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“To see the world, things dangerous to come to, 

to see behind walls, draw closer, to find each 

other, and to feel. That is the purpose of life.” 

The Secret Life of Walter Mitty 
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Resumo 

A alteração da paisagem é um dos promotores de mudança mais importantes que 

afetam a biodiversidade e os serviços de ecossistema na bacia do Mediterrâneo. 

Analisar a heterogeneidade espacial da paisagem e suas mudanças ao longo do 

tempo melhora a capacidade de entender a magnitude dos impactos humanos nos 

ecossistemas terrestres. A heterogeneidade é mais frequentemente medida 

enfatizando as respostas espectrais composicionais, estruturais e físicas, enquanto 

negligencia a diversidade funcional. Portanto, há um interesse em testar se a 

heterogeneidade espacial e temporal no funcionamento do ecossistema ou da 

paisagem pode atuar como um preditor robusto para padrões de diversidade de 

espécies. 

Neste estudo, foi compilada uma série temporal de 35 anos do Enhanced Vegetation 

Index (EVI) detectado remotamente para a bacia do rio Vez, para analisar a dinâmica 

da Diversidade de Funcionamento do Ecossistema. Preditores calculados a partir da 

série temporal EVI foram usados para explicar a riqueza específica de vários grupos 

funcionais de passeriformes através de um modelo GLM Elasticnet. Esse modelo 

forneceu informações sobre o desempenho preditivo de variáveis baseadas no EVI, e 

as variáveis com melhor desempenho foram usadas para realizar uma análise de 

tendências durante o período de tempo focal. 

A paisagem da área de estudo foi considerada bastante heterogénea, e espécies de 

aves passeriformes com comportamento mais diverso e de maior tamanho alcançaram 

a explicação mais alta dos modelos. Para variáveis baseadas no EVI, os melhores 

resultados foram obtidos para dois preditores que mantinham uma relação linear 

positiva com a riqueza de espécies de aves: uma variável contínua (desvio padrão do 

EVI máximo) e uma variável discreta (riqueza dos tipos de funcionamento do 

ecossistema). As análises de tendências revelaram um cenário bastante dinâmico, em 

constante mudança ao longo do período focal. 

Os resultados sugerem que várias características da dinâmica do ciclo de vida dos 

passeriformes dependem da diversidade de funcionamento do ecossistema. Recursos 

alimentares, diversidade de habitats, refúgio, recursos de nidificação e sincronismo do 

ciclo de vida estão profundamente conectados aos padrões e processos da paisagem. 

A diversidade funcional mostrou ter o potencial de prever tendências de riqueza 

específica, pelo menos para aves passeriformes na bacia do Vez, mas provavelmente 

também para outros táxon ou áreas de interesse. Uma compreensão mais profunda 



FCUP 
Linking ecosystem functioning diversity and passerine species richness with application to landscape monitoring  

VII 

 

 
 

dos processos ecológicos e dinâmicas que caracterizam paisagens heterogéneas 

permitirá a definição de estratégias mais robustas de conservação da biodiversidade. 

Palavras-chave: Diversidade funcional de ecossistemas; Atributos funcionais de 

ecossistemas; Tipos funcionais de ecossistemas; Heterogeneidade da paisagem; 

Detecção remota; Alteração da paisagem; Monitorização de biodiversidade 
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Abstract 

Landscape change is one of the most important drivers of biodiversity and ecosystem 

services change on the Mediterranean basin.  Analysing landscape spatial 

heterogeneity and its change over time improves our capacity to understand the 

magnitude of human impacts on land ecosystems. Heterogeneity is most often 

measured emphasizing the compositional, structural and physical spectral responses, 

while overlooking functioning diversity. Therefore there is an interest in testing whether 

the spatial and temporal heterogeneity in ecosystem or landscape functioning can act 

as a robust predictor for patterns of species diversity.  

In this study, we compiled a 35-year time series of the remotely sensed Enhanced 

Vegetation Index (EVI) for the Vez river watershed, to analyse Ecosystem Functioning 

Diversity dynamics. Predictors computed from the EVI time series were used to explain 

species richness of various passerine functional groups in a GLM Elasticnet model. 

That model provided information on the predictive performance of EVI-based variables, 

and the best performing variables were used to perform a trend analysis during the 

focal time period. 

The landscape of the study area was found to be quite heterogeneous, and passerine 

bird species with more diverse behaviour and of larger size attained the highest 

explanation of models. For EVI-based variables, the best results were obtained for two 

predictors both holding a positive linear relation with passerine species richness - a 

continuous variable (standard-deviation of maximum EVI) and a discrete variable 

(richness of ecosystem functioning types). Trend analyses revealed a rather dynamic 

landscape in constant change throughout the focal time frame. 

Our results suggest that several features of passerine life cycle dynamics depend on 

ecosystem functioning diversity - feding resources, diversity of habitats, refuge from 

disturbances, nesting resources and life cycle synchronism are deeply connected to 

landscape patterns and processes. We hence show that ecosystem functioning 

diversity holds the potential to predict trends in species richness, at least for passerine 

birds in the Vez watershed but likely also for other taxa or areas of interest. A deeper 

understanding of the ecological processes that characterise heterogeneous and 

dynamic landscapes will allow the definition of more robust strategies of biodiversity 

conservation. 
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1. Introduction 

1.1. Landscape changes and its effects on biodiversity 

In a world of constant transformation, landscape and land use change is one of the 

most important drivers that affect biodiversity and ecosystem services. It depends on 

several factors, including ecological, geographical, sociological, and economical 

aspects, and can have both positive and negative impacts for different species 

(Rindfuss et al., 2004; Fletcher and Fortin, 2018).  

Another important factor for understanding biodiversity patterns is scale. If we are 

referring to the global scale, one of the major drivers of change is related to 

modifications in climate, which potentially causes the aggravation of other drivers. It is 

estimated that in the last 30 years temperatures rose 0,2ºC per decade and in the last 

50 years extreme weather events became more frequent and intense (e.g. fires, floods 

and droughts) (Díaz et al., 2019). Temperature increase for example can affect species 

distribution, phenology (migrations, breeding time, etc.) and morphology, which 

ultimately affects communities structure and composition (Schneider and Root, 2002; 

Root et al., 2003; Masson-Delmotte et al., 2018).  

The most common consequences of landscape change at the regional and local scales 

are habitat loss, degradation and fragmentation, constituting a generalized threat to the 

biodiversity of the planet. There are many causes for these types of landscape 

modifications, such as the construction of infrastructures (e.g. roads and buildings), 

wildfires (Figure 1) or the clearing of forests for agriculture (Jaeger, 2000).  

 

 

 

 

 

 

 

 

Figure 1 - Fires of 2017 in Centre Portugal, images of pre and post fire (burnt area highlighted) (Google 
LLC, n.d.) 
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Fragmentation and habitat loss may seem the same but there are some differences. 

While habitat loss is the destruction of an area for a new type of use, habitat 

fragmentation causes both the destruction (e.g., the building of the new infrastructure 

or the deforestation/fire that divides the area) and over time changes the characteristics 

of the initial environment (van den Berg et al., 2001). When there is fragmentation or 

loss of habitat, the resources are less available for the biological community on the 

area, and the community itself becomes more isolated, leading to a decrease of 

species’ populations size or on more severe cases to the disappearance of entire 

populations (Fahrig, 2003; Ewers and Didham, 2005). Fragmentation is also shown to 

increase edge habitats and causing the dispersion of animals from their habitat into the 

matrix, leading to a higher mortality rate (Fahrig, 2002) 

In order to feed a growing human society many areas are also being converted from 

extensive to intensive agricultural areas, where the use of agrochemicals is often high 

and the monotony of the landscape caused by monocultures tends to reduce its 

diversity, weakening the system and causing a negative impact on biodiversity. For 

example, agriculture intensification is linked to the decline of farmland bird populations  

(Gregory et al., 2005; Tscharntke et al., 2005).  

Surprisingly many areas of past human influence are being abandoned, such as 

traditional agriculture lands, especially on the Mediterranean region and Iberian 

Peninsula (Figure 2) (Plieninger et al., 2014). Extensive farmland abandonment is a 

complex and gradual process which leads to the progression of natural succession 

(Keenleyside et al., 2010) and is caused by a conjuncture of aspects: lack of suitability 

for agricultural activity; low stability of farms; negative factors from regional influence 

(age of farmers, lack of qualifications, rural exodus, policies, etc.) (Terres et al., 2013; 

Leal Filho et al., 2017).  

 

 

 

 

 

 

Figure 2 – Predicted agricultural land abandonment on the utilised agricultural 
area (UAA) on the Iberian Peninsula for 2030 (Perpina Castillo et al., 2018) -  
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These low intensity farming areas are typically very heterogeneous, with numerous 

land cover types, from crops to orchards and more naturalized areas like hedgerows 

and woodlands, forming a very complex mosaic that creates countless opportunities for 

numerous species (Falcucci et al., 2007; Fahrig et al., 2011; Fischer et al., 2012).  

By allowing these areas to return to a natural regime, ecological succession occurs 

over the course of time giving way to shrub areas and on a later stage to reforestation 

which potentially leads to a reduction in landscape heterogeneity (Tasser et al., 2007; 

Chemini and Rizzoli, 2014). This homogenization effect can have both negative effects 

with potential loss of habitat availability for certain species (e.g. farmland species), 

favouring shrub or woodland species (Chemini and Rizzoli, 2014; Gámez-Virués et al., 

2015); and positive effects, with the rewilding of the landscape to a state previous to 

agricultural use.  

Wildfires also play an important role in shaping vegetation and landscape patterns as 

well as the resistance and resilience of ecosystems. When a fire occurs the wildlife of 

the affected region suffers strong impacts, scaring the landscape, modifying vegetation 

patterns and ecological processes (Sugihara et al., 2006). Post-fire conditions make 

landscapes more prone to erosion, and leaving a poorer soil behind thus making the 

recovery of an area more difficult and weakening its ability to provide ecosystem 

services (Butler et al., 2018; DeLong et al., 2018). This leads to habitat modifications 

with consequences on future fire regime, and the proliferation of fire-prone species 

(Viedma et al., 2006; van Mantgem et al., 2015). 

 

1.2. Passerine species as bioindicators of change  

To understand how a landscape is evolving, either disturbed or undisturbed, we can 

use ecological indicators to evaluate the trajectory of an ecological system. The 

importance of measuring species diversity as an indicator of ecosystem “health” has 

been recognized by major initiatives worldwide (Skidmore et al., 2015). This 

information can be used to guide decision makers to implement policies that improve 

monitoring and conservation of biodiversity efforts of a region (Canterbury et al., 2000).  

Taking that in consideration, modifications of the landscape can also be monitored 

through bioindicators, such has the analysis of bird communities. Birds are a good 

indicator considering that they are easy to detect, identify, census, and respond quickly 
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to changes; and the ecological/taxonomic knowledge of the group is high (Gregory et 

al., 2005). They also have a wide-ranging habitat and are generally abundant. All these 

traits make the group a very good response variable to analyse landscape changes 

temporally and spatially (Padoa-Schioppa et al., 2006). Passerine birds in particular 

represent an interesting group as pointed out by Santos and Cabral (2004) and again 

by Mulatu et al. (2016). This happens because they usually occur in high densities in a 

large number of habitats (using them for nesting and feeding) and are at an 

intermediate level on the food web (having different types of feeding), they provide 

cheap/easy measurements and are sensitive to landscape changes from microhabitat 

to landscape level, and they are able to recover population effectives in response to 

good management practices in previously disturbed landscapes.  

Landscape disturbances like fire can pose a challenge to passerine communities. 

While some species benefit from the new opportunities created by the modification of 

the landscape others face a more difficult environment, depending on the fire regime 

(larger fires typically have greater negative impacts). Those changes caused by fires 

can be monitored by evaluating the bird community taxonomic and spatiotemporal 

changes (Herrando and Brotons, 2002; Herrando et al., 2003; Moreira and Russo, 

2007). 

The monitoring of individual species can prove to be a difficult task mainly because 

there can be too much data thus making it harder to analyse and identify generalized 

trends. A solution to this issue can be the aggregation of species into functional groups, 

for example by nesting or feeding habits (Finch, 1991; M Block et al., 1995), or by 

analysing total species richness which has been proven to have a significant 

relationship with the landscape (Pino et al., 2000). 

 

1.3. Remote sensing in ecology  

Remote Sensing Fundamentals  

Birds’ communities can function as indicators of the ecosystem “health” and to link 

those indicators with the evaluation of the dynamics of the landscape we need 

instruments such as remote sensing tools (O’Connell et al., 2000). 

During the late mid-19th century the first aerial pictures were taken using balloons. In 

the 1910’s airplanes substituted the balloons, playing a crucial role of aerial 

reconnaissance during World War I. We have come a long way from the launch of the 
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first satellites in the 50’s and the 60’s. With these technological innovations Earth 

Observation, and its application to ecological and biodiversity monitoring, became 

easier and now there is a great deal of data available to public use (Campbell and 

Wynne, 2011). 

Images captured by remote sensing satellites are used to investigate and analyse the 

relation between natural phenomena and electromagnetic radiation (EMR) emitted from 

the Earth’s surface (Tatem et al., 2008). EMR spectrum is divided into distinct 

wavelength regions, from Radio to Gamma rays, and including the visible and infrared 

portions of EMR, often used for vegetation mapping and monitoring.  

Not all wavelengths are equally used for environmental remote sensing, and the ones 

that are, can be divided into two major groups: Multispectral Visible/Infrared Satellite 

Remote Sensing (Optical SRS), which uses SRS passive sensors that do not emit 

radiation and measure the amount of radiation reflected from a surface area, and can 

only detect a few regions of electromagnetic radiation;  and Radar Satellite Remote 

Sensing (Radar SRS) which uses SRS active sensors that emit radiation and measure 

the strength and time delay of the returning signal (Radar SRS) (Lavender and 

Lavender, 2015; Pettorelli et al., 2018).  

 

 

Intervals of the electromagnetic spectrum (Figure 3) can also be called bands. In 

Optical SRS, which is the type we explored in this work, this uses Ultraviolet Light (10– 

400nm); Visible Light (380–740nm) with blue band (450–485 nm), green band (500–

565 nm) and red (625–740 nm) band together forming RGB images or true colour 

images; and Infrared Light (700nm – 1mm) with Near Infrared – NIR (750–1400 nm); 

Shortwave Infrared – SWIR (1400–3000nm); and Thermal Infrared – TIR(3000nm – 

1mm) (Bruno and Svoronos, 2005; Byrnes, 2009; European Space Agency, 2016).  

Figure 3 - Electromagnetic spectrum in SRS (Pettorelli et al., 2018). 



FCUP 
Linking ecosystem functioning diversity and passerine species richness with application to landscape monitoring  

6 

 

 
 

There are a few key concepts when it comes to describe satellites images in terms of 

different types of resolutions as shown on Table 1. 

Table 1 – Key concepts and properties of satellite images (Pettorelli et al., 2018).  

Concept Meaning 

Spatial 

resolution 
Size of an individual pixel (usually measured in meters) 

Temporal 

resolution 
Overpass frequency of the satellite (usually measured in hours or days) 

Spectral 

resolution 

Smallest difference between wavelengths that can be recognized (usually 

measured in nanometres referring to the electromagnetic spectrum 

Radiometric 

resolution 
Smallest difference in the intensity of the radiation (usually measured in bits) 

 

Vegetation Indices 

Remote sensing data can be used to evaluate a system dynamics with the help of 

Spectral Vegetation Indices (VI), which are, put simply, arithmetic calculations (often in 

the form of normalized ratios) based on reflectance values of the visible and NIR parts 

of the EMR spectrum (Xue and Su, 2017). When used systematically and repetitively to 

monitor a certain area (i.e., image time series) VI’s can indirectly translate the status 

and the change in landscape composition, structure and functioning (Figure 4). The 

most commonly used of these VI’s is NDVI (Normalized Difference Vegetation Index) 

(Matsushita et al., 2007). But this isn’t the only index used, there are others that have 

been showing interesting results such has EVI (Enhanced Vegetation Index) (Jiang et 

al., 2008). Both indices provide a measure related to vegetation greenness that varies 

between -1<VI<1, and that can be used to predict net primary production. There are 

some limitations related to satellites historic archive, reducing the availably of data. For 

example Sentinel-2 was launched in 2015 and MODIS in 1999, that means Sentinel-2 

has a smaller time series when compared to MODIS which may prove inadequate for 

analysis of longer-term dynamics (Gurung et al., 2009). EVI is known to be more 

reliable in both low and high vegetation cover situations, and resistant to both soil 

influences and canopy background signals, and atmospheric effects on vegetation 

index values (it corrects distortions caused by aerosols) (Huete, 1997; Gao et al., 

2000). Overall, these characteristics of EVI make it a more desirable index to be used.  

 



FCUP 
Linking ecosystem functioning diversity and passerine species richness with application to landscape monitoring  

7 

 

 
 

 

EVI is calculated using three bands: Red band, Blue band and Near Infrared Red (NIR) 

band. 

𝐸𝑉𝐼 = 𝐺 
𝜌𝑁𝐼𝑅 − 𝜌𝑟𝑒𝑑

𝜌𝑁𝐼𝑅 + 𝐶1 × 𝜌𝑟𝑒𝑑 − 𝐶2 × 𝜌𝑏𝑙𝑢𝑒 + 𝐿
 

For each band a corrected surface reflectance value ρ is applied. C1  and C2 are the 

coefficients of the aerosol resistance, that uses the blue band to correct aerosol 

influences in the red band, and L is the canopy background adjustment that addresses 

nonlinear, differential NIR and red radiant transfer through a canopy. G is the gain 

factor and equals 2.5. For EVI, the coefficients adopted are: G = 2,5; L = 1; C1  = 6; C2  

= 7,5 (Huete et al., 2002). 

 

Ecosystem Functioning Attributes, Types and their Diversity   

Detecting changes in the balance of an ecosystem is a key step to understand how 

species are affected by the variation and change of environmental and ecological 

conditions. Biodiversity can be measured in three components: structural (e.g. 

landscape pattern, habitat structure, population structure, etc); compositional (e.g. land 

cover types, ecosystem types, etc.); and functioning (landscape/ecosystem process 

and disturbances, demographic processes, etc.) (Noss, 1990) Taking that into 

consideration, Ecosystem Functioning Attributes (EFAs) are interesting remotely-

sensed indicators that provide a response to ecological and evolutionary process 

including vegetation feedback towards environmental drivers, detecting changes and 

Figure 4 - EVI annual curve and vegetation phenology 
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shifts in biomes and ecosystems (Noss, 1990; Lausch et al., 2016; Alcaraz-Segura et 

al., 2017). EFAs related to phenology, productivity and seasonality show the processes 

of exchange of matter and energy between the physical environment and the biota, 

quantifying and qualifying changes and linking species responses to the ecosystem 

overall functioning. These indicators have the advantage of being able to be monitored 

through remote sensing, being quicker to respond than compositional and structural 

attributes and are able to characterize ecosystem heterogeneity (Paruelo et al., 2001; 

Alcaraz-Segura et al., 2006; Mouillot et al., 2013).  

Another important concept is Ecosystem Functioning Types (EFTs). These are based 

on EFAs,  grouping similar functioning ecosystems through satellite data (derived from 

flows of matter and energy that relate to carbon and water cycles), having similar 

productivity, seasonality and phenology dynamics (Paruelo et al., 2001; Alcaraz-

Segura et al., 2006). The concept was developed based on Plant Functional Types but 

upscaled to a higher level of biological complexity. Instead of grouping plant species 

into functional groups, ecosystems are grouped based on their functioning behaviour 

(Paruelo et al., 2001). As so, this allow to describe ecosystem heterogeneity and 

responses to spatio-temporal environmental change (Pérez-Hoyos et al., 2014).  

Analysing landscape heterogeneity improves our capacity to understand the magnitude 

of human impacts on terrestrial ecosystems (Fernández et al., 2010). Environmental 

heterogeneity is often appointed as a major predictor of species richness. The basis for 

the idea is not novel. There are studies, namely Rocchini et al. (2010), that link species 

richness and spectral diversity, hypothesising that highly heterogeneous environments 

can host more species due to their higher number of available niches. However we 

found that most commonly, heterogeneity is measured in the compositional and 

structural components (Stein et al., 2014) or, in the case of remotely-sensed variables, 

they often use the diversity of physical spectral response (i.e., spectral diversity) to 

assess these relations. 

In this context, and using this background to frame the research done in this thesis, 

there is an interest in testing how the diversity or heterogeneity in ecosystem or 

landscape functioning can also act as an important predictor for species richness. 

Landscape functioning diversity has shown to have a positive relation with avian 

species richness (an increase in functioning diversity will lead to an increase of species 

richness) (Lee and Martin, 2017). This can be addressed by using remotely sensed 

variables linked to ecosystem functioning and by measuring the heterogeneity in 
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continuous EFAs (standard-deviation) or discrete/categorical EFTs (richness, Shannon, 

Simpson, etc.) to obtain a spatial measure of how diverse or heterogeneous an area is. 

 

1.4. Aims   

Understanding how ecosystems function is an essential step to compute meaningful 

variables that allow to recognize ecosystem changes as well as their drivers, and thus 

to improve efforts for conservation purposes. This work focused on applying this 

rationale to analyse regional biodiversity patterns, by combining remote sensing tools, 

field surveys of passerine diversity, and predictive modelling in the watershed of river 

Vez, in northwest Portugal.  

Three sequential research goals were established: 

1) To test Ecosystem Functioning Attributes (EFA) and Ecosystem Functioning 

Types (EFT) diversity as predictors of fine-scale passerine species richness 

patterns; 

2) To determine which are the best predictive EFA/EFT diversity variables and to 

assess if the predictive performance of those variables differs across passerine 

functional groups; 

3) To assess spatiotemporal trends in selected EFA/EFT diversity indicators as a 

surrogate of predict passerine species richness changes. 
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2. Material and methods 

2.1. Study area  

The study area consists of the Vez river watershed located in northwest of Portugal, 

with an area of 262 km2 (Figure 5). It runs 36 kilometres from Serra do Soajo to 

Milhundos-Souto draining in river Lima. This basin presents a complex elevation 

gradient  ranging from 23 m to1418 m that has an influence on climate, ranging from 

Mediterranean (1000mm/year) in lowlands to Temperate Atlantic (3000 mm/year) in 

highlands (Mesquita and Sousa, 2009). Regarding geology, the area presents granites 

and schists, and predominantly Humic Regosols (Highlands) and Dystric Antrosols 

(Lowlands). Shrublands dominate the highlands; agriculture and forest dominate the 

lowlands. The upper section of the river is inserted in the Peneda-Gerês National Park 

(PNPG) (Carvalho-Santos et al., 2016). The natural heterogeneity of the landscape is 

also affected by decades scattered low-density settlements and of extensive 

agricultural and livestock grazing. These traditional practices have been changing over 

the course of recent decades, with an exodus to population centres and afforestation of 

previously explored land (Moreira et al., 2001; Honrado et al., 2017). Frequent wildfires 

with some extreme years in terms of burnt area also shape current vegetation and 

landscape patterns. Plantation of forest exotic tree-species (such as eucalypt) often 

forming monocultures or in combination with maritime pine as well as invasive tree 

species (mainly from the Acacia genus) are also common in the area.  

 

 

Figure 5 - Location of the study area 

Arcos de Valdevez   
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2.2. General workflow 

 

 

The general workflow is described in Figure 6, containing both input datasets and the 

analysis performed. Overall we compiled 35 years of remotely sensed EVI time series 

to analyse Ecosystem Functioning Diversity (EFD )dynamics. Later those dynamics 

were combined with passerine functional groups in a GLM Elasticnet model. That 

model provides information regarding the predictive performance of EFA/EFT 

indicators to explain passerine diversity patterns. Once selected the best indicators we 

were able to do a trend analysis to assess landscape changes. 

For the purposes of pre-processing and analysing satellite image time series, statistical 

analysis and modelling, the R software (version 3.6.0) was employed. A full list of 

packages used can be consulted on Appendix Table A1. To see further detailed and 

complete code, please consult the online GitHub repository: 

https://github.com/zepedro96/MSc-Thesis_Jose-Pedro-Silva 

 

 

Figure 6 – General workflow followed for research development in the thesis  
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https://github.com/zepedro96/MSc-Thesis_Jose-Pedro-Silva
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2.3. Spatial sampling design and bird surveys 

Spatial sampling design 

The development of the spatial sampling scheme as well as the field protocol to collect 

in situ passerine records was conducted during the IND_CHANGE project in 2014.  

The IND_CHANGE project was aimed to provide an integrative view, by applying 

multiple modelling tools under a common theoretical and computational framework and 

from a spatially and temporally explicit approach. The focus was to improve the existing 

capacity to accurately forecast responses of standard ecological indicators to 

landscape change under alternative management scenarios.  

This collaborative project involving scientists and stakeholders addressed three 

sequential questions: (1) How fit are pre-existing data to inform on relevant indicators 

of socialecological change, and which are the key data gaps? (2) Which modelling 

frameworks are more suitable to predict and forecast estimates of such indicators 

under current and future conditions? And (3) Can integrative and collaborative 

computational tools improve and disseminate the application of model-based social-

ecological research in adaptive land planning and management? 

IND_CHANGE was conducted by experienced researchers in the study of biodiversity, 

landscape ecology, and environmental and social-ecological change. A consortium of 

five national research institutions led by CIBIO/ICETA (InBio Associate Lab) was 

advised by three top international experts on social-ecological system analysis, spatial 

planning and natural resource management, and international reporting. Excellence 

training and mobility opportunities were thus awarded to six young researchers who 

were hired to support specific tasks. Two administration stakeholders provided the 

context and requirements for developing and testing the new tools while ensuring post-

project system sustainability. A stakeholder advisory commission with representatives 

from relevant regional administration and private stakeholders was also organized. 

In the project the sampling design followed a two-step approach. Firstly, the study area 

was divided into 1 km2 plots – i.e., Primary Sample Units (PSU), as in Figure 7. From 

this grid, there was a stratified selection of PSUs that represented the spatial 

heterogeneity of the landscape using four layers (climate, topography, soil types, and 

protection regime protected areas) combined in the Partition Around Medoids 

clustering algorithm (Mächler et al., 2012). Six strata were obtained after checking 

clustering validity indices used to select an adequate number of clusters (Rousseeuw, 
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1987). The result was a selection of 24 PSU (with a minimum of three on each stratum 

and proportional to each stratum area).  

Since the area for each PSU was rather large a second step was needed to diminish 

the sampling effort. Each 1 km2 PSU was divided into five 0,04 km2 Secondary Sample 

Units (SSU), located at each one of the four corners and one in the centre. 

 

 

This design was key to maximize the distance between SSUs and to avert overlapping 

of birds count. This means that there were a total of 120 secondary units. The number 

decreased to 111 units due to complications in accessibility to the plot area (Figure 8) 

(Civantos et al., 2018). 

Figure 7 - Representation of the grids: 1000x1000m and 200x200m (restricted to selected stage 2 units) in the Vez 
watershed. 
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Bird surveys 

Species richness of passerine birds was evaluated over the 111 plots (separated at 

least 400m from each other) using a 100m fixed radius point-count approach (Bibby et 

al., 2000). The surveys were performed from May until mid-June of 2014, during the 

breeding season. Surveys were executed within the first 3 hours in the morning or the 2 

hours before sunset. Days with strong wind, rain or cold weather were avoided. 

Species richness was then obtained by estimating the total number of passerine 

species per 10 minutes per SSU plot  (Civantos et al., 2018). The total and the per 

group species richness by PSU was calculated by adding up the number of recorded 

species in the nested SSUs. Species richness values calculated this way, at the PSU 

level (1km2 units), were used as the response variables in subsequent analyses.  

2.4. Trait-based bird classification  

To facilitate the analysis of species data and instead of investigating individual species 

responses to EFA/EFT diversity/heterogeneity, an a priori classification and grouping of 

species based on functional traits was performed. Species grouping also allowed 

assessing if the predictive performance of EFA/EFTs varied across passerine 

functional groups. This process used various bibliography sources, namely: Svensson 

et al. (2012) Guia de Aves. Assírio & Alvim, Porto Editora Lda: Porto; Peterson et al. 

(2004) Birds of Britain and Europe. HarperCollins; HBW Alive: Handbook of the Birds of 

the World Alive; Sterry et al. (2003) Field Guide to the Birds of Britain and Europe. AA 

Publishing.  

Figure 8 - Surveyed units (PSU and SSU). 
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The observed species were categorized according to feeding type, habitat type, nest 

type, and size (Table 2). This classification is not mutually exclusive (with the exception 

of size classification), which means that a species can belong simultaneously to more 

than one class (e.g., a species can be both Frugivorous and Insectivorous if its diet is 

consistent with this dual classification). This often happens because species exhibit 

different habits depending on the season of the year, and are conditioned by abiotic 

and biotic factors (Yoshikawa and Osada, 2015). 

Table 3 – Classification for passerine traits. 

 

 

Types Class Notes 

Feeding 

Omnivorous 
Species with more than 3 feeding types, plus 

appearing in the bibliography as omnivorous 

Frugivorous Feeding on fruit 

Granivorous Feeding on seeds or grain 

Insectivorous Feeding on insects 

Habitat 

Urban and suburban 
Includes cities, towns, rural villages, urban 

parks and gardens 

Woodland Areas where the dominant vegetation is trees 

Farmland 
Land specifically used for agricultural purposes 
in the raising of crops or livestock. 

Wetlands 
Areas covered by water, including river banks, 
marshes and ponds 

Meadows and grassland Open habitat dominated by grasses 

Upland Altitude habitat with shrubs and rocky areas 

Heathland 
Open landscapes dominated by plants such as 

Heathers, Gorse and heathland grasses and 
punctuated by scattered trees 

Nest 

Artificial urban In man-made structures 

Cliff In vertical rock faces 

Tree In branches of trees 

Tree cavity Holes in trees 

Cavity All sort of cavities except tree cavities 

Shrub In shrubby vegetation 

Ground On the ground 

Size  

S [9.1 – 13.3[ cm 

M [13.3 – 14.9[ cm 

L [14.9 – 18.4[ cm 

XL [18.4 – 63] cm 
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Regarding the species that were only able to be identified to the genus level the 

classification by types was treated case by case (see also Appendix Table A2) and 

following the rules outlined in Table 4. 

Table 4 – Criteria used for species identified to the genus level. 

  

2.5. Satellite remote sensing data processing 

Satellite platform and data description  

Currently, there are a few satellite-based scientific missions that consist on collecting 

open and readily available Earth Observation data which have optical sensors on-

board. These include satellite platforms such as: Landsat, MODIS and Sentinel-2. Of 

these, Landsat missions are the most appropriate for long-term biodiversity and 

ecological monitoring taking in account the fact that they have a resolution similar to 

Sentinel-2 but a much longer active time and data archive dating back from the 1970’s. 

More precisely, Landsat includes a total of eight missions, covering over 45 years 

(NASA, 2013, 2014; European Space Agency, 2016). MODIS also has a long time 

series, nearing now 20-years, but it presents a lower spatial resolution and therefore a 

mismatch with the fine-scale passerine sample data and its diversity patterns collected 

from the field. As such, Landsat archive offered the best compromise for analysis given 

the objectives in the thesis. 

One key aspect regarding sensor design of Landsat missions is continuity. As such, the 

main features and resolution of the bands is compatible after Landsat 5 (launched in 

1984), when the sensor TM was incorporated, having a 30m resolution. Landsat 7 

Enhanced Thematic Mapper Plus (TM+) and Landsat 8 Operational Land Imager (OLI) 

also have the 30m resolution, making it possible to analyse 35 years with Landsat 5, 7 

Conditions Criteria 

Only species present in the region 
according to bibliography 

Use of that species  

Only species found in the region according 
to the surveys 

Use of that species  

If there are more species of the genus 
found in the region 

Use of the most abundant species of the 
genus in Portugal  

If there are equal values of abundance for 
several species of the same genus 

Mean values of the various species with 
the higher equal value of abundance 
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and 8 (NASA, 2013). Further detailed information on Landsat program can be 

consulted on Appendix Table A3 and Table A4. 

 

Input data  

For analysing landscape pattern and its change, we used EVI which can be evaluated 

over the course of a time series. To get this time series, Google LLC provides a service 

called Google Earth Engine (GEE, https://earthengine.google.com), which can be 

described as a platform for scientific analysis and visualization of geospatial datasets. 

This cloud-based service possesses several types of satellite data, namely Landsat 

data, already pre-processed in the form of spectral vegetation and water indices (e.g., 

NDVI, EVI). From GEE, collections of EVI images forming a dense time series from 

Landsat missions 5, 7 and 8, spanning from 1984 to 2019, can be accessed, analysed 

and downloaded.  

All these satellites have a temporal resolution of 16 days, but with the pre-processing 

made by the service we get a 32-day composite of all images collected during that 

period (Google LLC, n.d.) nearing one image per month.  

 

Time series gap filling and smoothing 

The methodology and subsequent algorithm used for this section was developed by 

João F. Gonçalves (2017). In order to have a complete time series we filled data gaps 

in Landsat time series by using a moving average data-imputation algorithm (with k= 4 

images). This works by removing the seasonal component from the time series, 

performing the imputation on the deseasonalized series and afterwards adding the 

seasonal component back again (Moritz and Bartz-Beielstein, 2017). 

For improving the retrieval of meaningful information from the EVI time-series, and 

increase the signal-to-noise ratio, two procedures were used in tandem, combining 

robust outlier detection/removal and time-series smoothing:  

(i) the Hampel filter (Hampel, 1974; Davies and Gather, 1993) with k=3 (number of 

observations) and t=3.5 (factor to consider a point an outlier) and  

(ii) Whittaker-Henderson smoother [attributed to Whittaker (1922)] with upper 

envelope fitting meaning that larger annual values receive more weight in the 

smoothing with lambda (defining the smoothing amount) equal to 5. 

https://earthengine.google.com/
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Calculation of Ecosystem Functioning Attributes  

It is possible to use EVI time-series to calculate annual indices that are representative 

(i.e., a surrogate) of the ecological systems dynamics (Cabello et al., 2012) more 

specifically of ecosystem carbon gains. Using these indices, it is possible to 

characterize: productivity (amount of biomass, vegetation cover, ‘greenness’ levels), 

seasonality (the intra-annual range or variation), and phenology (timing of certain 

events in the annual vegetative cycle; e.g., day of growing-season peak). 

To capture productivity, we considered the annual average, with 𝑥𝑖 equal to an EVI 

value in a given 32-day period i={1,…,12}; in total, a year y has a maximum of 12 

values. To evaluate seasonality, we first calculated annual extrema (maximum and 

minimum) and then annual amplitude. Annual standard-deviation  

was also used to assess seasonality (e.g. a forest with deciduous trees would have 

higher values of the standard-deviation compared to a forest of evergreen species). For 

analysing phenology, and taking into account the cyclical properties of this variable, we 

calculated the season of the day of maximum EVI recorded annually, ranging between 

1 and 4, with 1 corresponding to winter and 4 to autumn (representing when the peak 

of the growing season occurs) (see Table 5). 

All indices were calculated using the smoothed EVI time-series to avoid spurious 

values and to minimize errors. 

Table 6 – EFAs indices used and their respective formulas  

Index Meaning Formula 

Annual average 
The mean value of the year 

represents a surrogate of the 
system productivity 

 𝐴𝑉𝐺𝑦 =
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
 

Annual std-
deviation 

Represents seasonality 𝑆𝐷𝑦 =  √
∑ (𝑥𝑖 − �̅�)𝑛

𝑖=1

𝑛 − 1
 

Annual extrema: 
minimum and 

maximum value 

Minimum and maximum values 
of EVI represent seasonality 

 𝑀𝐴𝑋𝒚 =  𝑚𝑎𝑥𝑖𝑚𝑢𝑚(𝑥𝑖) 

 𝑀𝐼𝑁𝒚 =  𝑚𝑖𝑛𝑖𝑚𝑢𝑚(𝑥𝑖) 
 

Annual amplitude  Represents seasonality  𝐴𝑀𝑃𝑦 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚(𝑥𝑖) − 𝑚𝑖𝑛𝑖𝑚𝑢𝑚(𝑥𝑖) 

Season of 
maximum 

Attributes a value ranging from 1 
to 4 for each season to indicate 
on which the max value of EVI 
occurred, corresponding to the 

peak of the growing season 

𝑆𝑚𝑎𝑥 = 𝑠𝑒𝑎𝑠𝑜𝑛(𝑚𝑎𝑥𝑖𝑚𝑢𝑚(𝑥𝑖)) 

 
𝑠𝑒𝑎𝑠𝑜𝑛(𝑥) → season on which the maximum value 

occurs  
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Calculation of Ecosystem Functioning Types 

Ecosystem Functional Types are defined as “groups of ecosystems or patches of the 

land surface that share similar dynamics of matter and energy exchanges between the 

biota and the physical environment” (Paruelo et al., 2001). The calculation of EFTs was 

made based on the combination of EFAs for the average (represents productivity), 

amplitude (represents annual variability) and season of the maximum (phenology, 

growing season) similarly to the approach of (Alcaraz-Segura et al., 2006). In order to 

divide by types, the average and the amplitude were split up into 4 classes by the 

distribution quartiles. Then each class was based on the combination of the quartiles 

and the season maximum. For example, EFT type ‘111’ represents: low productivity 

and low annual variability with a maximum in winter. The total number of different EFTs 

generated is 64 (Table 5). EFT’s are calculated independently by year and thus are 

relative to the distribution of EFA values in each annual interval. 

Table 7 – EFTs classification scheme following the combination of the annual mean, amplitude and season of the year 
where the maximum EVI value occurs. 

   
Annual variability 

   

   
Low 

  
High 

   

   
1 2 3 4 

   

Productivity 

Low 1 

111 121 131 141 1 Winter 

Season of 
maximum 

112 122 132 142 2 Spring 

113 123 133 143 3 Summer 

114 124 134 144 4 Autumn 

 

2 

211 221 231 241 1 Winter 

 212 222 232 242 2 Spring 

 213 223 233 243 3 Summer 

 214 224 234 244 4 Autumn 

 

3 

311 321 331 341 1 Winter 

 312 322 332 342 2 Spring 

 313 323 333 343 3 Summer 

 314 324 334 344 4 Autumn 

High 4 

411 421 431 441 1 Winter 

412 422 432 442 2 Spring 

413 423 433 443 3 Summer 

414 424 434 444 4 Autumn 

 

Spatial metrics of heterogeneity based on EFAs and EFTs 

To analyse the relation between passerine diversity and diversity/heterogeneity in 

ecosystem functioning (EFD) attributes and types another step was needed. Because 

birds generally have a high mobility and generally high dispersion ability and to 

minimize sampling bias we quantified species richness (total and by group) for the 
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whole 1km2 PSU grid. This analysis unit also allowed to quantify the existing 

diversity/heterogeneity in EFA/EFTs using the mean value (centrality) and especially 

the standard-deviation (dispersion) for EFAs since these are continuous values. 

Because EFTs are discrete entities, a different approach must be used. As such, the 

following diversity metrics Shannon and EFT richness as well as evenness (𝐸𝑣𝑎𝑟) were 

calculated (preliminary tests discarded other diversity/evenness metrics due to poor 

correlation – not shown). Diversity and evenness are two aspects that allow us to 

characterize a landscape. While diversity refers to the measurement of different 

categories or types present in an area (e.g., land use/cover types; with heterogeneous 

landscapes having higher values of diversity richness), while evenness refers to the 

relative percentage of the distribution of the types (Nagendra, 2002).  

The Shannon index (Shannon and Weaver, 1964) is one of the most commonly used 

indices to measure alpha-diversity and is defined by:  

𝐻 =  ∑ 𝑝𝑖

𝑛

𝑖=1

ln(𝑝𝑖) 

(Eq. 1) 

In this formula (Eq. 1) 𝒏 equals to the number of types (e.g., species, land cover 

categories) and 𝑝𝑖 to the proportional abundance of each type, and the result ranges 

between 0 and infinity. This index estimates the average uncertainty in predicting which 

type a randomly selected sub-unit of the landscape will belong to (Whittaker, 1972; 

Magurran, 1988; Nagendra, 2002; Spellerberg and Fedor, 2003). 

EFT richness was calculated by counting the number of different types of EFT present 

in 1km2 unit. This was done using a vector, in which its length indicated the richness of 

a pixel (e.g. if the length was four, then there would be four types of EFTs in that 

particular pixel).  

Another index used was evenness 𝐸𝑣𝑎𝑟 , proposed by Smith and Wilson (1996). This 

index is based in Camargo (1993) evenness index and is defined as:  

𝐸𝑣𝑎𝑟 = 1 −
2

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛 {∑ (ln (𝑥𝑆) − ∑ ln(𝑥𝑡)

𝑆

𝑡=1

𝑆⁄ )

𝑆

𝑠=1

2

𝑆⁄ } 

𝑆 = total number of land cover types in the sample 

𝑥𝑆 = abundance of the 𝑠 land cover type 

𝑥𝑡  = abundance of the 𝑡 land cover type 
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(Eq. 2) 

In this equation (Eq. 2) log variance of abundance of types is used to measure 

evenness and to examine proportional differences, making it independent of the units 

used. Later, a transformation with 𝑎𝑟𝑐𝑡𝑎𝑛 limits it to a scale that ranges from 0 

(minimum evenness) to 1 (maximum evenness). Landscapes with lower evenness 

suggest that the elements present have asymmetrical frequencies of distribution, 

whereas landscapes with higher evenness suggest that different types of elements are 

more similarly and evenly distributed.  

In total, there are 15 index to be analysed, as Table 8 shows. 

Table 8 – Summary of Ecosystem Functioning Diversity indices used in the analyses.  

Index Metrics 
Abreviation in 
graphs 

Ecosystem 
Functioning 
Attributes 

Annual maximum 
Standard deviation EFAmax_std 

Average EFAmax_avg 

Annual amplitude 
Standard deviation EFAamp_std 

Average EFAamp_avg 

Season of maximum 
Standard deviation EFAsemax_std 

Average EFAsemax_avg 

Annual average 
Standard deviation EFAAverage_std 

Average EFAAverage_avg 

Annual minimum 
Standard deviation EFAmin_std 

Average EFAmin_avg 

Annual standard deviation 
Standard deviation EFAstd_std 

Average EFAstd_avg 

Ecosystem 
Functioning Types 

Shannon shannon 

𝐸𝑣𝑎𝑟 evar 

EFT richness eft_count 

 

 

2.6. Passerine diversity analysis and modelling        

To relate the response variables (overall species richness and species richness by 

group) and Ecosystem Functioning Diversity predictive variables (EFD; Table 6) we 

used elastic net regression (Friedman et al., 2010) which selects the most suitable 

variables incorporating multiple collinear explanatory factors and is based both on 

lasso regression and ridge regression thus being more resistant to overfitting (De Mol 

et al., 2009; El-Gabbas and Dormann, 2018). The formula is as follows: 
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𝐶 = 𝑆𝑆𝐸 +  𝛼𝜌‖𝐿1‖ + 𝛼(1 − 𝜌)‖𝐿2‖ 

SSE = sum of squared errors 

𝜌 = relative weighting term 

𝛼 = penalty weighting term 

𝐿1 =  ∑‖𝛽‖ → Absolute value of all parameter coefficients 

𝐿2 = ∑‖𝛽2‖ → Sum of all parameter coefficients squared 

(Eq. 3) 

Generalized Linear Models (GLM) with Elastic net is an algorithm which uses two 

penalties, lasso regression penalty and ridge regression penalty, controlled by a 

weighting factor 𝛼. In our case 𝛼𝜌 = 0,5 to give the same weight to both penalties (if: 

𝛼 = 0 → 𝑅𝑖𝑑𝑔𝑒;  𝛼 = 1 → 𝐿𝑎𝑠𝑠𝑜). The merged regression analysis penalizes model 

complexity and forces the coefficients of trivial parameters to zero, identical to a lasso 

regression (Tibshirani, 2011; Park and Mazer, 2018). But it also “groups” them in a way 

that the weights of the coefficients are distributed across all collinear parameters, 

stabilizing it and avoiding problems with variance inflation commonly found in other 

based regressions that use highly collinear datasets (De Mol et al., 2009; Raschka and 

Mirjalili, 2017; Park and Mazer, 2018).  

After the variable selection done by elastic net algorithm (i.e., retaining only variables 

with non-zero coefficients) we used “simple” Generalized Linear Models with Poisson 

family-type errors (also used in GLM Elastic net), on which the excepted values 𝑦𝑖 are 

the counts of the number of occurrences of a certain event under different conditions 

(Boyce and McDonald, 1999). This step allowed to quantify the goodness-of-fit of the 

models based on pseudo-R2 measures (which is not trivial to calculate with GLM elastic 

net), calculate variance inflation for checking potential multicollinearity issues and 

check for over-dispersion in the data (which limits the use of Poisson models). 

𝑦𝑖 = exp (𝛽0 + ∑ 𝛽𝑖𝑥𝑖

𝑛

𝑖=1

) 

𝑥𝑖 = independent habitat variables 

𝛽𝑖 = selection coefficients 

(Eq. 4) 

In GLM, 𝛽0 and 𝛽𝑖  (Eq. 4) are usually obtained using the principle of maximum 

likelihood and iterative calculation (Manly et al., 2002). 

The next steps were to quantify the pseudo R2 to assess the overall fitness of the 

models and to observe how much a variable (or combination of) is able to explain the 

variation of the model. The pseudo R2 is an unitless measure that ranges from 0 to 1 (1 
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being perfect fit), being useful to compare models that have different units (Quinlan, 

2006; Nakagawa and Cuthill, 2007). We used two types of pseudo R2: Efron (1978) 

and Nagelkerke (1991). 

In 1978 Efron proposed an index (Eq. 5) where π̂i is the model predicted probabilities, 

yi the observed binary outcomes and y̅ the mean outcome (Smith and Mckenna, 2013). 

REfron
2 = 1 −

[∑ (yi − π̂i)
2

i ]

[∑ (yi − y̅)2
i ]

 

(Eq. 5) 

In 1991 Nagelkerke developed a rescaled pseudo R2 index based on the formulated by 

Cox and Snell (1989) (this last one could potentially exceed 1.0). 

𝑅𝑁𝑎𝑔𝑒𝑙𝑘𝑒𝑟𝑘𝑒
2 =

1 − (
𝐿0

𝐿𝛽
)

2
𝑛⁄

1 − 𝐿0

2
𝑛⁄

 

(Eq. 6) 

In this index (Eq. 6)  𝐿𝛽 is the likelihood of the full model and 𝐿0 is the likelihood of the 

functions for the intercept-only model; n is the total size (Nagelkerke, 1991; Nakagawa 

and Schielzeth, 2013; Smith and Mckenna, 2013).  

The next phase was to determine the variance inflation factors (VIF) in order to check 

the multicollinearity of the variables selected. Multicollinearity is the dependence 

among predictors in a regression model (Belsley et al., 1980; Thompson et al., 2017) 

and can be measured through VIF (Fox et al., 2010).  

VIFj =  
1

1 − Rj
2 

(Eq. 7) 

VIFj (Eq. 7) is the variance inflation factor for the jth predictor and can take on values 

from unity to infinity; 𝑅2 is the multiple correlation coefficient. For VIF values to be 

acceptable they should be <10 (Hair et al., 1995). 

When applying a Poisson distribution model a verification of overdispersion is also 

needed due to the possibility of the variance being higher than the mean, which means 

that data is overdispersed (in that case an alternative model to Poisson must be 

applied, usually negative binomial) (Dean, 1992). 
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To check for overdispersion one can apply a variety of tests that includes Likelihood 

Ratio Test (LRT), Dean's PB and P'B tests (Gómez-Rubio et al., 2005).  LRT test 

compares the goodness-of-fit of two models, a nested Poisson model against a nested 

Negative Binomial model to assess ρ value (Brown and Zhao, 2002). Dean's PB and P'B 

are both score tests. On all tests values closer to 1 mean that overdispersion is not 

occurring and Poisson model is indeed a correct choice model for the data (Dean, 

1992; Yang et al., 2009).  

 

2.7. Trend analysis of EFAs and EFTs heterogeneity indicators 

Trend analysis based on Ecosystem Functioning Diversity (EFD) indices allows 

assessing which areas of the landscape potentially reveal most changes and explore 

potential modifications in passerine communities’ composition and diversity. 

For this purpose, we first performed a selection of the best spatial metrics of 

diversity/heterogeneity based EFAs (continuous approach) and EFTs (discrete 

approach) supported by the GLM Elasticnet models. The trend analysis of these two 

selected indicators was then implemented for three nested periods: complete period of 

35 years (1984-2018), last 20 years (1999-2018) and last 10 years (2009-2018). 

The Theil-Sen slope was used for this analysis, which allows calculating a robust non-

parametric measure of the magnitude, sign and significance of the trend. This method  

minimizes the effects of noisy pixels in the time-series, being less sensitive to outliers 

(Olthof and Fraser, 2014). For this purpose the function “sens.slope” of the R package 

“trend” can be used (Pohlert, 2018) (Eq. 8), where 𝑑 is the slope, 𝑥 denotes the 

variable, 𝑛 is the number of data, 𝑖 and 𝑗 are indices (note that 1 ≤ 𝑖 < 𝑗 ≤ 𝑛): 

𝑑(𝑘) =
(𝑥𝑗 − 𝑥𝑖)

𝑗 − 𝑖
 

(Eq. 8) 

After that first step the median of all slopes is calculated (Eq. 9), generating the Sen 

slope (𝑏): 

𝑏 = 𝑚𝑒𝑑𝑖𝑎𝑛 𝑑(𝑘)  

(Eq. 9)  
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3. Results  

3.1. The local passerine community 

Number or relative frequency of families, genera and species 

Field surveys found a total of 61 passerine species of 35 genus and 22 families on the 

study area, the most common family being Muscicapidae (a family that includes robins, 

stonechats and rock thrushes) (Figure 9). Of those 61 species, 11 were only identified 

to the genus level.  

 

 

Species traits distribution  

With the support of the bibliography previously mentioned, species were classified 

according to feeding, habitat, nest and size type. The classification is not mutually 

exclusive which means that the sum of species by each category is bigger than the real 

species total (with the exception of size type).   Regarding size type the classification 

was done by dividing the distribution of size values in quartiles, each class frequency 

0 1 2 3 4 5 6 7 8
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Number of species per family 

Figure 9 - Number of passerine species per family and examples of species of the 2 most numerous families (from top 
down: Saxicola rubicola, Chloris chloris) 
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regular. When it comes to feeding type (Figure 10A), the most common type was 

insectivorous totalling 49 species. And the less common was omnivorous birds with 17 

species. 

Respecting nest type (Figure 10B) there was a high variability of types, with the most 

common being trees, shrubs and artificial urban locations. Cliffs seem to be the chosen 

nest site of only a few select passerine species. 

Concerning habitat type (Figure 10C), woodland and urban/suburban types of habitat 

were the most frequent habitats but the distribution was much diversified, with 

interesting values for other locations too, having wetlands the lowest value.   

 

 

(A) - Number of passerine species per feeding 
type 

49 

28 
25 

17 

Number of species per Feeding 
type 

21 21 

17 

12 11 10 

4 

Number of species per Nest type 

(B) - Number of passerine species per nest type 

41 39 

25 24 
20 

17 
11 

Number of species per Habitat type 

(C) - Number of passerine species per habitat type 

Figure 10 – Species richness per functional group: (A) – Feeding type; (B) – Nest type; (C) – Habitat type. 



FCUP 
Linking ecosystem functioning diversity and passerine species richness with application to landscape monitoring  

27 

 

 
 

3.2. Ecosystem Functioning Attributes (EFA) and Types (EFT)  

Plots of raw vs. smoothed series by land cover/use type  

With the help of tools such as the Portuguese Land Use Map (COS – “Carta de Uso e 

Ocupação do Solo de Portugal”) and street view from Google we were able to identify 

certain types of land cover/use types and pin them geographically, later plotting them 

with raw and smoothed data of a time series ranging from 1984 to 2019 (Figure 11 

Figure 13).  Note that the scale of EVI (y-axis) changes between figures.  
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Figure 11 - EVI 32-day composite time series of sparse vegetation (A), urban area (B) and Eucalyptus sp. area (C) 

(A) Sparse vegetation area 

(B) Urban area 

(C) Eucalyptus sp. area 
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EVI levels for sparse vegetation (Figure 11A) are the lowest, meaning that the 

productivity of this type of land cover is also generally low. In general, this type of 

vegetation also shows low seasonality. On our study area it covers around 8,11km2 

(3,08%). 

The illustrative pixel used for Figure 11B corresponds to an area of what is now an 

industrial zone known as “Parque Industrial de Mogueiras”, occupying 0,2km2. Prior to 

2003 this was an area occupied by maritime pine (Pinus pinaster), shrubs and 

cultivated land (based on 1995 COS). That fact can be observed on the plot, indicated 

with the orange circle, when it occurred an enormous drop on EVI levels, from 0,6 to 

around 0, showing the complete removal of vegetation and its conversion into an 

artificial surface. 

Searching for images from previous years and comparing them with present ones, we 

can also observe the construction of that industrial zone (Figure 12). This area highly 

altered with man-made structures shows very low levels of EVI such is the absence of 

vegetation in the area (EVI being a measurement of vegetation greenness it is very low 

on deeply urbanized areas like this), with only a few remnants of its previous condition. 

Urban areas occupy an area of 13,45 km2 (5,11%) of the landscape.  

 

Eucalyptus spp. plantations on the study area represent about 7,62% with 20,03km2 

occupied. When analysing the EVI time series for this type (Figure 11C) we can see 

clearly what could be cyclical cuts with roughly seven to ten years of frequency. The 

vegetation reaches high levels of EVI of about 0,6 showing good productivity levels, 

and values as low as 0,2 corresponding to the post-harvest situation.  

 

  

Figure 12 – Satellite image of pre and post urbanization (07/09/2003 vs 21/02/2004) 

250m 500m 
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Figure 13 - EVI 32-day composite time series of an oak area (A), a shrubland area (B) and irrigated cropland area (C) 

(B) Shrubland area 

(C) Irrigated annual crops area 

(A) Oak area 
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The next figure is a contrast to the preceding one, representing a more stable pixel 

dominated by species of oaks, namely Quercus robur (pedunculated oak, Figure 13A). 

The seasonality of these trees and deciduous formations can be observed with the 

regular maximum reaching values as high as 0,8 (peak of the growing season) and 

minimums of little more than 0 (dormant season). We can also see a slight trend of 

increase in vegetation greenness over the 35 years’ period potentially showing a 

steady increase in biomass. On the study area this type of land cover represents 

12,91%, covering 33,93km2.  

Shrubland areas are very widespread on the territory being the major class of land 

cover (101,22km2) making up around 38,52% of the area. The occurrence of fire in this 

type of fire-prone formations can be observed with the accentuated drop of EVI in 2010 

(pointed out with the orange circle in Figure 13B).  

Using satellite imagery it is also possible to see the effects of that fire (Figure 14), 

being clearly visible the new dark spot on September when compared to March of the 

same year. 

 

Irrigated annual crops (Figure 13C) have an expression of 7,96% on the area 

(20,92km2).  EVI values generally found in these areas are as high as in deciduous 

forest areas (in reaching 0,8), but with higher minimums, showing that it is a very 

productive and strongly seasonal type of land cover.  

Figure 14 - Pre and post fire (13/03/2010 vs 11/09/2010) 
(burnt area highlighted) 
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This 35 year-long smoothed time series show that different types of land cover present 

different types of response behaviour to indices that translate net primary production 

such as EVI. Urban land cover type exhibits the lowest values of EVI as does sparse 

vegetation (the presence of rock surface has similar behaviour that of artificial 

structures). By contrast, deciduous forest and temporary crops have the highest values 

for EVI.  

 

Ecosystem Functioning Attributes (EFAs) 

The maps on this section refer to the year of 2014, the same year as the birds’ field 

surveys in an attempt to display the values for that year.  

 

Figure 15 - Maps of EVI mean (A), of EVI maximum (B), EVI amplitude (C) in the Vez watershed. 

A B 

C 
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Observing the mean values of EVI (Figure 15A) it is possible to check that high altitude 

areas on the eastern part of the territory generally have lower values, while the areas in 

the bottom of the river valley have higher EVI values. It is also possible to see that 

regions in the western part of the territory have even higher values. The centre of Arcos 

de Valdevez and the industrial zone are also visible in the southern part of the territory, 

with whiter spots (low EVI values). 

The same patterns can be viewed in the annual maximum map (Figure 15B). The lack 

of vegetation in the town centre/industrial zone has the lowest maximum values, and 

oak areas on the western region have high levels of maximum (more productive). 

On the amplitude map (Figure 15C) we can see small patches of Quercus pyrenaica 

that are present on the high altitude valleys on the eastern region, and Q. robur 

patches on the western area (on the other maps the first one is not so visible because 

they have lower productivity when compared to Q. robur, but due to their evergrenness 

they still have significant amplitude, which we can observe on this projection). 

 

Ecosystem Functioning Types 

 

The EFT classification shows a highly diversified landscape with various ecosystem 

functioning types (Figure 16) forming complex and diversified mosaics. All possible 64 

EFT combinations were present in the study area, which indicates that this is a very 

heterogeneous region in terms of ecosystem functioning.  It is possible to observe 

areas with generally low productivity levels on elevated mountainous regions, with 

productivity progressively increasing on the bottom of the valleys and in areas with 

woodlands typically dominated by oaks.  

As observed on EVI time series, shrublands have a very strong presence in the area. 

Such type of land cover shows lower productivity levels (blue tones of the scale) 

corresponding to the higher altitude areas (along with sparse vegetation). The red 

tones of the scale correspond to maximum productivity of the vegetation and matches 

with the forested areas of oak. In general, there seems to be a trend of higher 

productivity areas following the path of the Vez river This pattern links not only to the 

agricultural land uses of valley areas but also to soil fertility and the occurrence of 

riparian galleries some of which in good conservation state. 
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Considering the timing of the maximum value, the vast majority occurred in the summer 

(64,60%) as it typically happens in temperate ecosystems, followed by spring (15,16%) 

and autumn (14,92%), and last in winter (with only 5,31%). It should be noted that 

some pixels with low seasonal variation (e.g., low shrubs, rock outcrops with sparse 

vegetation) the determination of the season peak is limited and with higher uncertainty. 

To see in further detail relative frequencies for each functioning type please check 

Appendix  

Table A9.  

 

 

 

 

 

 

 

 

 

 

Figure 17A shows an area dominated by shrubs, having low productivity (with blue 

colours dominating the EFT mapping); Figure 17B shows a region of shrubs and rock, 

having also low productivity (the map is dominated by low productivity EFTs being very 

homogeneous). Figure 17C shows the contrast between a forested area and a stream 

(lower part of the valley, more fertile) and a shrubby area (upper part, less fertile) (it is 

visible the red strip – that represents the forested/stream area - in the middle of yellow 

areas); Figure 17D shows a typical landscape mosaic. Around small villages it is typical 

to have a very heterogeneous landscape mosaic with artificial structures, farmland, 

patch edges and the surroundings often punctuated by some type of forest, more 

commonly Eucalyptus sp, maritime pine or/and oaks (such fact can be viewed on the 

EFT mapping where all the main categories occur, having more colours present than 

the rest). 

A 

D 

C 

B 

Figure 16 – Map of ecosystem functioning types in the Vez watershed. 
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A 

D 

C 

B 

Figure 17 – Field photography compared with EFT map (with progressive increase of landscape diversity from A to D) 



FCUP 
Linking ecosystem functioning diversity and passerine species richness with application to landscape monitoring  

36 

 

 
 

3.3. Patterns of EFA/EFT diversity  

To evaluate more clearly the patterns of the landscape we upscaled the EFA/EFT data 

to 1km2 grid thus portraying the variability, heterogeneity and diversity in ecosystem 

functioning (Figure 18 - note on all these maps the more saturated the colour the 

higher the value).  

Regarding EFAs (average, maximum, amplitude of EVI) (Figure 18), these represent 

the heterogeneity of landscape mosaics occurring throughout the study area. Darker 

values on the maps represent greater heterogeneity which means a more diversified 

combination of land cover types with different primary production values in the annual 

EVI average, maximum or amplitude value (higher standard-deviation). 

One thing that becomes clear is the greater homogeneity of the eastern region, a 

higher altitude region dominated by sparse vegetation and shrublands. The city centre 

and the industrial zone (Parque Industrial de Mogueiras, with very contrasting 

vegetated/artificial features) in the south become more obvious on the EVI maximum 

map too (more saturated colours). 
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.     

EFT based maps (Figure 19) have similar characteristics but the underlying discrete 

data, these maps reveal different patterns of ecosystem functioning diversity. That 

could explain why the river main course is a bit more obvious, being clearly visible 

darker colours flowing through the centre of the map from south to northeast. The rest 

of the patterns previously observed on EFAs can still be noticed: lower richness values 

of land cover types present on the eastern region, and the diversified area of the city 

centre and industrial zone with strong contrasting land-cover types. Another interesting 

fact is the northwest region where small villages punctuate the area (having croplands, 

trees, and shrubs as in viewed on Figure 17B) appears on these maps as highly 

diversified, which indeed is. 

A B 

C 

Figure 18 -- Map of 1km grid with EFA standard-deviation of the annual average (A), maximum (B) and amplitude (C) of 

EVI 
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3.4. Relation between passerine diversity and EFA/EFT 

diversity  

Model preliminary testing  

Over-dispersion test for Poisson count models 

We tested the models for over dispersion with Poisson count models tests. Results for 

all tests (Likelihood-ratio, DeanB and DeanB2), reveal that over-dipersion is absent and 

therefore Poisson regression can ‘safely’ be applied to model the data. Results can be 

seen in further detail on Table A10 of the Appendix section.  

Variance Inflation Factor 

To test multicollinearity effects we used VIF. Results in most cases were <10 

(considered the limit acceptable value for VIF results), which means they weren’t 

redundant with each other. Only for response variables Nest type = Artificial Urban and 

Nest type = Tree Cavity was found a high collinearity value which means that one of 

these variables: EFAstd_avg or EFAamp_avg - could be supressed from these models. 

Results can be seen in further detail on Table A11 of the Appendix section. 

Figure 19 - Map of 1km grid for Evar (A), Shannon (B) and EFT richness (C) indices 

 
A B 

C 
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Best models and predictors of passerine diversity  

Model performance 

After checking for overdispersion and multicollinearity we modelled passerine diversity 

and selected the best indices. Using pseudo-R2 measures (Effron and Nagelkerke) we 

obtained the results of Figure 20 which show the overall performance of GLM models 

of species richness by passerine functional groups vs. EFD indicators. These plots 

show that some response variables exhibit generally worse results than others and 

also that strong differences exist between groups in terms of predictive performance of 

EFD variables. Namely for Insectivorous (feeding type), Meadow and grassland, 

Upland and Heathland (habitat type), Shrub and Ground (nest type) and Small (size 

type) showed generally low performance. The remaining groups generally had 

Figure 20 - Pseudo R2 tests to quantify the overall fitness of the models (Effron and Nagelkerke) 
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satisfactory to good results in terms of modelling performance. In particular, 

Omnivorous (feed type), Urban/suburban, Farmland and Woodland (habitat type), 

Tree, Artificial Urban (nest type) and XL (the largest size type) showed overall the best 

performance results (with all these models including k=4 predictors and solely linear 

terms with no interactions, and n=24 observations).  

Best predictors 

In respect to predicitive variables, the ones that had better results were: “EFAmax_std” 

(standard deviation of the annual EVI maximum), “eft_count” (EFT richness) and 

Figure 21 – (A) Relative frequency of selection in elasticnet models for each predictive variable 
     (B) Median coefficient values of GLM Elasticnet for each predictive variable 

A 

B 
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“shannon” (Shannon index of EFTs). Both relative frequency of selection (Figure 21A) 

and median coefficient values (Figure 21B) for GLM Elasticnet models had higher 

scores, having better perfomance (the relative frequence of selection of EVImax_std 

and eft_count was of ~90% and ~60%). All predictive variables showed a positive 

linear relation. Figure 21B also shows (as expected) median positive coefficients 

(across all passerine groups) for the best variables and, thus a general positive 

association between EFD and species richness. 

 

Trends of EFA/EFT diversity 

To explore how landscape changed we analysed trends for 1km2 sample plot units 

using the Theil-Sen slope. For that we chose the best spatial metrics of 

EFD/heterogeneity from GLM elasticnet models (EFT richness and EFA max standard-

deviation) for three different and nested periods: complete period 35-year (1984-2018), 

20 last years (1999-2018) and 10 last years (2009-2018). Because we observed a 

general positive relation in GLM’s between selected EFD indicators and species 

richness (total and by passerine group), we can infer that  negative trends in these 

variables are likely associated to a spatial homogenization process and a concomitant 

potential loss in passerine species diversity (and potentially other taxa). Based on this 

assumption we focused our analyses only on negative trends.  

Considering the 10-year period trends (Figure 22 A and B) were a bit different between 

EFT richness and EVI max std-dev, with a greater number of spatially coherent areas, 

often forming clusters, with a negative trend on the second one indicating a loss of 

landscape diversity. If we consider the 20-year period (Figure 22 C and D) and the 

complete 35-year time period (Figure 22 E and F) more than half of the landscape 

shows negative trends for EFT richness (EVI max is slightly different). 

To evaluate the significance of the trend results we used p-values. Values of this 

measurement reveal that statistically significant areas are associated with locations 

where the magnitude of the trend is more negative (higher displacement from a non-

zero trend) thus potentially more homogenised through time.  We also found that the 

20-year period recorded the highest amount of areas with statistically significant 

negative trends (Table 7) reaching up to 14% (p<0.1) and 6% (p<0.05). These sites 

also tend to cluster in certain areas, generally in uplands, meaning that this process of 

homogenization has a high degree of spatial autocorrelation. 
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Figure 22 - Comparison of trends between EFT/EFA for three periods (10, 20 and complete period of 35 years) 

 

 

EFT trends (EFT richness) EFA trends (EVI max std-dev) 

  

  

(A) - EFT trend for 10 years (2009-2018) (B) - EFA trend for 10 years (2009-2018) 

 

 

(C) – EFT trend for 20 years (1999-2018) D) – EFA trend for 20 years (1999-2018) 

  

(E) – EFT trend for complete period (1984-2018) (F) - EFA trend for complete period (1984-2018) 
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Table 9 - Percentage of 1km2 units with negative trends for sen slope with p values <0,05 or <0,1 

 

 

  

Scenario → sen slope < 0 
Percentage of 1km

2
 units 

EFT count EVI max 

10 years p < 0.05 0,32% 3,53% 

10 years p < 0.1  0,32% 5,45% 

20 years p < 0.05  5,77% 0,96% 

20 years p < 0.1 14,10% 2,24% 

Complete 35-year period p < 0.05 3,85% 0,0% 

Complete 35-year period p < 0.1 7,37% 0,96% 
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4. Discussion  

4.1. The local passerine community and its relation with 

ecosystem functioning diversity  

Life cycle dynamics of passerine birds is known to affect local species richness, both 

total richness and by functional groups. Feeding resources also condition species 

distribution (Karr, 1976). One example is the higher species richness we found for the 

insectivorous class (feeding type). This feeding behaviour is exhibited by many 

species, especially on juvenile stages and is synchronised with the period of greatest 

abundance of insects during the year (Wilson et al., 1999). Passerine that are not 

insectivorous may also ocasionaly  feed on insects, to suplement their diet for specific 

nutrient requirements (Geiger et al., 2014).  

We found that nesting resources impact bird communities as well. The greater 

availability of nesting sites implies that species that use these locations to nest are 

more common (Butler et al., 2010). In our case, the most common were species that 

nest on trees, shrubs and man-made structures. 

Habitat diversity also plays a fundamental role shaping diversity patterns. The 

distribution of species per habitat type is very diversified in our analysis, meaning that 

most species require more than one habitat type in order to have optimum 

development (Julliard et al., 2006). This also means that remotely-sensed indicators 

capable of capturing habitat diversity are crucial to understand and monitor species 

diversity in space and time. 

Results on habitat type distribution also show the importance of disturbance refuge 

habitats. The foremost example we see is the high species richness associated with 

forested spaces. Many species depend on this type of habitat to take refuge, and in 

reality forest edges around farmlands generally increases the overall diversity of birds 

(Reino et al., 2009) which is also consistent with higher levels of ecosystem functioning 

diversity (EFD). Highly stable habitats (in mosaic with other habitat types) also act as 

disturbance refuges or “buffers” for species which may also have an important role in 

maintaining population processes (Devictor and Jiguet, 2007) 

Our results also show a high frequency of species associated with man-made 

landscapes. The built-up structures along with the active management of these 

landscapes creates opportunities for numerous species adapted to these 

environments. Previous studies have found a positive relation between humanized 
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landscapes and bird diversity in a European context, with tendencies having a hump-

shaped relationship (areas with no human development or with too much of it will have 

a low bird species diversity) (Tratalos et al., 2007).  

These results suggest that several passerine life cycle dynamics depend on ecosystem 

functioning diversity. As such, we hypothesize that integrative EFD measures are 

capable of tracking several aspects key to explain the distribution, diversity and 

community assemblage of passerine species which mainly includes feeding resources 

(mainly linked to primary productivity and its spatial variation) and the diversity of 

habitats (EFD heterogeneity) but also disturbance refuge (stability and seasonal 

variation), nesting resources and life cycle synchronism (phenology), which in turn are 

deeply connected to landscape pattern and processes (Figure 23). 

 

Figure 23 – A graphical synthesis connecting birds life cycle dynamics and ecological requirements with ecosystem 
functioning diversity (EFD). 

 

Ecosystem functional diversity is measured through EFAs and EFTs which in turn are 

deeply connected to phenology, seasonality and primary productivity and can describe 

ecosystem processes that may closely affect species distributions (Arenas-Castro et 

al., 2018). 

Mapping both of them allowed us to visualize the different dynamics of the landscape. 

Higher values of productivity were associated with woodland (of oak and maritime pine 

dominance and with presence of eucalyptus as well) and cropland, on bottom valley 

regions. Differently, high altitude areas of shrubland and sparse vegetation were less 

EFD 

Feeding 
resources 

Diversity of 
habitats 

Disturbance 
refuge 

Nesting 
resources 

Life cycle 
synchronism 
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productive. EFD indicators also showed a very diversified landscape, with many 

functioning types present but with landscape mosaics clearly more heterogeneous than 

others. If we take in consideration that different types of land cover may display a 

similar behaviour of functioning traits, but be compositionally and structurally different, 

landscape diversity may be even greater (Paruelo et al., 2001).  

By using measures of heterogeneity such as the standard-deviation of EFAs we were 

able to measure landscape heterogeneity on a finer scale. These analyses further 

testified the greater landscape diversity of bottom valleys, with utter landscape 

heterogeneity nearby river Vez course. High heterogeneity was also found on the city 

centre mosaic. Different landscape components like man-made structures, green areas 

or the river have different EVI values and therefore different productivity levels. Those 

different levels of productivity mean that the landscape is as much heterogeneous as 

the different types of structures present on it.  This shows that landscape heterogeneity 

can be explained by multiple factors with distinct often contrasting effects on 

biodiversity, including: land use for different types of agriculture/livestock farming and 

their different regimes; presence of human settlements throughout the landscape; 

disturbances created by fires; exploitation of forest resources, and many more (Blondel 

and Aronson, 1995; Geri et al., 2010).  

Overall we found that ecosystem functioning heterogeneity (measured by remotely-

sensed variables) and passerine diversity have a positive relation. An increase in the 

local functioning diversity will support a more diverse passerine community, as we 

further describe in the next section when analysing predictive variables. 

 

4.2. Determining the best predictors and response variables   

Passerine bird species with more diverse behaviour and of larger size obtained better 

models (e.g., omnivorous, in habitats associated with man-made structures where they 

can also nest, and also on trees/tree cavities). In the previous section we observed that 

the study area is quite heterogeneous and species have proved to benefit from 

landscape heterogeneity (Devictor et al., 2008).  

Results also showed that open areas (meadows, uplands, ground nesting) and 

shrubland (heathland, shrub nesting) along with small size species attained models 

with generally lower performance. That may be the result of lower abundance of 

species in those classes or due to conspicuous behaviour of species associated with 

those groups, making them arduous to detect. 
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Insectivorous species also shown lower performance of the models, which may be a 

consequence of seasonality. Insects are more easily available as a feeding resource 

on summer, coinciding with the breeding season. For example species that are 

granivorous in the rest of the year do eat insects on warmer months complementing 

their diet, and so represent a moment in the life cycle and not the whole year (Martin, 

1987) making it harder to model such species. Nonetheless EFD trends can potentially 

predict resource abundance, such as insects, by associating trends of the landscape to 

requirements for resources availability. Later that can be potentially used to assess 

trends on feeding behaviours of passerine species   

Overall functional groups (feeding, nest, size, and habitat) show different modelling 

performances. Models for size type can account up to 0,8 of the variation, while other 

groups account up to a maximum of around 0,6 of the variation of the model. This 

could be related to the amount of landscape heterogeneity in the study area and how it 

scales up with species richness for each different group. 

The relative frequency of selection in models for each predictive variable pointed that 

the best results were obtained especially for two predictors, both with a positive linear 

relation with passerine species richness: the standard-deviation of maximum EVI 

(based on a continuous assessment of EFD) and EFT richness (based on a discrete 

assessment of EFD). 

For better understanding EFD indicators such as the standard-deviation of maximum 

EVI we can divide it into two elements: the temporal component (maximum EVI) and 

the spatial heterogeneity component (standard-deviation).  

Maximum EVI is an ecosystem functioning attribute that captures the peak of 

photosynthetic activity occurring in the annual cycle. Studies have already shown that 

greater maximum value relates directly to ecological systems with greater energetic 

resources for passerines (Phillips et al., 2008; Honkanen et al., 2010) and  higher food 

and feeding opportunities available especially during periods of greater activity (e.g., 

breeding season). Also, higher ‘greenness’ and biomass availability potentially relates 

with more nesting and refuge opportunities for these animals.  

This peak of productivity (i.e. annual maximum), which typically occurs in 

spring/summer in river Vez ecosystems may also coincide to the onset of other 

organisms such as insects that compose the diet of many passerines species, but 

especially during the early stages of their life cycle (as mentioned before). As such, the 
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annual maximum may also relate to the ecological synchronization occurring between 

the life-cycles of different, but interacting, species. 

The standard-deviation captures spatial heterogeneity, which has proved before to be 

associated with species richness. In fact, spatial heterogeneity caused by different 

functioning types increases the diversity of processes and habitats occurring at the 

landscape level, providing with more suitable areas for species occurrence (Stein et al., 

2014).   

Merging both components results in an integrative predictor (i.e., EFD) that combines 

ecosystems functioning with spatial and habitat heterogeneity. This supports a broader 

look into landscape heterogeneity analysis, relating intra-annual cycles of flows of 

matter and energy to spatial configuration and structure of ecosystems, when it usually 

only holds itself on the last ones.  

EFT richness is based on EFAs and incorporates productivity, seasonal, and 

phenological aspects. It is a predictor that combines functioning and a temporal 

component (phenology) as well. Characterizing heterogeneity by counting the different 

EFTs presents a view into the complexity of the landscape with high EFT richness 

indicating a more heterogeneous landscape in terms of its functioning. That landscape 

will support more bird diversity, supplying resources to bird communities in the different 

land cover types, and also in different moments of peak productivity.  

4.3. Spatiotemporal change of EFA/EFT patterns as a 

surrogate of passerine species richness. 

Human presence has been a constant on the Mediterranean region for thousands of 

years, and that influence shaped the much diversified landscapes we see today 

(Blondel and Aronson, 1999). Passerine diversity is profoundly connected to landscape 

diversity and is affected by its change. Farina (1997) and Atauri and de Lucio (2001) 

relate landscape homogenization with bird diversity loss, particularly affecting 

farmlands and species associated with those areas. They show that the greater 

diversity of land cover types allows for various species to populate the numerous 

niches available. Yet, birds such as forest species may instead show positive trends to 

homogenization when afforestation takes place which allows their habitat to expand, 

creating corridors between patches of forest (Moreira et al., 2001; Gil-Tena et al., 

2010).    

It also depends on the context; either being disturbed for centuries (e.g. in European 

semi-natural traditional agricultural lands) where the trade-offs of afforestation may be 
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negative; or by contrast in more recently disturbed areas (e.g. North America) with a 

growing landscape restoration movement that can bring benefits to regional biodiversity 

(Queiroz et al., 2014; Corlett, 2016; Leal Filho et al., 2017).  Overall, a complex trade-

off exists, mainly because when favouring one type of habitat there can be an increase 

of species related to particular that type but, in contrast, a decrease in other species 

that depended on more heterogeneous landscapes (Campagnaro et al., 2017). 

Behind this landscape change in the Mediterranean basin, several driving factors are 

responsible (already introduced): frequent wildfires, habitat loss, degradation and 

fragmentation, farmland abandonment, agriculture intensification, spread of 

monoculture forest stands (e.g. Eucalyptus spp.) and afforestation. 

The results we obtained for landscape dynamics show different trends. Ecosystem 

Functioning Attributes measured with EVI maximum predicts that there were no major 

decreases of diversity across the majority of the area, especially if we analyse the 

complete period of 35 years. With those trends we can potentially expect to take place 

maintenance or increase in passerine species diversity. 

Distinctively, the trend in EFT richness ( 

Figure 22) showed a clear loss of diversity and therefore a homogenization of the 

landscape often forming clusters, especially in the 20 years period. This could be due 

to the fact that the 20 year period was influenced by changes in political policies (EU 

Common Agricultural Policy - CAP), continued rural abandonment potentially followed 

by encroachment and afforestation processes as well as modifications in fire regime 

with extreme years of 2003 and 2005.  This means that in this case we can expect loss 

of habitats, with a localized decline on the passerine community diversity which 

deserves more research and monitoring effort. In a sense we expect the favouring of 

bigger patches of particular land cover types, which in turn favours only a few species 

associated with those conditions. This also strengthens that a multi-indicator approach 

is preferable due to the ability of portraying distinct patterns and trends. 

However, the scale of the patches in the mosaic is also a factor to be taken in 

consideration. Isolation caused by pronounced fragmentation can prove to have 

negative impacts for bird communities and should be studied (Santos et al., 2002). A 

landscape can be very diverse but nonetheless dominated by one type of land cover. It 

is important to classify that diversity taking in consideration spatial scale. Weighing the 

different types of functioning observed may be a solution to check if there is some 

reasonable balance between landscape heterogeneity and “viable” functioning 

heterogeneity. 
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Understanding how the landscape functions is critical or else there is no way to 

perceive what processes and changes are occurring (Costanza et al., 1997).  

On that note we analysed 6 different types of land cover to recognize dynamics 

associated with them in a 35 years long period. We were able to identify two main 

dynamics: stability and disturbance.  

In opposite ends of the spectrum are sparse vegetation areas and oak forests. Both of 

them showed to be stable, but the first one is by far less productive. The complexity of 

sparse vegetation is not very high and the landscape is frequently punctuated by large 

rock areas, having low functioning diversity which means fewer resources. On the 

contrary, oak forests are productive and slowly accumulate biomass, accompanying 

the maturing of the trees. This stability may benefit more some bird species but it can 

also help increase the diversity of other ones on forest edges, for it can function as 

refuge or nesting location (Hovick et al., 2015). 

Disturbance could be observed on all the other land cover types: Forest stands of 

Eucalyptus spp with growth and cut dynamics; conversion of vegetated areas into 

intensely urbanized zones; wildfires on shrubland; irrigated annual crop agriculture. 

Every single one implies different consequences for passerine diversity.  

The most impressive and disruptive disturbance happens on the urbanization process. 

An area that previously provided natural resources to birds is no longer available, 

which can have a local negative impact on the diversity of the birds’ species.  

Wildfire occurrence on shrublands does not have a comparable impact to the 

urbanization process. This type of land cover is particularly fire-prone and very well 

adapted to that disturbance, being able to recover from it (Carmo et al., 2011). In fact, 

after a shrubland fire under most burning regimes, shrub species composition do not 

change substantially from one fire cycle to the next (Keeley, 1986). Being so, the 

effects of fire on bird communities may not be as marked as in other land covers, 

recovering quickly (one year after the fire levels of EVI were back up again). 

One source of “disturbance” that goes in the opposite way of the previous is agricultural 

practice and land use. Usually present on fertile zones, these managed areas under 

extensive regime are used for growing different crops in spring/summer and throughout 

the rest of the year have green pastures for cattle. That means that temporal and 

spatial diversity of the landscape can potentially increase birds’ species richness 

(Laiolo, 2005) in these. In fact, highly diversified agro-forestry mosaics in the study 

area tend to present high EFD and high levels of passerine diversity. 
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EVI worked as proxy to differentiate land cover types. Visualising trends for them for a 

relatively long period of time helped understanding how landscape dynamics affect bird 

communities and their diversity. Stability or disturbance, and their regime can be 

monitored through satellite time series, which allows identifying key moments and 

indicators that are able to support present conservation agendas.   
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5. Conclusions 

This study provided information on how passerine diversity and their functional traits 

can be linked to ecosystem functioning diversity. By exploring the best predictive and 

response variables we were able to hindcast trends in EFA/EFT and use them as a 

proxy to detect potential effects on passerine species richness in a 35-year long time 

series.  

Most works prior to this focused on the structural and compositional diversity and 

heterogeneity of landscapes, leaving aside functioning diversity. This work comes to 

show that functioning diversity holds the potential to predict trends in species richness 

as well thus complementing previous approaches. The methodology and assumptions 

used can be replicated with other taxa and in other study areas.  

Remote sensing tools are crucial and proved to be capable of assessing ecosystem 

dynamics, detecting changes and providing knowledge of landscape diversity. That 

knowledge helps understanding underlying processes that occur on ecosystems which 

is essential to define conservation practices and to influence decision makers in 

creating policies that meet the best interest of biodiversity preservation. 

5.1. Applications and future prospects  

Next steps 

The work developed on this study provided a view into landscape processes that are 

not only manifesting on the river Vez watershed, but on Iberian Peninsula and most of 

the Mediterranean basin. Some landscapes are becoming homogenized, losing its 

functions and species diversity and with it the crucial services provided by ecosystems 

to human livelihoods. To study what is behind this change is of upmost importance in 

order to understand the ecosystem dynamics and to create and apply policies that 

benefit conservation efforts. There are studies that already found main culprits of this 

loss of functioning diversity, drivers of change associated with political and social 

motives such as: rural exodus, frequent fires, farmland abandonment, agriculture 

intensification, and spread of monoculture forest stands (e.g. Eucalyptus spp.), 

urbanization, etc. We consider that evaluating which drivers have more expression on 

the area and to measure how they impact ecosystem functioning diversity and 

passerine communities is the next big step. For that, we would require additional field 

data of present communities to assess how they evolved since 2014, and link it to how 

the landscape itself evolved over the last few years. 



FCUP 
Linking ecosystem functioning diversity and passerine species richness with application to landscape monitoring  

53 

 

 
 

Suggestions  

The remote sensing tools used here have proven that it is possible to evaluate the 

ecosystem functioning modifications remotely. It reduces the effort invested on field 

surveys, but nonetheless it is still necessary to collect data from the terrain. Following 

that chain of thought we propose using citizen science for that. There is a growing use 

of mobile apps related to science (e.g. eBird, iNaturalist, etc.) that work on the basis of 

georeferenced and dated submissions of the sightings of organisms (Sullivan et al., 

2014). On some apps those observations need to be submitted with photos or sounds, 

which are a fantastic way to confirm their truthfulness, enabling their use for species 

monitoring. One disadvantage we see is the bias of the observations which seem to be 

clustered around hotspots suggested by users (or sometimes associated with territories 

with better access or with more tourism – e.g. walkways, trails, etc.). We suggest the 

creation of an algorithm that allows informing users of places that are of scientific 

interest, to encourage incursions to those areas. The outputs of this thesis can help to 

define such locations were potential losses of diversity may be occurring. That should 

grant the scientific community with further data, decreasing the bias caused by 

hotspots and touristic sites. Nevertheless, the scientific community must be cautious 

with these types of data sets, filtering observations and using only validated data, 

mainly because there is the uncertainty associated with human errors, for we do not 

know how the data was obtained. 
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7. Appendix 

Table A1 - R packages used 

Package name Citation info 

car 
John Fox and Sanford Weisberg (2019). An {R} Companion to Applied 
Regression, Third Edition. Thousand Oaks CA: Sage. URL: 
https://socialsciences.mcmaster.ca/jfox/Books/Companion/ 

Dcluster 
V. Gómez-Rubio; J. Ferrándiz-Ferragud; A. López-Quílez (2005). Detecting 
clusters of disease with R.  Journal of Geographical Systems. 7, Number 
2:189-206 

DescTools 
Andri Signorell et mult. al. (2019). DescTools: Tools for descriptive statistics. 
R package version 0.99.28. 

dplyr 
Hadley Wickham, Romain François, Lionel Henry and Kirill Müller (2019). 
dplyr: A Grammar of Data Manipulation. R package version 0.8.3. 
https://CRAN.R-project.org/package=dplyr 

fasterize 
Noam Ross (2018). fasterize: Fast Polygon to Raster Conversion. R 
package version 1.0.0. https://CRAN.R-project.org/package=fasterize 

ggplot2 
H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag 
New York, 2016. 

glmnet 
Jerome Friedman, Trevor Hastie, Robert Tibshirani (2010). Regularization 
Paths   for Generalized Linear Models via Coordinate Descent. Journal of 
Statistical Software, 33(1), 1-22. URL http://www.jstatsoft.org/v33/i01/. 

magrittr 
Stefan Milton Bache and Hadley Wickham (2014). magrittr: A Forward-Pipe 
Operator for R. R package version 1.5. https://CRAN.R-
project.org/package=magrittr 

MASS 
Venables, W. N. & Ripley, B. D. (2002) Modern Applied Statistics with S. 
Fourth   Edition. Springer, New York. ISBN 0-387-95457-0 

microbiome Leo Lahti et al.  microbiome R package.  URL: http://microbiome.github.io 

pracma 
Hans W. Borchers (2019). pracma: Practical Numerical Math Functions. R 
package version 2.2.5. https://CRAN.R-project.org/package=pracma 

psych 
Revelle, W. (2018) psych: Procedures for Personality and Psychological 
Research, Northwestern University, Evanston, Illinois, USA, 
https://CRAN.R-project.org/package=psych Version = 1.8.12. 

ptw 
Bloemberg, T. G. et al. (2010) "Improved Parametric Time Warping for 
Proteomics", Chemometrics and Intelligent Laboratory Systems, 104 (1), 65-
74 
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raster 
Robert J. Hijmans (2019). raster: Geographic Data Analysis and Modeling. 
R package version 3.0-2. https://CRAN.R-project.org/package=raster 

Rcpp 
Dirk Eddelbuettel and Romain Francois (2011). Rcpp: Seamless R and C++ 
Integration. Journal of Statistical Software, 40(8), 1-18. URL 
http://www.jstatsoft.org/v40/i08/. 

readxl 
Hadley Wickham and Jennifer Bryan (2019). readxl: Read Excel Files. R 
package version 1.3.1. https://CRAN.R-project.org/package=readxl 

rgdal 
Roger Bivand, Tim Keitt and Barry Rowlingson (2019). rgdal: Bindings for 
the 'Geospatial' Data Abstraction Library. R package version 1.4-4. 
https://CRAN.R-project.org/package=rgdal 

Rstoolbox 
Benjamin Leutner, Ned Horning and Jakob Schwalb-Willmann (2019). 
RStoolbox: Tools for Remote Sensing Data Analysis. R package version 
0.2.6. https://CRAN.R-project.org/package=RStoolbox 

sf 
Pebesma, E., 2018. Simple Features for R: Standardized Support for 
Spatial Vector Data. The R Journal 10 (1), 439-446, 
https://doi.org/10.32614/RJ-2018-009 

sp 
Pebesma, E.J., R.S. Bivand, 2005. Classes and methods for spatial data in 
R. R News 5 (2), https://cran.r-project.org/doc/Rnews/ 

SparseM 
Roger Koenker and Pin Ng (2017). SparseM: Sparse Linear Algebra. R 
package version 1.77. https://CRAN.R-project.org/package=SparseM 

tidyr 
Hadley Wickham and Lionel Henry (2019). tidyr: Tidy Messy Data. R 
package version 1.0.0. https://CRAN.R-project.org/package=tidyr 

tools 
R Core Team (2019). R: A language and environment for statistical 
computing. R Foundation for Statistical Computing, Vienna, Austria. URL 
https://www.R-project.org/. 

trend 
Thorsten Pohlert (2018). trend: Non-Parametric Trend Tests and Change-
Point Detection. R package version 1.1.1. https://CRAN.R-
project.org/package=trend 

utils 
R Core Team (2019). R: A language and environment for statistical 
computing. R Foundation for Statistical Computing, Vienna, Austria. URL 
https://www.R-project.org/. 

writexl 
Jeroen Ooms (2018). writexl: Export Data Frames to Excel 'xlsx' Format. R 
package version 1.1. https://CRAN.R-project.org/package=writexl 
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Table A2 - Specific criteria used for each genus 

1 – Abundance values were based on an abundance classification that varies between 1 (highest abundance) and 5 
(lowest abundance), present on Guia de Aves. Assírio & Alvim, Porto Editora Lda: Porto 

  

Genus Criteria 
(species used) 

Notes 

Anthus sp. Anthus trivialis 
The only species that was found in the area was 

Anthus trivialis 

Carduelis sp. 
L. cannabina  
C. carduelis  

C. chloris 

Mean values of the three species, two of them 
formerly classified as Carduelis found in the study 

area 

Corvus sp. Corvus corone 
The most common species in the country is C. 

corone
1 

Emberiza sp. 
E. cia,  
E.cirlus 

Mean values of the two most common species of 
Emberiza

1 

Hirundo sp. Hirundo rustica 
The only species that was found in the area was H. 

rustica 

Monticola sp. M.saxatilis 
Distribution map of HBW indicated that the only 

species present in the area as M. saxatilis 

Oenanthe sp. O. oenanthe 
The only species that was found in the area was O. 

oenanthe 

Parus sp. 
C. caeruleus 

P. major 
Mean values of the two most common species of 

Paridae
1 

Phylloscopus sp. 
P. bonelli,  
P. ibericus 

The two species that breed in Portugal   

Sylvia sp. S. melanocephala 
Of all Sylvia species found in the surveys, S 

melanocephala is the most abundant species in the 
country

1
  

Turdus sp. T. viscivorus 

Of the two species of Turdus that are similar found 
in the area one is a winter visitor (T. philomelos), 
making T. viscivorous the only species present 

during the surveys 
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Table A3 - Landsat missions (NASA, 2013). 

 

Table A4 - Landsat 5, 7 and 8 specifications and their product codes in Google Earth Engine (Google LLC, n.d.; NASA, 
2013). 

Satellite Launch date Decommission date Sensors 

Landsat 1 23 July 1972 6 January 1978 MSS/RBV 

Landsat 2 22 January 1975 27 July 1983 MSS/RBV 

Landsat 3 5 March 1978 7 September 1983 MSS/RBV 

Landsat 4 16 July 1982 15 June 2001 MSS/TM 

Landsat 5 1 March 1984 5 June 2013 MSS/TM 

Landsat 6 5 October 1993 Failed to reach orbit ETM 

Landsat 7 15 April 1999 Operational ETM+ 

Landsat 8 11 February 2013 Operational OLI/TIRS 

Sensors  Band number Band name Resolution Wavelenght (μm) 

Landsat 5 (TM) 
 

Google earth engine 
product code: 

“LANDSAT/LT05/C01/T1_
32DAY_EVI” 

Band 1 Blue 30 m  0.45-0.52 

Band 2 Green 30 m 0.52-0.60 

Band 3 Red 30 m 0.63-0.69 

Band 4 NIR 30 m 0.76-0.90 

Band 5 SWIR 30 m 1.55-1.75 

Band 6 TIR 120x30 m 10.40-12.50 

Band 7 SWIR 30 m 2.08-2.35 

 
 
 

Landsat 7 (ETM+) 
 

Google earth engine 
product code: 

“LANDSAT/LE07/C01/T1_
32DAY_EVI” 

 

Band 1 Blue 30 m  0.44-0.51 

Band 2 Green  30 m  0.52-0.60 

Band 3 Red 30 m  0.63-0.69 

Band 4 NIR 30 m  0.77-0.90 

Band 5 SWIR-1 30 m  1.55-1.75 

Band 6 TIR 60 m  10.31-12.36 

Band 7 SWIR-2 30 m  2.06-2.35 

Band 8 Pan 15 m 0.52-0.90 

Landsat 8 
(OLI/TIRS) 

 
Google earth engine 

product 

code:“LANDSAT/LC08/C0
1/T1_32DAY_EVI 

Band 1 Coastal/Aerosol 30 m  0.44-0.45 

Band 2 Blue 30 m  0.45-0.51 

Band 3 Green 30 m  0.53-0.59 

Band 4 Red 30 m  0.64-0.67 

Band 5 NIR 30 m  0.85-0.88 

Band 6 SWIR-1 30 m  1.57-1.65 

Band 7 SWIR-2 30 m  2.11-2.29 

Band 8 Pan 15 m 0.50-0.68 

Band 9 Cirrus 30 m  1.36-1.38 

Band 10 TIR-1 100 m 10.60-11.19 

Band 11 TIR-2 100 m 11.50-12.51 
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Table A5 – Species habitat distribution 

Species Woodland Farmland Meadow and grassland Upland Wetlands Urban and suburban Heathland 
Aegithalos caudatus 1 1 0 0 0 1 1 

Alauda arvensis 0 1 1 1 0 0 1 

Anthus sp. 1 0 1 0 0 0 1 

Anthus trivialis 1 0 1 0 0 0 1 

Carduelis carduelis 1 0 1 0 1 1 0 

Carduelis sp. 1 1 1 1 1 1 1 

Certhia brachydactyla 1 1 0 0 0 1 0 

Cettia cetti 0 0 0 0 1 0 0 

Chloris chloris 1 0 0 0 0 1 1 

Corvus corax 1 0 1 1 0 0 1 

Corvus corone 1 1 0 1 0 1 0 

Corvus monedula 1 1 1 0 0 1 0 

Corvus sp. 1 1 0 1 0 1 0 

Cyanistes caeruleus 1 0 0 0 0 1 0 

Delichon urbicum 0 1 0 0 0 1 0 

Emberiza cia 0 0 0 1 0 0 0 

Emberiza cirlus 1 1 0 0 0 0 1 

Emberiza citrinella 1 1 1 0 0 0 1 

Emberiza sp. 1 1 0 1 0 0 1 

Erithacus rubecula 1 1 0 0 1 1 0 

Fringilla coelebs 1 1 0 0 0 1 1 

Garrulus glandarius 1 0 0 0 0 1 0 

Hippolais polyglotta 1 0 0 0 0 1 1 

Hirundo rustica 0 1 0 0 1 1 0 

Hirundo sp. 0 1 0 0 1 1 0 

Linaria cannabina 1 1 0 1 0 1 1 

Lophophanes cristatus 1 0 0 0 0 0 0 

Luscinia megarhynchos 1 0 0 0 0 1 1 

Monticola sp. 0 0 0 1 0 0 0 

Motacilla alba 0 1 1 0 1 1 0 
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Species Woodland Farmland Meadow and grassland Upland Wetlands Urban and suburban Heathland 
Motacilla cinerea 0 0 0 1 1 0 0 

Oenanthe oenanthe 0 0 1 1 0 0 0 

Oenanthe sp. 0 0 1 1 0 0 0 

Oriolus oriolus 1 1 0 0 0 1 0 

Parus major 1 0 0 0 0 1 0 

Parus sp. 1 0 0 0 0 1 0 

Passer domesticus 0 0 0 0 0 1 0 

Passer montanus 1 0 0 0 0 1 0 

Periparus ater 1 0 0 0 0 0 0 

Phoenicurus ochruros 0 0 0 1 0 1 0 

Phylloscopus sp. 1 0 0 0 0 0 0 

Pica pica 0 1 1 0 0 1 0 

Prunella modularis 1 0 0 0 0 1 1 

Pyrrhula pyrrhula 1 0 0 0 0 1 1 

Regulus ignicapillus 1 0 0 0 0 0 1 

Saxicola rubetra 0 0 1 1 1 0 1 

Saxicola rubicola 0 0 1 1 0 0 1 

Serinus serinus 1 1 0 0 0 1 0 

Sitta europaea 1 0 0 0 0 1 0 

Sturnus unicolor 1 1 1 0 0 1 0 

Sylvia atricapilla 1 0 0 0 1 1 0 

Sylvia cantillans 1 0 0 0 1 0 1 

Sylvia communis 0 0 1 0 0 0 1 

Sylvia melanocephala 0 1 1 0 0 1 1 

Sylvia sp. 0 1 1 0 0 1 1 

Sylvia undata 0 0 0 0 0 0 1 

Troglodytes troglodytes 1 0 0 1 0 1 0 

Turdus merula 1 0 0 1 0 1 0 

Turdus philomelos 1 0 0 0 0 1 0 

Turdus sp. 1 1 1 0 0 1 0 

Turdus viscivorus 1 1 1 0 0 1 0 
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Table A6 – Species feeding type distribution   

Species Frugiverous Granivorous Insectivorous Omnivorous 
Aegithalos caudatus 0 1 1 0 

Alauda arvensis 0 1 1 0 

Anthus sp. 0 1 1 0 
Anthus trivialis 0 1 1 0 

Carduelis carduelis 1 1 0 0 
Carduelis sp. 1 1 0 0 

Certhia brachydactyla 0 0 1 0 
Cettia cetti 0 0 1 0 

Chloris chloris 1 1 0 0 
Corvus corax 0 0 0 1 

Corvus corone 0 0 0 1 
Corvus monedula 0 0 0 1 

Corvus sp. 0 0 0 1 
Cyanistes caeruleus 1 1 1 1 

Delichon urbicum 0 0 1 0 
Emberiza cia 0 1 1 0 

Emberiza cirlus 0 1 1 0 
Emberiza citrinella 0 1 1 0 

Emberiza sp. 0 1 1 0 
Erithacus rubecula 1 1 1 1 

Fringilla coelebs 0 1 1 0 
Garrulus glandarius 0 0 0 1 
Hippolais polyglotta 1 0 1 0 

Hirundo rustica 0 0 1 0 
Hirundo sp. 0 0 1 0 

Linaria cannabina 0 1 0 0 

Lophphanes cristatus 0 1 1 0 
Luscinia megarhynchos 1 0 1 0 

Monticola sp. 1 0 1 0 
Motacilla alba 0 0 1 0 

Motacilla cinerea 0 0 1 0 
Oenanthe oenanthe 0 0 1 0 

Oenanthe sp. 0 0 1 0 
Oriolus oriolus 1 1 1 1 
Parus major 1 1 1 1 

Parus sp. 1 1 1 1 
Passer domesticus 1 1 1 1 
Passer montanus 0 1 1 0 

Periparus ater 0 1 1 0 
Phoenicurus ochruros 1 0 1 0 

Phylloscopus sp. 0 0 1 0 
Pica pica 0 0 0 1 

Prunella modularis 0 0 1 0 
Pyrrhula pyrrhula 1 1 1 1 

Regulus ignicapillus 0 0 1 0 

Saxicola rubetra 0 0 1 0 
Saxicola rubicola 0 0 1 0 
Serinus serinus 0 1 0 0 
Sitta europaea 0 1 1 0 

Sturnus unicolor 0 0 0 1 
Sylvia atricapilla 1 0 1 0 

Sylvia cantillans 1 0 1 0 
Sylvia communis 1 0 1 0 

Sylvia melanocephala 1 0 1 0 
Sylvia sp. 1 0 1 0 

Sylvia undata 1 0 1 0 
Troglodytes troglodytes 1 1 1 1 

Turdus merula 1 0 1 0 
Turdus philomelos 1 0 1 0 

Turdus sp. 1 1 1 1 
Turdus viscivorus 1 1 1 1 
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Table A7 – Species nest distribution  

Species Tree Shrub Ground Artificial Urban Tree Cavity Cavity Cliff 

Aegithalos caudatus 0 1 0 0 0 0 0 
Alauda arvensis 0 0 1 0 0 0 0 

Anthus sp. 0 0 1 0 0 0 0 
Anthus trivialis 0 0 1 0 0 0 0 

Carduelis carduelis 1 1 0 0 0 0 0 
Carduelis sp. 1 1 0 0 0 0 0 

Certhia brachydactyla 0 0 0 0 1 1 0 

Cettia cetti 0 1 0 0 0 0 0 
Chloris chloris 1 1 0 0 0 0 0 
Corvus corax 1 0 0 1 0 0 1 

Corvus corone 1 0 0 0 0 0 0 
Corvus monedula 0 0 0 1 1 1 1 

Corvus sp. 1 0 0 0 0 0 0 

Cyanistes caeruleus 0 0 0 1 1 0 0 
Delichon urbicum 0 0 0 1 0 0 0 

Emberiza cia 0 0 1 0 0 0 0 
Emberiza cirlus 0 1 0 0 0 0 0 

Emberiza citrinella 0 1 0 0 0 0 0 
Emberiza sp. 0 1 1 0 0 0 0 

Erithacus rubecula 0 0 1 1 1 0 0 
Fringilla coelebs 1 0 0 0 0 0 0 

Garrulus glandarius 1 0 0 0 0 0 0 
Hippolais polyglotta 1 0 0 0 0 0 0 

Hirundo rustica 0 0 0 1 0 0 0 
Hirundo sp. 0 0 0 1 0 0 0 

Linaria cannabina 0 1 0 0 0 0 0 
Lophophanes cristatus 0 0 0 0 1 0 0 
Luscinia megarhynchos 0 0 1 0 0 0 0 

Monticola sp. 0 0 0 1 0 1 0 
Motacilla alba 0 0 0 1 0 1 0 

Motacilla cinerea 0 0 0 1 0 1 0 

Oenanthe oenanthe 0 0 0 0 0 1 0 
Oenanthe sp. 0 0 0 0 0 1 0 
Oriolus oriolus 1 0 0 0 0 0 0 
Parus major 0 0 0 1 1 0 0 

Parus sp. 0 0 0 1 1 0 0 
Passer domesticus 0 0 0 1 1 0 1 

Passer montanus 0 0 0 1 1 1 1 
Periparus ater 0 0 0 0 1 0 0 

Phoenicurus ochruros 0 0 1 0 0 1 0 
Phylloscopus sp. 0 0 1 0 0 0 0 

Pica pica 1 0 0 0 0 0 0 
Prunella modularis 1 1 0 0 0 0 0 

Pyrrhula pyrrhula 1 1 0 0 0 0 0 
Regulus ignicapillus 1 0 0 0 0 0 0 

Saxicola rubetra 0 1 1 0 0 0 0 
Saxicola rubicola 0 0 1 0 0 0 0 
Serinus serinus 1 0 0 0 0 0 0 
Sitta europaea 0 0 0 0 1 0 0 

Sturnus unicolor 0 0 0 1 1 0 0 
Sylvia atricapilla 1 1 0 0 0 0 0 
Sylvia cantillans 1 1 0 0 0 0 0 
Sylvia communis 0 1 0 0 0 0 0 

Sylvia melanocephala 0 1 0 0 0 0 0 
Sylvia sp. 0 1 0 0 0 0 0 

Sylvia undata 0 1 0 0 0 0 0 

Troglodytes troglodytes 0 1 0 1 0 1 0 
Turdus merula 1 1 0 1 0 0 0 

Turdus philomelos 1 1 0 0 0 0 0 
Turdus sp. 1 0 0 0 0 0 0 

Turdus viscivorus 1 0 0 0 0 0 0 
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Table A8 – Species size distribution 

Species S M L XL 
Aegithalos caudatus 0 1 0 0 

Alauda arvensis 0 0 1 0 

Anthus sp. 0 1 0 0 
Anthus trivialis 0 1 0 0 

Carduelis carduelis 1 0 0 0 
Carduelis sp. 0 1 0 0 

Certhia brachydactyla 1 0 0 0 
Cettia cetti 0 1 0 0 

Chloris chloris 0 0 1 0 
Corvus corax 0 0 0 1 

Corvus corone 0 0 0 1 
Corvus monedula 0 0 0 1 

Corvus sp. 0 0 0 1 
Cyanistes caeruleus 1 0 0 0 

Delichon urbicum 1 0 0 0 
Emberiza cia 0 0 1 0 

Emberiza cirlus 0 0 1 0 
Emberiza citrinella 0 0 1 0 

Emberiza sp. 0 0 1 0 
Erithacus rubecula 0 1 0 0 

Fringilla coelebs 0 0 1 0 
Garrulus glandarius 0 0 0 1 
Hippolais polyglotta 1 0 0 0 

Hirundo rustica 0 0 0 1 
Hirundo sp. 0 0 0 1 

Linaria cannabina 0 1 0 0 

Lophophanes cristatus 1 0 0 0 
Luscinia megarhynchos 0 0 1 0 

Monticola sp. 0 0 1 0 
Motacilla alba 0 0 1 0 

Motacilla cinerea 0 0 1 0 
Oenanthe oenanthe 0 0 1 0 

Oenanthe sp. 0 0 1 0 
Oriolus oriolus 0 0 0 1 
Parus major 0 1 0 0 

Parus sp. 1 0 0 0 
Passer domesticus 0 0 1 0 
Passer montanus 0 1 0 0 

Periparus ater 1 0 0 0 
Phoenicurus ochruros 0 1 0 0 

Phylloscopus sp. 1 0 0 0 
Pica pica 0 0 0 1 

Prunella modularis 0 1 0 0 
Pyrrhula pyrrhula 0 0 1 0 

Regulus ignicapillus 1 0 0 0 

Saxicola rubetra 1 0 0 0 
Saxicola rubicola 1 0 0 0 
Serinus serinus 1 0 0 0 
Sitta europaea 0 1 0 0 

Sturnus unicolor 0 0 0 1 
Sylvia atricapilla 0 1 0 0 

Sylvia cantillans 1 0 0 0 
Sylvia communis 0 1 0 0 

Sylvia melanocephala 0 1 0 0 
Sylvia sp. 0 1 0 0 

Sylvia undata 1 0 0 0 
Troglodytes troglodytes 1 0 0 0 

Turdus merula 0 0 0 1 
Turdus philomelos 0 0 0 1 

Turdus sp. 0 0 0 1 
Turdus viscivorus 0 0 0 1 

 



FCUP 
Linking ecosystem functioning diversity and passerine species richness with application to landscape monitoring 

74 

 

 
 

Table A9 – EFT percentage cover (from highest to lowest) 

EFT_class EFT_Prod EFT_Seas EFT_Phen PercCover 

343 3 4 3 5.720269 

143 1 4 3 5.578384 

443 4 4 3 5.462204 

243 2 4 3 5.150675 

433 4 3 3 5.128056 

333 3 3 3 4.994739 

233 2 3 3 4.243164 

133 1 3 3 4.0156 

323 3 2 3 3.975845 

223 2 2 3 3.707499 

123 1 2 3 3.439495 

423 4 2 3 3.412421 

113 1 1 3 3.108089 

213 2 1 3 2.878812 

313 3 1 3 2.334237 

112 1 1 2 2.287628 

214 2 1 4 2.05698 

424 4 2 4 1.893162 

434 4 3 4 1.790347 

122 1 2 2 1.764643 

314 3 1 4 1.731057 

114 1 1 4 1.57615 

324 3 2 4 1.454143 

413 4 1 3 1.4538 

132 1 3 2 1.450373 

212 2 1 2 1.221439 

224 2 2 4 1.154267 

222 2 2 2 0.978453 

142 1 4 2 0.976054 

414 4 1 4 0.969543 

211 2 1 1 0.964059 

312 3 1 2 0.904427 

111 1 1 1 0.890376 

444 4 4 4 0.871183 

232 2 3 2 0.852677 

322 3 2 2 0.803326 

332 3 3 2 0.695713 

422 4 2 2 0.680291 

432 4 3 2 0.617574 

311 3 1 1 0.577133 

412 4 1 2 0.571993 

421 4 2 1 0.571993 
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242 2 4 2 0.552801 

334 3 3 4 0.503449 

431 4 3 1 0.493168 

124 1 2 4 0.472605 

411 4 1 1 0.461295 

342 3 4 2 0.457868 

321 3 2 1 0.351284 

442 4 4 2 0.344087 

221 2 2 1 0.335519 

234 2 3 4 0.269717 

441 4 4 1 0.256351 

121 1 2 1 0.161762 

331 3 3 1 0.122692 

344 3 4 4 0.080881 

134 1 3 4 0.079853 

231 2 3 1 0.074712 

341 3 4 1 0.025361 

131 1 3 1 0.022619 

244 2 4 4 0.014737 

144 1 4 4 0.006854 

241 2 4 1 0.00377 

141 1 4 1 0.000343 
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Table A10 - Overdispersion tests for Poisson models 

 
  

  

Response variable 
Overdispersion test 

Likelihood-ratio test (p-value) DeanB DeanB2 

Species richness 1 0.89 0.74 

Habitat 

Woodland 1 0.94 0.83 

Farmland 1 0.97 0.89 

Meadow grass 1 0.89 0.82 

Upland 1 0.83 0.75 

Wetlands 1 0.93 0.82 

Urban suburb 1 0.95 0.85 

Heathland 0.34 0.13 0.06 

Feeding 

Frugivorous 1 0.97 0.92 

Granivorous 1 0.97 0.91 

Insectivorous 1 0.8 0.65 

Omnivorous 1 0.96 0.86 

Nest 

Tree 1 0.99 0.95 

Shrub 1 0.85 0.72 

Ground 1 0.91 0.85 

Artificial Urban 1 0.87 0.71 

Tree Cavity 1 0.98 0.93 

Cavity 1 0.89 0.74 

Cliff 1 0.88 0.72 

Size 

S 1 0.91 0.8 

M 1 0.97 0.92 

L 1 0.99 0.98 

XL 1 0.99 0.97 
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Table A11 – Variance Influence Factors results 
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Sp_rich 1.90 1.09 - - - - - 3.65 5.27 - - - - - - 

Hab_Woodland 2.08 - - - 2.68 - - 4.29 5.96 - - - - - - 

Hab_Farmland 2.07 - - - - - - 3.78 5.65 - - - - - - 

Hab_Meadow_grass - - - - - - - - - - - - - - - 

Hab_Upland - - - - - - - - - - - - - - - 

Hab_Wetlands - - - - - - 1.78 3.86 3.24 - 1.34 - - - - 

Hab_Urban_suburb 4.37 - 4.77 - - - - 3.80 5.81 - - - - - - 

Hab_Heathland - - - - - - - - - - - - - - - 

Feed_Frugiverous - 1.81 - 2.47 - - - 3.11 3.96 - - - - - - 

Feed_Granivorous 1.88 - - - - - - 3.75 5.30 - - - - - - 

Feed_Insectivorous - - - - - - - - - - - - - - - 

Feed_Omnivorous 6.44 - 6.53 - - - - - 2.00 1.17 - - - - - 

Nest_Tree - - 1.27 - 3.02 - - 2.60 - 1.54 - - - - - 

Nest_Shrub 1.10 1.08 - - 1.03 - - - - - - - - - - 

Nest_Ground - - - - - - - - - - - - - - - 

Nest_Artificial_Urban - - - - - - - 3.37 3.06 - - - - 85.69 87.59 

Nest_Tree_Cavity 2.10 - - - - - - - 1.67 - - - - 126.85 130.76 

Nest_Cavity - 1.07 - - - - - 2.89 2.97 - - - - - - 

Nest_Cliff - 1.05 - - - - 1.65 3.20 2.56 - - - - - - 

Size_S - - - - - - - - - - - - - - - 

Size_M 1.16 1.10 - - 2.56 - - 2.71 - - - - - - - 

Size_L - - - - - - - - - - - - - - - 

Size_XL 2.08 - - - - - - 3.71 5.59 1.12 - - - - - 

 


