
Dynamic Migration of Real-Time Traffic Flows in
SDN-Enabled Networks

Peter Danielis∗, György Dán†, James Gross† and André Berger‡
∗Department of Computer Science, University of Rostock, Germany

†School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Sweden
‡School of Business and Economics, Maastricht University, The Netherlands

E-mail: peter.danielis@uni-rostock.de,{gyuri,james.gross}@kth.se, a.berger@maastrichtuniversity.nl

Abstract—In this paper, we investigate the problem of dynamic
migration for realtime traffic flows, which consists in accommo-
dating new flows at runtime in SDN-enabled networks. We show
results for two algorithms that can calculate direct and indirect
flow migrations at runtime. Numerical results obtained on a
FatTree network topology show that flow migration is typically
required for networks with a modest number of flows, while
direct flow migration is possible in about 60% of the cases.

I. INTRODUCTION

New application requirements create new challenges for
networks. These new requirements arise in particular from
the progressing digitalization in the prospective Smart Fac-
tory and tactile applications that imply networking with low
latencies [1]. In this context, some works have presented new
solutions for real-time communication that achieve latencies of
less than 1 ms and are independent of the network topology
used [2], [3]. By using software-defined networking (SDN)
technology, these approaches are able to utilize the SDN
controller to explore the topology and query all application
requirements (e.g., bandwidth, maximum latency). However,
these systems are only able to consider the requirements at
design time for a defined network configuration and to set up
corresponding paths between network participants.

In this paper, we address the problem of flow migration,
which enforces non-overlapping paths of flows when an addi-
tional real-time flow is integrated into a network at runtime.
We summarize the algorithms for dynamic flow migration that
have already been published in [4]. These migrate paths at
runtime to integrate the new real-time flow without interrupt-
ing the ongoing communication of existing flows. Our work
extends existing approaches by an algorithm with a polynomial
runtime, which can decide whether direct flow migration is
possible. We also present another algorithm that finds indirect
flow migrations as well. We use the algorithms to investigate
in which scenarios a flow migration is necessary to integrate
a new flow and we determine the number of migration steps
if a flow migration is necessary.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We assume an SDN-enabled network below and model it
with a directed graph G = (V,E), where V is the set of
all vertices that represent switches and hosts, and E is the
set of all edges. There is a set of C = {(si, ti) : 1 ≤ i ≤

N, si, ti ∈ V } with N source-destination host pairs that want
to exchange data over the network. We call a sequence of
edges in G from si to ti a path between a source-destination
pair (si, ti), si, ti ∈ V and define the path length P , which
is expressed as l(P ), as the number of edges contained. We
assume that the traffic from si to ti is subject to a certain
constraint with regard to the delay and that the constraint
can be met if the path from si to ti has a maximum length
Li ∈ N+. Furthermore, for a pair (si, ti) we define that there
is a set Pi = {Pi|l(P ) ≤ Li} with length-constrained paths
and Pi ∈ Pi denotes an element of this set. Any path Pi ∈ Pi

allows si to send data to ti. For a given set C with source-
destination pairs, there is a path collection R = {P1, . . . , PN}
that is valid if Pi and Pj do not have overlapping edges. Such
a path collection enables the source-destination pairs in C to
communicate simultaneously. For the host pairs in C, we call
the set of all possible path collections RC . We assume that
the SDN controller has cross-network information available
that it can use to configure the forwarding rules of one switch
at a time via the SDN southbound API, e.g., by using an
atomic commit protocol coordinator as described in [5]. We
call this step-by-step configuration process atomic forwarding
table configuration, which could be implemented by using
OpenFlow Bundles [6]. The restriction that only one switch
can be configured at a time avoids unpredictable network be-
havior due to race conditions caused by poor synchronization
of the switches. Atomic forwarding table configurations can
thus be used as atomic operations for path migration, as the
following definition describes.

Definition 1. A flow migration (FM) from path collection R
to path collection R′ is a sequence S = (R(0), . . . , R(K))
of K ≥ 1 path collections R(k), such that R(0) = R and
R(K) = R′, and path collection R(k) can be obtained from
path collection R(k−1) by a sequence of atomic forwarding
table configurations.

In the following, we focus on the feasibility of FM as the set
C with source-destination pairs changes. Since the problem is
trivial when a source-destination pair is removed, let us take a
closer look at the case where a flow is added for a new source-
destination pair. For a given set C with source-destination
pairs, a path collection R = {P1, . . . , PN} for C, and a source-
destination pair (sN+1, tN+1), we want to find an FM S from

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Publikationsserver der Universität Tübingen

https://core.ac.uk/display/322886459?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


path collection R to path collection R′ = {P ′1, . . . , P ′N} so that
there is a path P ′N+1 for which {P ′1, . . . , P ′N , P ′N+1} ∈ RC′
is a path collection for the set C′ = C ∪ {(sN+1, tN+1)}
with source-destination pairs. We call this the Flow Migration
Problem (FMP).

III. FLOW MIGRATION ALGORITHMS

An FMP can be infeasible if no set RC′ can be found
or if there is no valid FM to another path collection R′.
In addition, it may be that the FMP is solvable, but that
it does not require FM. In the simplest case, there is a
path P ′N+1 ∈ PN+1, so that {P1, . . . , PN , P ′N+1} is a path
collection and therefore no FM is required. If such a path
does not exist, i.e., none of the path P ′N+1 ∈ PN+1 has non-
overlapping edges with the paths in R, then the path collection
R must be reconfigured to another path collection R′ ∈ R∗ =
{(P ′1, . . . , P ′N )|∃P ′N+1s.t.(P

′
1, . . . , P

′
N , P ′N+1) ∈ RC′}.

Below we outline two algorithms for the solution of the
FMP, which assume that the set R∗ of path collections can
be calculated. The two algorithms compute a sequence of
FMs. Each FM changes a single path at a time which we
call elementary FM. Although the first algorithm for the Direct
Flow Migration (DFM) has polynomial runtime, it can migrate
each path only once, i.e., a DFM is a permutation of N
source-destination host pairs, so individual paths from Pi to
P ′i migrate stepwise with elementary FMs such that there is a
sequence of path collections. In contrast to the DFM algorithm,
the Generic Flow Migration (GFM) algorithm can migrate
any path several times. This enables the GFM to determine
Indirect Flow Migrations (IFMs) in addition to DFMs at the
expense of increased runtime. To insert a new flow between
the source-destination pair (sN+1, tN+1), an SDN controller
executes the algorithms. If the new flow cannot be inserted
without migrating the paths of the existing flows, it tries to
find a DFM from the initial path collection R to the desired
path collection R′. If there is a DFM, the controller installs
appropriate atomic forwarding configurations (rules) on the
switches via the SDN southbound API. If DFM is not possible,
the controller uses the GFM algorithm to find an IFM and
installs corresponding rules on the switches.

IV. SUMMARY OF PERFORMANCE EVALUATION

We perform the evaluation of our algorithms on the FatTree
topology. It consists of 16 hosts connected by a network of
20 switches [7]. In the evaluation, we consider N = {1, ..., 7}
source-destination pairs with a length constraint of 6 edges.
For each value of N , we generated up to 5000 different sets
C of source-target pairs by randomly selecting the source
and destination host without replacement. For each set C, we
use the All Paths and Cycle (APAC) algorithms from [8] to
determine all possible path collections R∗. For every set C
and path collection R, we randomly choose the N +1-st host
pair to create an instance of the FMP. Therefore we consider
thousands of FMPs for every value of N .

It can be observed that the number of infeasible FMPs
increases with increasing N , due to increasing probability

that most of the paths on the FatTree topology are already
occupied and no further path can be found. FM is typically
not necessary for low values of N since there are enough free
paths. However, if we count up N , the proportion of instances
for which an FM is necessary increases and the proportion
reaches its highest level for N = 5 at 30%, before declining
again. This is because non-overlapping paths become available
for medium values of N if existing paths are migrated and the
migration is also possible with a high degree of probability.
Nevertheless, the FM hardly helps for high values of N , since
additional paths can either be found without any FM or, which
is more often the case, the FMP is infeasible. The number of
elementary FMs rises to a value of 5 for N approaching 5 and
then remains constant. The results also show that for 62−92%
of all feasible FMPs requiring FM, the DFM is sufficient. This
is important as the DFM can be calculated in polynomial time.

To summarize, we can conclude that for weakly and heavily
loaded topologies an FM is either not necessary or the FMP is
not feasible and therefore the FM cannot help. Nevertheless,
for moderately loaded topologies (4 to 6 flows), a significant
proportion of FMPs requires FMs (24% to 30%). In roughly
60% of these cases, a DFM solves the FMP.

V. CONCLUSION

In this paper, we investigated the problem of dynamic mi-
gration of real-time flows in SDN-enabled networks. We have
used two algorithms that enable flow migration at runtime. The
direct flow migration algorithm has polynomial runtime, but
does not always find a solution to the flow migration problem.
Another algorithm finds all solutions, if existing, but at the cost
of an increased runtime. Our results show that in 24−30% of
the cases FM is necessary on a FatTree topology and typically
requires multiple migration steps. It was also determined that
direct FM is sufficient in 62− 92% of the cases.

REFERENCES

[1] G. P. Fettweis, “The tactile internet: Applications and challenges,” IEEE
Vehicular Technology Magazine, vol. 9, no. 1, pp. 64–70, March 2014.

[2] J. W. Guck and W. Kellerer, “Achieving end-to-end real-time quality of
service with software defined networking,” in IEEE Intl. Conf. on Cloud
Networking (CloudNet), Oct. 2014, pp. 70–76.

[3] E. Schweissguth, P. Danielis, C. Niemann, and D. Timmermann,
“Application-aware industrial ethernet based on an sdn-supported tdma
approach,” in IEEE World Conference on Factory Communication Systems
(WFCS), May 2016, pp. 1–8.

[4] P. Danielis, G. Dán, J. Gross, and A. Berger, “Dynamic flow migration for
delay constrained traffic in software-defined networks,” in GLOBECOM
2017. IEEE, 2017, pp. 1–7.

[5] M. Curic, Z. Despotovic, A. Hecker, and G. Carle, “Fitsdn: Flexible
integrated transactional sdn,” in 2019 IEEE 44th LCN Symposium on
Emerging Topics in Networking (LCN Symposium), Oct 2019, pp. 1–9.

[6] T. Ren and Y. Xu, “Analysis of the new features of openflow 1.4,” in
2nd International Conference on Information, Electronics and Computer.
Atlantis Press, 2014.

[7] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” SIGCOMM Comput. Commun. Rev., vol. 38,
no. 4, pp. 63–74, Aug. 2008.

[8] R. Simões, “Apac: An exact algorithm for retrieving cycles and paths in
all kinds of graphs,” Tékhne-Revista de Estudos Politécnicos, no. 12, pp.
39–55, 2009.


