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Abstract
Background  In approximately 10% of all gastric cancer 
(GC) cases, a heritable cause is suspected. A subset of 
these cases have a causative germline CDH1 mutation; 
however, in most cases the cause remains unknown. Our 
objective was to assess to what extent these remaining 
cases may be explained by germline mutations in the 
novel candidate GC predisposing genes CTNNA1, 
MAP3K6 or MYD88.
Methods  We sequenced a large cohort of unexplained 
young and/or familial patients with GC (n=286) without 
a CDH1germline mutation for germline variants affecting 
CTNNA1, MAP3K6 and MYD88 using a targeted 
next-generation sequencing approach based on single-
molecule molecular inversion probes.
Results P redicted deleterious germline variants were 
not encountered in MYD88, but recurrently observed 
in CTNNA1 (n=2) and MAP3K6 (n=3) in our cohort of 
patients with GC. In contrast to deleterious variants in 
CTNNA1, deleterious variants in MAP3K6 also occur 
frequently in the general population.
Conclusions  Based on our results MAP3K6 should 
no longer be considered a GC predisposition gene, 
whereas deleterious CTNNA1 variants are confirmed as 
an infrequent cause of GC susceptibility. Biallelic MYD88 
germline mutations are at most a very rare cause of GC 
susceptibility as no additional cases were identified.

Introduction
In familial or early-onset gastric cancer (GC) cases, 
a heritable germline aberration may underlie the 
development of GC. Elucidation of these germline 
defects is crucial to improve the clinical manage-
ment of these patients and their relatives at risk. 
Pathogenic germline mutations in the CDH1 gene 
predispose to the development of hereditary diffuse 
gastric cancer (HDGC) with high GC risk of up to 
70%,1 2 although the penetrance of CDH1 muta-
tions identified in incident cases through gene 
panel testing for other reasons is not known. In 
more than 75% of the families that fulfil the CDH1 
testing criteria,3 a causative germline mutation in 
CDH1 cannot be identified.2 4 5 In addition to these 
unexplained HDGC families, no heritable germline 

defects predisposing to the development of familial 
mixed-type and intestinal-type GC have been iden-
tified yet. Consequently, the putative causative 
germline aberration remains unknown for the 
majority of patients with GC.

The introduction of next-generation sequencing 
has revolutionised the identification of novel germ-
line defects predisposing to (Mendelian) diseases, 
including heritable cancer syndromes.6–8 CTNNA1, 
MAP3K6 and MYD88 are considered novel candi-
date GC predisposing genes.9–11 Thus far, only 
for CTNNA1 the role in GC predisposition was 
confirmed in an independent study.2 Since there 
were only very few families reported with CTNNA1, 
MAP3K6 and MYD88 germline mutations, the 
histological characteristics of the GC associated 
with these mutations are not established yet. Here, 
we describe the sequencing of germline DNA of a 
large cohort of CDH1 mutation-negative patients 
with GC who were suspected for a hereditary 
predisposition based on age and/or family history 
(n=286) for variants affecting CTNNA1, MAP3K6 
and MYD88 to further determine their potential 
role as GC predisposing genes.

Materials and methods
Patient selection
Our selected cohort was counselled in 16 different 
centres throughout Europe and contained 299 
patients with GC from 297 families (the  Nether-
lands (n=193), Poland (n=76), Germany (n=12), 
Italy (n=12), Portugal (n=5) and Norway (n=1)). 
All patients had early-onset GC (before the age of 
50) and/or a family history of GC with first-de-
gree and/or second-degree relatives with GC (for 
details see  online supplementary file 1). Since 
germline variants in MAP3K6 have also been iden-
tified in patients with intestinal-type GC and the 
predisposing phenotypes of CTNNA1 and MYD88 
germline mutations are uncertain, patients with all 
histological adenocarcinoma subtypes of GC were 
included. Of the 299 patients, 178 were diagnosed 
with diffuse-type, 62 with intestinal-type and 10 
patients with mixed-type GC. In 49 patients the 
histological subtype was not specified. The absence 
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of CDH1 germline mutations was confirmed in all 120 patients 
previously tested outside the Radboud university medical center 
using single-molecule molecular inversion probes (smMIP)-based 
targeted sequencing of CDH1 on germline DNA. For 13 of these 
patients samples were excluded, as the coverage did not fulfil 
our predetermined quality criteria (≥95% of the open reading 
frame covered with at least 15 unique reads). Subsequently, for 
the remaining 107 samples multiplex ligation-dependent probe 
amplification (MLPA) analysis was performed using MLPA Kit 
P083 (MRC-Holland, Amsterdam, The Netherlands) according 
to standard procedures, but no germline aberrations affecting 
CDH1 were detected (MLPA was unsuccessful for two of these 
samples). Therefore, our cohort contained 286 patients with GC 
without a causative pathogenic germline aberration affecting 
CDH1. Prior to this study whole-exome and targeted MYD88 
sequencing was performed for 38 and 62 patients, respec-
tively.11 12

Targeted sequencing, data analysis and 
immunohistochemistry
To determine the germline status of CTNNA1, MAP3K6 and 
MYD88 in patients with GC, we applied targeted sequencing 
using smMIPs on blood-derived DNA of these patients according 
to previously published methods.13–16 Data were analysed using 
the SeqNext V.4.3.0 software package (JSI medical systems). The 
Exome Aggregation Consortium (ExAC) database, containing 
whole-exome sequencing data derived from 60 706 individ-
uals, was used as a control data set to establish the variant allele 
frequency of variant calls in the general population (ExAC, 
Cambridge, Massachusetts, USA (http://​exac.​broadinstitute.​org, 
accessed  01/04/2017)).17 For details, including the performed 
α-E-catenin immunohistochemistry, see  online supplementary 
file 2.

Results
Targeted smMIP-based sequencing of CTNNA1, MAP3K6 and 
MYD88 was performed on germline DNA samples derived from 
286 patients with GC from 284 families without a causative 
germline mutation affecting CDH1. Variant calling could not 
be performed for three of these samples due to a low amount 
of total aligned unique reads obtained for these samples (153, 
190 and 3.695 unique reads, respectively) (see figure 1A). For 
the remaining 283 samples, representing 147 patients fulfilling 
HDGC criteria, 26 patients fulfilling familial intestinal gastric 
cancer criteria, 76 patients with familial GC and 34 patients diag-
nosed with GC between the age of 40 and 50, the total number 
of aligned unique reads (median number of aligned unique reads: 
26.012 (range 6.373–145.043)), as well as the average coverage 
of the protein coding regions (including canonical splice sites) of 
CTNNA1, MAP3K6 and MYD88, was high (online supplemen-
tary file 3). In total 331 non-synonymous variants were called. 
After exclusion of common SNPs (minor allele frequency >0.01; 
n=303), 28 variants remained for subsequent interpretation 
(figure 1A and table 1).

In CTNNA1 a heterozygous germline variant was observed 
in seven patients (table  1). An individual with the frameshift 
mutation p.Arg27fs turned out to be a family member of the 
first reported CTNNA1 family,9 and this case was discarded 
from further analyses. Two frameshift variants, p.Asn443fs and 
p.Arg330fs, were not observed in the control data set and were 
considered deleterious. The variant p.Asn443fs was identified in 
a Polish patient with HDGC diagnosed with a poorly differenti-
ated (not otherwise classified) gastric adenocarcinoma at age 30. 

Unfortunately, the gastric tumour specimen of this patient was 
not available for pathological review (family pedigree provided 
in figure 1B). The variant p.Arg330fs was encountered in a Dutch 
patient with HDGC diagnosed with a diffuse-type GC (poorly 
cohesive adenocarcinoma, with signet  ring cell differentiation, 
according to the WHO classification) at age 40 (family pedigree 
provided in figure 1C). Subtotal gastrectomy revealed a tumour 
extending into the subserosal fat tissue with three lymph node 
metastases (classified as a stage IIIA, seventh edition,18 see micro-
scopic image in figure 1D). There was a background of chronic 
inflammation with intestinal metaplasia. Immunohistochemistry 
for α-E-catenin showed loss of protein expression in the tumour 
cells, while normal gastric glands showed preserved expression 
(figure 1E). In control GC cases, α-E-catenin showed retained 
staining in tumour cells of most cases (online supplementary file 
4). Segregation analysis showed the same variant in the patient’s 
mother (82 years without a diagnosis of cancer) and daughter 
(26 years without a diagnosis of cancer). Four missense variants 
were recurrently encountered in the general population and are 
likely benign SNVs based on in silico predictions (table 1).

In MAP3K6 a total of 18 heterozygous variants (12 unique 
variants) were observed in 16 patients (table  1). A non-sense 
variant (p.Gln1188*) and canonical splice site variant (c.1256-
2A>G; identified in two unrelated patients) were recurrently 
encountered in the control data  set at low frequency. Two 
missense variants, p.Asp200Tyr and p.Pro946Leu, which have 
previously been associated with familial GC, occur two and 
three times in our cohort, respectively.10 However, both variants 
are also frequently observed in the control data set. The variant 
frequencies in our GC cohort and the control data set are not 
significantly different (P=0.8 and P=1.0, respectively). Similarly, 
one highly conserved and predicted deleterious missense variant, 
p.Pro985Leu, was observed in two patients with GC, but was 
observed at similar frequencies in the control data set (P=0.2). 
Five other missense variants, representing four different SNVs, 
were weakly conserved (PhyloP  <2) and/or predicted to be 
benign using in silico predictions (table 1). The three remaining 
missense variants, p.Ala334Val, p.Leu541Pro and p.Tyr591Cys, 
which were called in the germline of three different patients with 
GC, are moderately/highly conserved and  predicted possibly 
deleterious or deleterious and nearly absent or absent in the 
control data set (table 1).

In MYD88 the homozygous p.Arg238Cys variant was detected 
in the patient already reported by us.11 Two unrelated patients 
with GC had a heterozygous missense variant, p.Thr84Ile and 
p.Arg173His. These variants affect poorly conserved amino acids 
and are likely benign based on in silico predictions (table 1).

To determine a potential enrichment of strong loss-of-function 
germline variants (ie, nonsense variants, frameshift variants and 
variants affecting a canonical splice site) in CTNNA1, MAP3K6 
and MYD88 in our GC cohort compared with the general popu-
lation, the frequency of such variants was established in 60 706 
individuals with exome data in the public domain. The cumu-
lative variant allele frequency (cVAF) of strong loss-of-func-
tion germline variants in CTNNA1 and MYD88 is low in the 
general population (cVAF: 0.000057879 and 0.000074822, 
respectively). In contrast, such variants in MAP3K6 are relatively 
common (cVAF: 0.004688221). Based on these numbers, the 
number of germline truncating alleles in CTNNA1 was highly 
significantly enriched in patients with GC compared with the 
general population (2/564 vs 7/121  412, P<0.0001), whereas 
this was not the case for strong loss-of-function alleles affecting 
MAP3K6 (3/566 vs 509/121 412, P=0.94) or MYD88 (0/566 vs 
9/121 412, P=0.84) (for details see online supplementary file 2).
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Figure 1  (A) Flow chart representing patient inclusion and subsequent germline analysis for CTNNA1, MAP3K6 and MYD88. aOne truncating germline 
variant in CTNNA1 was identified in a relative of a known CTNNA1 family.9b One missense variant was identified in a homozygous state and previously 
reported.11 (B) Pedigree of the Polish patient with HDGC (746A) who carried a p.Asn443fs variant in CTNNA1. (C) Pedigree of the Dutch patient with 
HDGC (432A) who carried a p.Arg330fs variant in CTNNA1. (D) Microscopic image of DGC of patient 432A. Poorly cohesive polymorphic cells proliferate 
individually underneath normal gastric glands with foamy cytoplasm and sometimes signet ring cell morphology (H&E, 250×). (E) Immunohistochemistry for 
α-E-catenin shows total loss of protein expression in the poorly cohesive tumour cells, while the normal glands in the right upper corner and blood vessels 
in between show retained expression (magnification 200×). DGC, diffuse-type gastric cancer; FGC, familial gastric cancer; FIGC, familial intestinal gastric 
cancer; GC, gastric cancer; HDGC, hereditary diffuse gastric cancer; Leu, leukaemia; smMIP, single-molecule molecular inversion probe.
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Discussion
To further establish the GC predisposing effect and prevalence of 
germline aberrations affecting CTNNA1, MAP3K6 and MYD88, 
we sequenced a large cohort of unexplained, CDH1-negative, 
familial and/or young patients with GC (n=283) using a targeted 
next-generation sequencing approach. These 283 patients had 
early-onset GC (before the age of 50) and/or a family history of 
GC; 147 patients fulfilled HDGC/CDH1 testing criteria.19 This 
cohort was significantly enriched for truncating germline vari-
ants in CTNNA1, confirming that loss-of-function mutations in 
CTNNA1 predispose to the development of (familial) HDGC.

The putative GC predisposing role of CTNNA1, encoding 
the protein α-E-catenin, was first established in a large Dutch 
HDGC family with multiple affected family members.9 α-E-cat-
enin functions in the same junctional complex as E-cadherin, 
encoded by the main HDGC predisposing gene CDH1. Subse-
quent screening by Majewski et al9 of 25 other HDGC pedigrees 
did not reveal any additional loss-of-function germline variants 
affecting this gene. Hansford et al revealed two additional fami-
lies with a germline mutation affecting CTNNA1 in 144 HDGC/
FGC.2 In the current study, we detected two germline truncating 
mutations in CTNNA1 in two unrelated GC cases. Therefore, a 
total of five CTNNA1 mutation-positive GC families have now 
been identified (see online  supplementary file 5). The clinical 
picture of these CTNNA1 families seems to be similar to that of 
CDH1 mutation-positive families, except that no lobular breast 
cancer or cleft lip/palate was reported thus far. The diffuse 
morphology could not be established for all affected relatives 
because not all original pathology reports or specimens were 
available. The age of onset of cancer in confirmed CTNNA1-mu-
tation carriers with GC varies between 22 and 72 years.2 The 
incidence of heterozygous germline mutations in CTNNA1 is 
low in unexplained families with GC (~1%–2%). Due to the 
limited number of CTNNA1 families identified, proper estima-
tion of disease penetrance and evidence-based advice on preven-
tive measurements is not yet possible.

Heterozygous germline aberrations affecting MAP3K6 were 
reported in multiple unrelated individuals with familial GC.10 
Initially, a heterozygous missense mutation (p.Pro946Leu) 
was identified that partly cosegregated with the development 
of GC in a large family. Remarkably, an 80-year-old homozy-
gous family member was never diagnosed with cancer. Subse-
quent targeted screening on germline DNA derived from 115 
unrelated unexplained GC cases with intestinal-type and/or 
diffuse-type GC revealed five additional heterozygous germline 
variants affecting MAP3K6 (ie, one frameshift and four missense 
variants).10 However, most of these variants are recurrently 
encountered in control cohorts as well, and in silico predictions 
to determine their pathogenicity reveal inconsistent results. In 
our study, we also found multiple variants in MAP3K6; however, 
these also occur frequently in the general population. In fact, 
strong loss-of-function germline variants affecting MAP3K6 are 
encountered in approximately 0.5% of the general population, 
clearly conflicting with a highly  penetrant predisposing effect 
of, in Western populations, a  rare phenotype like GC. There-
fore, germline aberrations affecting MAP3K6 are unlikely to be 
involved in high-penetrant GC predisposition.

In contrast to the proposed dominant inheritance patterns 
of GC predisposition due to CTNNA1 and MAP3K6 muta-
tions, we previously reported that germline mutations affecting 
MYD88 may predispose to the development of GC in a reces-
sive manner.11 A homozygous missense variant (p.Arg238Cys) in 
MYD88 was identified in an individual suffering from recurrent 

candidiasis and diffuse-type GC at a young age (23 years old). 
This mutation results in an impaired immune response and, 
possibly, an increased GC risk.11 Identification of additional 
patients with GC with biallelic deleterious MYD88 variants 
would have further supported the role of MYD88 in GC predis-
position; however, such variants were not detected in our cohort.

To evaluate the role of proposed cancer predisposing genes, it 
is crucial to test large cohorts in independent studies, as incor-
rect associations between germline aberrations and an increased 
lifetime risk to develop cancer will result in unnecessary screen-
ings and inappropriate clinical management of carriers of such 
aberrations. In the current study, we confirm that inactivating 
mutations in CTNNA1 are an infrequent cause of DGC predispo-
sition. However, based on our data it is unlikely that MAP3K6 is 
a GC predisposition gene. Biallelic MYD88 mutations as a cause 
of GC susceptibility are at most very rare. To substantiate its GC 
predisposing effect, it should be confirmed in other patients.
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