
genes
G C A T

T A C G

G C A T

Review

Profiling DNA Methylation Based on
Next-Generation Sequencing Approaches:
New Insights and Clinical Applications

Daniela Barros-Silva 1 ID , C. Joana Marques 2,3 ID , Rui Henrique 1,4,5 ID

and Carmen Jerónimo 1,5,* ID

1 Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology
Institute of Porto (IPO Porto), Rua António Bernardino Almeida, 4200-072 Porto, Portugal;
daniela.barros.silva94@gmail.com (D.B.-S.); rmhenrique@icbas.up.pt (R.H.)

2 Genetics, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
cmarques@med.up.pt

3 I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
4 Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
5 Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel

Salazar (ICBAS)—University of Porto, 4050-313 Porto, Portugal
* Correspondence: carmenjeronimo@ipoporto.min-saude.pt; Tel.: +351-225084000; Fax: +351-225084199

Received: 23 May 2018; Accepted: 20 August 2018; Published: 23 August 2018
����������
�������

Abstract: DNA methylation is an epigenetic modification that plays a pivotal role in regulating
gene expression and, consequently, influences a wide variety of biological processes and diseases.
The advances in next-generation sequencing technologies allow for genome-wide profiling of methyl
marks both at a single-nucleotide and at a single-cell resolution. These profiling approaches vary
in many aspects, such as DNA input, resolution, coverage, and bioinformatics analysis. Thus,
the selection of the most feasible method according with the project’s purpose requires in-depth
knowledge of those techniques. Currently, high-throughput sequencing techniques are intensively
used in epigenomics profiling, which ultimately aims to find novel biomarkers for detection, diagnosis
prognosis, and prediction of response to therapy, as well as to discover new targets for personalized
treatments. Here, we present, in brief, a portrayal of next-generation sequencing methodologies’
evolution for profiling DNA methylation, highlighting its potential for translational medicine and
presenting significant findings in several diseases.
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1. Introduction

DNA methylation patterns’ changes have been widely studied and constitute the most well
understood epigenetic modification. The addition of a methyl group at the 5′ position of the cytosine
residue proved to be an essential mechanism in both gene expression and chromatin structure
regulation [1]. The functional presence of 5mC (5-methylcytosine) in gene promoters is generally
associated with transcriptional repression due to structural chromatin alterations, while the absence is
linked with transcriptional activity. Gene body methylation also plays a major role in repetitive DNA
elements’ silencing and alternative splicing [2,3]. DNA methylation has been associated with several
biological processes such as genomic imprinting, transposon inactivation, stem cell differentiation,
transcription repression, and inflammation [4]. DNA methylation profiles can also be inherited through
cell division and sometimes through generations [5]. Since methyl marks play a very relevant role
in both physiologic and pathologic conditions, the significance of profiling DNA methylation to
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answer biological questions has been highlighted. Moreover, uncovering of DNA methylation genomic
regions is appealing to translational research because methyl sites are modifiable by pharmacologic
intervention [6] and are easy to measure in liquid biopsies through cost-effective methods [7]. However,
efforts to examine epigenetic modifications in health and disease have been hindered by the lack of
high-throughput and quantitatively accurate approaches, until recently.

Over the last years, numerous methods were developed to map 5mC providing a genome-wide
coverage of DNA methylation changes. This improvement in DNA methylation analysis techniques
was only possible due to the advances of various profiling approaches, both experimental and
computational [8–10]. Epigenetics was one of the first molecular fields capitalizing next-generation
sequencing (NGS) methodologies to its favor, providing a comprehensive and unbiased view
of the epigenome and also releasing researchers from content-limited microarray platforms [11].
Next-generation sequencing technology has brought unprecedented advancement to epigenomic
research, particularly in DNA methylation landscape. Compared to array-based technologies, NGS
made possible deep sequencing in a short time (from one to few days), producing billions of short
DNA samples known as reads (ranging from 50–400 nucleotides) and providing better coverage of
all possible methylation sites in the human genome [12]. The arrival of NGS technologies allows for
each of the three billion bases in the human genome to be sequenced multiple times, enabling high
depth reading to deliver accurate data and insight into unexpected DNA variations [13]. Thanks to
massively parallel sequencing it is now possible to recognize methylation status on a large scale and at
a single-base resolution [9].

A complete characterization of the methylome and the dynamic changes that occur within may
serve as an accurate diagnostic, prognostic, and predictive tools. This mini-review aims to provide a
brief overview of NGS tools that might be used in translational medical research, discussing the main
advantages and limitations of those technologies and making considerations about the advantages
and limitations of each method.

2. DNA Methylation Profiling

Pyrosequencing, methylation-specific polymerase chain reaction (PCR), and direct Sanger
sequencing have been the most widely used methods for analysis of targeted regions, such as a
promoter region of a single gene or a CpG (Cytosine-phosphate-Guanine) island. Although highly
useful, the limitations of these techniques include low quantitative accuracy, short read length, and low
sample throughput.

A plethora of new methods are currently used to investigate 5mC epigenetic landscape in DNA.
Microarray hybridization was one of the first technologies escalating the DNA methylation studies to a
genome-wide level. Notably, the methylation arrays are cost-effective tools which do not require large
amounts of input DNA, enabling simultaneous analysis of several samples. However, the coverage is
highly dependent on the array design [14]. Next-generation sequencing platforms are now emerging,
allowing for massive analysis of the methylation status of almost every CpG site and construction
of DNA methylation’s genomic maps at a single base resolution [15]. Nevertheless, most of the
approaches to 5mC analysis still have the restrictions of being density-biased, deficient in robustness
and consistency, or incapable of analyzing 5mC specifically [16]. Hence, for DNA methylation studies
involving clinical research, the combination of next-generation sequencing and methylation arrays
may constitute a powerful approach as discovery and screening tools, respectively [9].

A detailed characterization of the most commonly used genome-wide techniques is depicted in
Table 1. An historic overview of NGS-based methods applied to epigenomics is shown in Figure 1.
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Table 1. Comparison of key features of the different genome-wide approaches for DNA methylation
profiling. CpGs: Cytosine-phosphate-Guanine; bp: base pair.

Affinity Enrichment-Based
Methods

Restriction Enzymes-Based
Methods

Bisulfite Conversion-Based
Methods

Resolution ~150 bp Single-base Single-base

Reads/sample ~30–50 million reads ~10 million reads >500 million reads

CpGs covered ~23 million CpGs ~2 million CpGs >28 million CpGs

Pros Cost-effective method
No mutations introduced

High sensitivity with
lower costs

Evaluate methylation status of
every CpG site

Cons

Biased toward
hypermethylated regions

Inability to predict absolute
methylation level

CpGs in regions without the
enzyme restriction site are

not covered

Higher costs
Requires high DNA input

Substantial DNA degradation
after bisulfite treatment

Application Suitable for rapid, large scale
and low-resolution studies

Suitable for
site-specific/targeted studies

Suitable for high
resolution studies
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Figure 1. Evolution of next-generation sequencing-based techniques applied to DNA methylation
profiling. BS-Seq: bisulfite sequencing; MeDIP-Seq: methylated DNA immunoprecipitation sequencing;
RRBS-Seq: reduced representation bisulfite sequencing; WGBS: whole genome bisulfite sequencing;
MethylCap-Seq: methylation capture sequencing; MBD-Seq: methyl-CpG binding domain sequencing;
oxBS.Seq: oxidative bisulfite sequencing; TAB-Seq: TET-associated bisulfite sequencing; BSAS: bisulfite
amplicon sequencing.

2.1. Affinity Enrichment-Based Methods

This strategy uses antibodies (methylated DNA immunoprecipitation or MeDIP-Seq) and
methylated-CpG binding proteins (MBD-Seq) to pull down the genomic regions that are methylated
for sequencing. The unmethylated genomic fraction is washed away and the methylation-enriched
portion is then collected and sequenced [17,18]. Although enrichment techniques are biased towards
hypermethylated areas, which are preferentially or more effectively captures, they are particularly
useful for characterizing enriched CpG regions (CpG islands and promoter regions).

The main limitations of these approaches are the limited quantification across regions and lack
of base-specific data analysis, which ultimately diminishes the insight that could be gathered from
them. Thus, these affinity-based methodologies require substantial experimental and bioinformatics
adjustments [9]. Sequence data are more commonly analyzed using count-based models, but this
statistical method should be avoided in large group samples’ analysis since the biological variability
is ignored and more false positives are generated. In this context, a beta-binomial model works
more favorably, because it is flexible enough to capture both the technical (coverage) and biological
(methylation level) variability [19,20].
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2.2. Restriction Enzymes-Based Methods

Restriction-enzyme-based approaches take advantage of restriction enzymes (MspI) that are able
to cleave the recognition sequence at the site of DNA methylation (CCGG motifs), thus, 5mC can be
identified in selected sequences [21]. This is the most time and cost-effective sequencing method and
require minute amounts of DNA [22]. However, only lower weight fragments, between 40–220 bp,
are suitable for sequencing, despite a wide range of lengths resulting from digestion. The primary
limitation to this method is the inability to tune coverage regions of interest due to the dependence
on the restriction sites location in the genome, leading to a lack of applicability in genes with sparse
CCGG motifs [23].

2.3. Bisulfite Conversion-Based Methods

In bisulfite sequencing (BS-Seq), denatured DNA is subjected to bisulfite treatment during which
the unmodified cytosine is converted to uracil, but a methylated cytosine remains unchanged, thus
allowing base resolution detection of cytosine methylation [24,25]. The bisulfite treatment makes
methylation sequencing data processing challenging because of C→ T conversion. Thus, it is important
to bear in mind that bisulfite sequence reads are not complementary to the reference genome and,
therefore, special alignment tools are usually required [19]. In this particular case another level of
complexity is added because every given thymine could either be a genuine genomic thymine or a
converted unmethylated cytosine, rendering conventional alignment tools, such as Bowtie or BWA
(Burrows-wheeler aligner), unsuitable [26]. However, several new computational tools have been
developed to address this issue, namely BSMAP [27] and Segemehl [28], which enumerate all C to
T combinations in the read, or BISMARK [29] and BS-Seeker [30], which convert all C to T in both
sequenced reads and genome reference prior to alignment.

Whole genome bisulfite sequencing (WGBS) is the most informative but also the most expensive
base resolution technology since whole genome is targeted by this method. For WGBS, genomic
DNA libraries are created and subsequently bisulfite converted, sequenced, and mapped back to
the reference genome. Although BS-seq is the most direct assay and displays the highest resolution
for methylation detection, this methodology is only used for seeking specific questions in which
comprehensive DNA methylation profile is required [31].

Over the last years, numerous WGBS studies demonstrated that the majority of CpG sites are
equally methylated and only a small portion of these regions depicts variable DNA methylation,
the so-called differentially methylated regions (DMR). Thus, development of new sequencing
approaches, more useful for studies testing specific regions of interest and capable of focus only
in DMR are needed to efficiently validate putative candidate loci across a large number of samples.
In this context, Masser et al. developed an approach, termed bisulfite amplicon sequencing (BSAS),
for hypothesis driven and focused absolute DNA methylation analysis [32]. With the onset of NGS
platforms it was possible to sequence multiple samples in parallel in one run using multiplexed
amplicon-based NGS [33]. This new methodology is highly sensitive and integrates DNA barcoding
into the library construction process, so that many samples (from 96 up to 384 different samples) can
be pooled to fully use NGS capacity [34].

2.4. Oxidative Bisulfite Conversion-Based Methods

One of the most recent developments in epigenomic profiling was the discovery of alternative
cytosine modifications with relevant functional biologic roles, including 5-hydroxymethylcytosine
(5hmC), 5-carboxylcytosine (5caC), and 5-formylcytosine (5fC), Ito et al. [35], which are postulated
to be involved in the process of DNA demethylation [36]. Conventional bisulfite sequencing is
not able to distinguish between 5mC and 5hmC and the methylation profile resulting from this
methodology includes the sum of both epi-marks [37]. Indeed, when specific techniques were applied
for hydroxymethylation discrimination, a quarter of what was previously assumed as methylation was,
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in fact, hydroxymethylation [38]. Thus, the development of new methods for DNA profiling based on
NGS that discriminate between methylation and hydroxymethylation was imperative. A modified
bisulfite sequencing approach—oxidative bisulfite sequencing (Ox-BS)—includes a selective oxidative
step that deprotects hydroxymethylation and converts 5hmC to 5fC, which, after bisulfite treatment,
becomes a uracil [39,40]. Then a subtractive approach between bisulfite sequencing (BS) and Ox-BS
libraries allows for methylation and hydroxymethylation quantification at single-base resolution.
The main drawbacks of Ox-BS are the oxidative degradation of DNA and longer bisulfite treatment
required for complete 5fC deamination [41].

An alternative method for 5hmC detection is Tet-assisted bisulfite sequencing (TAB-Seq),
which might be used for whole genome or locus-specific sequencing [42]. This technique encompasses
β-glucosyltransderase-mediated protection of 5hmC followed by Tet1-mediated oxidation of 5mC
to 5caC. Then, bisulfite treatment and subsequent PCR amplification take place and 5caC, as well as
cytosine, are converted to thymine, whereas 5hmC reads as cytosine [43]. Compared with OxBS-Seq,
TAB-Seq directly reads 5hmC and the treatment methodology incurs less DNA damage. Nevertheless,
TAB-Seq entails highly active Tet protein to enable efficient conversion of 5mC into 5caC [44].

2.5. Capture-Based Methods

The ability to capture and sequence large contiguous DNA fragments represents a significant
advance towards comprehensive characterization of complex genomic regions. Capture-based DNA
sequencing is advantageous not only because it is more cost-effective, as it facilitates higher sample
throughput than whole genome sequencing, but also because it improves accuracy by optimizing the
read depth coverage and by reducing the complexity of the DNA to be sequenced [45].

Several studies have highlighted the importance of differential methylation outside
CpG islands as disease-associated determinants [46–48]. Thus, a new methylation-capture
method—MethylCap-seq—was developed aiming at deep sequence coverage of lower CpG density
regions. This technique is based on DNA methylation capture with MBD (methyl-CpG binding)
domain of MeCP2 (methyl-CpG binding protein 2), which is advantageous for a highly controlled
and stepwise elution and stratification of methylated DNA fragments according to methyl-CpG
density. Currently, MethylCap-seq has been efficiently robotized enabling high reproducibility among
numerous samples [18].

Another common bisulfite methylation sequencing method is SeqCap Epi CpGiant which is based
on capture of bisulfite-converted DNA. This is also a target-enrichment protocol for genomic regions
where methylation is known to impact gene regulation. It allows for sequencing of pre-selected regions
with a genome coverage of approximately 80 million bases and 5 million CpG sites [19].

2.6. Third-Generation Sequencing

This recent technology allows for DNA modifications analysis without previous chemical
conversion. Although conversion-based sequencing is currently the most used NGS methodology,
this has some flaws, including difficulties in conversion efficiency control and in accurate alignment
of altered sequences to their reference genome. Clark et al. [49] established an alternative approach,
consisting on single-molecule real-time (SMRT) DNA sequencing to recognize modified DNA bases
in the DNA template directly. This new methodology is based on changes in the kinetics of DNA
polymerase (stretches of fluorescent signals represent the dynamics of DNA polymerization) during
the occurrence of the modified bases [49,50]. In the same line, another method based on nanopore
sequencers allows for direct read of different modifications on DNA bases. Nanopore sequencing
uses pores though which nucleic acid strands are pulled, and the consequent ionic pattern reveals
the nucleotide sequence, including modifications [51,52]. Although these technologies are still in the
development phase, they seem promising for future methylome profiling analysis.
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3. New Insights from Next-Generation Sequencing on Methylome Analysis: Strengths
and Weaknesses

Next-generation sequencing revolutionized the methylome analysis contributing with a variety
of new methods which expanded knowledge and characterization of differentially methylated DNA
regions (Table 2). Especially in clinical research, DNA methylation status assessment through NGS
in clinical samples might provide relevant information on diagnosis and prognosis. Furthermore,
pharmacoepigenomics is another promising clinical epigenetic field in which the use of NGS might
be of great importance, since the methylation status at specific candidate gene promoters in certain
tumors predicts the likelihood of clinical response to treatment [53,54].

Table 2. Comparison of characteristics of the main next-generation sequencing technologies.

Sequencing Platform
Developers

Sequencing
Principle Key Features Limitations Reference

Illumina Sequencing by
synthesis High throughput Higher cost per read [55–57]

Life Technologies
Ion Torrent Polymerization Simple detection method Low read number per run [58,59]

Pacific Biosciences
PacBio

Single molecule
real time ligation

Single molecule detection
and long read length

High error rates (13%) and
low read number per run [60]

Oxford Nanopore Nanopore sensing
Single molecule and

label-free detection with
reduced costs

High error rates (38.2%) [61,62]

Considering the methylome coverage requirements, sample throughput, and resources available,
the current range of technologies is able to meet most needs. Over the last few years, a considerable
increase in the stability, throughput, and quality of NGS has been attained. These massive parallel
sequencing technologies allow for comprehensive interrogation of genomes without prior knowledge
of sequence or annotation. The relative low amounts of starting material reduced the errors and
bias caused by sample preparation and amplification [63]. Next-generation reads are generated
from fragmented and adapter-ligated DNA libraries that have never been subjected to conventional
vector-based cloning, enabling to circumvent some of the sequencing bias of cloned DNA sequences
that affect genome identification in sequencing projects [16]. Furthermore, high sensitivity, specificity,
and scalability make this technology a powerful tool for the search of novel epigenetic biomarkers [9].
Additionally, signal quantification from sequence-based approaches focus on counting sequence tags
rather than relative measures between samples, enabling an unlimited, fully-quantitative result [11].
Lastly, the increase in the amount of data generated per run and the decrease in reagent costs resulted
in a higher cost-effectiveness of NGS for methylome profiling [63].

Currently, NGS is used to characterize several types of cancer and enabled the construction of
large-scale databases such as The Cancer Genome Atlas (TCGA) (http://cancergenome.nih.gov/)
and International Cancer Genome Consortium (http://icgc.org). These databases contain hundreds
of cancer profiles based on whole-genome sequencing, gene expression and protein profiling, RNA
sequencing, methylome analysis and copy number variation [50].

However, to best suit clinical purposes, targeted NGS panels are now emerging, assessing specific
gene mutations that may assist in diagnosis and selection of targeted therapy. With targeted sequencing,
a subset of genomic regions are isolated and sequenced, allowing researchers to focus time, costs,
and data analysis on specific areas of interest and enabling sequencing at much higher coverage levels
(500–1000× higher). For assay development, amplicon-based methods have been preferentially used
because of their simplified workflow and small amounts of input DNA required. However, capture
sequencing has emerged as an alternative approach because of high testing accuracy with respect to
sequencing complexity and uniformity of coverage [64].

http://cancergenome.nih.gov/
http://icgc.org
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The main drawback for NGS in the clinical setting is the infrastructure required, including
computer capacity and storage, and, importantly, expert bioinformatician support to comprehensively
analyze and interpret the vast amount of data that is generated [13]. Moreover, the effective
interpretation of datasets generated in different laboratories with common DNA profiling techniques
requires the adoption of standards in both experimental and computational methods to allow
for meaningful comparisons between experiments [10]. Importantly, quality control matrices and
procedures should be adopted during base resolution methylome profiling. Methylation sequencing
quality control includes reads alignment, methylation scoring, methylation heterogeneity assessment,
genomic features annotation, data visualization, and determination of differentially methylated
cytosines. These quality control steps are integrated into analytic pipelines, such as MethylQA
or BSeQC tools [65,66].

4. Non-Invasive DNA Methylation Detection Using Next-Generation Sequencing: Technical
Advances and Challenges

Until a few years ago, the majority of DNA methylation studies investigated genome methylation
status using tissue-extracted DNA. However, because the tissue availability depends on invasive
procedures, it limits it usefulness and, especially in biopsies, heterogeneity might be underestimated
due to sampling limitations. Heterogeneous methylation found in tissues makes the fraction of
methylation segments difficult to quantify with precision, compromising its use as a biomarker [67].

Currently, sequencing methylated DNA in a single-cell is now possible using a variety
of experimental approaches, providing provides further insights into the links between cell’s
phenotype and genotype. Parallel measurement of single-cell epigenomes might improve our
understanding of normal developmental and disease processes [68]. As previously mentioned, DNA
methylation commonly correlates with gene expression variations in mammals. Thus, to explore the
cause-consequence basis for this association, measurements of both DNA methylation and transcript
expression for the same single-cells is mandatory to uncover the dynamics of heterogeneous cell
populations [69]. Currently several methods, including methylome and transcriptome sequencing from
single-cell (scM&T-seq) and single-cell triple omics sequencing (scTrio-seq), allow for the consideration
of whether DNA methylation extent of different functional elements in the genome impacts on the
expression levels of genes in single cells [70–72].

Researchers are now investing in the development of less invasive and more accessible approaches
to complement, and eventually substitute, tissue DNA analysis. Bodily fluids, such as plasma, serum,
urine, or even saliva, often harbor increased cell-free DNA levels, which may be potentially detected
using massive parallel sequencing [73]. Thus, NGS constitutes a promising tool for clinical biomarkers’
research due to its high sensitive and time/cost efficiency [74]. The use of NGS in liquid biopsies
showed great potential for molecular testing and currently this methodology is largely applied for
clinically relevance hotspot mutations detection. However, these types of genetic mutations are
only detected in a small subset of patients, limiting its use for early diagnosis strategies [75–77].
With the emergence of epigenetics, aberrant DNA methylation profiles were shown to be early and
common events during illness development, enabling a more robust detection and higher sensitivity
in diagnosis [1,78]. Thus, escalating liquid biopsies molecular testing using NGS technologies to
identify epigenetic signatures will potentially increase the diagnostic yield and clinical usefulness [79].
Furthermore, different tissue types may share similar genotypes but display different methylation
profiles, and, thus, type-specific methylation signatures can potentially be used to identify the tissue of
origin [80,81].

Regarding applications to clinical practice, NGS has been used to determine genome-wide profiles
in serum or plasma from different cancers [82–84]. The single base resolution is attractive because it
allows for precise mapping of relevant disease-specific sites. However, the combination of high cost of
sequencing entire genomes and the large number of samples needed to provide adequate statistical
power makes WGBS not economically viable as a screening tool for disease association studies at
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this time. Currently, a commonly used cost-effective alternative is methylation-capture followed by
NGS [85]. Nevertheless, the application of these protocols to the methylation fraction of cell-free DNA
still requires overcoming several technical challenges. Firstly, cell-free DNA occurs at a very low
concentration levels leading to non-specific bindings during sample capture process and constitutes a
critical limitation for this methodology. A second drawback results from the methylation enrichment
step, which recovers a minimal fraction of the total DNA input, reducing the amount of DNA available
for NGS library preparation [86,87]. Furthermore, ameliorate the quality of cell-free DNA extraction
procedures, improving target candidate’s selection to increase sequencing coverage and find suitable
reference DNA methylomes might speed-up the use of NGS technologies in non-invasive epigenetic
tests to assist in diagnosis and prognostication.

5. Conclusions

The epigenetic community rapidly combined NGS with established DNA methylation capture
methods enabling the improvement of the methylome analysis. Hence, in the last years, NGS
became an effective tool for DNA methylation profiling at a single-base level and at relatively
affordable price. Furthermore, the use of NGS contributed to increased knowledge on differentially
methylated DNA regions and the discovery of new gene regulatory elements involved in the epigenetic
machinery. These massive-parallel technologies offer great promise for decoding the nature and
patterns of DNA modifications, as well as their implications in the various pathologic and physiologic
processes. There are, however, other applications of high-throughput sequencing technologies in base
modification. Information about DNA methylation patterns and distribution in the human genome is
also important for personalized epigenomic-based therapy development.
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