiaf, M., Belbachir, F., Belbachir-Bazi, A., Berbash, A. A., Beudels-Jamar, R., Boitani, L., Breitenmoser, C., Cano, M., Chardonnet, P., Collen, B., Cornforth, W. A., Cuzin, F., Gerngross, P., Haddane, B., Hadjeloum, M., Jacobson, A., Jebali, A., Lamarque, F., Mallon, D., Minkowski, K., Monfort, S., Ndoassal, B., Newby, J., Ngakoutou, B. E., Niagate, B., Purchase, G., Samaïla, S., Samna, A. K., Sillero-Zubiri, C., Soultan, A. E., Stanley Price, M. R., Baillie, J. E. M., 2012. Forgotten biodiversity in desert ecosystems. Science 336, 1379–1380. doi.org/10.1126/science.336.6087.1379
- Durant, S. M., Wacher, T., Bashir, S., Woodroffe, R., De Ornellas, P., Ransom, C., Newby, J., Abáigar, T., Abdelgadir, M., El Alqamy, H., Baillie, J., Beddiaf, M., Belbachir, F., Belbachir-Bazi, A., Berbash, A. A., Bemadjim, N. E., Beudels-Jamar, R., Boitani, L., Breitenmoser, C., Cano, M., Chardonnet, P., Collen, B., Cornforth, W. A., Cuzin, F., Gerngross, P., Haddane, B., Hadjeloum, M., Jacobson, A., Jebali, A., Lamarque, F., Mallon, D., Minkowski, K., Monfort, S., Ndoassal, B., Niagate, B., Purchase, G., Samaïla, S., Samna, A. K., Sillero-Zubiri, C., Soultan, A. E., Stanley Price, M. R., Pettorelli, N., 2014. Fiddling in biodiversity hotspots while deserts burn? Collapse of the Sahara's megafauna. Divers. Distrib. 20, 114–122. doi.org/10.1111/ddi.12157

- Foley, J. A., Coe, M. T., Scheffer, M., Wang, G., 2003. Regime Shifts in the Sahara and Sahel: Interactions between Ecological and Climatic Systems in Northern Africa. Ecosystems 6, 524–539. doi.org/10.1007/s10021-002-0227-0
- Frankham, R., 2005. Genetics and extinction. Biol. Conserv. 126, 131–140. doi.org/10.1016/j.biocon.2005.05.002
- Gasse, F., 2006. Climate and hydrological changes in tropical Africa during the past million years. Comptes Rendus - Palevol 5, 35–43. doi.org/10.1016/j.crpv.2005.09.012
- Geldmann, J., Barnes, M., Coad, L., Craigie, I. D., Hockings, M., Burgess, N. D., 2013. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238. doi.org/10.1016/j.biocon.2013.02.018
- Giannini, A., 2010. Mechanisms of climate change in the semiarid African Sahel: The local view. J. Clim. 23, 743–756. doi.org/10.1175/2009JCLI3123.1
- Giannini, A., Biasutti, M., Held, I. M., Sobel, A.H., 2008. A global perspective on African climate. Clim. Change 90, 359–383. doi.org/10.1007/s10584-008-9396-y
- Griffis-Kyle, K. L., Mougey, K., Vanlandeghem, M., Swain, S., Drake, J. C., 2018. Comparison of climate vulnerability among desert herpetofauna. Biol. Conserv. 225, 164–175. doi.org/10.1016/j.biocon.2018.06.009
- Haddad, N. M., Brudvig, L. A., Clobert, J., Davies, K. F., Gonzalez, A., Holt, R. D., Lovejoy, T. E., Sexton, J. O., Austin, M. P., Collins, C. D., Cook, W. M., Damschen, E. I., Ewers, R. M., Foster, B. L., Jenkins, C. N., King, A. J., Laurance, W. F., Levey, D. J., Margules, C. R., Melbourne, B. A., Nicholls, A. O., Orrock, J. L., Song, D. X., Townshend, J. R., 2015. Habitat fragmentation and its lasting impact on Earth's ecosystems. Sci. Adv. 1, e1500052. doi.org/10.1126/sciadv.1500052
- Hanski, I., 1998. Metapopulation dynamics. Nature 396, 41–49. doi.org/10.1016/0169-5347(89)90061-X
- Holmes, J. A., 2008. Ecology: How the Sahara became dry. Science. 320, 752–753. doi.org/10.1126/science.1158105
- Hutchinson, C. M., Reynolds, C., Hill, J., Sommer, S., von Maltitz, G., 2018. World Atlas of Desertification, 3rd edition. ed, Publication Office of The European Union. Luxembourg. doi.org/10.2760/9205
- Iknayan, K. J., Beissinger, S. R., 2018. Collapse of a desert bird community over the past century driven by climate change. Proc. Natl. Acad. Sci. 0, 201805123. doi.org/10.1073/pnas.1805123115
- Jackson, R., Pringle, C. M., 2010. Ecological benefits of reduced hydrologic connectivity in intensively developed landscapes. BioScience. 60, 37-46. doi.org/10.1525/bio.2010.60.1.8

- Joppa, L. N., O'Connor, B., Visconti, P., Smith, C., Geldmann, J., Mann, M. H., Watson, J. E. M., Butchart, S. H. M., Sawmy, M. V., Halpern, B. S., Ahmed, S. E., Balmford, A., Sutherland, W. J., Harfoot, M., Hilton-Taylor, C., Foden, W., Minin, E., Di Pagad, S., Genovesi, P., Hutton, J., Burgess, N. D., 2016. Filling in biodiversity gaps. Science. 352, 416–418. doi.org/10.1111/j.1365-2745.2009.01507.x
- Kröpelin, S., Verschuren, D., Lézine, A. M., Eggermont, H., Cocquyt, C., Francus, P., Cazet, J. P., Fagot, M., Rumes, B., Russell, J. M., Darius, F., Conley, D. J., Schuster, M., Von Suchodoletz, H., Engstrom, D. R., 2008. Climate-driven ecosystem succession in the Sahara: The past 6000 years. Science. 320, 765– 768. doi.org/10.1126/science.1154913
- Le Houérou, H. N., 1997. Climate, flora and fauna changes in the Sahara over the past 500 million years. J. Arid Environ. 37, 619–647. doi.org/10.1006/jare.1997.0315
- Le Houérou, H. N., 1980. The Rangelands of the Sahel. J. Range Manag. 33, 41–45. doi.org/10.2307/3898226
- Li, D., Wu, S., Liu, L., Zhang, Y., Li, S., 2018. Vulnerability of the global terrestrial ecosystems to climate change. Glob. Chang. Biol. doi.org/10.1111/gcb.14327
- Loarie, S. R., Duffy, P. B., Hamilton, H., Asner, G. P., Field, C. B., Ackerly, D. D., 2009. The velocity of climate change. Nature 462, 1052–1055. doi.org/10.1038/nature08649
- Margules, C. R., Pressey, R. L., 2000. Systematic conservation planning. Nature 405, 243–253. doi.org/10.1038/35012251
- Margules, C., Sarkar, S., 2007. Systematic Conservation Planning. Cambridge University Press. Cambridge. doi.org/10.1017/S0030605308042257
- Massot, M., Clobert, J., Ferrière, R., 2008. Climate warming, dispersal inhibition and extinction risk. Glob. Chang. Biol. 14, 461–469. doi.org/10.1111/j.1365-2486.2007.01514.x
- Moilanen, A., Possingham, H. P., Wilson, K. A., 2009. Spatial Conservation Prioritization:
 Past, Present and Future, in: Spatial Conservation Prioritization Quantitative
 Methods and Computational Tools (Eds.), Moilanen, A., Wilson, K. A.,
 Possingham, H. P.). Oxford University Press.
 doi.org/10.1017/S037689291000007X
- Murphy, A. L., Pavlova, A., Thompson, R., Davis, J., Sunnucks, P., 2015. Swimming through sand: Connectivity of aquatic fauna in deserts. Ecol. Evol. 5, 5252–5264. doi.org/10.1002/ece3.1741
- Myers, N., Mittermeler, R. A., Mittermeler, C. G., da Fonseca, G. A. B., Kent, J., 2000. Biodiversity hotspots for conservation priorities. Nature, 403, 853-858. doi.org/10.1038/35002501

- Pimm, S. L., 2008. Biodiversity: Climate Change or Habitat Loss Which Will Kill More Species? Curr. Biol. 18, R117–R119. doi.org/10.1016/j.cub.2007.11.055
- Prentice, I., Colin, J. D., Afanas'eva, N.B., Ager, T. A., Anderson, K., Anderson, P. M., Andrieu, V., Andreev, A. A., Ballouche, A., Bartlein, P. J., de Beaulieu, J. L., Bengo, M., Berezina, N. A., Bezusko, L. G., Bezusko, T. V., Bigelow, N. H., Blyakharchuk, T. A., Bolikhovskaya, N. S., Bonnefille, R., Bottema, S., Brénac, P., Brubaker, L. B., Buchet, G., Burney, D., Bykova, G. V., Cheddadi, R., Chen, X., Chernavskaya, M. M., Chernova, G. M., Cwynar, L. C., Dorofeyuk, N. I., Dirksen, V. G., Edorh, T., Edwards, M. E., Eisner, W. R., Elenga, H., Elina, G. A., Elmoutaki, S., Filimonova, L. V., Glebov, F. Z., Guiot, J., Gunova, V. S., Hamilton, A. C., Han, H., Harrison, S. P., Hu, F. S., Huang, C., Huntley, B., Jolly, D., Jonson, H., Ke, M., Khomutova, V. I., Kong, Z., Kvavadze, E. V., Laarif, F., Lamb, H. E., Lézine, A. M., Li, S., Li, W., Liew, P., Liu, G., Liu, J., Liu, Q., Liu, K. B., Lozhkin, A. V., Maley, J., Marchant, R., Mbenza, M., MacDonald, G. M., Miyoshi, N., Mock, C. J., Morita, Y., Newby, P., Ni, J., Osipova, I. R., Panova, N. K., Perez-Obiol, R., Peyron, O., Prentice, I. C., Qiu, W., Reille, M., Ren, G., Reynaud-Farrera, I., Richard, P. J. H., Riollet, G., Ritchie, J. C., Roche, E., Saarse, L., Scott, L., Sevastyanov, D. V., Sher, A. V., Song, C., Spear, R. W., Ssemmanda, I., Straka, H., Sugita, S., Sun, X., Takahara, H., Tang, L., Tarasov, P. E., Taylor, D., Thompson, R. S., Uchiyama, T., Van Campo, E., Vilimumbalo, S., Vincens, A., Volkova, V. S., Waller, M., Webb, T., Williams, J. W., Xia, Y., Xu, Q., Yan, S., Yang, X., Yu, G., Zernitskaya, V. P., Zhao, J., Zheng, Z., 2000. Mid-Holocene and glacial-maximum vegetation geography of the northern continents and Africa. J. Biogeogr. 27, 507-519. doi.org/10.1046/j.1365-2699.2000.00425.x
- Pringle, C., 2003. What is hydrologic connectivity and why is it ecologically important? Hydrol. Process. 17, 2685–2689. doi.org/10.1002/hyp.5145
- Safriel, U., Adeel, Z., Niemeijer, D., Puigdefabregas, J., White, R., Lal, R., Winslow, M., Ziedler, J., Prince, S., Archer, E., King, C., Shapiro, B., Wessels, K., Nielsen, T., Portnov, B., Reshef, I., Thonell, J., Lachman, E., McNab, D., 2005. Dryland Systems, in Rm, H., R, S., N, A. (Eds.), Millennium Ecosystem Assessment: Ecosystems and Human Well-Being: Current State and Trends: Findings of the Condition and Trends Working Group. Washington, DC: Island Press, Washington, DC, p. 40.
- Saura, S., Bertzky, B., Bastin L., Battistella, L., Mandrici, A., Dubois, G., 2019. Global trends in protected area connectivity from 2010 to 2018. Biol. Conserv. 238, 108183. doi.org/10.1016/j.biocon.2019.07.028

- Schuster, M., Duringer, P., Ghienne, J. F., Vignaud, P., Mackaye, H. T., Likius, A., Brunet, M., 2006. The age of the Sahara Desert. Science. 311, 821. doi.org/10.1126/science.1120161
- Schwalm, C. R., Anderegg, W. R. L., Michalak, A. M., Fisher, J. B., Biondi, F., Koch, G.,
 Litvak, M., Ogle, K., Shaw, J. D., Wolf, A., Huntzinger, D. N., Schaefer, K., Cook,
 R., Wei, Y., Fang, Y., Hayes, D., Huang, M., Jain, A., Tian, H., 2017. Global patterns of drought recovery. Nature 548, 202–205. doi.org/10.1038/nature23021
- Secretariat of the Convention on Biological Diversity, 2010. Global Biodiversity Outlook 3, Secretariat of the Convention on Biological Diversity. Montréal. doi.org/10.2143/KAR.25.0.504988
- Secretariat of the Convention on Biological Diversity, 2014. Global Biodiversity Outlook 4, Secretariat of the Convention on Biological Diversity. Montréal.
- Shafer, C. L., 1999. National park and reserve planning to protect biological diversity: Some basic elements. Landsc. Urban Plan. 44, 123–153. doi.org/10.1016/S0169-2046(98)00115-7
- Shkedy, Y., Saltz, D., 2000. Characterizing core and corridor use by Nubian ibex in the Negev Desert, Israel. Conserv. Biol. 14, 200–206. doi.org/10.1046/j.1523-1739.2000.98291.x
- Sinervo, B., Méndez-de-la-Cruz, F., Miles, D. B., Heulin, B., Bastiaans, E., Cruz, M. V.
 S., Lara-Resendiz, R., Martínez-Méndez, N., Calderón-Espinosa, M. L., Meza-Lázaro, R. N., Gadsden, H., Avila, L. J., Morando, M., De La Riva, I. J., Sepúlveda, P. V., Rocha, C. F. D., Ibargüengoytía, N., Puntriano, C. A., Massot, M., Lepetz, V., Oksanen, T. A., Chappie, D. G., Bauer, A. M., Branch, W. R., Clobert, J., Sites, J. W., 2010. Erosion of lizard diversity by climate change and altered thermal niches. Science. doi.org/10.1126/science.1184695
- Singh, J.S., 2002. The biodiversity crisis: A multifaceted review. Curr. Sci. 82, 638–647. doi.org/10.1016/S0169-5347(01)02380-1
- Slimberloff, D., Cox, J., 1987. Consequences and Costs of Conservation Corridors. Conserv. Biol. 1, 63–71. doi.org/10.1111/j.1523-1739.1987.tb00010.x
- Spooner, F. E. B., Pearson, R. G., Freeman, R., 2018. Rapid warming is associated with population decline among terrestrial birds and mammals globally. Glob. Chang. Biol. 24, 4521–4531. doi.org/10.1111/gcb.14361
- Tanaka, Y., 2000. Extinction of populations by inbreeding depression under stochastic environments. Popul. Ecol. 42, 55–62. doi.org/10.1007/s101440050009
- Taylor, M. F. J., Sattler, P. S., Evans, M., Fuller, R. A., Watson, J. E. M., Possingham, H.
 P., 2011. What works for threatened species recovery? An empirical evaluation for Australia. Biodivers. Conserv. 20, 767–777. doi.org/10.1007/s10531-010-9977-8

- Taylor, P. D., Fahrig, L., Henein, K., Merriam, G., 1993. Connectivity Is a Vital Element of Landscape Structure. Oikos 68, 571. doi.org/10.2307/3544927
- Taylor, P. D., Fahrig, L., With, K. A., 2006. Landscape connectivity: a return to the basics, in: Crooks, K. R., Sanjayan, M. (Eds.), Connectivity Conservation. pp. 29– 43. doi.org/10.1017/CBO9780511754821.003
- Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham,
 Y. C., Erasmus, B. F. N., Ferreira De Siqueira, M., Grainger, A., Hannah, L.,
 Hughes, L., Huntley, B., Van Jaarsveld, A. S., Midgley, G. F., Miles, L., OrtegaHuerta, M. A., Peterson, A. T., Phillips, O. L., Williams, S.E., 2004. Extinction risk
 from climate change. Nature 427, 145–148. doi.org/10.1038/nature02121
- Tischendorf, L., Fahrig, L., 2000. On the usage and measurement of landscape connectivity. Oikos 90, 7–19. doi.org/10.1034/j.1600-0706.2000.900102.x
- Trape, S., 2009. Impact of climate change on the relict tropical fish fauna of central Sahara: Threat for the survival of Adrar mountains fishes, Mauritania. PLoS One 4, e4400. doi.org/10.1371/journal.pone.0004400
- Vale, C. G., Brito, J. C., 2015. Desert-adapted species are vulnerable to climate change: Insights from the warmest region on Earth. Glob. Ecol. Conserv. 4, 369–379. doi.org/10.1016/j.gecco.2015.07.012
- Vale, C. G., Pimm, S. L., Brito, J. C., 2015. Overlooked mountain rock pools in deserts are critical local hotspots of biodiversity. PLoS One 10, e0118367. doi.org/10.1371/journal.pone.0118367
- Vale, C. G., Santos, X., Brito, J. C., 2019. Desert Biogeography: Sahara-Sahel Biodiversity Patterns, in: Reference Module in Earth Systems and Environmental Sciences. Elsevier, pp. 1–6. doi.org/10.1016/B978-0-12-409548-9.11927-X
- van Andel, J., Aronson J., 2012. Restoration Ecology: The New Frontier, 2nd Edition. Blackwell Publishing, Oxford. doi.org/10.1002/9781118223130
- Velo-Antón, G., Martínez-Freiría, F., Pereira, P., Crochet, P. A., Brito, J. C., 2018. Living on the edge: Ecological and genetic connectivity of the spiny-footed lizard, *Acanthodactylus aureus*, confirms the Atlantic Sahara Desert as a biogeographic corridor and centre of lineage diversification. J. Biogeogr. 45, 1031–1042. doi.org/10.1111/jbi.13176
- Ward, D., 2016. Biology of Deserts, Oxford Uni. ed. Oxford. doi.org/10.1111/aec.12523
- Watson, J. E. M., Dudley, N., Segan, D. B., Hockings, M., 2014. The performance and potential of protected areas. Nature 515, 67–73. doi.org/10.1038/nature13947

WWF, 2018. Living Planet Report - 2018: Aiming Higher, WWF. ed. Gland, Switzerland.

Zeng, N., 2003. Drought in the Sahel. Science. 302, 999–1000. doi.org/10.1126/science.1090849
Zhang, Z., Ramstein, G., Schuster, M., Li, C., Contoux, C., Yan, Q., 2014. Aridification of the Sahara Desert caused by Tethys Sea shrinkage during the Late Miocene. Nature 513, 401–404. doi.org/10.1038/nature13705

Chapter II: Manuscript I

The Dark Side of the Green Wall: biodiversity impacts should be minimised in the African Sahel¹

Abstract

The severe droughts that affected the arid African Sahel during the 1970s - 1980s caused a widespread food crisis, with hundreds of thousands of human deaths and migration waves. The world was so utterly shocked with the images of human starvation that global initiatives were developed to relieve the food crisis (e.g. Live Aid). This crisis prompted the United Nations to establish the Convention to Combat Desertification (UNCCD) in 1994, and eleven years later the African Union put forward the "Great Green Wall for the Sahara and the Sahel Initiative" (hereafter "Wall"). The aim was to stop desertification, ensure food security, halt conflicts over dwindling natural resources and mass migration to Europe, and above all, improve human living conditions in this low resilience region. Currently, a continuous line of trees stretching from the Atlantic to the Indian Ocean is being planted. This Wall will become the largest living structure on Earth and allegedly provide a vital contribution to the United Nations Sustainable Development Goals (SDGs). However, such massive land-cover and hydrological changes will likely lead to irrevocable losses in biodiversity, such as decimating, fragmenting, and isolating endemic and threatened dryland species, that have largely been overlooked. To lessen these impacts, the Wall should be designed to avoid biologically important localities and to provide natural north-south corridors that maintain population connectivity and ecologically representative ecosystems.

Keywords: afforestation, barrier effect, connectivity, desertification, fragmentation, habitat change

¹ Based on the following submitted manuscript: Naia, M., Tarroso, P., Liz, A. V., Gonçalves, D. V., Martínez-Freiría, F., Santarém, F., Yusefi, G. H., Velo-Antón, G., Avella I., Hanson, J. O., Khalatbari, L., Ferreira da Silva, M. J., Camacho-Sanchez, M., Boratyńsk, Z., Carvalho, S. B., Brito, J. C. The Dark Side of the Green Wall: biodiversity impacts should be minimised in the African Sahel.

2.1. Introduction

2.1.1. A colossal Wall

The Wall was envisaged along the Sahel-range (Fig. 2.1A) to prevent further desertification and promote drought resilience, food security, and human well-being (Zeng, 2003; Hutchinson et al., 2018; www.unccd.int). This gigantic investment may reach up to \$10 billion USD, with contributions from national and international partners including the African Union, The World Bank, European Union, and the Food and Agriculture Organization. Scheduled to be completed by 2030, the Wall will span the African continent - ranging 7,775 km from the Atlantic to the Indian Ocean - and comprise an average of 15 km wide band of arid-resistant tree species (www.greatgreenwall.org; Fig. 2.2A). Additionally, the overall planned intervention zone target areas with average rainfall between 100 - 400 mm (Fig. 2.1B), and thus will reach up to more than 200 km wide and include multiple land-uses, such as agroforestry and pastoral activities (Dia and Duponnois, 2010). It will cross eleven countries: Senegal, Mauritania, Mali, Burkina-Faso, Niger, Nigeria, Chad, Sudan, Eritrea, Ethiopia, and Djibouti. Each of these countries has developed a national implementation plan (Pan-African Agency of the Great Green Wall, 2018) specifying the places allocated for the initiative. As of 2019, these Wall countries are primarily undertaking afforestation activities and improving agriculture and water harvesting (Pan-African Agency of the Great Green Wall, 2018).

Figure 2.1 | (A) Location of the Sahel among all African ecoregions; (B) mean precipitation in Africa, depicting the location of the Wall, and (C) the human footprint index in the African continent and within the Wall intervention zone, expressed as a percentage of the relative human influence (high values and red colour stand for higher human footprint (Venter *et al.*, 2018).

Figure 2.2 | (A) Location of the Great Green Wall (Wall) and respective intervention zone. (B) Number of terrestrial vertebrate species in each taxonomic group (amphibians, reptiles, birds and mammals) occurring in the Wall intervention zone (N = 1,275) and percentage in relation to the terrestrial vertebrates present in Africa (N = 6,041).

This study presents a critical view on the implementation of the Wall by addressing the potential impacts to biodiversity. Specifically, it aims to: i) identify which species have its distribution range within the Wall intervention zone; ii) identify its biogeographic affinity and conservation status; iii) discuss the potential lack of connectivity created by the Wall for arid-adapted species; and iv) present recommendations to enhanced the Wall initiative by taking into account biodiversity conservation.

2.2. Material and methods

2.2.1. Definition of the Wall location

The Wall location and intervention zone were digitized to spatial polygons from the most recent national reports (Pan-African Agency of the Great Green Wall, 2018) and georeferenced to the WGS84 coordinate system. Protected areas were extracted from the World Database of Protected Areas (UNEP-WCMC and IUCN, 2018) and manually cleaned, eliminating the areas not yet implemented, marine, not related to biodiversity conservation (hunting, cinegetic interest, and sylvo-pastoral reserves), and non-managed (forest reserves and classified forests). All processes and projection to the Africa Lambert Conformal Conic Projection were conducted in ArcGIS v.10.5 (ESRI, 2016).

2.2.2. Species list

Species range data for African amphibians, reptiles, birds and mammals were obtained from the Red List by the International Union for Conservation of Nature (IUCN) and BirdLife International (BirdLife International and Handbook of the Birds of the World, 2018; IUCN, 2019), with the exception of *Eudorcas rufifrons*, for which an updated polygon was used (Brito *et al.*, 2018). Marine, introduced, and extinct species were excluded from the analysis. Species distribution polygons intersecting the Wall intervention zone were selected for analysis, resulting in a total of 1,275 species, including 57 amphibians, 91 reptiles, 840 birds (wintering and/or breeding), and 287 mammals (Table S1). This species list is an underestimate of the real number of species that are potentially affected by the Wall because not all African vertebrates have been assessed by IUCN Red List (Not Evaluated status), and thus range polygons are unavailable. For instance, in the Sahara-Sahel only, 88 reptiles known in the area have not been evaluated and thus range polygons are unavailable (Brito *et al.*, 2016). All data were projected to the Africa Lambert Conformal Conic Projection.

2.2.3. Species biogeographic affinity and conservation status

From the 1,275 species potentially affected by the Wall intervention zone, 110 are endemic to the region (\geq 75% of the range occurs in the area) and display distinct biogeographic affinities: Sahara, Sahel, Savannah, or Wall endemics (Fig. 2.3). The Sahara, Sahel and Savannah categories were defined from the percentage of the range (\geq 75%) intersecting the respective ecoregion (Dinerstein *et al.*, 2017). The Wall endemics include the species in which the percentage of the range (\geq 75%) intersects the Wall intervention zone. The current conservation status of each species was extracted from IUCN Red List (IUCN, 2019). Incorporating biogeographic affinity helps to identify species adapted to live in a particular region, exhibiting particular habitat requirements, where land-cover and land-use change can have higher impacts.

The area (km²) of the African distribution of each species and the area of the African range intersected by the Wall intervention zone were both calculated with ArcGIS. These values allowed calculating the percentage of the African range that will be affected by the Wall intervention zone.

Figure 2.3 | Geographical representation of biogeographic affinities. Sahara endemic includes species whose distribution reaches the northern part of the Wall intervention zone, Sahel endemic includes species whose distribution transverses latitudinally the Wall, Savannah endemic includes species whose distribution reaches the southern part of the Wall, and Wall endemic includes species whose distribution occurs \geq 75% within the Wall. The black polygons illustrate hypothetical species distributions.

2.2.4. Species richness

Species richness was calculated using R v.3.3.3 (R Core Team, 2016) through Rstudio 1.1.456 (RStudio Team, 2015). A square grid containing cells with 50 km² resolution was created over the Wall intervention zone using "raster" (Hijmans, 2017) R package. Species range data were overlaid with this grid using "rgdal" (Bivand *et al.*, 2017), "letsR" (Vilela and Villalobos, 2015) and "sp" (Pebesma and Bivand, 2005) R packages. A species was considered to occur in a cell if any portion of the species' range overlapped the cell. The final maps of species richness were obtained in ArcGIS by summing the number of species occurring in each cell. Species richness was calculated for every taxon in the present study and for the subset of species endemic to the Wall intervention zone.

2.3. Results and discussion

2.3.1. Overlooked biodiversity impacts

The Wall has been announced as a strategy to enhance biodiversity conservation. Supposedly, the Wall will improve landscape connectivity, habitat protection, species diversity (including agrobiodiversity), and critical ecosystem services (*e.g.* water supply, pollination, and carbon sequestration; Davies, 2017) and claims to be aligned with the SDGs (specifically Goal 15 – "Life on Land"). However, its implementation will potentially cause multiple impacts on local biodiversity that, to date, have not been adequately addressed in reports by the initiative (Davies, 2017; Pan-African Agency of the Great Green Wall, 2018).

Firstly, the Wall will significantly alter the habitats of 1,275 terrestrial vertebrates occurring within intervention zone representing at least 21% of all African terrestrial vertebrates (Fig. 2.2B, Table S1). Approximately 6% of the affected species (N = 77) have more than half of their African range inside the Wall intervention zone (Fig. 2.4).

The Wall intervention zone contains many endemic and threatened species with distinctive evolutionary histories that are adapted to live in extreme environments (Vale and Brito, 2015; Brito et al., 2016). For instance, six globally threatened Sahara endemic species occur within this zone (Critically endangered, Endangered, or Vulnerable status on the Red List by the IUCN; Fig. 2.5). Additionally, three threatened species and eleven Data Deficient species with unknown population trends or extinction risks occur entirely within this zone. From the total species affected, 103 species are classified as threatened or Near Threatened and correspond mostly to birds and mammals (Fig. 2.6). Furthermore, the viability of the reintroduction program of the Extinct in the Wild scimitar oryx (Oryx dammah) in Chad could be affected since it is completely covered by the Wall intervention zone (Fig. 2.7). When finished, the Wall will likely affect many more species, including biocrusts, invertebrates, and vertebrates for which precise spatial distribution data are currently unavailable. Afforestation of previously open areas will likely result in species replacement, decreasing the number of arid-adapted species and increasing generalist species, and in turn alter food web structure and ecosystem function. Perversely, in Chad and Nigeria, a shelterbelt is being planted using alien tree species (Pan-African Agency of the Great Green Wall, 2018) with reported invasive potential (e.g. Davies, 2017), such as neem (Azadirachta indica), the Mexican palo verde (Parkinsonia aculeata), and two mesquite species (Prosopis chilensis and Prosopis juliflora). P. juliflora enhances the capacity of Anopheles mosquitoes to transmit malaria (Muller, 2017). Similarly, in Nigeria, Eucalyptus species are being planted to build the Wall (Pan-African Agency of the Great Green Wall, 2018), despite the fact that their long roots increase desertification risks by desiccating wetlands. Such landscape changes could increase extinction risks, via inbreeding depression and loss of genetic diversity (Frankham, 2005), in two Wall endemics - Heuglin's gazelle (Eudorcas tilonura) and dama gazelle (Nanger dama) - which persist in small and fragmented populations experiencing continuous decline (Fig. 2.7). These species have been extirpated from most of its African historical range due to human disturbance through habitat conversion to agroforestry and pastoral units; the latter are precisely a part of the Wall objectives. Additional overhunting and habitat loss driven by natural system modifications in the Wall could potentially drive these species towards extinction.

Figure 2.4 | Percentage of the African range of species that are within the Wall intervention zone (N = 1,275). Representation by taxonomic group, where the size of each circle represents the amount of species in each range category. A total of 236 species have their range affected by $\geq 25\%$ and 77 species have their range affected by $\geq 50\%$ (18.0% and 6.0% of the total species, respectively), while 14 of them have their distribution 100% affected by the Wall intervention zone.

Figure 2.5 | Percentage of endemic species by conservation status and biogeographic affinity. From the total 1,275 species, 8.6% of them (N = 110) are endemic and categorise in one of the four biogeographic groups. The number of species in each biogeographic group is given above bars.

Figure 2.6 | Percentage of species by conservation status and taxonomic group (N = 1,275), whose distributions occur within the Wall intervention zone. The conservation status nomenclature follows the IUCN Red List categories (IUCN, 2019): NE (Not Evaluated), DD (Data Deficient), LC (Least Concern), NT (Near Threatened), VU (Vulnerable), EN (Endangered) and CR (Critical Endangered). Numbers to the right of the bar depict the number of species near threatened or within a threatened IUCN category.

Figure 2.7 | Distribution of threatened fauna within the Wall intervention zone. Representation of species range of six threatened species and the reintroduction site of the Extinct in the Wild *Oryx dammah*.

Secondly, the Wall will decrease landscape connectivity and species movement along the north-south axis by creating a barrier across the intervention zone (Fig. 2.2A).

Currently, trees are being planted close together (2.5 m apart; Dia and Duponnois, 2010), and such narrow spacing will substantially increase the amount of shaded areas in the near future. Since species with low dispersal capabilities (e.g. small vertebrates) or desert adaptations may be unable to cross heavily shaded areas, the Wall will likely limit gene flow between populations of these species. Loss of gene flow will decrease population viability by reducing effective population size and genetic diversity, due to population bottlenecks and genetic drift, and contribute to inbreeding depression and loss of evolutionary potential (Frankham, 2005). These negative impacts may be exacerbated under climate change. Indeed, the velocity and magnitude of climate change in arid-related biomes, including the Sahel region, are expected to be greater than other biomes (Loarie, et al., 2009). Sahara endemics are already living close to their physiological limits (Vale and Brito, 2015), and the Wall will likely hamper their southwards dispersal to search for favourable habitats. Together with massive landcover change created by the Wall, these factors will likely have severe impacts on species highly specialized to dryland conditions, leading to loss of unique adaptations and potentially local extinctions.

Thirdly, the Wall will increase landscape connectivity along the horizontal axis by homogenizing land-cover from the West to the East coast. If not properly planned, changing natural river systems and creating water storage structures (*e.g.* lakes and irrigation channels) along the Wall intervention zone – in addition to potentially affecting water availability in seasonal wetlands – will remove natural barriers for contemporary evolutionary processes. For instance, these changes could dilute the genetic diversity within species formed by historical natural processes over thousands of years, such as the Nile monitor (*Varanus niloticus*), species whose population structure is determined by the current hydrographic network (Dowell *et al.*, 2016). The Wall could also facilitate invasive species and pathogens potentially creating uncontrollable problems for biodiversity, public health, and local economies (Davies, 2017; Muller, 2017).

Fourthly, the Wall is expected to attract human communities, boosting migration towards the intervention zone (Davies, 2017; Hutchinson *et al.*, 2018). With the forecasted increases in African populations (Hutchinson *et al.*, 2018) and without evidence-based management plans (*e.g.* urban and territory planning), it is expected additional habitat change and intensification of human footprint (Fig. 2.1C). Expected increases in wood collection, overgrazing pressure, and expenditure of water resources can affect vegetation cover and ultimately challenge the Wall objectives, such as already observed in Burkina-Faso (MEEVCC, 2017). The development of urban areas and linear-infrastructures can boost accessibility to previously remote and wild areas, which

in turn can intensify threats to biodiversity, such as road killings, bird collisions with power lines or overhunting pressure (Davies, 2017; Hutchinson *et al.* 2018).

2.3.2. Recommendations to minimise biodiversity impacts

Informed and evidence-based planning is needed to minimise biodiversity impacts of the Wall and achieve its overall objectives. For instance, inadequate scientific input has contributed to the failure of past initiatives aiming to halt desertification in other countries (Benalia, 2009; Jiang, 2016). To avoid the same outcome in the Sahel region, is here outlined several important considerations. Firstly, given management failures in Algeria and the former Soviet Union (Benalia, 2009; Jiang, 2016), urban and territory planning for the intervention zone should explicitly account for predicted increases in human populations (Hutchinson et al. 2018). Secondly, ensuring water availability is important for sustaining nearby seasonal and permanent wetlands since similar afforestation projects in China were associated with significant decreases in groundwater availability (Jiang, 2016). Thirdly, as previously discussed, the spacing between planted trees should be enlarged (Brito et al., 2016). Fourthly, risk assessments should be conducted for potentially invasive species before including them in afforestation programs. Fifthly, given that some afforested areas in Algeria and China had insufficient rainfall (< 400 mm annual precipitation) for germination and regeneration of native vegetation (Benalia, 2009; Jiang, 2016), the spatial extent and location of the Wall intervention zone should be reviewed. One strategy to avoid this issue could be to conduct in situ experiments across multiple ecosystem types within the intervention zone to identify the most welladapted native tree species for afforestation (Wade et al., 2018).

The original Wall agreement mandated that new protected areas should be established within the intervention zone (Dia and Duponnois, 2010). Indeed, if not disrupted and adequately managed, protected areas could help buffer local biodiversity hotspots in the central-western regions (Fig. 2.8), and some of the most emblematic and threatened African fauna from the severe land-cover changes within the Wall intervention zone (Davies, 2017). Examples include the *Nanger dama*, north-westernmost populations of African savannah elephant (*Loxodonta africana*), and the reintroduction sites of *Oryx dammah* (Fig. 2.7). Furthermore, large protected areas, such as Ouadi Rimé-Ouadi Achim in Chad and Ansongo-Ménaka and Gourma in Mali, may serve as corridors and stepping stones for biodiversity (respectively; Fig. 2.2A). Yet existing protected areas are insufficient to ensure long-term biodiversity persistence in the region (Brito *et al.*, 2016). Additional protected areas are critical for the north-westernmost populations of giraffe (*Giraffa camelopardalis*) in Niger and the Wall endemics in Mali.

Southern Mauritania and Sudan lack protected areas entirely, even though protected areas are needed in these places to for the threatened red-fronted gazelle (*Eudorcas rufifrons*) sociable lapwing (*Vanellus gregarius*), and *Eudorcas tiloura*. Key Biodiversity Areas (www.keybiodiversityareas.org) and gap analysis assessments (Brito *et al.*, 2016) could be used to guide policy and ensure north-south corridors to allow species dispersal along the Wall. Long-term monitoring of vertebrate populations and habitat suitability is also needed to evaluate the success of conservation actions.

Figure 2.8 | Hotspots of species richness. Species richness of all taxa and Wall endemics. Richness is represented as percentage of species present in each grid cell of 50 km² resolution in relation to the total species for each category.

The challenge now is to revise the design and implementation of the Wall to ensure that its undoubtedly positive objectives such as securing livelihood conditions, promoting carbon sequestration, and restoring landscapes in the Sahel (Dia and Duponnois, 2010; Davies, 2017), can be realized with minimal impacts to biodiversity. To achieve this, the African Union and Pan-African Agency of the Great Green Wall should carefully consider biodiversity impacts of the Wall. Otherwise, the Wall can push imperilled Sahel biodiversity to extinction, and fail to aid human populations.

2.4. References

- Benalia S., 2009. "The Green Barrier in Algeria: Actual Situation and Development Prospect" in Technology and management to ensure sustainable agriculture, agro-systems, forestry and safety, pp. 2163–2166.
- BirdLife International and Handbook of the Birds of the World, 2018. Bird Species Distribution Maps of the World, Version 6.0. Bird Species Distribution Maps of the

World. Version 2018.1. (available at https://www.birdlife.org/; acceded in 13/05/2019)

- Bivand, R., Keitt, T, Rowlingson, B., 2017. rgdal: Bindings for the 'Geospatial' Data Abstraction Library. R package version 1.2-16. https://CRAN.Rproject.org/package=rgdal
- Brito, J.C., Durant, S.M., Pettorelli, N., Newby, J., Canney, S., Algadafi, W., Rabeil, T., Crochet, P.A., Pleguezuelos, J.M., Wacher, T., de Smet, K., Gonçalves, D.V., da Silva, M.J.F., Martínez-Freiría, F., Abáigar, T., Campos, J.C., Comizzoli, P., Fahd, S., Fellous, A., Garba, H.H.M., Hamidou, D., Harouna, A., Hatcha, M.H., Nagy, A., Silva, T.L., Sow, A.S., Vale, C.G., Boratyński, Z., Rebelo, H., Carvalho, S.B., 2018. Armed conflicts and wildlife decline: Challenges and recommendations for effective conservation policy in the Sahara-Sahel. Conserv. Lett. e12446. doi.org/10.1111/conl.12446
- Brito J. C., Tarroso P., Vale C. G., Martínez-Freiría F., Boratyński Z., Campos J. C., Ferreira S., Godinho R., Gonçalves D. V., Leite J. V., Lima V. O., Pereira P., Santos X., Ferreira da Silva M. J., Silva T. L., Velo-Antón G., Veríssimo J., Crochet P. A., Pleguezuelos J. M., Carvalho S. B., 2016. Conservation biogeography of the Sahara-Sahel: additional protected areas are needed to secure unique biodiversity. *Divers. Distrib.* 22, 371–384. doi.org/10.1111/ddi.12416
- Davies J., 2017. "Biodiversity and the Great Green Wall: managing nature for sustainable development in the Sahel" (IUCN, West and Central Africa Programme (PACO), Ouagadougou, Burkina Faso). doi.org/10.2305/IUCN.CH.2017.10.en
- Dia A., Duponnois R., 2010. Le projet majeur africain de la Grande Muraille Verte (Institut de Recherche pour le Développement). pp. 1–442. doi.org/10.4000/books.irdeditions.2106
- Dinerstein E., Olson D., Joshi A., Vynne C., Burgess N. D, Wikramanayake E., Hahn N., Palminteri S., Hedao P., Noss R., Hansen M., Locke H., Ellis E. C., Jones B., Barber C. V., Hayes R., Kormos C., Martin V., Crist E., Sechrest W., Price L., Baillie J. E. M., Weeden D., Suckling K., Davis C., Sizer N., Moore R., Thau D., Birch T., Potapov P., Turubanova S., Tyukavina A., De Souza N., Pintea L., Brito J. C., Llewellyn O. A., Miller A. G., Patzelt A., Ghazanfar S. A., Timberlake J., Klöser H., Shennan-Farpón Y., Kindt R., Lillesø J. P. B., Van Breugel P., Graudal L., Voge M., Al-Shammari K. F., Saleem M., 2017. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience. 67, 534–545. doi.org/10.1093/biosci/bix014

- Dowell S. A., Portik D. M., de Buffrénil V., Ineich I., Greenbaum E., Kolokotronis S. O., Hekkala E. R., 2016. Molecular data from contemporary and historical collections reveal a complex story of cryptic diversification in the *Varanus (Polydaedalus) niloticus* species group. Mol. Phylogenet. Evol. 94, 591–604. doi.org/10.1016/j.ympev.2015.10.004
- ESRI, 2016. ArcGIS Desktop: Release 10.5. Redlands CA Environ. Syst. Res. Institute.
- Frankham R., 2005. Genetics and extinction. Biol. Conserv. 126, 131–140. doi.org/10.1016/j.biocon.2005.05.002
- Hijmans, R. J., 2017. raster: Geographic Data Analysis and Modelling. R package version 2.6-7. https://CRAN.R-project.org/package=raster
- Hutchinson C. M., Reynolds, C., Hill J., Sommer S., von Maltitz G., 2018. World Atlas of Desertification (Luxembourg, 3rd edition). doi.org/10.2760/06292
- IUCN, 2019. IUCN Red List of threatened species. Version 2019-1. (available at https://www.iucnredlist.org/; acceded in 05/03/2019)
- Jiang H., 2016. "Taking down the "Great Green Wall": The science and policy discourse of desertification and its control in China" in The end of desertification? Disputing environmental change in the drylands (Springer Earth System Sciences), pp. 513– 536. doi.org/10.1007/978-3-642-16014-1_19
- Loarie S. R., Duffy P. B., Hamilton H., Asner G. P., Field C. B., Ackerly D. D., 2009. The velocity of climate change. Nature. 462, 1052–1055. doi.org/10.1038/nature08649
- Ministère de l'Environnement de l'Economie Verte et du Changement Climatique du Burkina Faso (MEEVCC), 2017. "Plan d'action de reforestation du Burkina Faso 2018-2022" (Ouagadougou, Burkina Faso: MEEVCC).
- Muller G. C., Junnila A., Traore M. M., Traore S. F., Doumbia S., Sissoko F., Dembele S. M., Schlein Y., Arheart K. L., Revay E. E., Kravchenko V. D., Witt A., Beier J. C., 2017. The invasive shrub *Prosopis juliflora* enhances the malaria parasite transmission capacity of *Anopheles* mosquitoes: a habitat manipulation experiment. *Malar. J.* 16, 1–9. doi.org/10.1186/s12936-017-1878-9
- Pan-African Agency of the Great Green Wall, 2018. "The Great Green Wall Initiative: 2011-2017 achievements and challenges to the 2030 path" (Nouakchott Mauritanie).
- Pebesma, E. J., R. S. Bivand, 2005. Classes and methods for spatial data in R. R News 5 (2), https://cran.r-project.org/doc/Rnews/.

- R Core Team, 2016. R: A language and environment for statistical computing. R Found. Stat. Comput., p. 409.
- RStudio Team (2015). RStudio: Integrated Development for R. RStudio, Inc., Boston, MA URL http://www.rstudio.com/.
- Vale C. G., Brito J. C., 2015. Desert-adapted species are vulnerable to climate change: insights from the warmest region on Earth. Glob. Ecol. Conserv. 4, 369–379. doi.org/10.1016/j.gecco.2015.07.012
- Venter O., Sanderson E. W., Magrach A., Allan J. R., Beher J., Jones K. R., Possingham H. P., Laurance W. F., Wood P., Fekete B. M., Levy M. A., Watson J. E., 2018. Last of the Wild Project, Version 3 (LWP-3): 2009 Human Footprint, 2018 Release. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC).
- Vilela, B., Villalobos, F., 2015. letsR: a new R package for data handling and analysis in macroecology. Methods in Ecology and Evolution. doi.org/10.1111/2041-210X.12401.
- UNEP-WCMC and IUCN, 2018. Protected Planet, *World Database of Protected Areas*. (available at www.protectedplanet.net; accessed in 24/06/2019)
- Wade T. I., Ndiaye O., Mauclaire M., Mbaye B., Sagna M., Guissé A., Goffner D., 2018. Biodiversity field trials to inform reforestation and natural resource management strategies along the African Great Green Wall in Senegal. New Forest. 49, 341-362. doi.org/10.1007/s11056-017-9623-3
- Zeng, N., 2003. Drought in the Sahel. Science. 302, 999–1000. doi.org/10.1126/science.1090849

Chapter III: Manuscript II

Promoting connectivity between priority freshwater sites for conservation in arid ecosystems²

Abstract

Habitat connectivity is key to ensure species persistence in changing arid freshwater ecosystems experiencing growing threats. Systematic conservation planning allows finding relevant areas to ensure species dispersal and to mitigate the negative effects of population isolation. This study simulates the effects of distinct longitudinal connectivity measures in finding optimised connectivity solutions between local biodiversity hotspots allocated in the hydrographic network. Twenty-six water-dependent taxa from 59 mountain rock pools (Gueltas) of three southern Mauritanian mountains are used as case-study. Eight scenarios were tested in Marxan to find priority conservation areas discarding and considering a measure of water residency time and different connectivity rules between Gueltas and the upstream areas. A new framework is presented that accounts for different strengths in connections and minimise the downstream propagation of threats by considering isolated management units in its hydrological context. Seven Gueltas were selected in all scenarios and are essential to achieve representativeness in the solution. Incorporating water residency time in connectivity resulted in solutions with higher water availability throughout the year, which is crucial for water-dependent species dispersal in arid regions. Incorporating connections between Gueltas and upstream areas resulted in solutions optimising the representation of corridors, which combine terrestrial and freshwater ecosystems that promote species persistence and prevent the propagation of potential threats into Gueltas. The results obtained from spatial prioritisation manipulations tests revealed important locations for local biodiversity conservation because it allows inter-mountain species dispersal. The framework developed allows addressing connectivity in conservation planning that is scalable to regions with similar wet-dry climatic conditions.

Keywords: freshwater conservation, habitat continuity, Marxan, persistence, spatial planning, species dispersal

² Based on the manuscript: Naia, M., Hermoso, V., Carvalho, S. B., Brito, J. C. Promoting connectivity between priority freshwater sites for conservation in arid ecosystems. In prep.

3.1. Introduction

Habitat fragmentation is one of the main drivers of biodiversity loss, creating small suitable habitat patches where species persist (Secretariat of the Convention on Biological Diversity, 2010). Small and isolated populations may experience a decrease in genetic variation due to genetic drift, leading to inbreeding depression, and ultimately influencing population viability by increasing extinction risks (Frankham, 2005). Integrating connectivity in spatial conservation prioritisation studies is a strategy to ensure species persistence (Mech and Hallett, 2001; Pressey *et al.*, 2007). Finding corridors between different suitable habitat patches will enhance landscape connectivity (Dehaghi *et al.*, 2018), which will maintain the genetic diversity, enhance the capacity of species to move across the landscape, and to respond to climatic or land-use changes (Mech and Hallett, 2001).

Rivers and other waterways behave as corridors through the landscape, allowing migration of water-dependent species and the maintenance of key ecological process, known as functional connectivity (Taylor et al., 2006). Freshwater ecosystems can also behave as stepping stones for non-strictly aquatic species that benefit from water in some part of their life cycle (Hermoso et al., 2012a) and work as a bridge between terrestrial and freshwater spatial conservation planning, improving the combination of terrestrial-freshwater habitats in a protected area network (Nel et al., 2009; Beger et al., 2010). Despite freshwater ecosystems being amongst the most diverse and threatened, they are still poorly represented in existing protected areas (Dudgeon et al., 2006; Reid et al., 2018). Freshwater connectivity is featured in three spatial dimensions (Ward et al., 1989): i) longitudinal connectivity allows species migration through the hydrographic network (Hermoso et al., 2012a), which is important to ensure gene flow between populations; ii) vertical connectivity, the connection between the surface and ground water; and iii) lateral connectivity between riverine and floodplain ecosystems (Ward et al., 1989). Longitudinal connectivity is particularly important in regions with wet-dry seasonal climate because of the temporal changes in water residency time (Hermoso et al., 2012b). Therefore, the dispersal of water-dependent species is constrained to the wet season, when the hydrographic network is connected. Water residency time fluctuations can also occur inter-annually, resulting in droughts, which are expected to increase with climate change. This is evident in West Africa, where the arid Sahel ecoregion has undergone severe droughts in the last century and rainfall is expected to decrease in the future (Zeng, 2003; Druyan, 2011).

The southern mountains of Mauritania (Fig. 3.1A) harbour relict and threatened populations of sub-Saharan species and acted as refugia during the past climate cycles

(Brito et al., 2014). Rock pools (locally known as Gueltas) in these mountains are considered local biodiversity hotspots, concentrating endemic and threatened fishes, amphibians and aquatic reptiles in small-sized wetlands (on average less than 5 ha; Padial et al., 2013; Vale et al., 2015). Freshwater connectivity in these regions is critical to the maintenance of population dynamics and its long-term viability (Velo-Antón et al., 2014). Metapopulation dynamics in these Gueltas are highly dependent on freshwater connectivity. For instance, populations of the West African crocodile (Crocodylus suchus) are found in Gueltas, which act as refugia when the seasonal rivers and associated floodplains dry out (Brito et al., 2011). During the wet season (July to October), the isolated Gueltas are connected through the hydrographic network (Campos et al., 2012), allowing longitudinal connectivity, and consequently crocodile dispersal and gene flow between populations (Velo-Antón et al., 2014). Therefore, selecting local corridors for conservation considering the temporal changes of spatial connections through rivers will guarantee the fitness and survival of the populations (Taylor et al., 2006). The increasing human activities in the Sahel are threatening freshwater ecosystems, in particular Gueltas; yet they do not hold any effective management (Vale et al., 2015). Moreover, water-dependent desert species inhabiting mountain areas face another threat, as freshwater and high elevation habitats are vulnerable to climate change (Griffis-Kyle et al., 2018; Nyboer et al., 2019), therefore water residency time has great importance on their persistence (Murphy et al., 2015). The protection of different microrefugia, with high water residency time, could reduce the vulnerability to climate change, by increasing the availability of suitable microclimatic regions (Suggitt et al., 2018). Although, to an effective application of conservation efforts, the planning process should take into account surrounding areas of management units (Gueltas), as they are within the hydrographic network. Account for the potential propagation of threats from the surroundings into priority Gueltas by going beyond local management of Gueltas to their full catchments, will increase conservation efforts by decreasing the probability of allowing threats into management units.

In recent years, new methodological improvements have been developed to find the most relevant functional corridors between suitable areas in need of protection to ensure species persistence. For instance, integrating sub-catchments, the most common freshwater-based planning units, in spatial conservation prioritisation has proven to be an efficient approach to account for the connected nature of rivers (Moilanen *et al.*, 2007; Hermoso *et al.*, 2011, 2012a, 2012b). Using hydrologically derived planning units helps addressing lateral and longitudinal connectivity, which allows to account for both wetland floodplain and the longitudinal river system in prioritisation studies (Reis *et al.*, 2019). Prioritisation of upstream areas has been done to account with the downstream

propagation of threats in rivers (Hermoso *et al.*, 2011). Additionally, using measures of water residency time throughout the year can improve spatial prioritisation in seasonal environments (Hermoso *et al.*, 2012b). Still, spatial prioritisation methods require moving beyond local planning in isolated locations such as *Gueltas*, by allocating management units into a broader landscape. Incorporating connectivity and the propagation of threats will increase the effectiveness of spatial prioritisation.

In this study, a novel framework is presented to improve conservation planning in seasonal freshwater ecosystems by going beyond local planning in isolated freshwater systems in an arid region. The novelty consists in testing the effect of integrating different connectivity measures on the prioritisation of Gueltas by allocating them in their hydrological context. Two alternative connectivity planning scenarios are driven by incorporating an index of water residency time along the year as a way to address temporal connectivity (Hermoso et al., 2012b) and considering different strengths in connections between Gueltas and the surrounding catchments to maximize the effectiveness of conservation efforts. Applying this methodology is expected to emphasize connectivity in all solution and minimise the downstream propagation of threats, consequently maximising the species persistence in the area. Water-dependent taxa from southern Mauritania mountains and spatial conservation prioritisation exercises using Gueltas and sub-catchments as planning units are used as case-study. Specifically, this study aims to: i) identify priority areas for conservation for waterdependent species without considering connectivity; ii) test the influence of water residency time in connectivity and how it affects the identification of priority Gueltas for conservation; and iii) test the importance of connectivity between upstream connections in conservation prioritisation across the full hydrographic network.

3.2. Material and Methods

3.2.1. Study area

The study area encompasses nearly 99,063 km², comprising southern Mauritanian mountains (Tagant, Assaba and Afollé) and extending to extreme south-western Mali (Fig. 3.1B). These mountains correspond to rocky escarpments and plateaus that are hydrologically connected during the wet season (Campos *et al.*, 2012). There is a single wet season from July to October, and two dry seasons characterised by a cool period from November to February and a hot period from March to June (Cooper *et al.*, 2006). The area displays a high number of wetlands (Table 3.1), especially along the Senegal river floodplain (Campos *et al.*, 2012).

The "Lac Gabou et le réseau hydrographique du Plateau du Tagant" (hereafter Lac Gabou) Ramsar site, comprising 9,436 km² of land in the Tagant mountain, is the only classified area within the study area (Tellería, 2007; Fig. 3.1A), but given that the site lacks effective management, it was not considered as a managed feature in subsequent analyses.

Figure 3.1 | (A) Distribution of *Gueltas* analysed in the present study, depicting taxon richness of fishes, amphibians, and aquatic reptiles, the location of Lac Gabou Ramsar site and Djouk valley, and (B) location of the study area in the West Africa and Mauritania contexts.

Table 3.1 | List of *Gueltas* present in the study area and their location and characteristics. Information on seasonality comes from Vale *et al.* (2015). The proportion of threats was calculated by the sum of all threats in each *Guelta* (Vale *et al.*, 2015; Campos *et al.*, 2016) divided by the total number considered by the IUCN Threats Classification Scheme (Salafsky *et al.*, 2008).

Gualtas	Mountain	Sossonality	Proportion of
Guenas	Wountain	Seasonanty	threats (%)
Amzouzef	Tagant	permanent	0.40
Aouinet	Tagant	seasonal	0.33
Aouînet Nanâga	Assaba	seasonal	0.47
Aouînet Teidoûma	Tagant	seasonal	0.40
Aouînet Tenbouckit	Assaba	seasonal	0.47
Ayoûn en Na'aj	Afollé	permanent	0.40
Bâfa	Assaba	seasonal	0.60

Bajai	Tagant	permanent	0.40
Bednam	Afollé	permanent	0.40
Ch'Bayer	Tagant	permanent	0.60
Daal	Tagant	seasonal	0.40
Dâber	Tagant	permanent	0.40
Dekheïlet el 'Aleïb (=Dekla, Ain Bâjed)	Tagant	seasonal	0.40
El Barda	Assaba	permanent	0.20
El Ghâira, source	Assaba	permanent	0.73
El Housseînîya	Tagant	permanent	0.60
El Khedia	Tagant	permanent	0.60
Emreimida	Tagant	permanent	0.60
E-n-Guinâr	Tagant	seasonal	0.47
Fanar	Tagant	seasonal	0.47
Foum el Kour	Tagant	permanent	0.20
Foum Goussas	Assaba	permanent	0.60
Galoûla	Assaba	permanent	0.60
Gamra Ouarbî	Tagant	permanent	0.33
Gânçai source	Assaba	permanent	0.20
Garaouel	Tagant	permanent	0.60
Gleitat Ej Jmel	Tagant	seasonal	0.53
Goumbel	Assaba	permanent	0.87
Gueltet Thor	Assaba	permanent	0.60
Guenétir source	Assaba	permanent	0.20
Guérou	Assaba	seasonal	0.20
Guidemballa	Assaba	permanent	0.47
Jabara	Tagant	permanent	0.47
Kabda	Tagant	permanent	0.20
Kaimel	Tagant	seasonal	0.33
Laout	Tagant	permanent	0.60
Laout, 1km S of	Tagant	permanent	0.60
Legleyta	Assaba	seasonal	0.67
Lemmollah	Tagant	seasonal	0.20
Leouel	Tagant	seasonal	0.20
Matmâta	Tagant	permanent	0.60
M'cherba	Tagant	permanent	0.53
Mechaouba	Afollé	seasonal	0.33

Mendjoura	Tagant	seasonal	0.33
Metraoucha	Afollé	permanent	0.60
Meyla	Assaba	permanent	0.20
Motoboul	Tagant	seasonal	0.53
Nouadar	Tagant	seasonal	0.60
Oumm el Mhâr	Afollé	permanent	0.73
Oumm Icheglâne	Assaba	permanent	0.47
Oumm Icheglâne, 5km NW of	Assaba	seasonal	0.40
Rh' Zembou	Tagant	permanent	0.47
Sellenbou (=Silimbo)	Tagant	seasonal	0.33
Soufa, oued	Assaba	permanent	0.40
Suklan	Tagant	seasonal	0.33
Tartêga	Tagant	permanent	0.13
Upstream of Tartêga	Tagant	permanent	0.40
Tin Waadine	Tagant	seasonal	0.67
Tkhsutin	Tagant	permanent	0.33

3.2.2. Data sources and processing

3.2.2.1. Planning units

To subdivide the study area two types of planning units were used: point-locality (*Gueltas*) and polygonal data (sub-catchments). Despite equal-sized grid cells are often used in systematic conservation planning, sub-catchments are more appropriate to capture the hydrological context (Hermoso *et al.*, 2011), subdividing the nodes of the rivers and capturing its connected nature (Linke *et al.*, 2007). To define the planning units relevant for an aquatic spatial prioritisation exercise, the study area was subdivided into 657 sub-catchments from a digital elevation model (DEM). The DEM was processed in order to obtain the flow direction of the hydrographic network and its respective segmentation, defining the sub-catchments by the river nodes using using ArcHydro tool from ArcGIS v.10.5 (ESRI, 2016). The result retrieved from the DEM processing was refined in the stream definition processing, to create a flow accumulation grid of 10,000 polygons, avoiding geographically distant *Gueltas* to occur in the same sub-catchment.

Sub-catchments convey a river reach and the portion of surrounding land that drains into each reach. These sub-catchments were the spatial framework used for measuring longitudinal connectivity across the study area. *Gueltas* were allocated into these sub-catchments to address longitudinal connectivity between *Gueltas* and their upstream contributing catchments in the planning process.

3.2.2.2. Conservation Features

Twenty-six species – eight fishes, ten amphibians, and eight aquatic reptiles (Fig. 3.2; Table 3.2) that are known to be dependent on freshwater ecosystems, are used in the study area as conservation features. A total of 1,927-point localities were collected in the study area from published observations (Padial, 2006; Brito *et al.*, 2011; Padial *et al.*, 2013; Vale *et al.*, 2015). Observations were geo-referenced with a Global Positioning System (GPS) and projected to Universal Transverse Mercator coordinate system (WGS 1984 Complex UTM Zone 29), used in all following analysis. The total 1,927-point localities were intersected with *Gueltas* in ArcGIS (ESRI, 2016), using a buffer of 50 meters, to limit the conservation features to the *Gueltas* location, decreasing the observations to 776-point localities (Table 3.2). To avoid duplication error, species that were not identified were excluded. However, five fish species identified up to the genus level were included, as are unique to that genus, not representing a problem of species duplication.

A presence/absence table was created between the 26 water-dependent taxa under study and the 59 *Gueltas* to derive taxa composition in each *Guelta*. The distribution of taxa richness follows a latitudinal gradient, related with higher precipitation levels and higher primary productivity in southern areas (Brito *et al.*, 2014). Therefore, southern *Gueltas* display greater number of species in relation to northern ones (Vale *et al.*, 2015; Fig. 3.1A).

Figure 3.2 | The total 1,927-point localities of the observational data of fishes, amphibians, and aquatic reptiles within the study area used to estimate species composition in each *Guelta*.

Class	Species/Taxa	N observations
	Alestes sp.	6
	Barbus macrops	10
	Barbus pobeguini	45
Actinontonyaii	Brycinus nurse	1
Actinopterygi	<i>Clarias</i> sp.	45
	Sarotherodon sp.	26
	Schilbe sp.	1
	<i>Synodontis</i> sp.	1
	Hoplobatrachus aff. occipitalis	134
	Hoplobatrachus occipitalis	3
	Kassina senegalensis	2
	<i>Leptopelis</i> sp.	1
Amphibia	Phrynobatrachus francisci	4
Amphibia	Ptychadena trinodis	2
	Sclerophrys pentoni	3
	Sclerophrys regularis	1
	Sclerophrys xeros	67
	Tomopterna milletihorsini	1
	Crocodylus suchus	297
Reptilia	Naja nigricollis	7
	Psammophis afroccidentalis	1
	Psammophis elegans	5
	Ptyodactylus rivapadiali	25
	Python sebae	9
	Varanus exanthematicus	4
	Varanus niloticus	47

Table 3.2 | List of species/taxa included in the study (fishes, amphibians and aquatic reptiles) and the number of observations in the 59 *Gueltas*.

3.2.3. Identify priority areas for freshwater biodiversity conservation

To identify the priority areas for conservation within the study area systematic conservation planning approach was followed (Margules and Pressey, 2000), which aims at identifying an optimal set of areas which contributes to adequately represent local biodiversity and assure its long-term persistence. Marxan was used as conservation

planning tool (Ball *et al.*, 2009), which uses a simulated annealing optimisation method to find an optimal set of sites (planning units) which retrieves the lowest value for the objective function (equation 1). This value is calculated as the sum of three parcels: the summed cost of the planning units selected, the boundary penalty, and the penalty for not achieving the targets set for conservation features.

 $\sum_{PUs} Cost + BLM \sum_{PUs} Boundary + \sum_{Con Value} SPF \times Penalty$ (Equation 1) where PUs are planning units, BLM is boundary length modifier and SPF is species penalty factor.

The boundary length modifier (BLM) was calibrated accordingly to Ardron *et al.* (2010) and values ranged between 0.3 - 2.0. A constant value for scenarios F – H was not found, but they were all calibrated independently (see Table 3.3 for details). A target of 1 was set for each conservation feature, thus ensuring that each conservation feature was included within the priority *Gueltas* for conservation. A penalty of 10 was used to ensure that the targets were met for all species.

3.2.3.1. Cost Penalty

In order to avoid selecting highly threatened planning units as conservation priorities, measures of threats were used as surrogates for costs. Since, two types of planning units were used (*Gueltas* and sub-catchments), two measures of threats were defined: i) local threats to *Gueltas* were obtained from Vale *et al.* (2015) and Campos *et al.* (2016), classified following the IUCN Threats Classification Scheme (Salafsky *et al.*, 2008) (Fig. 3.3B); and ii) threats to sub-catchments were calculated from the global human footprint at 1km grid cell size (Venter *et al.* 2018). The zonal statistics of ArcGIS v.10.5 (ESRI, 2016) was used to calculate the mean value of human footprint for each sub-catchment. This index incorporates nine global data layers, including human population pressure, human land-use and infrastructure and human access (Fig. 3.3A). Planning units with cost value of 0 were reclassified to 0.1 to avoid biasing results towards those planning units.

Figure 3.3 | Graphical representation of the cost penalties used in the spatial prioritisation: (A) for each sub-catchment derived by the global human footprint index (top-left small inset) (Venter *et al.*, 2018), and (B) for each *Guelta* the information retrieved from Vale *et al.* (2015) and Campos *et al.* (2016) following the IUCN Threats Classification Scheme (Salafsky *et al.*, 2008).

3.2.3.2. Connectivity framework

To identify sets of priority areas with higher connectivity, Marxan aims to minimise a penalty for fragmented solutions. Longitudinal connectivity was addressed as proposed in Hermoso *et al.* (2011) among *Gueltas* and between *Gueltas* and contributing subcatchments. A penalty factor was added for not including upstream connections, which decreases by a factor proportional to the reciprocal of the hydrologic distance between them (equation 2). Thus, the importance of incorporating upstream sub-catchments decreases over the distance to certain sub-catchments. Incorporating upstream connections is important to account for the downstream propagation of threats through rivers, which can affect the subsequent sub-catchments (Hermoso *et al.*, 2011; Linke *et al.*, 2012). The distance was calculated based on the length of the river segment in each sub-catchment. The information retrieved from sub-catchments definition in ArcGIS was used to create a matrix of planning units' identification and its respective upstream connections. Sub-catchments that were hydrographically disconnected were excluded from the analysis. Then, planning units' connections were added to the connectivity penalty between them.

Connectivity penalty (CP) =
$$1/\sqrt{distanceij}$$
 (meters) (Equation 2)

where i and j are the two planning units being assessed.

3.2.3.3. Connectivity Scenarios

To test how different connectivity constrains affect prioritisation solutions, three types of connectivity were tested: i) excluding connectivity; ii) connectivity between *Gueltas*; and iii) Connectivity between *Gueltas* and sub-catchments:

i) Excluding connectivity

In the excluding connectivity scenario, the BLM was set to zero, which implies that the connectivity parcel of the Marxan objective function has no effect on the optimisation procedure (Scenario A).

ii) Connectivity between Gueltas

For the connectivity between *Gueltas* scenario, a dataset containing 59 *Gueltas* as planning units was used and connectivity strengths were calculated between each *Guelta* and upstream ones, with a total of 112 connections considered. To incorporate water residency time (Hermoso *et al.*, 2012b) a measure of water presence along the year was weighted with longitudinal connectivity calculated above, modifying this connectivity penalty, hereafter referred as "Water Residency Time – Hydrologic Connectivity" (WCP). The maximum value of Gao's normalised difference water index (NDWI) from Campos *et al.* (2012) was incorporated in equation 3, as it is the most appropriate index for detecting seasonal water in a freshwater ecosystem (Campos *et al.*, 2012). A Weighting factor (W) was introduced, which can be used to calibrate the importance of NDWI relatively to the connectivity penalty. A logarithmic scale was used to ensure a positive curve when increasing the W of the NDWI from scenario C to E and added one to ensure that the final value is positive.

 $WCP = CP \times \log(W \times NDWI + 1)$ (Equation 3)

To test the influence of water residency time in connectivity and how it affects the selection of priority conservation *Gueltas*, one scenario was tested (scenario B) where W was set to zero, thus, only CP was accounted. Then, three scenarios (C - D - E) considering increasing weights (W) in equation 3 (for details see Table 3.3). The average of NDWI values between selected *Gueltas* was calculated and compared results among scenarios. The NDWI average is expected to increase proportionally to its weight in the

prioritisation exercise, demonstrating a progressive higher amount of water residency time during a year from scenario C to E.

iii) Connectivity between Gueltas and sub-catchments

Despite only *Gueltas* have conservation features, the aim was to identify the subcatchments most connected to important *Gueltas* for conservation and test whether some *Gueltas* under potential higher upstream pressure would be avoided for others that are under less pressure. As such, in addition to the connectivity strengths considered in the connectivity between *Gueltas* scenario (Fig. 3.4A), two other types of connections were considered: a) *Guelta* – Sub-catchment: considered the connections between *Gueltas* and its upstream sub-catchments, also considering the connection strengths as calculated in equation 2 (Fig. 3.4B); and b) Sub-catchment – Sub-catchment: considered the connection strengths between sub-catchments as calculated in equation 2 (Fig. 3.4C). In total, the dataset used in this scenario contained 159 planning units (59 *Gueltas* and 100 sub-catchments) and 777 connections. Three distance-based scenarios were developed: F - G - H) considering an increase in connectivity weights to enhance longitudinal protection of *Guelta* – sub-catchment connections in relation to the other connections (for details see Table 3.3).

Figure 3.4 | Graphical representation of connectivity framework for the connectivity between *Gueltas* and sub-catchments: (A) connections between *Gueltas*; (B) connections between *Gueltas* and sub-catchments; and (C) connections between sub-catchments.

FCUP 48 Addressing landscape connectivity in biodiversity conservation strategies in the African Sahel 48

Table 3.3 | Methods summary table, depicting detailed information used in each prioritisation scenario according to the three objectives. N – Number; NDWI – Normalised difference water index: CP – Connectivity penalty: BLM – Boundary length modifier.

	ecuvity periarty,	, ברואו – בטעוועמ	i y ierigui mounei.					
		N plan	ning units		IMUN	Distance-		
Objective	Scenario	Gueltas	Sub-	Type of connectivity	connectivity	based	Type of boundary	BLM
			catchments		6	connectivity		
Excluding connectivity	A	59	0	None	No	No	None	0.0
	ď	59	C	Gueltas	Q	Yes	CP hetween Guelfas	- 80
	5 C	8		Cucitad				<u>-</u>
<i>Guelta-</i> based	5	60	D	Gueitas	Yes	NO	CP " 10g (NUWI+1)	0.2
connectivity	D	59	0	Gueltas	Yes	No	CP * log (2*NDWI+1)	2.0
	ш	59	0	Gueltas	Yes	No	CP * log (5*NDWI+1)	2.0
Hydrologic	ш	59	100	Gueltas and sub-catchments	No	Yes	1* Guelta – Sub-catchment	1.0
network	U	59	100	Gueltas and sub-catchments	No	Yes	2* Guelta - Sub-catchment	0.6
connectivity	T	59	100	Gueltas and sub-catchments	No	Yes	5* Guelta – Sub-catchment	0.3

The proportion of connectivity achieved by the best Marxan solution was calculated for all scenarios tested using the Achieved Connectivity index (equation 4). The connectivity achieved represents the sum of connectivity strengths between each pair of selected planning units. Conversely, missed connections represent the sum of connections between each selected planning units and each of the non-selected ones (example in Table 3.4). An increase of the weight of *Guelta* – sub-catchment connection is expected to translate into an increase of the final connectivity index.

Achieved Connecticity index =
$$1 - \frac{missed \ connections}{connectivity \ achieved}$$
 (Equation 4)

id 1	id 2	Index fraction results
<u>1</u>	2	Connectivity achieved
<u>1</u>	3	Missed connection
<u>1</u>	4	Missed connection
<u>2</u>	3	Missed connection
3	4	No connection

 Table 3.4 | Example of the calculation of the connectivity index in equation 4. Numbers underlined are hypothetical planning units selected in the final solution.

3.3. Results

3.3.1. Priority areas for conservation excluding connectivity

The solution of priority areas provided by scenario excluding connectivity is mostly restricted to the Tagant and Assaba mountains, selecting a total of 10 *Gueltas* (Fig. 3.5i, 3.6). One isolated *Guelta* in the western plains was also selected (*Guelta* Thor; see toponomies in Fig. 3.1A). The overall area selected in this scenario resulted in 27.58% of NDWI value and 4.94% of achieved connectivity.

3.3.2. Influence of water residency time in connectivity between *Gueltas*

Considering the influence of water residency time in the selection of priority areas for conservation, only *Gueltas* located in the Tagant and Assaba mountains were selected and also *Guelta* Thor. By increasing the weight of NDWI, the connectivity of the *Gueltas* selected also increased and more *Gueltas* were selected in the Tagant, but not in Assaba (Fig. 3.5ii; Table 3.5). Scenario E selected numerous *Gueltas* in the Djouk valley.

Although scenario B did not consider water residency time as a constraint, the average NDWI in this solution was 29.58% and 6.89% of achieved connectivity (Table 3.5). In scenarios C - E, the number of *Gueltas* selected increased from 12 up to 28 (Fig. 3.6). The average NDWI values in the connections between selected *Gueltas* in scenarios C - E were 24.92%, 25.58% and 29.92%, respectively, showing a positive relationship between increased weight of NDWI in the connectivity penalty and water residency time achieved in the solution. Also, connectivity also increased from scenarios C to E (Table 3.5). The cost of the solution retrieved from the connectivity achieved.

3.3.3. Importance of connectivity of *Gueltas* within the full hydrographic network

Regarding connectivity between all *Gueltas* and its upstream connections, the subcatchments primarily selected in scenarios F, G and H were mostly restricted to the Tagant mountain and *Guelta* Thor, but sub-catchments selected in scenarios G and H also comprised locations of floodplains and the Djouk valley (Fig. 3.5iii).

Increasing the *Gueltas* – sub-catchments weight resulted in a decreasing number of *Gueltas* selected from scenarios F to H (Fig. 3.6), but the number selected was always higher or equal to remaining scenarios (A-E). Conversely, resulted in an increasing number of sub-catchments selected and in the achieved connectivity index, although the average human footprint in the connections selected also increased from scenario F to H (Table 3.5).

Figure 3.5 | Results of the planning units selected as priority for conservation when i) excluding connectivity (scenario A), ii) considering the influence of water residency time in connectivity (scenarios B - E), and iii) considering the influence of connectivity between upstream connections in the full hydrographic network (scenarios F - H). Planning unites presented had a selection frequency over 50% in 100 runs in Marxan. For details in each scenario see Table 3.3. Black line in scenarios F - G - H depicts the location of Lac Gabou Ramsar site.

Figure 3.6 | Spatial prioritisation results of the number of planning units selected as priority for conservation in the different scenarios (A - H). Scenario A excluded connectivity, scenarios B - E use connectivity between *Gueltas*, while scenarios F - H use connectivity between *Gueltas* and sub-catchments. For details in each scenario see Table 3.3.

Scenarios	NDWI value (%)	Achieved Connectivity (%)	Solution cost (%)
Scenario A	27.58	4.94	43.33
Scenario B	29.58	6.89	44.17
Scenario C	24.92	3.17	41.67
Scenario D	25.58	5.04	43.14
Scenario E	29.92	6.95	44.29
Scenario F	Not applicable	43.61	52.39
Scenario G	Not applicable	54.38	58.04
Scenario H	Not applicable	74.81	58.72

Table 3.5 | Results summary table, depicting the results information used in each prioritisation scenario for the normalised difference water index (NDWI) calculated for scenarios A - E, the Achieved connectivity index calculated according to equation 4 and the cost of the solution retrieved from the connections selected in each solution.

3.4. Discussion

By considering different types of connections, priority *Gueltas* and sub-catchments in southern mountains of Mauritania were identified. In this arid region, it is important to account for connectivity through the hydrographic network to protect different local biodiversity hotspots following a systematic conservation planning approach (Margules and Pressey, 2000). Moreover, considering upstream connections had important
implications in the identification of priority *Gueltas* for conservation and contributed to define where investments should be applied. Each connectivity scenario tested involved a different approach, always ensuring the representation of each species within the areas selected.

3.4.1. Methodological improvements and constraints

The present study combines methodologies from previous studies on freshwater spatial prioritisation, such as longitudinal connectivity (Hermoso et al., 2011), the incorporation of water residency time in arid freshwater ecosystems (Hermoso et al., 2012b) and connections between different sized planning units (Reis et al., 2019). In addition, innovates in the way that allocates point-localities management units into their hydrological context, rather than considering them as isolated points in the landscape. To achieve this, an innovative solution was used to address sub-catchments as they do not contain biodiversity features, although they can be incorporated to account for potential propagation of threats from upstream areas into priority Gueltas. The novel framework here proposed accounts for connectivity in the full hydrographic network, when increasing the strength between Guelta - sub-catchment connections, and led to an increase in the selection of contributing sub-catchments at the expenses of selecting less Gueltas (where conservation features are located), and increased the connectivity value of the solution. This framework has the potential to enhance connectivity between micro-freshwater habitats, by prioritising connections between management units (Gueltas) within they hydrological context and also forces the priority areas to be connected along the river network by selecting contiguous sub-catchments. This will increase the probability of persistence of conservation features by allowing species migration.

Integrating *Gueltas* in their hydrological context aids considering the potential downstream propagation of threats into priority *Gueltas* for management, such as pollution and invasive species (Hermoso *et al.*, 2011). Moreover, incorporating the IUCN threats category and global human footprint as a surrogate for cost penalties allowed discarding, as priorities for conservation, *Gueltas* and sub-catchments located in degraded areas. Despite the methodological improvements in freshwater connectivity here implemented, further development would be needed to address some of the limitations of the present study. Using a global measure of human footprint entails lack of spatial accuracy and resolution when locally applied (Woolmer *et al.*, 2008). For instance, the majority of *Gueltas* are isolated in mountain areas with minor land-use impacts (*e.g.* restricted agricultural fields), but the overall human footprint value for the

sub-catchment may be high. Information from multiple socio-economic variables for the region, such as land degradation, will allow obtaining a better set of constraints to incorporate in the cost penalties.

The solutions provided by scenarios B - E translated in minimal differences in the average NDWI value. For instance, scenario B displays a high value of NDWI, even only considering distance-based connectivity. This result might be a consequence of similarities across scenarios such as targets and species distributions, which translated into lower flexibility in the selection of priority areas, as some Gueltas were always needed to achieve the targets. This result appears to be not just a consequence of including NDWI, but most likely because many endemic taxa occur in areas with high NDWI value, therefore required to be selected to achieve the targets. The importance of using different taxa in the spatial prioritisation was demonstrated in Hermoso et al. (2012a). By including observations from fishes, amphibians and aquatic reptiles it adequately represented the regional vertebrate freshwater biodiversity however, incorporating other aquatic taxa, for instance invertebrates or water-birds, could have strengthened the selection of priority areas for conservation. Moreover, future work should include both direct observation data as well as other techniques for species detection, such as environmental DNA (eDNA). This technique have been demonstrated to successful detect rare and endemic species in freshwater ecosystems (Jerde et al., 2011), although many challenges related with water turbidity in Gueltas still need to be overcome to effective detect species in the Sahara-Sahel (Egeter et al., 2018). Uncertainties in fish taxonomy led to the exclusion of some unidentified individuals to avoid duplication errors, which decreased the amount of observational data available. Moreover, only one site was considered as a target for each species given the limited number of planning units and nine species with only one observation (Table 3.1; 3.2). Higher targets will only be achieved by selecting almost all Gueltas and some species will not be able to achieve them. Although, the selection of at least one site for each species is ensured, which does not mean that all species are only found in one Guelta. Additionally, the seven Gueltas where these species were observed also harbour threatened species, such as C. suchus and Ptyodactylus rivapadiali, the latter also being endemic to Mauritania, which emphasizes the protection of these locations.

3.4.2. Importance of water residency time and connectivity

By increasing the strength of NDWI in the connectivity penalty, additional *Gueltas* were selected, and most importantly, these *Gueltas* were allocated in areas that hold water for a longer period. For instance, scenario E hold the highest levels of water

residency time, which promotes connectivity between *Gueltas* and decreases their isolation, as corridors between the selected areas along the hydrographic network have been related with dispersal and population connectivity (*e.g.* Velo-Antón *et al.*, 2014; Murray *et al.*, 2019). Moreover, *Gueltas* may offer refugia for species and populations during the dry periods (Vale *et al.*, 2015). Therefore, incorporating a measure of water residency time along the year is important in spatial prioritisation exercises developed in seasonal ecosystems with wet-dry climatic cycles (Hermoso *et al.*, 2012b).

There was an inverse relationship between the number of Gueltas and subcatchments selected when considering the connections between Gueltas within their hydrological context. Despite only *Gueltas* held conservation features, when increasing the strength of Guelta - sub-catchment connections, the optimisation procedure favoured the selection of neighbouring upstream sub-catchments and not an increase in the number of Gueltas selected. By selecting upstream areas of Gueltas, the corridors between local biodiversity hotspots are being ensured for conservation prioritisation, potentially decreasing the isolation-related threats in those areas. Moreover, the downstream propagation of threats into Gueltas is minimised throughout the protection of upstream location. When considering the Gueltas and their respective corridors and upstream areas for protection, an increase of connectivity was observed, which likely beneficiated the mountain isolated populations. Multiple studies have shown the importance of strong connectivity in a protected area network (e.g. Dehaghi et al., 2018; Zacarias & Loyola, 2018). Therefore, the protection of terrestrial land surrounding *Gueltas* is critical for the persistence of non-strictly aquatic species, for instance during juvenile dispersal events (Semlitsch and Bodie, 2003). Although from scenario F to H the amount of planning units selected was almost identical, the connectivity value increased substantially. Although it adds a great trade-off, because more locations are selected as priority for conservation (Fig. 3.7).

Figure 3.7 | Trade-off between the connectivity achieved in all scenario solutions, calculated in equation 4 and the associated cost retrieved from the connections selected in each solution.

3.4.3. Implications for local conservation

Seven Gueltas were selected as priority for conservation in every scenario (Fig. 3.8) and are essential to achieve the conservation targets as they harbour species not found in any other Guelta. From these seven Gueltas, the ones selected in Assaba mountain were previously considered priority for conservation (Vale et al., 2015), but Guelta Thor was here identified as priority for the first time. The approach considered here took into account complementarity and connectivity between selected sites, opposed to previous studies based only in species richness (Vale et al., 2015). Therefore, Guelta Thor was always selected as priority area, harbour unique species and occurs outside of mountain areas, which can be important for species dispersal. No Gueltas were selected in Afollé mountain in all scenarios tested, although Vale et al. (2015) identified two Gueltas priority for conservation in this region. This might suggest that even though they harbour endemic species, these species are also distributed in Tagant and Assaba mountains, and thus they were discarded from the solution to minimise its cost. Three Gueltas in Tagant mountain that were selected in more than 50% of the scenarios (Matmâta, Tartêga and Tartêga, upstream of; Fig. 3.1A) have been identified with ecotourism potential (Santarém et al., 2018). Ecotourism can help allocating investments for wildlife conservation in this region and ecotourists can take advantage of the complex topography and habitat heterogeneity surrounding these Gueltas (Santarém et al., 2018). The substantially increase in the number of Gueltas selected in Djouk valley in Scenario E is important to considered as it is located between Tagant and Assaba mountains. The

Djouk valley is important for species persistence during arid periods (Velo-Antón *et al.*, 2014; Gonçalves *et al.*, 2018), since it is a local ecological barrier and a contact zone, for instance responsible for the delimitation of four lineages of Boulenger's agama (*Agama boulengeri*), and considered a diversity hotspot for this species and others with similar climatic requirements (Gonçalves *et al.*, 2018). Also, in the African Groove-crowned frog (*Hoplobatrachus occipitalis*), the Djouk valley was responsible for the differentiation of this species in two lineages, one associated with highland and the other with lowlands, and for high genetic diversity, as the lowland lineage was found to be polyploid (Gonçalves and Brito, 2019). Therefore, this valley should be considered for conservation as it retains high levels of water during the year, promoting connectivity and species diversity.

Figure 3.8 | Seven *Gueltas* selected in all scenarios with a selection frequency of 100% (green) in relation to the total 59 *Gueltas* in the analysis (black).

When incorporating connectivity between *Gueltas* and sub-catchments, several *Gueltas* from the Tagant mountain were selected for the first time, in comparison to previous scenarios. Considering the upstream connections with the sub-catchments, the optimisation procedure ensured that the whole hydrologic area important for

conservation was included. Initially, in scenario F, sub-catchments selected were the ones incorporating selected Gueltas, but when increasing the strength of Guelta - subcatchment connections, the area expanded beyond the Djouk valley to connect the northern Gueltas in Assaba and also Guelta Thor. The hydrologic corridors between mountains are important for species dispersal, maintenance of metacommunities, minimising the risk of inbreeding due to isolation, promoting their long-term survival and persistence (Frankham, 2005; Tonkin et al., 2018). For instance, the populations of C. suchus are spatially structured across southern Mauritanian mountains, however, some admixture was found in Assaba mountain between populations from Tagant and also from Afollé, which suggests inter-mountain dispersal (Velo-Antón et al., 2014). Moreover, Guelta Thor can work as stepping stone for C. suchus dispersal from Tagant to the Senegal River during the wet season. The protection of these areas can help maintaining natural processes and viable populations, as well as mitigating the effects of isolationrelated threats. They can also benefit numerous species that use wetlands as resting and feeding areas, such as migratory birds (Morel and Morel, 1992). The southern mountains of Mauritania have already been highlighted as a diversity hotspot and climatic refugia for species with specific climatic requirements (Gonçalves et al., 2018), therefore their protection should be considered.

Lac Gabou Ramsar site was designated for the conservation of wetlands and mainly for the protection of aquatic migratory birds (Tellería, 2007). Our results show a high number of sub-catchments selected within the Lac Gabou Ramsar site (Fig. 3.5iii). From scenario F to H there was an overlap of 75%, 53% and 52% with the area corresponding to the Lac Gabou Ramsar site, respectively, which indicates a great importance of the area also for fishes, amphibians and aquatic reptiles. Given its importance for freshwater conservation, a management plan should be implemented to guarantee the protection of fauna and flora communities in this wetland of the Sahel.

3.5. Conclusions

The methodology here presented is scalable and replicable to other temporary systems not strictly freshwater ecosystems and to regions characterised by wet-dry cycles with permanent wetlands connected during the wet season. This is the case of other wetlands across the Sahara-Sahel mountains, for instance in the Ennedi in Chad where *C. suchus* persists in *Gueltas* probably also connected through the hydrographic network (Brito *et al.*, 2011). Additionally, the methodology could be extended to Adrar Atar mountain in Mauritania where local wetlands could also benefit from protection (Trape, 2009). These mountains could potential work as biodiversity refugia under

climate change scenarios (Brito *et al.*, 2014), which can affect species persistence and promote alterations in river flow patterns and their connectivity, intensifying events of droughts and floods (Tonkin *et al.*, 2018). Additionally, almost half of known African fishes species are vulnerable to climate change (Nyboer *et al.*, 2019), therefore the definition of priority areas for conservation considering freshwater connectivity will allow the persistence of species, increase the resilience of wetlands and provide appropriate corridors for species dispersal to different suitable habitats in response to future changing conditions (Groves *et al.*, 2012; Bond *et al.*, 2014; Murphy *et al.*, 2015). The approach presented here has implications for the future definition of local protected areas or the implementation of a management plan for the Lac Gabou Ramsar site.

3.6. References

- Ardron, J. A., Possingham, H. P., Klein, C. J., 2010. Marxan Good Practices Handbook, Version 2., Pacific Marine Analysis and Research Association, pp. 165.
- Ball, I. R., Possingham, Hugh P., Watts, M. E., 2009. Marxan and relatives: software for spatial conservation prioritization, in: Moilanen, A., Wilson, K. A., Possingham, H. P. (Eds.), Spatial Conservation Prioritization: Quantitative Methods and Computational Tools. Oxford, UK, pp. 185–195.
- Beger, M., Grantham, H. S., Pressey, R. L., Wilson, K. A., Peterson, E. L., Dorfman, D., Mumby, P. J., Lourival, R., Brumbaugh, D. R., Possingham, H. P., 2010.
 Conservation planning for connectivity across marine, freshwater, and terrestrial realms. Biol. Conserv. 143, 565–575. doi.org/10.1016/j.biocon.2009.11.006
- Bond, N.R., Thomson, J. R., Reich, P., 2014. Incorporating climate change in conservation planning for freshwater fishes. Divers. Distrib. 20, 931–942. doi.org/10.1111/ddi.12213
- Brito, J. C., Godinho, R., Martínez-Freiría, F., Pleguezuelos, J. M., Rebelo, H., Santos, X., Vale, C. G., Velo-Antón, G., Boratyński, Z., Carvalho, S. B., Ferreira, S., Gonçalves, D. V., Silva, T. L., Tarroso, P., Campos, J. C., Leite, J. V., Nogueira, J., Álvares, F., Sillero, N., Sow, A. S., Fahd, S., Crochet, P. A., Carranza, S., 2014. Unravelling biodiversity, evolution and threats to conservation in the Sahara-Sahel. Biol. Rev. 89, 215–231. doi.org/10.1111/brv.12049
- Brito, J. C., Martínez-Freiría, F., Sierra, P., Sillero, N., Tarroso, P., 2011. Crocodiles in the Sahara Desert: An update of distribution, habitats and population status for conservation planning in Mauritania. PLoS One 6, e14734. doi.org/10.1371/journal.pone.0014734

- Campos, J. C., Martínez-Freiría, F., Sousa, F. V., Santarém, F., Brito, J. C., 2016.
 Update of distribution, habitats, population size, and threat factors for the West
 African crocodile in Mauritania. Amphib. Reptil. 37, 325–330.
 doi.org/10.1163/15685381-00003059
- Campos, J. C., Sillero, N., Brito, J. C., 2012. Normalized difference water indexes have dissimilar performances in detecting seasonal and permanent water in the Sahara-Sahel transition zone. J. Hydrol. 464–465, 438–446. doi.org/10.1016/j.jhydrol.2012.07.042
- Cooper, A., Shine, T., McCann, T., Tidane, D. A., 2006. An ecological basis for sustainable land use of Eastern Mauritanian wetlands. J. Arid Environ. 67, 116– 141. doi.org/10.1016/j.jaridenv.2006.02.003
- Dehaghi, I. M., Soffianian, A., Hemami, M. R., Pourmanafi, S., Salmanmahiny, A., Wu,
 G. M., 2018. Exploring structural and functional corridors for wild sheep (*Ovis* orientalis) in a semi-arid area. J. Arid Environ. 156, 27–33. doi.org/10.1016/j.jaridenv.2018.04.009
- Druyan, L. M., 2011. Studies of 21st-century precipitation trends over West Africa. Int. J. Climatol. 31, 1415–1424. doi.org/10.1002/joc.2180
- Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z., Naiman, R. J., Knowler,
 D. J., Le, C., 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. 81, 163–182. doi.org/10.1017/S1464793105006950
- Egeter, B., Peixoto, S., Brito, J. C., Jarman, S., Puppo, P., Velo-Antón, G., 2018. Challenges for assessing vertebrate diversity in turbid Saharan water-bodies using environmental DNA. Genome 61, 807–814. doi.org/10.1139/gen-2018-0071
- ESRI, 2016. ArcGIS Desktop: Release 10.5. Redlands CA Environ. Syst. Res. Institute.
- Frankham, R., 2005. Genetics and extinction. Biol. Conserv. 126, 131–140. doi.org/10.1016/j.biocon.2005.05.002
- Gonçalves, D. V., Brito, J. C., 2019. Second Sahelian amphibian endemism suggested by phylogeography of Groove crowned Bullfrog (*Hoplobatrachus occipitalis*) in western Sahel and hints of polyploid species formation. J. Zool. Syst. Evol. Res. 0, 1–13. doi.org/10.1111/jzs.12321
- Gonçalves, D. V., Pereira, P., Velo-Antón, G., Harris, D. J., Carranza, S., Brito, J. C., 2018. Assessing the role of aridity-induced vicariance and ecological divergence in species diversification in North-West Africa using *Agama* lizards. Biol. J. Linn. Soc. 124, 363–380. doi.org/10.1093/biolinnean/bly055

- Griffis-Kyle, K. L., Mougey, K., Vanlandeghem, M., Swain, S., Drake, J. C., 2018. Comparison of climate vulnerability among desert herpetofauna. Biol. Conserv. 225, 164–175. doi.org/10.1016/j.biocon.2018.06.009
- Groves, C. R., Game, E. T., Anderson, M. G., Cross, M., Enquist, C., Ferdaña, Z., Girvetz, E., Gondor, A., Hall, K. R., Higgins, J., Marshall, R., Popper, K., Schill, S., Shafer, S. L., 2012. Incorporating climate change into systematic conservation planning. Biodivers. Conserv. 21, 1651–1671. doi.org/10.1007/s10531-012-0269-3
- Hermoso, V., Kennard, M. J., Linke, S., 2012a. Integrating multidirectional connectivity requirements in systematic conservation planning for freshwater systems. Divers. Distrib. 18, 448–458. doi.org/10.1111/j.1472-4642.2011.00879.x
- Hermoso, V., Linke, S., Prenda, J., Possingham, H. P., 2011. Addressing longitudinal connectivity in the systematic conservation planning of fresh waters. Freshw. Biol. 56, 57–70. doi.org/10.1111/j.1365-2427.2009.02390.x
- Hermoso, V., Ward, D. P., Kennard, M. J., 2012b. Using water residency time to enhance spatio-temporal connectivity for conservation planning in seasonally dynamic freshwater ecosystems. J. Appl. Ecol. 49, 1028–1035. doi.org/10.1111/j.1365-2664.2012.02191.x
- Linke, S., Kennard, M. J., Hermoso, V., Olden, J. D., Stein, J., Pusey, B. J., 2012. Merging connectivity rules and large-scale condition assessment improves conservation adequacy in river systems. J. Appl. Ecol. 49, 1036–1045. doi.org/10.1111/j.1365-2664.2012.02177.x
- Linke, S., Pressey, R. L., Bailey, R. C., Norris, R. H., 2007. Management options for river conservation planning: Condition and conservation re-visited. Freshw. Biol. 52, 918–938. doi.org/10.1111/j.1365-2427.2006.01690.x
- Jerde, C. L., Mahon, A. R., Chadderton, W. L., Lodge, D. M., 2011. "Sight-unseen" detection of rare aquatic species using environmental DNA. Conserv. Lett. 4, 150–157. doi.org/10.1111/j.1755-263X.2010.00158.x~\
- Margules, C. R., Pressey, R. L., 2000. Systematic conservation planning. Nature 405, 243–253. doi.org/10.1038/35012251
- Mech, S. G., Hallett, J. G., 2001. Evaluating the effectiveness of corridors: A genetic approach. Conserv. Biol. 15, 467–474. doi.org/10.1046/j.1523-1739.2001.015002467.x
- Moilanen, A., Leathwick, J., Elith, J., 2007. A method for spatial freshwater conservation prioritization. Freshw. Biol. 53, 577–592. doi.org/10.1111/j.1365-2427.2007.01906.x
- Morel, G. J., Morel, M., 1992. Habitat use by Palaearctic migrant passerine birds in West Africa. Ibis (Lond. 1859). 134, 83–88. doi.org/10.1111/j.1474-919X.1992.tb04737.x

- Murphy, A. L., Pavlova A., Thompson, R., Davis, J., Sunnucks P., 2015. Swimming through sand: connectivity of aquatic fauna in deserts. Ecol. Evol. 5, 5252–5264. doi.org/10.1002/ece3.1741
- Murray, B., Reid, M., Capon, S., Wu, S. B., 2019. Genetic analysis suggests extensive gene flow within and between catchments in a common and ecologically significant dryland river shrub species; *Duma florulenta* (Polygonaceae). Ecol. Evol. 9, 7613– 7627. doi.org/10.1002/ece3.5310
- Nel, J. L., Roux, D. J., Abell, R., Ashton, P. J., Cowling, R. M., 2009. Progress and challenges in freshwater conservation planning. Aquat. Conserv. Mar. Freshw. Ecosyst. 485, 474–485. doi.org/10.1002/aqc
- Nyboer, E. A., Liang, C., Chapman, L. J., 2019. Assessing the vulnerability of Africa's freshwater fishes to climate change: A continent-wide trait-based analysis. Biol. Conserv. 236, 505–520. doi.org/10.1016/j.biocon.2019.05.003
- Padial, J. M., 2006. Commented distributional list of the Reptiles of Mauritania (West Africa). Graellsia 62, 159–178. doi.org/10.3989/graellsia.2006.v62.i2.64
- Padial, J. M., Crochet, P. A., Geniez, P., Brito, J. C., 2013. Amphibian conservation in Mauritania, in: Conservation and Decline of Amphibians: Eastern Hemisphere of the Series Amphibian Biology. Basic and Applied Herpetology, pp. 11–22. doi.org/10.11160/bah.13002
- Pressey, R. L., Cabeza, M., Watts, M. E., Cowling, R. M., Wilson, K. A., 2007. Conservation planning in a changing world. Trends Ecol. Evol. 22, 583–592. doi.org/10.1016/j.tree.2007.10.001
- Reid, A. J., Carlson, A. K., Creed, I. F., Eliason, E. J., Gell, P. A., Johnson, P. T. J., Kidd,
 K. A., Maccormack, T. J., Olden, J. D., Ormerod, S. J., Smol, J. P., Taylor, W. W.,
 Tockner, K., Vermaire, J. C., Dudgeon, D., Cooke, S. J., 2018. Emerging threats
 and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94,
 849–873. doi.org/10.1111/brv.12480
- Reis, V., Hermoso, V., Hamilton, S. K., Bunn, S. E., Linke, S., 2019. Conservation planning for river-wetland mosaics: a flexible spatial approach to integrate floodplain and upstream catchment connectivity. Biol. Conserv. 236, 356–365. doi.org/10.1016/j.biocon.2019.05.042
- Salafsky, N., Salzer, D., Stattersfield, A. J., Hilton-Taylor, C., Neugarten, R., Butchart, S. H. M., Collen, B., Cox, N., Master, L. L., O'Connor, S., Wilkie, D., 2008. A standard lexicon for biodiversity conservation: Unified classifications of threats and actions. Conserv. Biol. 22, 897–911. doi.org/10.1111/j.1523-1739.2008.00937.x
- Santarém, F., Campos, J. C., Pereira, P., Hamidou, D., Saarinen, J., Brito, J. C., 2018. Using multivariate statistics to assess ecotourism potential of water-bodies: A

case-study in Mauritania. Tour. Manag. 67, 34–46. doi.org/10.1016/j.tourman.2018.01.001

- Secretariat of the Convention on Biological Diversity, 2010. Global Biodiversity Outlook 3, Secretariat of the Convention on Biological Diversity. Montréal. doi.org/10.2143/KAR.25.0.504988
- Semlitsch, R. D., Bodie, J. R., 2003. Biological Criteria for Buffer Zones around Wetlands and Riparian Habitats for Amphibians and Reptiles. Conserv. Biol. 17, 1219–1228. doi.org/10.1046/j.1523-1739.2003.02177.x
- Suggitt, A. J., Wilson, R. J., Isaac, N. J. B., Beale, C. M., Auffret, A. G., August, T., Bennie, J. J., Crick, H. Q. P., Duffield, S., Fox, R., Hopkins, J. J., Macgregor, N. A., Morecroft, M. D., Walker, K. J., Maclean, I. M. D., 2018. Extinction risk from climate change is reduced by microclimatic buffering. Nat. Clim. Chang. 8, 713–717. doi.org/10.1038/s41558-018-0231-9
- Taylor, P. D., Fahrig, L., With, K. A., 2006. Landscape connectivity: a return to the basics, in: Crooks, K. R., Sanjayan, M. (Eds.), Connectivity Conservation. pp. 29– 43. doi.org/10.1017/CBO9780511754821
- Tellería, J., 2007. Fiche Ramsar Lac Gabou et le Réseau Hydrographic du plateau du Tagant.
- Tonkin, J. D., Altermatt, F., Finn, D. S., Heino, J., Olden, J. D., Pauls, S. U., Lytle, D. A., 2018. The role of dispersal in river network metacommunities: Patterns, processes, and pathways. Freshw. Biol. 63, 141–163. doi.org/10.1111/fwb.13037
- Trape, S., 2009. Impact of climate change on the relict tropical fish fauna of central Sahara: Threat for the survival of Adrar mountains fishes, Mauritania. PLoS One 4, e4400. doi.org/10.1371/journal.pone.0004400
- Vale, C. G., Pimm, S. L., Brito, J. C., 2015. Overlooked mountain rock pools in deserts are critical local hotspots of biodiversity. PLoS One 10, e0118367. doi.org/10.1371/journal.pone.0118367
- Velo-Antón, G., Godinho, R., Campos, J. C., Brito, J. C., 2014. Should i stay or should i go? Dispersal and population structure in small, isolated desert populations of West African crocodiles. PLoS One 9, e94626. doi.org/10.1371/journal.pone.0094626
- Venter, O., Sanderson, E. W., Magrach, A., Allan, J. R., Beher, J., Jones, K. R., Possingham, H. P., Laurance, W. F., Wood, P., Fekete, B. M., Levy, M. A., Watson, J. E., 2018. Last of the Wild Project, Version 3 (LWP-3): 2009 Human Footprint, 2018 Release. Palisades, 240 NY: NASA Socioeconomic Data and Applications Center (SEDAC).

- Ward, J. V, 1989. The Four-Dimensional Nature of Lotic Ecosystems. J. North Am. Benthol. Soc. 8, 2–8. doi.org/10.2307/1467397
- Woolmer, G., Trombulak, S. C., Ray, J. C., Doran, P. J., Anderson, M. G., Baldwin, R. F., Morgan, A., Sanderson, E. W., 2008. Rescaling the Human Footprint: A tool for conservation planning at an ecoregional scale. Landsc. Urban Plan. 87, 42–53. doi.org/10.1016/j.landurbplan.2008.04.005
- Zacarias, D., Loyola, R., 2018. Distribution modelling and multi-scale landscape connectivity highlight important areas for the conservation of savannah elephants. Biol. Conserv. 224, 1–8. doi.org/10.1016/j.biocon.2018.05.014
- Zeng, N., 2003. Drought in the Sahel. Science. 302, 999–1000. doi.org/10.1126/science.1090849

Chapter IV: Final discussion

Landscape connectivity is the milestone concerning species persistence and ecosystem resilience (Taylor *et al.*, 2006), especially in arid regions vulnerable to anthropogenic activities, such as the Sahel (Hutchinson *et al.*, 2018). Hence, this thesis presented two case studies that addressed the importance of preserve connectivity to achieve long-term persistence and guarantee effective conservation measures. Firstly, different negative impacts to biodiversity were shown due to strong land-cover and land-use changes imposed by a barrier effect that disrupts connectivity in an international level. Secondly, a new framework was tested to highlight connectivity at local level in freshwater ecosystems, that took into account the need to consider the complete hydrographic network in the incorporation of suitable corridors for species dispersal. The results provided by these case studies indicated the necessity to consider connectivity when addressing conservation measures in arid regions.

4.1. Major findings

Manuscript I demonstrated that an intensive afforestation program in a previously open area can present a threat to overlooked biodiversity adapted to drylands. Although, tree plantation is often perceived as a measure to mitigate the effects of climate change and to increase biodiversity (Wade et al., 2018; Bastin et al., 2019), the location where the initiatives take place should be taken into account. Massive land-cover and land-use change due to afforestation can have negative impacts on biodiversity in Sahel (Hawlena and Bouskila, 2006). Different biomes harbour different biodiversity that co-evolved to survive in a particular ecosystem. Open areas, such as the ones found in Sahel, are facing a new threat - tree planting, as many of dryland biodiversity is not adapted to dense tree cover, acting as a barrier effect (Veldman et al., 2015a, 2015b). Calls for tree planting initiatives to ensure food security, to mitigate the effects of climate change and to stop desertification should be taken carefully, together with a strong scientific background. Otherwise, a healthy dryland ecosystem can be replaced by a dense forest cover, pastoral and agricultural fields, leading to the loss of species and evolutionary history (Veldman et al., 2015a). Therefore, restoration of degraded habitat in the Sahel should be promoted to increase its resilience over its transformation into a new ecosystem (Bastin et al., 2019; Goffner et al., 2019).

Incorporating the complete hydrographic network in the spatial planning led to the prioritisation of local biodiversity hotspots needed to achieve the conservation targets, as well as the corridors that will allow species dispersal, to maintain a metapopulation dynamics, mitigating the effects of species isolation. Different works have shown the importance of addressing connectivity when defining priority areas for conservation, taking into account climate change and sustained human development (e.g., Prieto-Torres et al., 2018; Zacarias and Loyola, 2018). A predicted increase in the African human population and a decrease in precipitation (Druyan, 2011; Hutchinson et al., 2018) can lead to an increase in the construction of water reservoirs, such as large dams, which can alter the river flow and the capacity of species to move to different areas. The methodological approach of Manuscript II can be easily applied as a conservation tool by incorporating different biological aspects, such as genetic information. For instance, gene flow can inform about landscape genetics, giving information on which species move across the study area and their dispersal capacity, and inform about the populations with less genetic diversity, which are particularly vulnerable to local extinction (Spice et al., 2019). The methodology presented can have a positive influence in future spatial prioritisation studies in arid freshwater ecosystems, where connectivity through the hydrographic network is essential to maintain the community dynamics.

The results retrieved from these two manuscripts should be taken into account when designing wildlife conservation measures in arid regions. The information collected should reach policymakers and stakeholders to proper guide and advice towards a suitable implementation of effective measures to protect biodiversity. These two studies provide useful information in conservation planning for overlooked biodiversity in the African Sahel. The synergies between priority areas for conservation and connectivity will allow the long-term persistence of the species in the region, mitigating negative effects of isolation and strong habitat change in this arid region.

4.2. Future work

The work presented in the two manuscripts should continue in order to improve the results addressing connectivity in arid regions and to give a solid basis to advice policymakers in conservation planning. Future projections accounting for climate change could improve the work described in Manuscript I and highlight the barrier effect of the Wall. Due to the high uncertainty of predicting land-cover and land-use change to the future (Alexander *et al.*, 2017), the effects of the Wall as a barrier for arid adapted species cannot be projected. By combining species distributions models and future climate projections it is possible to predict where the species will likely be distributed in the future and which pathways they will use to move across the landscape. Species currently distributed north of the Wall, as the region warms (Loarie *et al.*, 2009), will likely

disperse southwards or to mountain areas, where the climate will be cooler (Walther *et al.*, 2002). For instance, Sahara endemic species, which comprises xeric species adapted to open areas, will find the Wall as unsuitable habitat, therefore they will be probably confined to its northern area, unless north-south corridors ensuring their dispersal are created. Without considering the increase of anthropogenic activities in the region, climate change combined with the barrier effect created by the Wall will likely lead these species towards extinction. Unlike the work developed in Manuscript I that considered the immediate effects of the Wall in local species, future work should take into account the ability of species to disperse within the region. Moreover, it should consider species currently distributed within the Wall intervention zone (Table S1) and all species present in North Africa, that in the future can be also affected. As this is a long-term initiative, this work should also consider the long-term effects, contributing to a much stronger scientific support to advice policymakers in the implementation.

Regarding Manuscript II, Mauritania still have not achieved the goal of Aichi Target 11 and the percentage of protected land connected have been stable for the past decade (Saura et al., 2019). Therefore, the next step towards biodiversity conservation in Mauritania should be the identification of areas suitable for the establishment of a microreserve network properly connected, while promoting resilience to climate change. Assuming that taxa inhabiting *Gueltas* constitute a metapopulation system with complex spatial and temporal dynamics strongly related to dispersal abilities, a network of protected areas could be used to promote biodiversity conservation and sustainable community development. To achieve this goal, field surveys should be developed in wetlands for collecting species distribution data, tissue and water samples, the latter with environmental metagenomics (eDNA) techniques, threat factors and socioeconomic indicators. Biodiversity distribution patters should be analysed, taking into account populations genetic structure, migration rates and levels of gene flow, using microsatellites or whole genome re-sequencing when possible. Ecological niche-based models of species and communities' distribution should be used to understand how landscape connectivity will be affected under global change scenarios and to identify corridors that ensure representation and persistence of conservation features under alternative scenarios of climate change. Moreover, incorporating social data into spatial prioritisation studies can inform about the true value of the land and access conservation opportunity based on public perception, increasing the effectiveness of the reserve design (Brown et al., 2019). Future work should integrate multiple research fields, dealing with different hierarchical levels of biodiversity, providing new insights into connectivity among Gueltas in arid ecosystems, based on combined genetic, spatial and

ecological evidence, which would push forward the current knowledge obtain from manuscript II.

4.3. References

- Alexander, P., Prestele, R., Verburg, P. H., Arneth, A., Baranzelli, C., Batista e Silva, F., Brown, C., Butler, A., Calvin, K., Dendoncker, N., Doelman, J. C., Dunford, R., Engström, K., Eitelberg, D., Fujimori, S., Harrison, P. A., Hasegawa, T., Havlik, P., Holzhauer, S., Humpenöder, F., Jacobs-Crisioni, C., Jain, A. K., Krisztin, T., Kyle, P., Lavalle, C., Lenton, T., Liu, J., Meiyappan, P., Popp, A., Powell, T., Sands, R. D., Schaldach, R., Stehfest, E., Steinbuks, J., Tabeau, A., van Meijl, H., Wise, M. A., Rounsevell, M. D. A., 2017. Assessing uncertainties in land cover projections. Glob. Chang. Biol. 23, 767–781. doi.org/10.1111/gcb.13447
- Bastin, J. F., Finegold, Y., Garcia, C., Mollicone, D., Rezende, M., Routh, D., Zohner, C.
 M., Crowther, T. W., 2019. The global tree restoration potential. Science. 265, 76– 79. doi.org/10.1126/science.aax0848
- Brown, G., McAlpine, C., Rhodes, J., Lunney, D., Goldingay, R., Fielding, K., Hetherington, S., Hopkins, M., Manning, C., Wood, M., Brace, A., Vass, L., Swankie, L., 2019. Integration of social spatial data to assess conservation opportunities and priorities. Biol. Conserv. 236, 452–463. doi.org/10.1016/j.biocon.2019.06.002
- Druyan, L. M., 2011. Studies of 21st-century precipitation trends over West Africa. Int. J. Climatol. 31, 1415–1424. doi.org/10.1002/joc.2180
- Goffner, D., Sinare, H., Gordon, L. J., 2019. The Great Green Wall for the Sahara and the Sahel Initiative as an opportunity to enhance resilience in Sahelian landscapes and livelihoods. Reg. Environ. Chang. 19, 1417–1428. doi.org/10.1007/s10113-019-01481-z
- Hawlena, D., Bouskila, A., 2006. Land management practices for combating desertification cause species replacement of desert lizards. J. Appl. Ecol. 43, 701– 709. doi.org/10.1111/j.1365-2664.2006.01177.x
- Hutchinson, C. M., Reynolds, C., Hill, J., Sommer, S., von Maltitz, G., 2018. World Atlas of Desertification, 3rd edition. ed, Publication Office of The European Union. Luxembourg. doi.org/10.2760/9205
- Loarie, S. R., Duffy, P. B., Hamilton, H., Asner, G. P., Field, C. B., Ackerly, D. D., 2009. The velocity of climate change. Nature 462, 1052–1055. doi.org/10.1038/nature08649

- Prieto-Torres, D. A., Nori, J., Rojas-Soto, O. R., 2018. Identifying priority conservation areas for birds associated to endangered Neotropical dry forests. Biol. Conserv. 228, 205–214. doi.org/10.1016/j.biocon.2018.10.025
- Saura, S., Bertzky, B., Bastin L., Battistella, L., Mandrici, A., Dubois, G., 2019. Global trends in protected area connectivity from 2010 to 2018. Biol. Conserv. 238, 108183. doi.org/10.1016/j.biocon.2019.07.028
- Spice, E. K., Whitesel, T. A., Silver, G. S., Docker, M. F., 2019. Contemporary and historical river connectivity influence population structure in western brook lamprey in the Columbia River Basin. Conserv. Genet. 20, 299–314. doi.org/10.1007/s10592-018-1137-9
- Taylor, P. D., Fahrig, L., With, K. A., 2006. Landscape connectivity: a return to the basics, in: Crooks, K.R., Sanjayan, M. (Eds.), Connectivity Conservation. pp. 29–43. doi.org/10.1017/CBO9780511754821.003
- Veldman, J. W., Overbeck, G. E., Negreiros, D., Mahy, G., Le Stradic, S., Fernandes, G.
 W., Durigan, G., Buisson, E., Putz, F. E., Bond, W. J., 2015a. Where Tree Planting and Forest Expansion are Bad for Biodiversity and Ecosystem Services. Bioscience 65, 1011–1018. doi.org/10.1093/biosci/biv118
- Veldman, J. W., Overbeck, G. E., Negreiros, D., Mahy, G., Le Stradic, S., Fernandes, G.
 W., Durigan, G., Buisson, E., Putz, F. E., Bond, W. J., 2015b. Tyranny of trees in grassy biomes. Science. 347, 484–485. doi.org/10.1126/science.347.6221.484-c
- Wade, T. I., Ndiaye, O., Mauclaire, M., Mbaye, B., Sagna, M., Guissé, A., Goffner, D., 2018. Biodiversity field trials to inform reforestation and natural resource management strategies along the African Great Green Wall in Senegal. New For. 49, 341–362. doi.org/10.1007/s11056-017-9623-3
- Walther, G. R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., Fromentin, J. M., Hoegh-Guldberg, O., Bairlein, F., 2002. Ecological responses to recent climate change. Nature 416, 389–395. doi.org/10.1038/416389a
- Zacarias, D., Loyola, R., 2018. Distribution modelling and multi-scale landscape connectivity highlight important areas for the conservation of savannah elephants. Biol. Conserv. 224, 1–8. doi.org/10.1016/j.biocon.2018.05.014

Chapter V: Appendices

5.1. Supplementary material - Manuscript II

Table S1 | List of species and their characteristics analysed under the present study. Amphibians, reptiles, birds and mammals whose distribution are within the Wall intervention zone, their IUCN conservation status (IUCN, 2019), endemism status (SHR - Sahara, SHL - Sahel, WAL - Wall, and SAV - Savannah), and the percentage of the African range included in the Wall intervention zone. Species are ordered by the percentage of its African range affected and by the level of threatened category. Species in bold represent the ones included in a threatened category.

Class	Таха	Conservation status	Endemism
	100% of African range affected		
Mammalia	Capra walie	EN	WAL
Amphibia	Ptychadena mascareniensis	LC	WAL
Mammalia	Crocidura fumosa	LC	WAL
Mammalia	Taterillus tranieri	LC	WAL
Reptilia	Agama cornii	DD	WAL
Reptilia	Cynisca senegalensis	DD	WAL
Mammalia	Eptesicus platyops	DD	WAL
Mammalia	Gerbillus bottai	DD	WAL
Mammalia	Gerbillus muriculus	DD	WAL
Mammalia	Gerbillus principulus	DD	WAL
Mammalia	Gerbillus stigmonyx	DD	WAL
Mammalia	Kerivoula eriophora	DD	WAL
Mammalia	Neoromicia helios	DD	WAL
Mammalia	Pipistrellus aero	DD	WAL
	75 – 99%		
Mammalia	Nanger dama	CR	WAL
Mammalia	Eudorcas tilonura	EN	WAL
Reptilia	Elapsoidea trapei	LC	WAL
Aves	Passer luteus	LC	WAL
Aves	Prinia fluviatilis	LC	WAL
Aves	Spiloptila clamans	LC	WAL
Aves	Sylvia hortensis	LC	WAL
Mammalia	Crocidura cinderella	LC	WAL
Mammalia	Eptesicus floweri	LC	WAL
Mammalia	Gerbillus rupicola	LC	WAL
Mammalia	Taterillus petteri	LC	WAL
Mammalia	Taterillus pygargus	LC	WAL

Mammalia	Gerbillus nancillus	DD	WAL
	50 – 74%		
Aves	Vanellus gregarius	CR	
Mammalia	Eudorcas rufifrons	VU	SHL
Aves	Ardeotis arabs	NT	
Aves	Neotis nuba	NT	SHR
Reptilia	Agama boueti	LC	SHL
Reptilia	Atractaspis microlepidota	LC	
Reptilia	Atractaspis micropholis	LC	SAV
Reptilia	Echis leucogaster	LC	
Reptilia	Tricheilostoma bicolor	LC	
Aves	Anthoscopus punctifrons	LC	SHL
Aves	Calandrella brachydactyla	LC	
Aves	Calidris alba	LC	
Aves	Caprimulgus aegyptius	LC	
Aves	Caprimulgus eximius	LC	SHL
Aves	Caprimulgus ruficollis	LC	
Aves	Cercotrichas podobe	LC	
Aves	Cyanecula svecica	LC	
Aves	Dendropicos elachus	LC	SHL
Aves	Emberiza caesia	LC	
Aves	Hedydipna metallica	LC	
Aves	Lamprotornis pulcher	LC	SHL
Aves	Lanius nubicus	LC	
Aves	Locustella naevia	LC	
Aves	Lophotis savilei	LC	
Aves	Mirafra javanica	LC	
Aves	Mirafra rufa	LC	
Aves	Monticola solitarius	LC	
Aves	Myrmecocichla aethiops	LC	
Aves	Oenanthe cypriaca	LC	
Aves	Oenanthe hispanica	LC	
Aves	Ortyxelos meiffrenii	LC	
Aves	Sylvia crassirostris	LC	
Aves	Sylvia curruca	LC	
Aves	Sylvia ruppeli	LC	

Aves	Sylvia subalpina	LC	
Aves	Trachyphonus margaritatus	LC	
Aves	Turdoides leucocephala	LC	
Mammalia	Crocidura lusitania	LC	SHL
Mammalia	Crocidura pasha	LC	SHL
Mammalia	Desmodilliscus braueri	LC	SHL
Mammalia	Gerbillus campestris	LC	
Mammalia	Gerbillus rosalinda	LC	SHL
Mammalia	Mus haussa	LC	
Mammalia	Steatomys cuppedius	LC	SHL
Mammalia	Taterillus arenarius	LC	SHL
Mammalia	Taterillus lacustris	LC	SHL
Mammalia	Vulpes pallida	LC	SHL
Reptilia	Scincopus fasciatus	DD	SHL
Mammalia	Felovia vae	DD	SHL
	25 – 49%		
Aves	Gyps rueppelli	CR	
Mammalia	Addax nasomaculatus	CR	SHR
Mammalia	Equus africanus	CR	
Aves	Balearica pavonina	VU	
Aves	Crithagra ankoberensis	VU	
Aves	Streptopelia turtur	VU	
Mammalia	Nanger soemmerringii	VU	
Mammalia	Tragelaphus derbianus	VU	SAV
Mammalia	Ceratotherium simum	NT	
Mammalia	Papio papio	NT	
Amphibia	Hyperolius spatzi	LC	
Amphibia	Sclerophys pentoni	LC	
Amphibia	Sclerophys xeros	LC	
Amphibia	Tomopterna cryptotis	LC	
Reptilia	Acanthodactylus senegalensis	LC	SHR
Reptilia	Agama boulengeri	LC	SHR
Reptilia	Agama spinosa	LC	
Reptilia	Bamanophis dorri	LC	SAV
Reptilia	Chalcides delislei	LC	SHL
Reptilia	Chamaeleo africanus	LC	

Reptilia	Cynisca feae	LC	
Reptilia	Dasypeltis latericia	LC	SAV
Reptilia	Hemidactylus yerburyi	LC	
Reptilia	Naja senegalensis	LC	SAV
Reptilia	Tarentola parvicarinata	LC	
Reptilia	Tarentola senegambiae	LC	
Aves	Accipiter brevipes	LC	
Aves	Amadina fasciata	LC	
Aves	Anas crecca	LC	
Aves	Anas platyrhynchos	LC	
Aves	Anthropoides virgo	LC	
Aves	Anthus campestris	LC	
Aves	Argya fulva	LC	SHR
Aves	Asio flammeus	LC	
Aves	Batis senegalensis	LC	
Aves	Bubalornis albirostris	LC	
Aves	Bubo cinerascens	LC	
Aves	Buteo rufinus	LC	
Aves	Caprimulgus climacurus	LC	
Aves	Carpospiza brachydactyla	LC	
Aves	Cercotrichas galactotes	LC	
Aves	Charadrius alexandrinus	LC	
Aves	Chelictinia riocourii	LC	
Aves	Ciconia abdimii	LC	
Aves	Cinnyris pulchellus	LC	
Aves	Circaetus gallicus	LC	
Aves	Coracias abyssinicus	LC	
Aves	Corvus rhipidurus	LC	
Aves	Corvus ruficollis	LC	
Aves	Coturnix coturnix	LC	
Aves	Crithagra leucopygia	LC	
Aves	Crithagra xanthopygia	LC	
Aves	Cursorius cursor	LC	
Aves	Dendropicos goertae	LC	
Aves	Dendropicos pyrrhogaster	LC	SHL
Aves	Emberiza goslingi	LC	

Aves	Emberiza striolata	LC	
Aves	Eremalauda dunni	LC	
Aves	Eremopterix nigriceps	LC	
Aves	Euodice cantans	LC	
Aves	Falco alopex	LC	
Aves	Galerida cristata	LC	
Aves	Gymnoris dentata	LC	
Aves	Gyps fulvus	LC	
Aves	Hedydipna platura	LC	
Aves	Hirundo aethiopica	LC	
Aves	lduna opaca	LC	
Aves	Lagonosticta virata	LC	SAV
Aves	Lamprotornis caudatus	LC	
Aves	Lamprotornis iris	LC	SHL
Aves	Laniarius barbarus	LC	
Aves	Lanius excubitor	LC	
Aves	Lanius excubitoroides	LC	
Aves	Lanius phoenicuroides	LC	
Aves	Lybius vieilloti	LC	
Aves	Lymnocryptes minimus	LC	
Aves	Melanocorypha bimaculata	LC	
Aves	Merops albicollis	LC	
Aves	Merops nubicus	LC	
Aves	Merops viridissimus	LC	
Aves	Mirafra cordofanica	LC	SHR
Aves	Oenanthe heuglinii	LC	
Aves	Oenanthe isabellina	LC	
Aves	Oenanthe melanura	LC	
Aves	Oenanthe oenanthe	LC	
Aves	Oenanthe seebohmi	LC	
Aves	Onychognathus albirostris	LC	
Aves	Passer euchlorus	LC	
Aves	Phylloscopus collybita	LC	
Aves	Phylloscopus ibericus	LC	SAV
Aves	Pinarocorys erythropygia	LC	
Aves	Platalea leucorodia	LC	

SHL

SAV

Aves	Ploceus badius	LC
Aves	Ploceus galbula	LC
Aves	Ploceus luteolus	LC
Aves	Ploceus taeniopterus	LC
Aves	Prinia gracilis	LC
Aves	Psittacula krameri	LC
Aves	Pternistis bicalcaratus	LC
Aves	Pternistis clappertoni	LC
Aves	Pternistis erckelii	LC
Aves	Pterocles exustus	LC
Aves	Pterocles lichtensteinii	LC
Aves	Pterocles quadricinctus	LC
Aves	Ptilopsis leucotis	LC
Aves	Ptyonoprogne rupestris	LC
Aves	Rhinopomastus aterrimus	LC
Aves	Spatula clypeata	LC
Aves	Sporopipes frontalis	LC
Aves	Streptopelia decipiens	LC
Aves	Streptopelia roseogrisea	LC
Aves	Streptopelia vinacea	LC
Aves	Struthio camelus	LC
Aves	Sylvia cantillans	LC
Aves	Sylvia mystacea	LC
Aves	Sylvia nisoria	LC
Aves	Tadorna ferruginea	LC
Aves	Turtur abyssinicus	LC
Aves	Urocolius macrourus	LC
Aves	Vanellus leucurus	LC
Aves	Vanellus spinosus	LC
Aves	Vanellus tectus	LC
Aves	Vidua orientalis	LC
Mammalia	Acomys airensis	LC
Mammalia	Acomys cineraceus	LC
Mammalia	Acomys johannis	LC
Mammalia	Acomys mullah	LC
Mammalia	Arvicanthis abyssinicus	LC

Mammalia	Arvicanthis niloticus	LC	
Mammalia	Asellia patrizii	LC	
Mammalia	Chaerephon major	LC	
Mammalia	Chlorocebus aethiops	LC	
Mammalia	Crocidura fulvastra	LC	
Mammalia	Crocidura nanilla	LC	
Mammalia	Crocidura smithii	LC	
Mammalia	Crocidura somalica	LC	
Mammalia	Crocidura viaria	LC	
Mammalia	Crocidura voi	LC	
Mammalia	Erythrocebus patas	LC	
Mammalia	Genetta abyssinica	LC	
Mammalia	Gerbilliscus gambiana	LC	SAV
Mammalia	Gerbillus henleyi	LC	
Mammalia	Gerbillus pyramidum	LC	SHL
Mammalia	Ictonyx libycus	LC	SHR
Mammalia	Mastomys awashensis	LC	
Mammalia	Mastomys huberti	LC	
Mammalia	Mastomys kollmannspergeri	LC	SHL
Mammalia	Rhinopoma microphyllum	LC	
Mammalia	Taphozous nudiventris	LC	
Mammalia	Taterillus gracilis	LC	
Mammalia	Theropithecus gelada	LC	
Mammalia	Xerus erythropus	LC	
Reptilia	Echis jogeri	DD	SAV
Reptilia	Letheobia erythraea	DD	
Reptilia	Trapelus schmitzi	DD	SHR
Reptilia	Tropiocolotes nubicus	DD	SHR
Mammalia	Grammomys aridulus	DD	SHL
Mammalia	Plecotus balensis	DD	
Reptilia	Myriopholis boueti	NE	SHL
	< 25%		
Reptilia	Cyclanorbis elegans	CR	
Reptilia	Eretmochelys imbricata	CR	
Reptilia	Mecistops cataphractus	CR	
Aves	Gyps africanus	CR	

_

Aves	Necrosyrtes monachus	CR	
Aves	Numenius tenuirostris	CR	
Aves	Trigonoceps occipitalis	CR	
Mammalia	Diceros bicornis	CR	
Amphibia	Xenopus largeni	EN	
Reptilia	Chelonia mydas	EN	
Reptilia	Philochortus zolii	EN	SHR
Aves	Aquila nipalensis	EN	
Aves	Falco cherrug	EN	
Aves	Neophron percnopterus	EN	
Aves	Torgos tracheliotos	EN	
Mammalia	Canis simensis	EN	
Mammalia	Gazella leptoceros	EN	SHR
Mammalia	Lycaon pictus	EN	
Mammalia	Oryx beisa	EN	
Mammalia	Pan troglodytes	EN	
Mammalia	Piliocolobus temminckii	EN	
Reptilia	Caretta caretta	VU	
Reptilia	Cyclanorbis senegalensis	VU	
Reptilia	Dermochelys coriacea	VU	
Reptilia	Lepidochelys olivacea	VU	
Reptilia	Osteolaemus tetraspis	VU	
Reptilia	Trionyx triunguis	VU	
Aves	Acrocephalus paludicola	VU	
Aves	Aquila heliaca	VU	
Aves	Aquila rapax	VU	
Aves	Aythya ferina	VU	
Aves	Bucorvus abyssinicus	VU	
Aves	Circaetus beaudouini	VU	
Aves	Clanga clanga	VU	
Aves	Cyanochen cyanoptera	VU	
Aves	Falco concolor	VU	
Aves	Marmaronetta angustirostris	VU	
Aves	Oxyura maccoa	VU	
Aves	Polemaetus bellicosus	VU	
Aves	Sagittarius serpentarius	VU	

Aves	Struthio molybdophanes	VU	
Mammalia	Acinonyx jubatus	VU	
Mammalia	Ammotragus lervia	VU	SHR
Mammalia	Capra nubiana	VU	
Mammalia	Dorcatragus megalotis	VU	
Mammalia	Gazella dorcas	VU	SHR
Mammalia	Giraffa camelopardalis	VU	SAV
Mammalia	Hippopotamus amphibius	VU	
Mammalia	Loxodonta africana	VU	
Mammalia	Myotis scotti	VU	
Mammalia	Oryx beisa ssp. beisa	VU	
Mammalia	Otomops harrisoni	VU	
Mammalia	Panthera leo	VU	
Mammalia	Panthera pardus	VU	
Mammalia	Rhinolophus guineensis	VU	
Mammalia	Smutsia gigantea	VU	
Mammalia	Smutsia temminckii	VU	
Aves	Anthus pratensis	NT	
Aves	Aythya nyroca	NT	
Aves	Buteo oreophilus	NT	
Aves	Calidris ferruginea	NT	
Aves	Circus macrourus	NT	
Aves	Emberiza cineracea	NT	
Aves	Falco vespertinus	NT	
Aves	Gallinago media	NT	
Aves	Glareola nordmanni	NT	
Aves	Gypaetus barbatus	NT	
Aves	Limosa limosa	NT	
Aves	Macronyx flavicollis	NT	
Aves	Neotis denhami	NT	
Aves	Numenius arquata	NT	
Aves	Phoeniconaias minor	NT	
Aves	Pternistis harwoodi	NT	
Aves	Rougetius rougetii	NT	
Aves	Rynchops flavirostris	NT	
Aves	Scleroptila psilolaema	NT	

Aves	Stephanoaetus coronatus	NT	
Aves	Terathopius ecaudatus	NT	
Mammalia	Aonyx capensis	NT	
Mammalia	Eidolon helvum	NT	
Mammalia	Felis margarita	NT	
Mammalia	Hipposideros jonesi	NT	
Mammalia	Hyaena hyaena	NT	
Mammalia	Hydrictis maculicollis	NT	
Mammalia	Litocranius Walleri	NT	
Mammalia	Tragelaphus imberbis	NT	
Amphibia	Afrixalus vittiger	LC	
Amphibia	Afrixalus weidholzi	LC	
Amphibia	Amietia nutti	LC	
Amphibia	Amnirana galamensis	LC	
Amphibia	Conraua beccarii	LC	
Amphibia	Hemisus guineensis	LC	
Amphibia	Hemisus marmoratus	LC	
Amphibia	Hildebrandtia ornata	LC	
Amphibia	Hoplobatrachus occipitalis	LC	
Amphibia	Hyperolius igbettensis	LC	
Amphibia	Hyperolius lamottei	LC	
Amphibia	Hyperolius nitidulus	LC	
Amphibia	Hyperolius viridiflavus	LC	
Amphibia	Kassina cassinoides	LC	SAV
Amphibia	Kassina fusca	LC	SAV
Amphibia	Kassina senegalensis	LC	
Amphibia	Kassina somalica	LC	
Amphibia	Leptopelis bufonides	LC	SAV
Amphibia	Leptopelis viridis	LC	
Amphibia	Phrynobatrachus calcaratus	LC	
Amphibia	Phrynobatrachus francisci	LC	
Amphibia	Phrynobatrachus gutturosus	LC	
Amphibia	Phrynobatrachus latifrons	LC	
Amphibia	Phrynobatrachus natalensis	LC	
Amphibia	Phrynobatrachus perpalmatus	LC	
Amphibia	Phrynomantis microps	LC	

Amphibia	Ptychadena anchietae	LC	
Amphibia	Ptychadena bibroni	LC	
Amphibia	Ptychadena neumanni	LC	
Amphibia	Ptychadena nilotica	LC	
Amphibia	Ptychadena oxyrhynchus	LC	
Amphibia	Ptychadena porosissima	LC	
Amphibia	Ptychadena pumilio	LC	
Amphibia	Ptychadena schillukorum	LC	
Amphibia	Ptychadena tellinii	LC	
Amphibia	Ptychadena tournieri	LC	
Amphibia	Ptychadena trinodis	LC	
Amphibia	Pyxicephalus edulis	LC	
Amphibia	Sclerophys asmarae	LC	
Amphibia	Sclerophys dodsoni	LC	
Amphibia	Sclerophys garmani	LC	
Amphibia	Sclerophys maculata	LC	
Amphibia	Sclerophys regularis	LC	
Amphibia	Tomopterna kachowskii	LC	
Amphibia	Xenopus clivii	LC	
Amphibia	Xenopus fischbergi	LC	
Amphibia	Xenopus muelleri	LC	
Amphibia	Xenopus tropicalis	LC	
Reptilia	Acanthocercus annectens	LC	
Reptilia	Acanthodactylus aureus	LC	SHR
Reptilia	Acanthodactylus dumerili	LC	SHR
Reptilia	Afronatrix anoscopus	LC	
Reptilia	Agama boensis	LC	
Reptilia	Agama tassiliensis	LC	SHR
Reptilia	Agama weidholzi	LC	
Reptilia	Atractaspis dahomeyensis	LC	
Reptilia	Atractaspis irregularis	LC	
Reptilia	Cerastes vipera	LC	
Reptilia	Chalcides pulchellus	LC	
Reptilia	Chalcides sphenopsiformis	LC	SHR
Reptilia	Chalcides thierryi	LC	SAV
Reptilia	Chamaeleo calcaricarensis	LC	

Reptilia	Chamaeleo gracilis	LC	
Reptilia	Chamaeleo laevigatus	LC	
Reptilia	Chamaeleo senegalensis	LC	
Reptilia	Crocodylus niloticus	LC	
Reptilia	Dasypeltis fasciata	LC	
Reptilia	Dasypeltis scabra	LC	
Reptilia	Dendroaspis polylepis	LC	
Reptilia	Dendroaspis viridis	LC	
Reptilia	Duberria lutrix	LC	
Reptilia	Echis pyramidum	LC	
Reptilia	Gonionotophis grantii	LC	
Reptilia	Hemirhagerrhis hildebrandtii	LC	
Reptilia	Hemitheconyx caudicinctus	LC	
Reptilia	Hydrophis platurus	LC	
Reptilia	Lycophidion albomaculatum	LC	
Reptilia	Lycophidion semicinctum	LC	
Reptilia	Lythorhynchus diadema	LC	
Reptilia	Mesalina olivieri	LC	
Reptilia	Mesalina pasteuri	LC	SHR
Reptilia	Mochlus mocquardi	LC	SAV
Reptilia	Myriopholis albiventer	LC	
Reptilia	Myriopholis rouxestevae	LC	SAV
Reptilia	Naja katiensis	LC	SAV
Reptilia	Natriciteres olivacea	LC	
Reptilia	Panaspis nimbaensis	LC	
Reptilia	Philothamnus irregularis	LC	
Reptilia	Platyceps florulentus	LC	
Reptilia	Pristurus rupestris	LC	
Reptilia	Python regius	LC	
Reptilia	Rhinoleptus koniagui	LC	
Reptilia	Scincus albifasciatus	LC	SHR
Reptilia	Telescopus variegatus	LC	
Reptilia	Trapelus boehmei	LC	SHR
Reptilia	Trioceros affinis	LC	
Reptilia	Tropiocolotes tripolitanus	LC	SHR
Reptilia	Uromastyx ocellata	LC	

Reptilia	Varanus exanthematicus	LC
Aves	Accipiter badius	LC
Aves	Accipiter erythropus	LC
Aves	Accipiter melanoleucus	LC
Aves	Accipiter minullus	LC
Aves	Accipiter nisus	LC
Aves	Accipiter ovampensis	LC
Aves	Accipiter rufiventris	LC
Aves	Accipiter toussenelii	LC
Aves	Acrocephalus arundinaceus	LC
Aves	Acrocephalus gracilirostris	LC
Aves	Acrocephalus griseldis	LC
Aves	Acrocephalus palustris	LC
Aves	Acrocephalus rufescens	LC
Aves	Acrocephalus schoenobaenus	LC
Aves	Acrocephalus scirpaceus	LC
Aves	Acrocephalus stentoreus	LC
Aves	Actitis hypoleucos	LC
Aves	Actophilornis africanus	LC
Aves	Agapornis pullarius	LC
Aves	Agapornis taranta	LC
Aves	Agricola pallidus	LC
Aves	Alaemon alaudipes	LC
Aves	Alcedo quadribrachys	LC
Aves	Alcedo semitorquata	LC
Aves	Alopochen aegyptiaca	LC
Aves	Amandava subflava	LC
Aves	Amaurornis marginalis	LC
Aves	Ammomanes cinctura	LC
Aves	Ammomanes deserti	LC
Aves	Anaplectes leuconotos	LC
Aves	Anas acuta	LC
Aves	Anas capensis	LC
Aves	Anas erythrorhyncha	LC
Aves	Anas sparsa	LC
Aves	Anas undulata	LC

SAV

Aves	Anastomus lamelligerus	LC
Aves	Anhinga rufa	LC
Aves	Anomalospiza imberbis	LC
Aves	Anthoscopus musculus	LC
Aves	Anthoscopus parvulus	LC
Aves	Anthreptes longuemarei	LC
Aves	Anthreptes orientalis	LC
Aves	Anthus cervinus	LC
Aves	Anthus cinnamomeus	LC
Aves	Anthus leucophrys	LC
Aves	Anthus similis	LC
Aves	Anthus trivialis	LC
Aves	Apalis flavida	LC
Aves	Apaloderma narina	LC
Aves	Aplopelia larvata	LC
Aves	Apus affinis	LC
Aves	Apus apus	LC
Aves	Apus caffer	LC
Aves	Apus horus	LC
Aves	Apus niansae	LC
Aves	Apus pallidus	LC
Aves	Aquila chrysaetos	LC
Aves	Aquila fasciata	LC
Aves	Aquila spilogaster	LC
Aves	Aquila verreauxii	LC
Aves	Ardea alba	LC
Aves	Ardea brachyrhyncha	LC
Aves	Ardea cinerea	LC
Aves	Ardea goliath	LC
Aves	Ardea melanocephala	LC
Aves	Ardea purpurea	LC
Aves	Ardeola ralloides	LC
Aves	Argya rubiginosa	LC
Aves	Asio abyssinicus	LC
Aves	Asio capensis	LC
Aves	Athene noctua	LC

Aves	Atimastillas flavicollis	LC
Aves	Aviceda cuculoides	LC
Aves	Aythya fuligula	LC
Aves	Batis erlangeri	LC
Aves	Batis orientalis	LC
Aves	Bocagia minuta	LC
Aves	Bostrychia carunculata	LC
Aves	Bostrychia hagedash	LC
Aves	Botaurus stellaris	LC
Aves	Bradornis microrhynchus	LC
Aves	Bradypterus baboecala	LC
Aves	Bradypterus centralis	LC
Aves	Bradypterus cinnamomeus	LC
Aves	Bubalornis niger	LC
Aves	Bubo ascalaphus	LC
Aves	Bubo capensis	LC
Aves	Bubo lacteus	LC
Aves	Bubulcus ibis	LC
Aves	Bucanetes githagineus	LC
Aves	Buphagus africanus	LC
Aves	Buphagus erythrorynchus	LC
Aves	Burhinus capensis	LC
Aves	Burhinus oedicnemus	LC
Aves	Burhinus senegalensis	LC
Aves	Butastur rufipennis	LC
Aves	Buteo augur	LC
Aves	Buteo auguralis	LC
Aves	Buteo buteo	LC
Aves	Butorides striata	LC
Aves	Bycanistes brevis	LC
Aves	Calamonastes simplex	LC
Aves	Calandrella blanfordi	LC
Aves	Calendulauda alopex	LC
Aves	Calherodius leuconotus	LC
Aves	Calidris minuta	LC
Aves	Calidris pugnax	LC

Aves	Calidris temminckii	LC
Aves	Camaroptera brachyura	LC
Aves	Campephaga phoenicea	LC
Aves	Campethera abingoni	LC
Aves	Campethera maculosa	LC
Aves	Campethera nivosa	LC
Aves	Campethera nubica	LC
Aves	Campethera punctuligera	LC
Aves	Caprimulgus clarus	LC
Aves	Caprimulgus europaeus	LC
Aves	Caprimulgus fraenatus	LC
Aves	Caprimulgus inornatus	LC
Aves	Caprimulgus longipennis	LC
Aves	Caprimulgus natalensis	LC
Aves	Caprimulgus nubicus	LC
Aves	Caprimulgus poliocephalus	LC
Aves	Caprimulgus tristigma	LC
Aves	Ceblepyris pectoralis	LC
Aves	Cecropis abyssinica	LC
Aves	Cecropis daurica	LC
Aves	Cecropis semirufa	LC
Aves	Cecropis senegalensis	LC
Aves	Centropus grillii	LC
Aves	Centropus monachus	LC
Aves	Centropus senegalensis	LC
Aves	Centropus superciliosus	LC
Aves	Cercotrichas leucophrys	LC
Aves	Ceryle rudis	LC
Aves	Chalcomitra senegalensis	LC
Aves	Charadrius asiaticus	LC
Aves	Charadrius dubius	LC
Aves	Charadrius forbesi	LC
Aves	Charadrius hiaticula	LC
Aves	Charadrius marginatus	LC
Aves	Charadrius pecuarius	LC
Aves	Charadrius tricollaris	LC

SAV

Aves	Chlorophoneus sulfureopectus	LC
Aves	Chrysococcyx caprius	LC
Aves	Chrysococcyx cupreus	LC
Aves	Chrysococcyx klaas	LC
Aves	Ciconia ciconia	LC
Aves	Ciconia microscelis	LC
Aves	Ciconia nigra	LC
Aves	Cinnyricinclus leucogaster	LC
Aves	Cinnyris chloropygius	LC
Aves	Cinnyris coccinigastrus	LC
Aves	Cinnyris cupreus	LC
Aves	Cinnyris habessinicus	LC
Aves	Cinnyris mariquensis	LC
Aves	Cinnyris osea	LC
Aves	Cinnyris venustus	LC
Aves	Circaetus cinerascens	LC
Aves	Circaetus cinereus	LC
Aves	Circaetus pectoralis	LC
Aves	Circus aeruginosus	LC
Aves	Circus cyaneus	LC
Aves	Circus pygargus	LC
Aves	Cisticola aberrans	LC
Aves	Cisticola aridulus	LC
Aves	Cisticola bodessa	LC
Aves	Cisticola brachypterus	LC
Aves	Cisticola brunnescens	LC
Aves	Cisticola cantans	LC
Aves	Cisticola chiniana	LC
Aves	Cisticola cinereolus	LC
Aves	Cisticola erythrops	LC
Aves	Cisticola eximius	LC
Aves	Cisticola guinea	LC
Aves	Cisticola juncidis	LC
Aves	Cisticola lateralis	LC
Aves	Cisticola lugubris	LC
Aves	Cisticola marginatus	LC

Aves	Cisticola natalensis	LC
Aves	Cisticola robustus	LC
Aves	Cisticola ruficeps	LC
Aves	Cisticola rufus	LC
Aves	Cisticola troglodytes	LC
Aves	Clamator glandarius	LC
Aves	Clamator jacobinus	LC
Aves	Clamator levaillantii	LC
Aves	Clanga pomarina	LC
Aves	Colius striatus	LC
Aves	Columba albitorques	LC
Aves	Columba arquatrix	LC
Aves	Columba guinea	LC
Aves	Columba livia	LC
Aves	Coracias caudatus	LC
Aves	Coracias cyanogaster	LC
Aves	Coracias garrulus	LC
Aves	Coracias naevius	LC
Aves	Corvinella corvina	LC
Aves	Corvus albus	LC
Aves	Corvus capensis	LC
Aves	Corvus crassirostris	LC
Aves	Corvus edithae	LC
Aves	Corythornis cristatus	LC
Aves	Cossypha albicapillus	LC
Aves	Cossypha heuglini	LC
Aves	Cossypha niveicapilla	LC
Aves	Cossypha semirufa	LC
Aves	Coturnix delegorguei	LC
Aves	Creatophora cinerea	LC
Aves	Crex crex	LC
Aves	Crex egregia	LC
Aves	Crinifer piscator	LC
Aves	Crinifer zonurus	LC
Aves	Criniferoides leucogaster	LC
Aves	Crithagra canicapilla	LC
Aves	Crithagra citrinelloides	LC
------	---------------------------	----
Aves	Crithagra dorsostriata	LC
Aves	Crithagra mozambica	LC
Aves	Crithagra reichenowi	LC
Aves	Crithagra striatipectus	LC
Aves	Crithagra striolata	LC
Aves	Crithagra tristriata	LC
Aves	Cryptospiza salvadorii	LC
Aves	Cuculus clamosus	LC
Aves	Cuculus gularis	LC
Aves	Cuculus solitarius	LC
Aves	Cursorius somalensis	LC
Aves	Cursorius temminckii	LC
Aves	Cyanomitra olivacea	LC
Aves	Cyanomitra verticalis	LC
Aves	Cypsiurus parvus	LC
Aves	Dendrocygna bicolor	LC
Aves	Dendrocygna viduata	LC
Aves	Dendroperdix sephaena	LC
Aves	Dendropicos abyssinicus	LC
Aves	Dendropicos fuscescens	LC
Aves	Dendropicos namaquus	LC
Aves	Dendropicos obsoletus	LC
Aves	Dendropicos spodocephalus	LC
Aves	Dicrurus adsimilis	LC
Aves	Dicrurus ludwigii	LC
Aves	Dinemellia dinemelli	LC
Aves	Dryoscopus gambensis	LC
Aves	Egretta ardesiaca	LC
Aves	Egretta garzetta	LC
Aves	Egretta gularis	LC
Aves	Elanus caeruleus	LC
Aves	Elminia longicauda	LC
Aves	Emberiza affinis	LC
Aves	Emberiza flaviventris	LC
Aves	Emberiza hortulana	LC

SAV

Aves	Emberiza sahari	LC
Aves	Emberiza tahapisi	LC
Aves	Ephippiorhynchus senegalensis	LC
Aves	Eremomela canescens	LC
Aves	Eremomela flavicrissalis	LC
Aves	Eremomela icteropygialis	LC
Aves	Eremomela pusilla	LC
Aves	Eremopterix leucotis	LC
Aves	Eremopterix signatus	LC
Aves	Estrilda astrild	LC
Aves	Estrilda coerulescens	LC
Aves	Estrilda melpoda	LC
Aves	Estrilda paludicola	LC
Aves	Estrilda rhodopyga	LC
Aves	Estrilda troglodytes	LC
Aves	Euplectes afer	LC
Aves	Euplectes ardens	LC
Aves	Euplectes axillaris	LC
Aves	Euplectes capensis	LC
Aves	Euplectes franciscanus	LC
Aves	Euplectes gierowii	LC
Aves	Euplectes hordeaceus	LC
Aves	Euplectes laticauda	LC
Aves	Euplectes macroura	LC
Aves	Eupodotis senegalensis	LC
Aves	Eurocephalus ruppelli	LC
Aves	Eurystomus glaucurus	LC
Aves	Falco amurensis	LC
Aves	Falco ardosiaceus	LC
Aves	Falco biarmicus	LC
Aves	Falco cuvierii	LC
Aves	Falco naumanni	LC
Aves	Falco peregrinus	LC
Aves	Falco ruficollis	LC
Aves	Falco rupicoloides	LC
Aves	Falco subbuteo	LC

Aves	Falco tinnunculus	LC
Aves	Ficedula hypoleuca	LC
Aves	Ficedula parva	LC
Aves	Ficedula semitorquata	LC
Aves	Fraseria caerulescens	LC
Aves	Fraseria plumbea	LC
Aves	Fulica atra	LC
Aves	Fulica cristata	LC
Aves	Galerida modesta	LC
Aves	Galerida theklae	LC
Aves	Gallinago gallinago	LC
Aves	Gallinago nigripennis	LC
Aves	Gallinula angulata	LC
Aves	Gallinula chloropus	LC
Aves	Gelochelidon nilotica	LC
Aves	Geokichla piaggiae	LC
Aves	Geronticus eremita	LC
Aves	Glareola cinerea	LC
Aves	Glareola nuchalis	LC
Aves	Glareola pratincola	LC
Aves	Glaucidium perlatum	LC
Aves	Granatina ianthinogaster	LC
Aves	Grus grus	LC
Aves	Gymnoris pyrgita	LC
Aves	Gypohierax angolensis	LC
Aves	Halcyon chelicuti	LC
Aves	Halcyon leucocephala	LC
Aves	Halcyon malimbica	LC
Aves	Halcyon senegalensis	LC
Aves	Haliaeetus vocifer	LC
Aves	Hedydipna collaris	LC
Aves	Hieraaetus ayresii	LC
Aves	Hieraaetus pennatus	LC
Aves	Hieraaetus wahlbergi	LC
Aves	Himantopus himantopus	LC
Aves	Hippolais icterina	LC

Aves	Hippolais languida	LC
Aves	Hippolais olivetorum	LC
Aves	Hippolais polyglotta	LC
Aves	Hirundo leucosoma	LC
Aves	Hirundo lucida	LC
Aves	Hirundo rustica	LC
Aves	Hirundo smithii	LC
Aves	Hydroprogne caspia	LC
Aves	Hyliota flavigaster	LC
Aves	Hypergerus atriceps	LC
Aves	lduna pallida	LC
Aves	Indicator indicator	LC
Aves	Indicator maculatus	LC
Aves	Indicator minor	LC
Aves	Irania gutturalis	LC
Aves	Ispidina picta	LC
Aves	Ixobrychus minutus	LC
Aves	Ixobrychus sturmii	LC
Aves	Jynx ruficollis	LC
Aves	Jynx torquilla	LC
Aves	Kaupifalco monogrammicus	LC
Aves	Lagonosticta larvata	LC
Aves	Lagonosticta nigricollis	LC
Aves	Lagonosticta rara	LC
Aves	Lagonosticta rubricata	LC
Aves	Lagonosticta rufopicta	LC
Aves	Lagonosticta senegala	LC
Aves	Lagonosticta vinacea	LC
Aves	Lamprotornis albicapillus	LC
Aves	Lamprotornis chalcurus	LC
Aves	Lamprotornis chalybaeus	LC
Aves	Lamprotornis chloropterus	LC
Aves	Lamprotornis purpureus	LC
Aves	Lamprotornis purpuroptera	LC
Aves	Lamprotornis regius	LC
Aves	Lamprotornis splendidus	LC

SAV

Aves	Lamprotornis superbus	LC
Aves	Laniarius aethiopicus	LC
Aves	Laniarius erythrogaster	LC
Aves	Laniarius funebris	LC
Aves	Lanius collaris	LC
Aves	Lanius collurio	LC
Aves	Lanius isabellinus	LC
Aves	Lanius senator	LC
Aves	Lanius somalicus	LC
Aves	Larus cirrocephalus	LC
Aves	Larus fuscus	LC
Aves	Larus ridibundus	LC
Aves	Leptoptilos crumenifer	LC
Aves	Linaria cannabina	LC
Aves	Lissotis hartlaubii	LC
Aves	Lissotis melanogaster	LC
Aves	Locustella fluviatilis	LC
Aves	Locustella luscinioides	LC
Aves	Lophaetus occipitalis	LC
Aves	Lophoceros hemprichii	LC
Aves	Lophoceros nasutus	LC
Aves	Lophoceros semifasciatus	LC
Aves	Lophotis gindiana	LC
Aves	Luscinia megarhynchos	LC
Aves	Lybius guifsobalito	LC
Aves	Lybius leucocephalus	LC
Aves	Lybius undatus	LC
Aves	Macheiramphus alcinus	LC
Aves	Macronyx croceus	LC
Aves	Malaconotus blanchoti	LC
Aves	Malimbus nitens	LC
Aves	Mareca penelope	LC
Aves	Mareca strepera	LC
Aves	Megaceryle maxima	LC
Aves	Melaenornis chocolatinus	LC
Aves	Melaenornis edolioides	LC

Aves	Melaenornis semipartitus	LC
Aves	Melaniparus guineensis	LC
Aves	Melaniparus leucomelas	LC
Aves	Melaniparus leuconotus	LC
Aves	Melierax metabates	LC
Aves	Melierax poliopterus	LC
Aves	Melocichla mentalis	LC
Aves	Merops bulocki	LC
Aves	Merops hirundineus	LC
Aves	Merops lafresnayii	LC
Aves	Merops persicus	LC
Aves	Merops pusillus	LC
Aves	Merops superciliosus	LC
Aves	Microcarbo africanus	LC
Aves	Micronisus gabar	LC
Aves	Microparra capensis	LC
Aves	Milvus migrans	LC
Aves	Mirafra africana	LC
Aves	Mirafra albicauda	LC
Aves	Mirafra gilletti	LC
Aves	Mirafra rufocinnamomea	LC
Aves	Monticola rufocinereus	LC
Aves	Monticola saxatilis	LC
Aves	Monticola semirufus	LC
Aves	Motacilla aguimp	LC
Aves	Motacilla alba	LC
Aves	Motacilla cinerea	LC
Aves	Motacilla clara	LC
Aves	Motacilla flava	LC
Aves	Muscicapa adusta	LC
Aves	Muscicapa aquatica	LC
Aves	Muscicapa gambagae	LC
Aves	Muscicapa striata	LC
Aves	Musophaga violacea	LC
Aves	Mycteria ibis	LC
Aves	Myrmecocichla melaena	LC

Aves	Myrmecocichla nigra	LC
Aves	Nectarinia famosa	LC
Aves	Nectarinia tacazze	LC
Aves	Neophedina cincta	LC
Aves	Neotis heuglinii	LC
Aves	Netta erythrophthalma	LC
Aves	Nettapus auritus	LC
Aves	Nilaus afer	LC
Aves	Numenius phaeopus	LC
Aves	Numida meleagris	LC
Aves	Nycticorax nycticorax	LC
Aves	Oena capensis	LC
Aves	Oenanthe albifrons	LC
Aves	Oenanthe deserti	LC
Aves	Oenanthe familiaris	LC
Aves	Oenanthe frenata	LC
Aves	Oenanthe leucopyga	LC
Aves	Oenanthe lugens	LC
Aves	Oenanthe pleschanka	LC
Aves	Oenanthe scotocerca	LC
Aves	Oenanthe xanthoprymna	LC
Aves	Onychognathus blythii	LC
Aves	Onychognathus morio	LC
Aves	Onychognathus neumanni	LC
Aves	Onychognathus tenuirostris	LC
Aves	Oriolus auratus	LC
Aves	Oriolus monacha	LC
Aves	Oriolus oriolus	LC
Aves	Ortygospiza atricollis	LC
Aves	Otus scops	LC
Aves	Otus senegalensis	LC
Aves	Pachycoccyx audeberti	LC
Aves	Pandion haliaetus	LC
Aves	Parophasma galinieri	LC
Aves	Passer castanopterus	LC
Aves	Passer cordofanicus	LC

SHL

Aves	Passer domesticus	LC
Aves	Passer eminibey	LC
Aves	Passer griseus	LC
Aves	Passer simplex	LC
Aves	Passer swainsonii	LC
Aves	Pelecanus onocrotalus	LC
Aves	Pelecanus rufescens	LC
Aves	Peliperdix albogularis	LC
Aves	Peliperdix coqui	LC
Aves	Pernis apivorus	LC
Aves	Petrochelidon preussi	LC
Aves	Phalacrocorax carbo	LC
Aves	Phoenicopterus roseus	LC
Aves	Phoeniculus purpureus	LC
Aves	Phoeniculus somaliensis	LC
Aves	Phoenicurus ochruros	LC
Aves	Phoenicurus phoenicurus	LC
Aves	Phyllastrephus strepitans	LC
Aves	Phyllolais pulchella	LC
Aves	Phylloscopus bonelli	LC
Aves	Phylloscopus orientalis	LC
Aves	Phylloscopus sibilatrix	LC
Aves	Phylloscopus trochilus	LC
Aves	Phylloscopus umbrovirens	LC
Aves	Pinarochroa sordida	LC
Aves	Platalea alba	LC
Aves	Platysteira cyanea	LC
Aves	Plectropterus gambensis	LC
Aves	Plegadis falcinellus	LC
Aves	Plocepasser mahali	LC
Aves	Plocepasser superciliosus	LC
Aves	Ploceus baglafecht	LC
Aves	Ploceus brachypterus	LC
Aves	Ploceus castaneofuscus	LC
Aves	Ploceus cucullatus	LC
Aves	Ploceus heuglini	LC

Aves	Ploceus intermedius	LC
Aves	Ploceus melanocephalus	LC
Aves	Ploceus rubiginosus	LC
Aves	Ploceus superciliosus	LC
Aves	Ploceus vitellinus	LC
Aves	Pluvianus aegyptius	LC
Aves	Podica senegalensis	LC
Aves	Podiceps cristatus	LC
Aves	Podiceps nigricollis	LC
Aves	Pogoniulus chrysoconus	LC
Aves	Pogoniulus pusillus	LC
Aves	Pogonornis bidentatus	LC
Aves	Pogonornis dubius	LC
Aves	Pogonornis rolleti	LC
Aves	Poicephalus flavifrons	LC
Aves	Poicephalus fuscicollis	LC
Aves	Poicephalus meyeri	LC
Aves	Poicephalus rufiventris	LC
Aves	Poicephalus senegalus	LC
Aves	Polihierax semitorquatus	LC
Aves	Polyboroides typus	LC
Aves	Porphyrio alleni	LC
Aves	Porzana porzana	LC
Aves	Prinia erythroptera	LC
Aves	Prinia rufifrons	LC
Aves	Prinia somalica	LC
Aves	Prinia subflava	LC
Aves	Prionops plumatus	LC
Aves	Prodotiscus regulus	LC
Aves	Psalidoprocne obscura	LC
Aves	Psalidoprocne pristoptera	LC
Aves	Pseudhirundo griseopyga	LC
Aves	Psophocichla simensis	LC
Aves	Pternistis leucoscepus	LC
Aves	Pternistis squamatus	LC
Aves	Pterocles coronatus	LC

Aves	Pterocles gutturalis	LC
Aves	Pterocles senegallus	LC
Aves	Ptilopachus petrosus	LC
Aves	Ptilostomus afer	LC
Aves	Ptyonoprogne obsoleta	LC
Aves	Ptyonoprogne rufigula	LC
Aves	Pycnonotus barbatus	LC
Aves	Pyrenestes sanguineus	LC
Aves	Pyrrhocorax pyrrhocorax	LC
Aves	Pytilia hypogrammica	LC
Aves	Pytilia lineata	LC
Aves	Pytilia melba	LC
Aves	Pytilia phoenicoptera	LC
Aves	Quelea erythrops	LC
Aves	Quelea quelea	LC
Aves	Rallus caerulescens	LC
Aves	Recurvirostra avosetta	LC
Aves	Rhinopomastus minor	LC
Aves	Rhinoptilus chalcopterus	LC
Aves	Rhinoptilus cinctus	LC
Aves	Rhodophoneus cruentus	LC
Aves	Riparia paludicola	LC
Aves	Riparia riparia	LC
Aves	Rostratula benghalensis	LC
Aves	Salpornis salvadori	LC
Aves	Sarkidiornis melanotos	LC
Aves	Saxicola rubetra	LC
Aves	Saxicola torquatus	LC
Aves	Scleroptila gutturalis	LC
Aves	Scopus umbretta	LC
Aves	Scotopelia peli	LC
Aves	Serinus flavivertex	LC
Aves	Serinus nigriceps	LC
Aves	Smutsornis africanus	LC
Aves	Spatula hottentota	LC
Aves	Spatula querquedula	LC

Aves	Spermestes cucullata	LC	
Aves	Spermestes fringilloides	LC	
Aves	Spilopelia senegalensis	LC	
Aves	Sternula albifrons	LC	
Aves	Streptopelia capicola	LC	
Aves	Streptopelia hypopyrrha	LC	
Aves	Streptopelia lugens	LC	
Aves	Streptopelia semitorquata	LC	
Aves	Strix woodfordii	LC	
Aves	Sylvia abyssinica	LC	
Aves	Sylvia atricapilla	LC	
Aves	Sylvia boehmi	LC	
Aves	Sylvia borin	LC	
Aves	Sylvia communis	LC	
Aves	Sylvia conspicillata	LC	
Aves	Sylvia deserti	LC	SHR
Aves	Sylvia leucomelaena	LC	
Aves	Sylvia lugens	LC	
Aves	Sylvia melanocephala	LC	
Aves	Sylvia nana	LC	
Aves	Sylvietta brachyura	LC	
Aves	Sylvietta leucopsis	LC	
Aves	Tachybaptus ruficollis	LC	
Aves	Tachymarptis aequatorialis	LC	
Aves	Tachymarptis melba	LC	
Aves	Tauraco leucotis	LC	
Aves	Tauraco persa	LC	
Aves	Tchagra senegalus	LC	
Aves	Telacanthura ussheri	LC	
Aves	Terpsiphone rufiventer	LC	
Aves	Terpsiphone viridis	LC	
Aves	Thalassornis leuconotus	LC	
Aves	Thamnolaea cinnamomeiventris	LC	
Aves	Threskiornis aethiopicus	LC	
Aves	Tmetothylacus tenellus	LC	
Aves	Tockus deckeni	LC	

Aves	Tockus erythrorhynchus	LC
Aves	Tockus flavirostris	LC
Aves	Trachyphonus erythrocephalus	LC
Aves	Treron calvus	LC
Aves	Treron waalia	LC
Aves	Tricholaema melanocephala	LC
Aves	Tringa erythropus	LC
Aves	Tringa glareola	LC
Aves	Tringa nebularia	LC
Aves	Tringa ochropus	LC
Aves	Tringa stagnatilis	LC
Aves	Tringa totanus	LC
Aves	Turdoides leucopygia	LC
Aves	Turdoides plebejus	LC
Aves	Turdoides reinwardtii	LC
Aves	Turdus abyssinicus	LC
Aves	Turdus pelios	LC
Aves	Turdus philomelos	LC
Aves	Turnix nanus	LC
Aves	Turnix sylvaticus	LC
Aves	Turtur afer	LC
Aves	Tyto alba	LC
Aves	Upupa epops	LC
Aves	Uraeginthus bengalus	LC
Aves	Vanellus albiceps	LC
Aves	Vanellus coronatus	LC
Aves	Vanellus crassirostris	LC
Aves	Vanellus melanocephalus	LC
Aves	Vanellus melanopterus	LC
Aves	Vanellus senegallus	LC
Aves	Vanellus superciliosus	LC
Aves	Vidua chalybeata	LC
Aves	Vidua interjecta	LC
Aves	Vidua larvaticola	LC
Aves	Vidua macroura	LC
Aves	Vidua nigeriae	LC

Aves	Vidua paradisaea	LC	
Aves	Vidua wilsoni	LC	
Aves	Zapornia flavirostra	LC	
Aves	Zapornia parva	LC	
Aves	Zapornia pusilla	LC	
Aves	Zosterops abyssinicus	LC	
Aves	Zosterops poliogastrus	LC	
Aves	Zosterops senegalensis	LC	
Mammalia	Acomys cahirinus	LC	SHR
Mammalia	Acomys louisae	LC	
Mammalia	Alcelaphus buselaphus	LC	
Mammalia	Arvicanthis ansorgei	LC	
Mammalia	Arvicanthis neumanni	LC	
Mammalia	Asellia tridens	LC	
Mammalia	Atelerix albiventris	LC	
Mammalia	Atilax paludinosus	LC	
Mammalia	Canis adustus	LC	
Mammalia	Canis mesomelas	LC	
Mammalia	Caracal caracal	LC	
Mammalia	Cardioderma cor	LC	
Mammalia	Cephalophus rufilatus	LC	
Mammalia	Cercopithecus petaurista	LC	
Mammalia	Chaerephon bivittatus	LC	
Mammalia	Chaerephon nigeriae	LC	
Mammalia	Chaerephon pumilus	LC	
Mammalia	Chlorocebus sabaeus	LC	
Mammalia	Chlorocebus tantalus	LC	
Mammalia	Civettictis civetta	LC	
Mammalia	Coleura afra	LC	
Mammalia	Colobus guereza	LC	
Mammalia	Cricetomys gambianus	LC	
Mammalia	Crocidura baileyi	LC	
Mammalia	Crocidura foxi	LC	
Mammalia	Crocidura fuscomurina	LC	
Mammalia	Crocidura lamottei	LC	
Mammalia	Crocidura olivieri	LC	

Mammalia	Crocidura yankariensis	LC	
Mammalia	Crocuta crocuta	LC	
Mammalia	Damaliscus lunatus	LC	
Mammalia	Dasymys incomtus	LC	
Mammalia	Dasymys rufulus	LC	
Mammalia	Dendromus lovati	LC	
Mammalia	Dendromus melanotis	LC	
Mammalia	Dendromus mystacalis	LC	
Mammalia	Desmodilliscus harringtoni	LC	
Mammalia	Epomophorus gambianus	LC	
Mammalia	Epomophorus labiatus	LC	
Mammalia	Epomophorus minor	LC	
Mammalia	Felis silvestris	LC	
Mammalia	Galago senegalensis	LC	
Mammalia	Galagoides demidoff	LC	
Mammalia	Galagoides thomasi	LC	
Mammalia	Genetta genetta	LC	
Mammalia	Genetta maculata	LC	
Mammalia	Genetta pardina	LC	
Mammalia	Genetta thierryi	LC	
Mammalia	Gerbilliscus guineae	LC	
Mammalia	Gerbilliscus kempi	LC	
Mammalia	Gerbilliscus robustus	LC	
Mammalia	Gerbilliscus validus	LC	
Mammalia	Gerbillus amoenus	LC	SHR
Mammalia	Gerbillus dunni	LC	
Mammalia	Gerbillus gerbillus	LC	SHR
Mammalia	Gerbillus nanus	LC	
Mammalia	Gerbillus nigeriae	LC	SHL
Mammalia	Gerbillus pusillus	LC	
Mammalia	Gerbillus tarabuli	LC	SHR
Mammalia	Gerbillus watersi	LC	SHR
Mammalia	Glauconycteris variegata	LC	
Mammalia	Graphiurus kelleni	LC	
Mammalia	Graphiurus microtis	LC	
Mammalia	Heliosciurus gambianus	LC	

Mammalia	Helogale parvula	LC	
Mammalia	Herpestes ichneumon	LC	
Mammalia	Herpestes sanguineus	LC	
Mammalia	Heterocephalus glaber	LC	
Mammalia	Heterohyrax brucei	LC	
Mammalia	Hipposideros abae	LC	
Mammalia	Hipposideros caffer	LC	
Mammalia	Hipposideros gigas	LC	
Mammalia	Hipposideros megalotis	LC	
Mammalia	Hipposideros ruber	LC	
Mammalia	Hipposideros tephrus	LC	
Mammalia	Hippotragus equinus	LC	
Mammalia	Hystrix cristata	LC	
Mammalia	Ichneumia albicauda	LC	
Mammalia	Ictonyx striatus	LC	
Mammalia	Jaculus jaculus	LC	
Mammalia	Kobus ellipsiprymnus	LC	
Mammalia	Kobus kob	LC	
Mammalia	Lavia frons	LC	
Mammalia	Lemniscomys linulus	LC	SAV
Mammalia	Lemniscomys zebra	LC	
Mammalia	Leptailurus serval	LC	
Mammalia	Lepus capensis	LC	
Mammalia	Lepus habessinicus	LC	
Mammalia	Lepus victoriae	LC	
Mammalia	Lissonycteris angolensis	LC	
Mammalia	Lophiomys imhausi	LC	
Mammalia	Madoqua saltiana	LC	
Mammalia	Massoutiera mzabi	LC	SHR
Mammalia	Mastomys erythroleucus	LC	
Mammalia	Mastomys natalensis	LC	
Mammalia	Mellivora capensis	LC	
Mammalia	Micropteropus pusillus	LC	
Mammalia	Miniopterus natalensis	LC	
Mammalia	Mops condylurus	LC	
Mammalia	Mops demonstrator	LC	

Mammalia	Mops midas	LC
Mammalia	Mungos gambianus	LC
Mammalia	Mungos mungo	LC
Mammalia	Muriculus imberbis	LC
Mammalia	Mus mahomet	LC
Mammalia	Mus mattheyi	LC
Mammalia	Mus musculoides	LC
Mammalia	Mus musculus	LC
Mammalia	Mus tenellus	LC
Mammalia	Myomyscus brockmani	LC
Mammalia	Myotis bocagii	LC
Mammalia	Myotis welwitschii	LC
Mammalia	Nandinia binotata	LC
Mammalia	Neoromicia capensis	LC
Mammalia	Neoromicia guineensis	LC
Mammalia	Neoromicia nana	LC
Mammalia	Neoromicia rendalli	LC
Mammalia	Neoromicia somalica	LC
Mammalia	Nycteris gambiensis	LC
Mammalia	Nycteris hispida	LC
Mammalia	Nycteris macrotis	LC
Mammalia	Nycteris thebaica	LC
Mammalia	Nycticeinops schlieffeni	LC
Mammalia	Oreotragus oreotragus	LC
Mammalia	Orycteropus afer	LC
Mammalia	Otomys typus	LC
Mammalia	Ourebia ourebi	LC
Mammalia	Papio anubis	LC
Mammalia	Papio hamadryas	LC
Mammalia	Paraechinus aethiopicus	LC
Mammalia	Pectinator spekei	LC
Mammalia	Phacochoerus aethiopicus	LC
Mammalia	Phacochoerus africanus	LC
Mammalia	Pipistrellus hesperidus	LC
Mammalia	Pipistrellus rueppellii	LC
Mammalia	Pipistrellus rusticus	LC

SAV

Mammalia	Potamochoerus larvatus	LC
Mammalia	Potamochoerus porcus	LC
Mammalia	Praomys daltoni	LC
Mammalia	Praomys rostratus	LC
Mammalia	Praomys tullbergi	LC
Mammalia	Procavia capensis	LC
Mammalia	Proteles cristata	LC
Mammalia	Psammomys obesus	LC
Mammalia	Rattus rattus	LC
Mammalia	Redunca redunca	LC
Mammalia	Rhinolophus alcyone	LC
Mammalia	Rhinolophus clivosus	LC
Mammalia	Rhinolophus denti	LC
Mammalia	Rhinolophus fumigatus	LC
Mammalia	Rhinolophus landeri	LC
Mammalia	Rhinopoma cystops	LC
Mammalia	Rhinopoma hardwickii	LC
Mammalia	Rousettus aegyptiacus	LC
Mammalia	Scotoecus hirundo	LC
Mammalia	Scotophilus dinganii	LC
Mammalia	Scotophilus ejetai	LC
Mammalia	Scotophilus leucogaster	LC
Mammalia	Scotophilus nigrita	LC
Mammalia	Scotophilus viridis	LC
Mammalia	Steatomys caurinus	LC
Mammalia	Stenocephalemys albipes	LC
Mammalia	Stenocephalemys griseicauda	LC
Mammalia	Suncus megalura	LC
Mammalia	Sylvicapra grimmia	LC
Mammalia	Syncerus caffer	LC
Mammalia	Tachyoryctes splendens	LC
Mammalia	Taphozous perforatus	LC
Mammalia	Taterillus emini	LC
Mammalia	Thryonomys swinderianus	LC
Mammalia	Tragelaphus scriptus	LC
Mammalia	Tragelaphus spekii	LC

Tragelaphus strepsiceros	LC	
Triaenops afer	LC	
Triaenops persicus	LC	
Uranomys ruddi	LC	
Vulpes rueppellii	LC	
Vulpes vulpes	LC	
Vulpes zerda	LC	SHR
Xerus rutilus	LC	
Hyperolius papyri	DD	
Afrotyphlops blanfordii	DD	
Agama bocourti	DD	SAV
Pseuderemias striatus	DD	
Oenanthe dubia	DD	
Crocidura planiceps	DD	SAV
Gerbillus lowei	DD	SHL
Gerbillus somalicus	DD	
Myopterus daubentonii	DD	
Scotoecus albofuscus	DD	
Tadarida ventralis	DD	
Sclerophys blanfordii	NE	
Sclerophys kerinyagae	NE	
Chlidonias hybrida	NE	
Chlidonias leucopterus	NE	
Delichon urbicum	NE	
Porphyrio porphyrio	NE	
Tigriornis leucolopha	NE	
Epomops buettikoferi	NE	
Funisciurus subtriatus	NE	SAV
	Tragelaphus strepsiceros Triaenops afer Triaenops persicus Uranomys ruddi Vulpes rueppellii Vulpes vulpes Vulpes zerda Xerus rutilus Hyperolius papyri Afrotyphlops blanfordii Agama bocourti Pseuderemias striatus Oenanthe dubia Crocidura planiceps Gerbillus lowei Gerbillus somalicus Myopterus daubentonii Scotoecus albofuscus Tadarida ventralis Sclerophys blanfordii Sclerophys kerinyagae Chlidonias leucopterus Delichon urbicum Porphyrio porphyrio Tigriornis leucolopha Epomops buettikoferi Funisciurus subtriatus	Tragelaphus strepsicerosLCTriaenops aferLCTriaenops persicusLCUranomys ruddiLCVulpes rueppelliiLCVulpes vulpesLCVulpes zerdaLCXerus rutilusLCHyperolius papyriDDAfrotyphlops blanfordiiDDAgama bocourtiDDPseuderemias striatusDDOenanthe dubiaDDCrocidura planicepsDDGerbillus somalicusDDMyopterus daubentoniiDDScotoecus albofuscusDDSclerophys blanfordiiNEChlidonias hybridaNEChlidonias leucopterusNEPorphyrio porphyrioNETigriornis leucolophaNEFunisciurus subtriatusNEFunisciurus subtriatusNEFunisciurus subtriatusNESclerophys buettikoferiNESclerophys kerinyagaeNEChlidonias leucopterusNEPorphyrio porphyrioNETigriornis leucolophaNEFunisciurus subtriatusNE

5.2. References

IUCN, 2019. IUCN Red List of threatened species. Version 2019-1. (available at https://www.iucnredlist.org/; acceded in 05/03/2019)