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Zusammentassung

Heutzutage sind Graphen als fundamentales mathematisches Modell zur Veran-
schaulichung von Relationen zwischen Objekten aus der Informatik nicht mehr
wegzudenken. Thre Anwendungen reichen von der Analyse sozialer Netzwerke {iber
Routenplanung bis hin zu Interaktionsmodellen in der Biologie oder Chemie.
Ublicherweise werden die Beziehungen zwischen den Objekten durch eine Zeichnung
des Graphen veranschaulicht.

In dieser Arbeit wird die Ply-Zahl einer Zeichnung, welche als asthetisches Kri-
terium vorgeschlagen wurde [30} [36, [42], untersucht. Gegeben sei eine gradlinige
Zeichnung I' eines Graphen G = (V, E) in der Ebene. Fiir jeden Knoten v wird
die Ply-Scheibe D, als Scheibe definiert, wobei das Zentrum der Scheibe auf dem
Knoten v liegt und der Radius r» von D, halb so lang ist, wie die ldngste inzidente
Kante zu v. Die Ply-Zahl einer Zeichnung entspricht der maximalen Anzahl der
sich iiberlappenden Ply-Scheiben in der Ebene. Zusétzlich beschreibt die maximale
Anzahl an Scheiben, in denen sich ein Knoten befindet, die Knoten-Ply-Zahl.

Diese Arbeit beschéftigt sich mit theoretischen und praktischen Aspekten der
Ply-Zahl von Zeichnungen. Es werden Eigenschaften von Zeichnungen prasentiert,
die eine konstante Ply-Zahl haben. Zudem wird der Zusammenhang zwischen der
Ply- und Knoten-Ply-Zahl einer Zeichnung untersucht.

Ein weiteres Kapitel widmet sich Graphen, welche Zeichnungen mit Knoten-Ply-
Zahl 1 haben, sowie Graphen die keine Zeichnung mit Knoten-Ply-Zahl 1 haben.
Insbesondere wird durch eine ausfiihrliche Fallunterscheidung gezeigt, dass der voll-
standige Graph Kj, sowie der vollsténdig bipartite Graph K3 ;5 nicht mit Knoten-
Ply-Zahl 1 gezeichnet werden kénnen.

Wir stellen ein Programm vor, dass es dem Nutzer ermoglicht ein intuitives Ver-
stdndnis der Ply-Zahl als Parameter von geradlinigen Zeichnungen zu erlangen.
Eine Zeichnung kann interaktiv modifiziert werden, was unter anderem auch fiir
die theoretische Untersuchungen nutzbar ist.

Dazu présentieren wir einen schnellen Algorithmus, der es ermoglicht zur Ply-
Zahl sofortige Riickmeldung bei etwaiger Konfiguration der Zeichnung zu erhal-
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ten. Das war mit bisherigen Implementationen nicht moglich [7, 30]. Die Zeit zur
Berechnung der Ply-Zahl fiir eine Zeichnung konnte von Sekunden auf Millisekun-
den verbessert werden. Das Programm beinhaltet zuséatzlich verschiedene Layout-
Mechanismen und die Moglichkeit die Ply-Zahl automatisiert zu optimieren. Mit
verschiedenen Experimenten untersuchen wir die Layoutmethoden beziiglich der
Ply-Zahl.

Neben der Ply-Zahl von geradlinigen Zeichnungen betrachten wir auch Bar Sicht-
barkeitsrepriasentationen. In einer Bar (k,7)-Sichtbarkeitreprisentation werden
Knoten als horizontale Liniensegmente, genannt Bars, dargestellt und Kanten sind
gegeben durch vertikale Segmente zwischen ihren inzidenten Knoten, sodass jede
Kante hochstens £ Bars kreuzt und jeder Bar von héchstens ;7 Kanten gekreuzt
wird.

In vorangehenden Publikationen wird der Begriff Bar k-Sichtbarkeit unterschied-
lich verwendet [15] [44] 83]. Wir geben die Moglichkeit diese Definitionen zu unter-
scheiden, und zwar in Bar (1, 00)- und Bar (1, 1)-Sichtbarkeitsreprasentationen.

Zudem beschéftight sich diese Arbeit mit maximalen Bar (1, j)-Sichtbarkeits
Graphen. Es kann eine Hierarchie dieser Graphklassen angegeben werden. D.h.
fiir alle j gibt es Graphen mit Bar (1, j + 1)-Sichtbarkeitsrepriasentation, der keine
Bar (1, j)-Sichtbarkeitsreprésentation hat.

Des weiteren werden Bar (k, 1)-Sichtbarkeitsrepriasentationen untersucht und wir
konnen zeigen, dass es eingebettete Graphen mit Bar (k, 1)-Sichtbarkeitsreprésen-
tation fiir ein k& > 1 gibt, welche aber keine Bar (1, 1)-Sichtbarkeitsreprisentation
haben. Unsere Ergebnisse sind die ersten zu dieser Graph Klasse, welche eine Klasse
von nicht-planaren Graphen mit wenigen Kanten ist.
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Abstract

Graphs are a fundamental mathematical model to represent relationships between
objects and are used throughout a huge variety of disciplines in theory and prac-
tise. The use of graphs ranges in computer science from social network analysis
to molecular interaction modelling in biology or chemistry. Accessing data from a
graph very often involves a drawing of the graph. The ply-number has been defined
as an parameter to evaluate the readability of a drawing [30, [36} [42].

Given a straight-line drawing I' of a graph G = (V| E) in the plane, for every
vertex v the ply-disk D, is defined as a disk, centered in v, where the radius r, of
D, is half the length of the longest edge incident to v. The maximum number of
overlapping disks at any point in the plane defines the ply-number of the drawing
and the maximum number of overlapping ply-disks at any vertex defines vertez-
ply-number. In this thesis, we present theoretical results on the ply-number and
vertex-ply-number of drawings. We identify graphs, which have drawings with
constant ply-number and evaluate the relationship between the ply-number and the
vertex-ply-number in drawings.

To evaluate graphs that do or do not have empty-ply drawings, that is a drawing
with wvertex-ply-number 1, we present a comprehensive case distinction to show
that the complete graph Ky and the complete bipartite graph Kj 15 do not have
empty-ply drawings.

We develop a supportive tool to give the user an intuitive understanding of the
ply-number of straight-line drawings. In particular, we present a fast algorithm
to compute the ply-number of a given drawing to enable instant feedback to the
user, which was not possible with previous implementations [7), 30]. Furthermore,
our tool is equipped with different layout methods and a workflow to optimize the
ply-number for a given graph.

We evaluate our algorithm to compute the ply-number and the optimization of
drawings regarding this value with an extensive set of experiments. In fact, we were
able to reduce the time to compute the ply-number from seconds to milliseconds.

Beside the ply-number of straight-line drawings, we investigate bar-visibility rep-



resentations of graphs. A bar (k, j)-visibility drawing of a graph G is a drawing of
GG, where each vertex is drawn as a horizontal line segment, called bar, and each
edge is drawn as a vertical line segment between its incident vertices such that each
edge crosses at most k£ bars and each bar is crossed at most j times.

We clarify the differences between previous definitions on bar k-visibility repre-
sentations [15], 44 B3], as they relate to bar (1, 00)- or bar (1, 1)-visibility represen-
tations.

In this thesis, we especially look at maximal bar (1, j)-visibility graphs and con-
clude a hierarchy of these graph classes. That is, there exist graphs, which have
a bar (1,7 + 1)-visibility representation, but no bar (1, j)-visibility representation
for every j. We investigate bar (k, 1)-visibility representations and show that there
exist embedded graphs that are bar (k, 1)-visible but not bar (1, 1)-visible for k£ > 1.
These are the first results on bar (k, 1)-visibility drawings, which is a class of sparse
graphs beyond planarity.
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Chapter

Introduction

Throughout a huge variety of applications and disciplines computer science became
an important factor in the last century. Due to the fast development of technology,
nowadays computers are used everywhere to compute, analyze, predict, and opti-
mize processes and data. To represent and access data we need efficient models and
data structures. Graphs are the common mathematical model to represent rela-
tionships between objects and occur throughout many applications and disciplines.
In general, a graph is defined consisting of a set of objects V' and a set of binary
relations from V' x V. In graph theory the objects will be called vertices and the
relations will be called edges. An example is presented in Figure Next to the
structure of a graph there can be further information stored in the vertices or at
the edges. A common example is a cost function which assigns costs to edges. On
these graphs we often look for a low cost connection between vertices.

The use of graphs range from social networks, where vertices represent individuals
and edges represent a social connection i.e. friendship or kinship [12],via electronic
circuits [93], to interaction graphs between molecules in biology or chemistry [82].

A famous example is the Facebook-Graph (see Figure presented by Paul
Butler [24]. The friendship relations across the world can be observed due to the
mapping of persons to geographic locations. The friendship relations are presented
as arcs according to the geographical distance between the friends. The information

vV =4{1,2,3,4,5,6,7} 6
E={1,2), (1,7), (2,3), (2,5), 1
(3.4), (6,6), (5,7, (6,7), 5
4,77

2 3

Figure 1.1: A graph G = (V, F) represented as list of vertices and list of edges on the left.
On the right side is a drawing in the plane of this graph.
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facebook

Figure 1.2: The members of Facebook (2010) were mapped to their geographic locations
and the friendship relations are presented by arcs dependent on the geographic distance
between the persons. This Figure is taken from [24].

we can get from this drawing is an overview of the regions where Facebook is
commonly used, whereas we cannot get information on individuals. A further
interesting note is that it is possible to recognize the shape of the continents. Other
well known examples where the geographical positioning is important are road
maps [42] or metro maps [23]. An example for relative positioning according to
the geographical data are maps of bus stops as shown in Figure [I.3] Even though
these maps do not reflect real distances, the reader can maintain his orientation
and access the information he needs.

In biology the interaction between molecules can be represented as graph, with
molecules as vertices and interactions as edges [66]. Figure presents the combi-
nation of 17 metabolic pathways which where altered during an infection [82]. The
metabolic pathways include amino acid metabolism, energetic metabolism, fatty
acid metabolism and carbon metabolism.

In chemistry we can model molecules as a set of connected atoms and the edges
correspond to chemical bonds [8] [IT), O], [92]. These graph representations are used
to predict the protein’s structure and interaction potentials.

To make the data stored in a graph accessible for humans, we need a graphical
representation which usually involves a drawing of the underlying graph. A drawing
of a graph is a mapping of vertices to the plane and connecting curves between
vertices represent the edges. There exist several methods to draw graphs [34] [86]
and several aesthetic criteria have been defined [72, [73] [74] [75], O4].

Aesthetic criteria specify properties of the drawing to achieve readability. Besides
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Figure 1.4: 17 interacting metabolic pathways are shown. These pathways were altered
during a treatment [82].

drawing vertices at different coordinates to assure that they are distinguishable,
commonly used criteria are area requirements, number of crossings, maximum edge
length, uniformity of edge lengths or angular resolution [6l, 33, [34]. In the following,
we mention only a few aspects of aesthetic criteria, which we will refer to in this
thesis. For a complete overview we would like to refer to the textbook by Di Battista
et al. [34].

The area of a drawing is one important factor. On the one hand, the drawing
should fit on the screen, on the other hand it should be readable. Connected
vertices should be close enough to each other such that the reader can observe the
connection whereas the vertices should be far enough apart so connections can be
distinguished. Closely related to area requirements of a drawing are edge lengths
constraints. Edge lengths can range from uniformity to exponential edge ratios.

The other most considered aesthetic criterion is the number of crossings per
edge in graph drawings [20, 59, [75, 04]. The graphs that can be drawn without
crossings are called planar graphs. This set of graphs is classified by K5 and K333
minor free. That is they do not contain one of these graphs as a minor subgraph.
Testing whether a graph can be drawn planar is possible in linear time. Allowing
at most one crossing per edge results in the class of 1-planar graphs [76], 94] where
K5 and K33 are minimal examples of 1-planar graphs which are not planar. The
number of edges for 1-planar graphs is bounded by 4n — 8 where n is the number of
vertices. The recognition of k-planar graphs is known to be NP-hard for any £ > 1

[25, 552, [64].



Figure 1.5: The cube graph is drawn planar on the left side. On the right side we have 2
right angle crossings and all edges have the same length. The angular resolution is 45° in
both drawings.

The angular resolution of a planar straight-line drawing is the minimum angle
formed by two edges incident to the same vertex. The angular resolution is bounded
by the maximum degree in the graph. Closely related to the angular resolution is
the crossing resolution. This describes the minimal angle formed by two edges
crossing each other. A special class of graphs requires the crossing resolution to
be 90°. These graphs are called right angle crossing (RAC) graphs, an example
is presented in Figure [I.5| Note that in the previous Figure [1.3] showing the
map of public transportation in Tiibingen, the crossing angles are large. Besides
time complexity limitations, the above aesthetics are also competitive in that the
optimality of one often prevents the optimality of others [33].

A commonly used approach to draw graphs planar and beyond are force-directed
algorithms. A subclass of these are spring embedders, mimicking the edges as physi-
cal springs with a natural length. For a physical model we can compute the entropy,
called stress. Minimizing stress in a drawing often results in an aesthetically pleas-
ing drawing [49]. Physically large graphs have higher entropy than smaller graphs
and symmetric structures have less entropy than irregular structures.

Proximity graphs have numerous applications to describe a underlying structure
of a set of points in computer graphics, computational geometry, pattern recog-
nition, computational morphology, numerical analysis, computational biology, and
geographical information systems (see, e.g., [51] [65], 69]).

The class of proximity graphs are known to be aesthetically pleasing in terms of
planarity, edge length uniformity and vertex distribution [86]. In prozximity draw-
ings vertices are mapped to a metric space and edges are drawn as a straight-line
segment. In a metric space distances between any two points are well defined and
the triangle inequality holds. In proximity graphs vertices are connected if they are
"sufficiently" close to each other. The closeness can be defined in various ways, i.e.
globally, e.g. Euclidean minimum spanning trees [13] or locally, e.g. relative neigh-
bourhood graphs [61], 90], Gabriel graphs [48], and Delaunay triangulations [32]. In
any definition of proximity vertices are connected if and only if a defined region,
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Figure 1.6: A graph with 30 vertices and 40 edges is drawn by our tool in different layouts:
@ randomly placed vertices with ply 15, @ circular layout with ply 7, organic layout
with ply 4, @ the lowest known ply number of 3 for this graph. These figures are created
by our tool presented in Chapter @

called proximity region, is empty in terms of there is no "closer" vertex. Geometrical
graphs such as road maps or metro maps are closely related to proximity drawings
since usually cities in close proximity are connected by roads.

Recently, a new parameter called ply-number was introduced as a quality metric
for graph layouts [36]. Given a straight-line drawing I" of a graph G = (V, E), for
every vertex v the ply disk D, is defined as a disk centered at v, where the radius
of the disk is half the length of the longest edge incident to v. The ply-number of
I' is the maximal number of overlapping disks at any point in IR?. Clearly, the ply-
number depends on edge-length uniformity and vertex distribution in the plane.

The correlation between the ply-number of drawings and other known metrics to
evaluate the aesthetics of a drawing has been shown in a recent study by De Luca et
al. [30]. This study also confirmed that force-directed algorithms tend to produce
visually pleasing drawings as suggested in [62]. Some drawings of the same graph
with different ply-number are shown in Figure [1.6]



In general, road maps can have crossings and proximity drawings cannot. The key
observation by [36] is that the ply-number of road maps is low. We can define the
ply-disk to be a proximity region where no vertex is allowed to be inside another
vertex’s ply-disk. These graphs are called empty-ply graphs. As relaxation of
empty-ply drawings we define the vertex-ply-number to be the maximal number of
overlapping ply-disks at any vertex.

Theoretical results have been obtained on the ply-number of graphs [3, 36] and
there exist many geometrical graphs admitting natural drawings with low ply-
number [42].

To compute the ply-number for a given drawing, a first prototype of the basic
plane-sweep algorithm has been implemented in [7]. We reimplemented the algo-
rithm, improved it and added new features. The experimental study of De Luca et
al. [30] set a benchmark on the computation of the ply number for a given drawing.
The authors evaluated several layouts by force directed algorithms according to the
ply number. To make our comparison possible, the authors kindly provided some
of their data. Both previous implementations of the ply computations are based
on the Apfloat library [89] which allows calculations on high precision levels at the
cost of time.

After motivating the ply-number by geometrical drawings we will now sketch
the important concept of bar-visibility drawings. Note that in these drawings the
relative positioning of the vertices is not predetermined. In a visibility drawing
vertices are represented as objects in the plane and two vertices are connected if
they can "see" each other. Visibility representations and especially bar-visibility
representations are well studied for planar graphs.

In bar-visibility drawings vertices are represented as disjoint horizontal line seg-
ments and edges are vertical line of sights of non zero width [50, 86]. This model
can be extended to beyond planarity by allowing the vertical edges to cross bars.
We define two parameters, namely bar (k, j)-visibility, where any edge can cross at
most k bars and any bar can be crossed by at most j edges. An example for a bar
(1,2)-visibility drawing is presented in Figure [1.7]

In bar-visibility we distinguish between the weak and the strong model. In the
strong version of bar-visibility an edge is present if and only if there exist a line-
of-sight whereas in the weak model an edge might exist if there is a line-of-sight.
Bar-visibility is part of a very basic paradigm in graph drawing approaches for
orthogonal or poly-line drawings. The so called visibility approach consisting of a
planarization step, where crossings are replaced by dummy vertices, then a com-
putation of a bar-visibility representation of the new graph. As a last step the
horizontal and vertical line segments are replaced [34].

This technique is heavily used in VLSI and chip design [50], because many wires
are routed similarly. There are many different approaches to drawing orthogo-
nal graphs. Early results draw the graph using few bends but sacrificed size or
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Figure 1.7: l@] A graph with 9 vertices and several crossing edges is drawn in the plane.
The same graph is drawn as a bar-visibility representation in @ For clarification planar
edges are indicated by a downward pointing arrow and edges which are crossing bars by
upward pointing arrows. We mark the crossings by small circles. Note that some bars are
crossed twice. This is a bar (1, 2)-visibility representation.

running-time efficiency. Improved techniques, involving computing a visibility rep-
resentation, yielded orthogonal drawings in linear time with few bends and small
size [39, 143, [70), 78, [87].

In the previous applications bar-visibility representations were computed on pla-
nar graphs. The extension to bar k-visibility by Brandenburg [15], Evans et al. [44]
and Sultana et al. [83] introduced bar-visibility representations beyond planarity.
Note that these works have a slightly different definition of bar & visibility.

1.1 Outline of this Thesis

We start by presenting theoretical results on the ply-number and vertex-ply-number
of graphs in Chapter We give an introduction on previous results and focus
on graph classes with known bounds, in particular for drawings with constant ply-
number 1 and 2. Clearly the ply-number for any drawing is linearly upper bounded,
since every vertex has exactly 1 ply-disk. We present a technique to guarantee a
drawing with ply-number of at most 7 for an graph with n vertices. Later we
point out the relation between the ply-number and the vertex-ply-number in detail,
followed by an introduction to empty-ply drawings, that is drawings with vertex-
ply-number 1. We investigate empty-ply drawings regarding their properties. We
deduce edge-length ratios, maximal vertex-degree and area requirements for these
drawings. We conclude this chapter with a section on graphs with or without
empty-ply drawings.

We continue in Chapter [3| by presenting our algorithm to compute the ply-
number for given drawings. We investigate different layout techniques and compare



1.1 Outline of this Thesis

the ply-numbers of the drawings. There exist many tools and layout algorithms for
graph drawing provided e.g. by OGDF [27] or the yFiles library [97].

Our main goal was to present a supportive tool to give the user an intuitive
understanding of the ply-number and how it is affected by manual changes of the
drawing. The identification of graphs with low ply-number as well as the develop-
ment of strategies to optimize parameters of drawings involve frequent examination
of graph drawings. Therefore we use our fast and accurate algorithm to compute the
ply-number and present an experimental setting to evaluate optimization strategies.

Our fast algorithm to compute the ply-number for a given drawing based on a
plane-sweep algorithm which is known to be a powerful technique in computational
geometry. Furthermore we provide methods to modify the drawing to reduce the
ply-number interactively as well as automatically.

In Chapter 4] we clarify the differences in the definitions of bar k-visibility by
Brandenburg [15], Sultana [83], and Evans [44], by introducing bar (k, j)-visibility.
Recall that in a bar (k,j)-visibility representation any edge is allowed to "see
through" k£ bars and each bar can be crossed by at most j edges.

We present maximal bar (1, 7)- visibility graphs for different j and conclude that
there exists an infinite hierarchy. That is, for any j > 1 there exists a graph which
is bar (1,7), but not bar (1,j — 1)-visible. Furthermore, we investigate maximal
graphs with low density. These graphs have few edges per vertex-segment but
adding any edge would contradict the bar-visibility constraints. Parts of this thesis
have been published in [4, [16], and [50].

We conclude with a short summary on our results and give an outlook to open
problems in Chapter [5]






Chapter

Theory of Ply

In this chapter we formally introduce ply concepts and theoretical results on the
ply-number of straight-line drawings in general. Particularly, we summarize and
extend our results on empty-ply drawings as published in [4]. Given a straight-
line drawing of a graph G = (V| F) in the plane, we define the ply-disk D, for every
vertex v € V. The disk is centered at v and has a radius r equal to half of the
length of the longest incident edge of v. The ply-number of a drawing is defined by
the maximum number of overlapping ply-disks for any point in IR?. Furthermore,
the vertex-ply-number denotes the maximum number of overlapping disks for any
vertex v € V. Both concepts are indicated in Figure Note that the vertex-
ply-number is at least one, if the graph has at least one edge, since every vertex is
contained in its own ply-disk. We require all vertices to have distinct coordinates
in the plane, since otherwise the length of an edge and thereby the radius of a ply-
disk might be 0. This is a common understanding in graph drawing. The drawings
of graphs where each vertex v is contained in exactly one ply-disk, namely its own
ply-disk D, are called empty-ply drawings.

In this chapter we will focus on our main contribution to [4], namely the proof
that the graph Ky does not admit an empty-ply drawing, whereas K, does. As our
second contribution, we will present the proof that any complete bipartite graph
K, where n > 15 does not admit an empty-ply drawing, while we know an empty-
ply drawing of K> 1.

2.1 Introduction

The ply-number for a given straight-line drawing has been recently introduced as a
parameter to evaluate the aesthetic appearance of a drawing [3] [30] [36].

The foundation for the definition of the ply-number as aesthetic criterion was
aroused by the study of road networks. Road networks can be described as embed-

11



Chapter 2 Theory of Ply

vertex-ply-number 3

ply-number 4 -

Figure 2.1: A drawing with ply-number 4 and vertex-ply-number 3.

ded graphs on the surface of a sphere and are not necessarily planar.

In the work by Eppstein and Goodrich [42], the authors propose to characterize
road networks as subgraphs of disk-intersection graphs. During the paper, the
authors had a close look to the road network of the state California including more
than 6,000 edge crossings. They observed that the maximum number of overlapping
ply-disks was surprisingly low. Thereby, although road networks are not planar,
they have low ply-number.

To support the value of the ply-number as an aesthetic criterion we can state the
relation between the maximum number of overlapping ply-disks and the distribution
of the vertices in the plane as well as the distribution of different edge lengths
throughout the drawing. The ply-number turns out to be low if the vertices are
distributed evenly in the plane and the factor of different edge-length is close to
1. In the following sections we will summarize results regarding graph classes that
admit drawings with constant ply-number, logarithmic ply-number and present an
upper bound on the ply-number which is L'Z—‘J for any graph G = (V, E).

Reading about visual criteria in graph drawing minimizing edge crossings is the
most cited and the most commonly used aesthetic [59] [72, 04]. In conformity
with force-directed and stress-based algorithms, crossing-free layouts for planar
graphs are not necessarily required. In fact, since edge crossings are not explicitly
considered, many planar graphs (e.g. trees, nested triangles, nested squares and
skeletons of 3D polyhedra, such as the cube, the octahedron, the dodecahedron)
invariably have crossings in force-directed layouts. At the same time, it can be
observed that such layouts have low ply-number.

Since concepts observed in road networks are closely related to proximity draw-
ings, the idea of empty-ply drawings was suggested. An empty-ply drawing is a
drawing where the ply-disk for every vertex is not allowed to contain any other ver-
tex than its center itself. A proximity drawing of a graph is a straight-line drawing
in which for any two vertices u and v connected by an edge (u,v) there exists a
region, called proximity region, which does not contain other vertices in its interior.
Proximity drawings are highly restricted in edge and vertex distributions.

12
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' (a) (b) (©)

Figure 2.2: The grey area marks the prozrimity region in a relative neighbourhood graph
There exists an edge between the vertices u and v if there does not exist a vertex
w which is closer to u than to v and closer to v than to u. The proximity region can be
described as intersection of two disks. [(b)] In a Gabriel graph the prozimity region for any
edge is the smallest circle including the vertices v and v. The ply-disks defined by the
edges can be seen as proxmitity regions. Note that in contrast to the other examples here
each proximity region contains one vertex.

Furthermore, if a graph G = (V, E) admits a proximity drawing, G is called
prozimity graph. In general a proximity region defines an area in the plane, where
any point is closer to the vertices u and v than to any other vertex of the graph.
This property can vary due to different metrics and thereby different definitions of
proximity regions induce different sets of proximity drawings [65].

A proximity region can be defined global, e.g. Euclidean minimum spanning
trees [13] or local, e.g. relative neighbourhood graphs [90] 61], Gabriel graphs [48§],
and Delaunay triangulations [32]. On a set V' of vertices in the plane, a Euclidean
minimum spanning tree connects the vertices, such that the sum of all lengths of
the connections is minimal. Thereby the proximity regions are defined globally in a
sense that there cannot exist a vertex such that using a different connection results
in a lower global cost. In a relative neighbourhood drawing there exists an edge
between two vertices u and v if there does not exist a third vertex w which is closer
to u than v and closer to v than u. The proximity region for this model is shown
in Figure [2.24]

In a Gabriel graph the proximity region of one edge is defined to be the smallest
circle including the connected vertices as shown in Figure Gabriel graphs
have been a relevant topic in geographic variation research [67]. It is known that
not all degree 4 graphs have Gabriel drawings [I4] and in correlation to this result
we will sketch the proof that there exist 4-ary trees which do not admit an empty-
ply drawing. For the interested readers the summary by Giuseppe Liotta [65] gives
a nice introduction on the general topic of proximity drawings.

To study proximity drawings, there exist two general models. In the strong
model, an edge between two vertices u and v exists if and only if the corresponding
prozimity region is empty. In the weak version of this model, an edge might exist,

13
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if the proximity region is empty. Thereby the weak model is the more general
version [35].

Recall that the ply-number of a graph is defined by the maximal number overlap-
ping ply-disks for any point in the plane. To look at ply-drawings from the proximity
perspective, we define the prozimity region to be equal to the ply-disks and more
general introduce the parameter vertex-ply. Formally the vertex-ply-number is the
maximal number of overlapping ply-disks for any vertex in the plane. The set of
considerable coordinates is reduced from IR? to the coordinates of the vertices. By
definition of the ply-disk there is always at least one vertex inside and thereby the
vertex-ply of any drawing is at least 1 if the graph has at least one edge. This is one
major difference towards the initial definition of proximity where the region has to
be empty. The ply-disks as prozimity regions are presented in Figure[2.2d So we call
a drawing where each vertex is contained only in its own ply-disk (vertez-ply = 1)
an empty-ply drawing, since the ply-disk is empty in terms of other vertices. This
definition is in a sense a weak model for prozimity drawings. Note that, given an
empty-ply drawing, the ply-number of the graph can be larger than 1. It is known,
that in the most studied proximity definitions as the ones mentioned above, the
drawings are planar. Crossing edges are not forbidden in empty-ply drawings as
we can see in Figure [2.3a] Another difference is the connectivity of the graph. In
proximity drawings the graphs are usually connected and in Figure we present
an unconnected graph where adding any edge would violate the empty-ply prop-
erty. These two observations suggest, that empty-ply drawings are not directly
comparable to previous defined types of proximity drawings.

There exist several results on the comparability of different proximity models. For
example, Delaunay triangulations contain a Gabriel graph as spanning subgraph,
which again contains a relative-neighbourhood graph as spanning subgraph, which
again contains a minimum spanning tree as subgraph [65]. One natural question
is to ask, whether empty-ply drawings can be included into this comparison. At
this point we have to note, that empty-ply drawings might be non-planar drawings,
which is not the case for any of the other proximity models. Furthermore, there exist
empty-ply drawings which are not connected and cannot be extended by adding
edges without violating the empty-ply property.

Furthermore, there exists a close relation between empty-ply drawings and partial
edge drawings (PEDs) [20]. A PED is a straight-line drawing of a graph, where the
edges are drawn partially in a way that the middle part of the edge is neglected
and two edge segments incident to vertices, called stubs, remain in the drawing.
The stubs are not allowed to cross. We present a nontrivial relation regarding the
length of the stubs and empty-ply drawings [4].

In the following, we will give an overview on the closely related previous work
regarding the ply-number of drawing. Then we will present some details on known

14
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(a) )

Figure 2.3: In general prozimity graphs are connected and planar. In terms of empty-
ply these conditions are not necessarily true since in @ we have a non-planar empty-
ply drawing with ply-number 2. I@] An empty-ply drawing where the addition of any edge
would violate the empty-ply property and thereby it is a maximal drawing which is not
connected.

graph classes with constant ply-number and give an intuition on the relationship
between the ply-number and the wvertex-ply-number. We will present our main
contribution, namely the proof that the complete graph K; does admit an empty-
ply drawing whereas the complete graph Ky does not. Thereby we can conclude
that the complete graph K, where n is the number of vertices does not admit an
empty-ply drawing for any n > 8. In [4] we presented a proof for n > 9 and here
we present a refined version for n > 8. Furthermore we go into the proof in detail,
that the complete bipartite graph Ky ;5 is not empty-ply drawable whereas K ;o
can be drawn (cf. Theorem [2.15)).

2.2 Previous Work

The ply-number of straight-line drawings was initially suggested by Eppstein and
Goodrich during their study of road networks [42]. Since then there has been some
activity on this topic. In the work Low Ply Drawings by Di Giacomo et al. [36], the
authors show that the general recognition problem, namely whether a given graph
admits a drawing with ply-number 1 is NP-hard since a graph can be drawn with ply-
number 1, if and only if the graph has a unit-disk representation. Meanwhile there
exists an O(nlogn)-time algorithm to decide whether an internally triangulated
biconnected planar graph can be drawn with ply-number 1. The authors state some
graph classes that admit drawings with ply-number 1. These are simple cycles (see
Figure and internally triangulated biconnected planar graphs with maximum
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(a) (b)

Figure 2.4: a simple cycle can be drawn with ply-number 1, @ an example for an
internally triangulated biconnected planar graphs with maximum vertex degree 4 drawn
with ply-number 1.

vertex degree 4. An example for such a graph is shown in Figure Furthermore,
the authors present some graph classes that can be drawn with constant ply-number,
namely ply-number 2, like binary trees (see Figure , stars (see Figure
and caterpillars (see Figure 2.5c|). The stars can be constructed such that there
is one layer of < 6 vertices whose ply-disks do not overlap and all other vertices
can be placed in a non overlapping fashion inside the star’s center’s ply-disk. The
caterpillars can be reduced to a path with non overlapping ply-disks and for the
legs the same rules as for the star can be applied.

Arising from this work are the questions whether it is possible to draw these
graphs in polynomial area, if ternary trees can be drawn with constant ply-number 2
and if empty-ply drawings have a constant ply-number.

The first questions were tackled by the follow-up work 'Low Ply Drawings of
Trees’ by Angelini et. al. [3] and our results on the question regarding the empty-
ply setting presented in [4] will be summarized in the next sections.

In [3], the authors proved an exponential lower bound on the area requirements
of drawings with constant ply-number for stars and therefore for general caterpillars
too. This result answers the first question. Furthermore the authors present trees
with maximum degree 11 that are not drawable with constant ply-number. A
natural consequence of these results is to check whether these graphs can be drawn
with logarithmic ply-number and one of the results of [3] is an algorithm to construct
a drawing of every tree with maximum degree 6 in polynomial area.
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Figure 2.5: Graph classes that admit drawings with constant ply-number 2 e.g. binary

trees, stars and caterpillars.
2.3 Graph classes with bounded ply-number

In this section we start with a categorization of graphs and graph classes with a
bounded ply-number. We explore properties of graphs that admit drawings with
ply-number 1 and recall why the recognition of these graphs is NP-hard. Then we
will shortly summarize the known results on stars, binary trees and caterpillars
and give the rules to construct drawings of these graphs with ply-number 2. The
construction of binary trees in this case is of special interest, since we construct
empty-ply drawings of binary trees. Finally we give an upper bound on the ply-
number for any graph.

2.3.1 Ply-number 1

A drawing T of a graph G = (V| E) is a drawing with ply-number 1 if and only if
two conditions hold:

1. every edge e € E has the length ¢
2. the distance between any pair of vertices u,v € V' is at least /.

Let us assume for simplicity that the graph G is connected. Otherwise we can
adjust the arguments for each connected component individually and ensure the
correct distances between any two components.

We can prove the first condition by contradiction. Assume there exist edges with
different lengths in the connected graph. Let the lengths be w.l.o.g. ¢ and ¢ — € for
any € > (. Using the connectivity of the graph there exists a vertex v € V whose
incident edges have different lengths. Let the edge with length ¢ — € be (u,v) and
the edge with length ¢ be (v, w) as illustrated in Figure . The radii are £ and

2
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Figure 2.6: The vertex v has incident edges with the lengths ¢ and ¢ — e. The radius of
the ply-disk D, is % whereas the radius of D, > 42;6. The ply-disks D, and D,, do overlap
and thereby the ply-number of the drawing is at least 2.

f—;e and the disks of v and v overlap since

€+£—6_2£—6>2£—2€_€_
27 T2 T T3 2 €

We can conclude that for any vertex v all edges have to be the same length, namely
¢ and since the graph is connected this has to apply for all edges e € E.

The second condition is rather obvious. Since the graph is connected, every ply-
disk has the radius % and thereby the ply-disks D, and D, for any pair of vertices
u,v € V do overlap, if and only if the distance between u and v is less than 2 ~§ = /.
Hence the distance between any pair of vertices has to be at least /.

From the previous properties we can deduce some further properties of graphs
that admit a drawing with ply-number 1, namely G has to be planar and the
maximum degree for any vertex in GG is 6 since the angular resolution between
any two edges has to be greater or equal to 60°. The authors of [36] additionally
exploit the relation between drawings with ply-number 1 and wunit-disk contact
representations. In a unit-disk contact representation of a graph G' = (V, E) every
vertex is represented as a disk with unit radius. Recall that, disks are not allowed
to overlap and an edge between v and v exists, if the corresponding disks touch. It
is known to be NP-hard to recognize whether a given graph has a unit-disk contact
representation |18, 41, [45].

In any drawing with ply-number 1 the ply-disks have equal (unit) radius and if
there exist an edge (u,v) the ply-disks D, and D, touch in the center of the edge.
Note that for unit disk graphs there exist a strong and a weak model. In the strong
model there exists an edge if and only if the disks touch each other. Whereas in
the weak model there might exist an edge if the disks touch. Thereby we consider
the weak version of the unit-disk contact representation since we do not necessarily
require the existence of an edge if the ply-disks touch. An example of the wheel
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Figure 2.7: The wheel graph with n = 7 vertices (left) and its unit-disk contact represen-
tation (right).

graph with n = 7 vertices and its unit-disk contact representation is shown in
Figure 2.7 Note that in the strong model of the unit-disk contact representation
the wheel graph with n = 7 vertices minus one edge is not representable as unit-disk
contact representation. whereas it would still be drawable with ply-number 1.

Known graph classes with these properties are paths, internally triangulated
biconnected planar graphs with maximum vertex degree 4 [36], the wheel graph
with n = 7 vertices.

2.3.2 Ply-number 2

Recall that for any drawing I' of a graph G = (V| E) with ply-number 2 at most
2 ply-disks overlap in any point of the plane. Let D be the set of all ply-disks of
the drawing, then we can decompose D into two disjoint subsets D; and D, such
that D; U Dy = D and Dy N Dy = () and the ply-disks in Dy (D, respectively) are
independent of each other, meaning they do not overlap in any point in the plane.
Note that ply-disks are still allowed to touch each other. By the work of Angelini
et al. [3] we know that stars and binary trees admit drawings with ply-number 2.

Lemma 2.1. Any star can be drawn with ply-number 2 in exponential area.

Proof. Let the graph G = (V| E) be a star. A star has a center ¢ € V and n — 1
vertices where every vertex is connected to ¢ by an edge. Formally the set of edges
can be described as E = {(c,v) Yo € V'\ {c}}. We can exploit the property that
for any two edges (c,v), (c,u) € E the ply-disks D, and D, do not overlap if the
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Figure 2.8: The ply-disks of two vertices which are not the center of a star do not overlap,
if the length of the edges differ by the factor of at least 3.

lengths of the edges differ by a factor of at least 3. Note that in a star, the edges
(c,u) and (c,v) define the radii r,,r, of the ply-disks D, and D,. Assume the
vertices u and v to be on a line (ray) from the center vertex ¢ of G as indicated
in Figure 2.8 Let w.l.o.g. the vertex u be closer to ¢ than v and assume for the
contrary that the ply-disks D, and D, overlap. That is

3 1
3 dist(c, u) > 3 dist(c,v) < 3r, > 1.

Thereby the ply-disks of the leaves do not overlap, if the distance for any two
vertices differs by a factor of at least 3, namely

3ry <1y Y{u,v € V| dist(c,u) < dist(c,v)}.

Obviously the longest edge in this drawing will have the length in £2(3™). To improve
the area requirements for such a drawing we can introduce the notation of layers.
From the previous section we know that we can place up to 6 leaves at the same
distance from c as indicated in Figure[2.5b] This does improve the area requirements
but it is still exponential in the number of leaves [3]. By now we have shown that the
ply-disks of the leaves can be drawn independently, meaning without any overlaps.
The ply-disk of c is defined by the furthest layer and will completely include the
ply-disks of the vertices in the inner layers.The ratio between the shortest and the
longest edge in the drawing is exponential in the number of vertices and thus the
area requirement of this drawing is exponential in the number of vertices. By the
construction we can produce a drawing for any star with ply-number 2. ]
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Figure 2.9: A binary tree is drawn in a level-by-level fashion. The angle of 60° between
any two children is maintained.

Lemma 2.2. Binary trees can be drawn with ply-number 2 in exponential area.

Proof. Let G = (V, E) be a complete binary tree. We give a construction and show
that the drawing has ply-number 2 by showing that the ply-disks of independent
vertices do not overlap. We draw the tree in a level-by-level fashion and reduce
the lengths of the edges by the factor % in each level. Meanwhile we maintain an
angle of 60° between the two children of the parent as illustrated in Figure
Let w.l.o.g. the leaves at level ¢ = 0 be connected to their parents by edges with
length 1, then the radii of ply-disks at level i are 20— except for the root, which
has the same radius as its children. The total distance along the edges from the
leaves to the vertices at level i can be written as 2¢ — 1. Note that all vertices at the
same level are drawn at the same height and their ply-disks have the same radii.
Furthermore the children and the parent form an equilateral triangle and thereby
the ply-disks in the same level do touch but have no overlap. It is left to show that
overlaps do not occur between levels that are not adjacent.

For this purpose we argue on the area requirement of the levels. Observe that
the rightmost and the leftmost children at level ¢ of a common ancestor at level k
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form an equilateral triangle with lengths 2¥ — 2!, The height h of this triangle is

Thus disks at level i and level k do not overlap, if the sum of the radii is smaller
than the height of the triangle.

ritry =271 4281 <

V3 2k
2

k' oi\ :roi - <
(2 2),1f2§4,

meaning k > i 4+ 2. Thereby the ply-disks do not overlap, if the level differs by at
least 2. We can now simply assign the ply-disks of the even levels to Dy, since they
do not overlap each other. The ply-disks of the odd levels are assigned to Dy and
DN Dy =0 as well as D; U Dy = D follows. The ratio between the shortest and
the longest edge in the drawing and thereby the area requirement is exponential in
the number of vertices in the tree. O

Lemma 2.3. Caterpillars can be drawn with ply-number 2 in exponential area.

Proof. From the construction of stars, we can deduce the ply-number 2 drawability
for caterpillars arguing about the construction rules for these. Recall that a cater-
pillar consists of a path of vertices, which is always drawable with ply-number 1
[36] and for the legs we can use the argument for stars, where the vertices of the
path relate to the outermost layer of the star. ]

2.4 Upper bound on the ply-number for any graph

In the following we present an argumentation that the ply-number for general graphs
has a linear upper bound of 3 where n is the number of vertices of the graph G.

Theorem 2.4. Any graph G with n vertices can be drawn with a ply-number less
or equal to 5 in polynomial area.

Proof. Let us assume that G = (V, E) is the complete graph K, with n vertices.
We will show that G' can be drawn with ply-number 3 and conclude that any graph
with n vertices can be drawn with ply-number < 7 since removing edges cannot
increase the ply-number in a given drawing. Any removed edge can either be not
related to any ply-disk or can define the radius of a ply-disk. In the second case
this edge was the longest edge adjacent to a vertex, meaning that all other edges
incident to this vertex are at most as long as the removed one. Thereby the radius
of the vertex’s ply-disk might decrease but cannot increase. Decreasing the radius
of any ply-disk might reduce the number of overlapping disks.

Let us w.l.o.g. assume that the number of vertices n is even. We place the
vertices regularly on a circle, that is at forming angles of ?’%00 at the center as shown
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N

N

Figure 2.10: For clarification only 6 vertices at opposite positions and their longest edges
and ply-disks are drawn of the complete graph K,, where the vertices are placed regularly
on a circle. Note that all ply-disks touch in the center of the circle. For any coordinate
in the plane with maximal overlapping ply-disks we observe that for every ply-disk which
contributes to the ply-number there exists one ply-disk on the opposite site of the center
such that this ply-disk cannot be involved in that region. Let the distance between any
two neighboured vertices be equal to 1, the circle fits in a n X n square.

in Figure Since we look at the complete graph K, the longest edge passes
exactly through the center of the circle. Furthermore, any longest edge defines the
radius of exactly two ply-disks, namely of opposing vertices. The ply-disks touch
in the center of the circle but do not overlap each other.

Now we have a look at one coordinate in the plane where the maximal number
of overlapping disks occurs. Note that for any ply-disk involved in this maximal
overlap, there exists the ply-disk of the opposing vertex in the circle defined by
the same longest edge. Hence, for any ply-disk contributing there is one not con-
tributing to the maximal overlap. This holds true for every ply-disk and thereby
the ply-number of this drawing is < §. Although the vertices might not be on
integer coordinates, we can scale the shortest edges, namely the edges that connect
neighboured vertices around the circle to have length 1. In that case the longest

edges have length shorter than n. The circumference of the circle is between n and
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2n. Estimating the circumference of the circle to be 2n we obtain the diameter and
thereby the length of the longest edge to be < n.

2
2rr <2ne2r<—n<n
s

Thereby, the circle fits in a square of n xn and the area requirement for this drawing
is € O(n?).

Note that if the number of vertices n was odd, every vertex would have two
opposing vertices sharing the same longest edge. We can still state, that for every
ply-disk involved in the maximum overlap there is at least one other ply-disk namely
one of the opposing vertices such that this ply-disk cannot be involved in the same
maximal overlap. In this case the center of the circle is not covered by any ply-
disk. Note that the argumentation holds for any drawing where each longest edge,
meaning the defining edges for the ply-disk radii, defines the radii for both incident
vertices. If n is even, that is if the longest edges form a perfect matching on G.
Since we argue about the complete graph K,,, where all possible edges are present,
the vertices may vary by an € from the circle in other drawings. O]

2.5 Relationship between Ply and Vertex-Ply

Initially introduced in [4] by Angelini et al. the concept of vertez-ply-number de-
scribes the maximal number of ply-disks any vertex is contained in. Formally, in
contrast to the ply-number, the coordinates for the maximal number of overlap-
ping ply-disks is reduced from IR? to the set of coordinates of the vertices in the
drawing. Note that the vertex-ply-number of any drawing is at least 1 by definition
of ply-disks. We call a drawing I' of a graph G = (V, E) an empty-ply drawing
if the vertez-ply-number is 1. The ply-disks are empty in the sense that they do
not contain any vertex but the defining one. This definition is close to proximity
drawings where the prorimity region has to be empty for an edge to exist but is not
directly comparable, since the previously mentioned Gabriel graphs are subgraphs
of relative neighbourhood graphs, which are again subgraphs of minimal spanning
trees. In the following we will present some results in the relationship between
ply-number and vertex-ply-number of drawings.

Theorem 2.5. Any drawing with vertex-ply h has a ply-number < 5h.

Proof. Let T" be the drawing of a graph G = (V, E) with vertez-ply h and assume
for a contradiction that the ply-number of I' is at least 5h + 1. So there exists a
coordinate = in the plane in the interior of at least k ply-disks, where k > 5h + 1.
Let the k ply-disks of the k vertices vy,..., v, be ordered in a radial fashion around
x. Let w.l.o.g. v be the closest vertex to x, namely the vertex such that the
condition d(vy,z) < d(vj, z) for all 2 < j < k holds.
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2.5 Relationship between Ply and Vertex-Ply

A

Ag

A

Ay

Figure 2.11: An illustration for the proof for Theorem .

We now consider the line ¢ passing through v; and x as well as the two lines ¢' and
" rotated by 3 and —% in x. These lines define six wedges, namely Ay, ..., As with
an internal angle of % each. An illustration of this setting is given in Figure .

Let the wedges adjacent to v; be A; and A,. For any vertex v; € A; U Ay the
angle Zvyxv; is less than . This implies by the triangle inequality that the distance
between v, and v; is less than the distance between x and v;, and thereby v; belongs
to the ply-disk D,, of v;. Note that the ply-disk of any other vertex v; in either
Ay or A, also overlaps v; and thereby there can be at most h vertices in A; and
A,, including v;. Hence, if there exist h vertices different from v; in A; U A, the
drawing has a vertex-ply of h + 1, which is a contradiction.

Since the wedge A; U A, contains at most h vertices including vq, there are at
least 4h + 1 vertices in the wedges As, ..., Ag whereas there exists one of these
wedges containing at least h + 1 vertices by the pigeon-hole principle. For each of
these wedges we can argue about the vertex which is closest to x like above. We
can conclude that none of the wedges can have h + 1 vertices in its interior and the
ply-number of any drawing with vertez-ply h has to be < 5h. O

Corollary 2.6. The ply-number of an empty-ply drawing of a graph is at most 5.

This Corollary is a direct consequence of Theorem since in any empty-
ply drawing every vertex is in the interior of its own ply-disk. Thus, the vertez-
ply-number of the drawing is 1 and by Theorem the ply-number is < 5. Note
that the converse of Corollary does not hold. If a graph does not admit an
empty-ply drawing the implication that the ply-number is larger than 5 is not true.
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For example, let the graph G be a star whose center has a degree larger than 24.
This star does not admit an empty-ply drawing by Theorem but can be drawn
with constant ply-number 2 (see Lemma .

2.6 Properties of empty-ply drawings

We will continue to summarize the results presented in our paper [4] regarding
the properties of empty-ply drawings. Beside Corollary we state requirements
for edge-length ratio throughout the drawing as well as space requirements. Fur-
thermore we give an upper bound on the vertex-degree and point out the relation
between empty-ply drawings and $-SHPED drawings [21].

Let I' be a straight-line drawing of a graph G = (V, E) which is empty-ply. That
is every ply-disk D, for every vertex v has the radius half the longest incident edge
to v and does not contain any other vertex beside v in its interior.

Lemma 2.7. In any empty-ply drawing, for any two edges (u,v) and (u, w) incident
to the same vertex u, we have < I'“”‘l < 2.

Proof. Given an empty-ply drawing I" of a graph G = (V, E), for each vertex v and
for each edge (v,w) the radius r, of the ply-disk D, is > @ By definition no
other vertex is allowed to be in the interior of D,, formally r, < |vu| for any vertex

u. We can summarize this as |v;” <y, < |vu| and thereby

1
Lo foul g el o
2 7 Jow| vu|

for any edge (v,w) and any vertex u. Hence for any two edges (u,v) and (u,w)
incident to u we can summarize the formula to

< wl oy
|uw]

N | —

]

Lemma 2.8. The radii r, and r, of the ply-disks of two adjacent vertices u and v
can differ by a factor of at most % < :—’: < 2.
|uv]

Proof. Since u and v are adjacent vertices the radii are at least . Let w.lL.o.g u

be the vertex with the larger radius, meaning r, < r, and r, = "Tv' By Lemma
[2.7] the longest incident edge to u can have the length 2 - |uv| and thus r, < |uv|.

Thereby = > e = 3 L and vice versa = < wl — o, ]

luv| Ty

26



2.6 Properties of empty-ply drawings

Figure 2.12: A path of length 5 is drawn empty-ply with the edge lengths differing by the
factor of 2. Note that the length of two adjacent edges can differ by a factor of at most 2

by Lemma

Lemma 2.9. In any empty-ply drawing of a connected graph G, the length of the
longest edge is at most 242™(%) times the length of the shortest edge.

Proof. Let I be an empty-ply drawing of a connected graph G and let diam(G) be
the diameter of G. The diameter is defined to be the length of the longest shortest
path between any two vertices in G. Let p be a longest shortest path. Note that
this path is simple per definition, meaning each vertex might be contained at most
once, since otherwise there exists a cycle and p could not be a shortest path at all.
Recall that by Lemma [2.7] any two incident edges can differ in length by at most
a factor of 2. Assume the shortest edge e, in I' has length 1. We can now choose
one of the endpoints of e, and proceed in a breadth-first search manner from this
vertex where the edge length between the steps can increase by at most the factor
of 2. Note that after at most diam(G) steps we visited every edge in G and thereby
the longest edge can have at most the length 242m(@), O]

The relations throughout the edge length ratios can be observed in Figure
as well as the consequences for the radii of adjacent ply-disks. Another relation on
the area distribution of empty-ply drawings is stated in the following.

Lemma 2.10. If [' is an empty-ply drawing, the sum of the areas of all ply-
disks does not exceed 4 times the area of their union.

Proof. Let I' be a straight-line drawing of G = (V, E) and consider the set of disks
Dy, for every vertex v centered in v with the radius % shrinking the ply-disks D,
by the factor of 2. Note that the disks D! are pairwise disjoint if and only if I is
an empty-ply drawing. Every disk D/ has an area four times smaller than D, and

is drawn inside the union of all ply-disks. O

We want to state the close relation between empty-ply drawings and partial edge
drawings, in particular }I—SHPED drawings. Partial edge drawings have been in-
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(a) (b)

Figure 2.13: an empty-ply drawing and the corresponding i—SHPED drawing In
i—SHPED only the first and the last % of each edge is drawn.

troduced by the work by Bruckdorfer et al. [I9, 21]. Partial edge drawings use the
"principle of closure" [96] to neglect unnecessary information in straight-line draw-
ings [22]. Some parts of straight-line edges can be neglected while the connection is
still observable in the drawing. This is used to draw edges partially to avoid edge
crossings. To maintain the association of edges to vertices the remaining part of the
edge, called stub, is drawn at the vertex. }L—SHPED drawings follow this drawing
model but require the stubs at each vertex to have the length equal to %1 of length
of the edge. Furthermore, stubs are not allowed to cross. Since both vertices have

stubs, half of every edge is drawn in I'. Figure [2.13b|shows a i—SHPED drawing of
the empty-ply drawing in [2.13a]

Lemma 2.11. Any empty-ply drawing determines a i—SHPED drawing.

Proof. Consider the disks D! as defined previously with half the radius of the ply-
disks D, centered at v. In any empty-ply drawing these disks do not overlap and
have the radius i of the longest edge incident to v. Thereby the stubs are drawn
inside the disks D! and cannot cross any other stubs. ]

Note that the converse of Lemma is not true. Since any planar straight-line
drawing admits a i—SHPED drawing, whereas in the drawing presented in Figure
some planar edges cannot be drawn without violating the empty-ply property.

As a final theorem for this section we use geometric arguments to prove that

Theorem 2.12. The maximum degree of any empty-ply drawing is 2.

Proof. Let T be an empty-ply drawing of a graph G = (V| F) and let’s assume for
the sake of a contradiction that there exists a vertex v with degree larger than 24.
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\ /

(b)

Figure 2.14: (a) a star with 24 leaves is drawn empty-ply with exactly two different dis-
tances. For clarification the edges are omitted. (b) the close neighbourhood of the topmost
inner vertices regarding the surrounding ply-disks.

By Lemma [2.7| the lengths of all edges of v are in the closed interval [m, 2m] where
m is the length of the shortest edge incident to v. We can partition the vertices
to be contained either in the interval [m,/2m] or in [v/2m, 2m]. Note that one of
the partitions contains at least 13 vertices. In one of the intervals there exist two
neighbours u, w of v such that [vu| < [vw| < v2|vu| and the angle a = Zuvw < 22.

We may assume w.l.o.g. that |uv| = 1 by scaling T' by the factor |uv|~™" and
thereby [vw| = ¢ € [1,v/2]. As T is an empty-ply drawing, we know that |uw| > 4
since u is not in the interior of the ply-disk D,, and by the law of cosine |uw|? =
1+ ¢* — 2qcos(a). Combining these equations yields a quadratic inequality

q? 9 5 8 4
Z§1+q —2qcos(a) & 0<gq —gcos(a)q—i-g

and thereby either

1< 3 cos(a) - \/ (§eos)) -3
o2 st 1 (Best)) 4

or
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Inserting o = % in these equation yields

4 o 4 or\\> 4

<Zeos (Z) [ Zcos (Z)) —2~0034<1
q—3COS(13> \/(3005(13)) 3
4 o 4 or\\> 4

> 2 eos [ X Seos [ZE)) -2 x1426> 2

q—3008(13)+\/(3008(13)) 3 V2

which contradicts ¢ € [1,v/2]. Note that the bound of the degree for any vertex to
be 24 is tight, see the empty-ply drawing of a star with 24 leaves in Figure[2.14a] In
Figure we present the close relation between a vertex on the inner distance
to the ply-disks of the vertices placed at the further distance. Furthermore, note
that the drawing uses exactly two different lengths of edges. m

or

To conclude this section on empty-ply drawings, we will state a theorem to present
a relation between squares of graphs with ply-number 1 and empty-ply drawings.
The square of a graph G, denoted by G?, is obtained from G by adding edges
between each vertex and the neighbours of its neighbours.

Theorem 2.13. Let G* be the square of a graph G. If G admits a drawing with
ply-number 1, then G? admits an empty-ply drawing.

Proof. Let I" be a straight-line drawing of the graph G = (V| F)) with ply-number 1.
By Section we know that all edges in [ have the same length, say 1, and any
two non-adjacent vertices are at distance of at least 1 of each other. Adding the
edges of G\ G produces a drawing I'? of G?. The newly added edges in I'? have
the lengths 1 < ¢ < 2, which implies that the maximal radius for any ply-disk in
I'? is at most 1 and thereby I'? is an empty-ply drawing of G?. O]

Note that Theorem [2.13] cannot be extended to graphs with larger ply-number.
A simple example is a star with n vertices which can be drawn with constant ply-
number 2 according to Lemma [2.1] on page [I19l The square of a star with n vertices
is the complete graph K,, which does not admit an empty-ply drawing for n > 7.
This result is presented in the following Section in Theorem [2.16]

Corollary 2.14. The complete graph K; admits an empty-ply drawing.

Proof. As a direct consequence of Theorem the complete graph K; admits an
empty-ply drawing since it is the square of the wheel graph W; which admits a
ply-number 1 drawing, see Figure 2.7 An empty-ply drawing of K is presented in
Figure 2.15 [
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Figure 2.15: An empty-ply drawing of the complete graph K7. Note that the edges are
drawn on top of each other.
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2.7 Graphs with or without empty-ply drawings

In this section we will summarize results on graph classes which do or do not
admit empty-ply drawings. We will present empty-ply drawings of the complete
graph K; and thereby any graph with n < 7 vertices admit empty-ply drawings.
Furthermore, we present empty-ply drawings for some complete bipartite graphs.
We will present more detailed proofs for two Theorems, namely Theorem [2.16|saying
that the complete graph K, where n > 8 does not admit an empty-ply drawing
and Theorem saying that the complete bipartite graph K5, does not admit an
empty-ply drawing if n > 15. Since we give an empty-ply drawing of K7, the first
bound is tight, whereas we can construct an empty-ply drawing for K ;o there is
still a small gap.

Theorem 2.15. The complete graphs K oa, K212, K39, K46 and K; admit empty
ply drawings.

Proof. The star K o4 is presented in the previous section in Figure and the
graphs K19, K39, K4 in Figures [2.16a][2.16D] and [2.16¢] Note that in the drawing
of K7 (Figure [2.15) and K, the edges overlap. O

In the following we will present the extensive proof which is based on a case
distinction according to the regions where vertices might be placed after fixing the
longest edge e = (z1,x3) of K,.

Theorem 2.16. The complete graph K, where n > 8 does not admit an empty-ply
drawing.

For this proof it suffices to show that Kg does not admit an empty-ply drawing
since Ky is a subgraph for any larger K,,n > 8. For the sake of contradiction
let T be an empty-ply drawing of Kg where e = (1, x2) is the longest edge of T’
with length 2. Thus, the remaining six vertices lie in the intersection of the annuli
centered at x1, x5 with radii 1 and 2. Without loss of generality we draw this edge
as horizontal line segment as in Figure [2.17, We partition the intersection in four
major areas as follows:

A={z e R?: V2 < |112] < 2,V2 < |z < 2},
B:{:EEIR211§|m1:17|§\/5,\/§§|x2x|§2},
C={zecR*: V2 < |nz] <2,1< |z < V23,
D={zeR?:1< |z <V2,1< |zz| < V2.

Note that A* denotes the area above the longest edge e and A~ the area below
as well as for B, C' and D. In the following we will state 9 preliminary observations
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N
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Figure 2.16: The complete bipartite graphs K3 12 , K3 and Ky can be drawn
empty-ply. Note that in the empty-ply drawing of Ky ¢ the edges overlap.
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T2

Figure 2.17: The four major areas A, B,C and D in the anulli centered in z; and xo
are presented where 4+ denotes the area above the longest edge (z1,z2) and — below
respectively.

derived by placing vertices in specified areas. Afterwards we conclude the theorem
by a case distinction on the number of vertices above or below the longest edge e

in Lemma on page 43| to Lemma on page [46] using the observations.

Observation 1. There is at most one vertex in B' and by symmetry in B~ as
well as in C* and C~.

Proof. Note that the diameter of B*, meaning the diameter of the smallest circle
containing the complete area of BT, is < 0.75 (see Figure [2.18). For further ar-
gumentation we split the area of BT again into two parts like indicated in Figure
2. 19¢

By ={z € B: V2 < |zox| <V3},
By ={z € B:V3 < |mz| <2}.

Any vertex located in the outer area B, has a ply disk radius of > \/Tg ~ 0.85.
Thereby we can conclude that whenever there exists a vertex in By there cannot
be a vertex in By, since its ply-disk completely covers BT. The diameter of the
inner area By is 0.54 and thereby there can be at most one vertex in By, since
its ply-disk has a radius of at least ‘/75 > 0.7. Hence, there can exist at most one

vertex in BT which is either located in By or Bj . []

Observation 2. There is at most one vertex in A™ and by symmetry in A~.
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Ty

Figure 2.18: The diameter of BT is 0.75. Figure 2.19: Split into B and B;.

Proof. For this argumentation we split the area of A above e, namely
At ={z € R*: V2 < |117| < 2,V2 < |mp2| < 2}
into four parts as in Figure [2.20}

Af ={z e R*: V3 < [ay2] < 2,V3 < |moz| < 2},
A ={z e R*: V2 < [1y2] < V3,V3 < |zpz| < 2},
AT ={r € R*: V3 < |z2] < 2,2 < |z92| < \/g}’
Af ={z e R*: V2 < |z17] < V3,V2 < |zoz| < \/§}
In the following we will consider the possible placement from top to bottom in a

case distinction showing that any placement excludes the placement of any other
vertex.

Case 1. Assume there exists a vertex z in Af.

The ply-disk D, has a radius of at least ‘/75 > (.85 but the maximal distance of
any other vertex in A* to z is < 0.79 (cf. Figure [2.21]). Thus, whenever there exists
a vertex in A there cannot be another vertex in A™.

Case 2. Assume there exists a vertex x in Aj.

Note that at this point it suffices to argue about A3, A3 and AJ since the place-
ment of any vertex in A] already contradicts the assumption. We can treat the
area A} the same way as in Case [1| since the maximal distance between any two
vertices in A and AJ is less than 0.76 and the ply-disk D, has a radius of at least

*/75 ~ 0.85 (cf. Figure[2.22)) and thereby A has to be empty.
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Figure 2.20: Split A" into four regions. Figure 2.21: Maximal distance of any ver-
tex in A to any vertex in Aj.

Assume there exists a second vertex in AF. The ply-disk D, of the vertex z in
A7 has a radius of at least ¥ and thereby, if there exists a vertex in AJ, it has

to be placed at a distance of at least %g from the rightmost point of AF. From
this placement we can deduce that the radius of the ply-disk D, has to be at least
~ 0.92 since the distance to x5 has increased, whereas in the next iteration the
distance to the rightmost coordinate of A3 has to increase, too. In Figure we
illustrate the increasing distance to the rightmost coordinate of Aj .

We can express the increasing distance between z and x5 as a series f(n), where
n € N is the number of iterations. The distance f(n) between x and x5 is defined
as the length of the side of the triangle defined by the length /2, the length of 2
between x; and xo, and the angle of 41.41° + « as illustrated in Figure 2.24] Note
that the angle a depends on the radius of the ply-disk D, in the previous iteration.
cos(a) is defined by the law of cosine and the starting value for the series f(1) = /3
as we start with the minimal size for the ply-disk D, .

f1)y=+3

f(n) = 22+\/§2—2-2-\/§<Zcos(a)—g-si (a))

2 (fn-1))?
21y - ()
2.2.4/2

cos(a) =

We now observe that lim f(n) = 2. Thereby, there exists exactly one valid con-
n— oo
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0 2-vV3 2-V2 1 V2

Figure 2.22: The maximal distance between  Figure 2.23: A schematic description of the
any two vertices in A and A} increasing ply-radius of the vertex in AJ.

figuration which corresponds to actually placing z € AJ at the highest coordinate
of B* and the vertex y € A7 at the highest coordinate of C* with distance 1 of
each other. This contradicts the assumption. We conclude that whenever there
exists one vertex in AJ then A has to be empty.

Case 3. Assume the vertex z is placed in A].

We show that there cannot be another vertex in A since placing a vertex any-
where else in AT already contradicts the assumption. Observe that the diameter
of the region AJ is 0.5 and the ply-disk D, has a radius of at least \/75 ~ 0.7. Thus
there is at most one vertex in A}.

The three cases conclude our observation, that there exists at most one vertex in

AT which can be either in AT, A7, AJ or Af. O
Observation 3. There are at most two vertices in DT .

Proof. Let x € DT be the vertex at the coordinate in D with the largest distance
from e. Note that this point is unique. The diameter of the set DT \ D, is less
than 0.3 and hence there cannot be placed two more vertices whose ply-disks have
a radius of at least 0.5 (cf. Figure [2.25)).

[

Observation 4. There are at most three vertices in the union of D™ and D~.

Proof. For the sake of contradiction we assume that there exist two vertices in D"
as well as two vertices in D~. We will partition each of D" and D~ into three
parts. Let d; be the topmost vertex in the union of D*. Assume the second vertex
dy in D below d; to be placed close to the center ¢ of the longest edge e. Thereby

37



Chapter 2 Theory of Ply

Figure 2.24: f(n) describes the minimal valid distance of any vertex in AQ+ to the vertex
ry. f(n) is the length of the side of the triangle defined by the edge length of /2, 2 and
the angle 41.41° + «. The angle o depends on the ply radius of the vertex in A; of the
previous iteration.

Figure 2.25: One vertex is placed at the highest coordinate in D, Its ply disk indicates
a small remaining region for any other vertex in DT.
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2.7 Graphs with or without empty-ply drawings

Figure 2.26: Partition of D' and D~. Whenever there is a vertex in D; then Df and
Dgr are empty. Placing vertices in D; excludes the placement in either D} or Dgr.

the distance between d; and either x; or x5 has to fulfil the following equation since
otherwise it contradicts the placement of dy.

max{dist(dy, z1), dist(ds, z2) }

5 2 diSt(dt, C)

The area which fulfils this equation is called Df and by symmetry D; below e,
and is illustrated in Figure [2.26

We revise the argumentation from Observation |3| by assuming that there exists
one vertex d; in D{ and one vertex d, in Dy . The third vertex d’ has to be placed
in DT and thereby, has a distance of at least % of the topmost coordinate of
D™, since 1.58 is the minimal distance between the area of D] and the topmost
coordinate of DT. Previously the longest edge of d;, was either (d;,z1) or (dixs).
The area to place the second vertex in Dt above the center of the longest edge is
named D3 (D3 below respectively) and the region in between is called D (D).
The region Ds is defined by the minimal ply-disk radius assuming one vertex in D;
and one vertex in Dy . Placing any vertex in Dy or D, contradicts the assumption,
since no vertex can be placed in either D} or Df. The only remaining possibility
to place 4 vertices in the union of D* U D~ is in Dy, Df, Dy and Dj .

Placing two vertices in Dy and D; the remaining two vertices have to be in
Df and Dj. Furthermore their ply-disks have a radius of at least 3 and thus
need a distance > 0.5 of each other. According to the diameter of Dy U Dy <
0.42, there cannot be two vertices with ply-disk radii of at least 0.5, which is a
contradiction. O]
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Figure 2.27: A vertex a in A~ causes the ply disk of any vertex in DV to cover the center
of (x1,22) and thus there can not be a second vertex in D*.

Observation 5. Whenever there exists a vertex in AT there cannot be a vertex in

A

Proof. Assume there exist one vertex in AT and one vertex in A~. The minimal
distance between these vertices is > 2, which contradicts the maximality of the
longest edge (x1, 7). O

Observation 6. Whenever one vertex exists in A~ there is at most one vertex in
DT.

Proof. Assume the vertex a € A~ is fixed at the coordinate with the closest distance
to e, as this position is unique. Furthermore, the distance of any vertex in A~ to
the center ¢ of (1, x2) is > 1, but the distance of any point d € D to ¢ is < 1 due
to the maximality of (z1,x5). Thus, if d is at the furthest possible coordinate of
e, the center ¢ of e is covered by its ply-disk. For any vertex x € DT to cover the
central coordinate ¢ can be characterized by solving the equation

dist(a, c) < 2 - dist(z, ¢).

This equation results in a disk which completely covers the region DT (shown in
Figure . The circle is centered % above ¢ and has a radius of % This region
denotes the area where placing any vertex, the vertex’s ply-disk covers c. This
relates to the fact that after placing the further vertex there cannot be a second
closer vertex in DT to the center ¢ of e. O]
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2.7 Graphs with or without empty-ply drawings

Observation 7. Whenever there exists one vertex in A", then there are at most
two vertices in DT U D™,

Proof. Note that this observation is an extension to Observation [0 arguing about
the complete region D rather than one side.

Assume there exist four vertices in AT, DT and D~. By Observation [2] there is
at most one vertex in A* and by Observation [6] there is at most one vertex in D~
thus there have to be exactly two vertices in DV.

The top vertex d; € D has at least the distance \/ig from ¢ by Observation
[l Assume that the vertex d; is placed exactly at this coordinate. The minimal
distance d from the vertex a € A" to either z; or x5 can be computed by solving
the following equation:

23
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The positive solution of the equation is d = % (\/§+ \/@) ~ 1.77 and thus the
minimal distance of any vertex a € AT to the center ¢ of (xy,x3) is g + \/Ag ~ 1.47
(cf. Figure . By the maximality of e the distance between a and the vertex
in D~ has to be < 2. Thereby there can be at most one additional vertex in
either Dt or D~ since the ply-disk of the second vertex in Dt with a radius of
at least 1'747 obstructs the remaining region to place any vertex below the edge
e = (x1,x2). This contradicts our assumption that there exist four vertices in the

union AT U DT UD™. O

Observation 8. Whenever there exists exactly one vertex in B~ and exactly one
vertex in C'", then there exists at most one vertex in D™ U D~.

Proof. We will use the same partition of B~ and C* as in Observation [1] and
distinguish three cases about the placement within B~ and C*.

Case 1. There exist one vertex in B, and one vertex in C .

Note that the placement of the vertices is unique in this case. The distance of the
two vertices is 2. Their ply-disks meet at the center of (x,z5) and the remaining
part of DT and D~ is covered. This implies a unique coordinate to place exactly
one vertex in DT,
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Figure 2.28: Whenever there exist exactly two vertices in D' and one in AT there cannot
exist a vertex in D™.

Case 2. There exist one vertex in By and one vertex in Cj .

By placing the vertex in C5 at the rightmost coordinate and the vertex in B; at
the lowest possible coordinate, we can obtain the maximal possible diameter for the
area to place vertices in D', which is < 0.59. Note that D~ is completely covered
by ply-disks. Furthermore, observe that moving any of the vertices in Cy or By
reduces the diameter of the free area in DV, since either the topmost coordinate of
the region moves down or the bottommost coordinate of the region moves up. An
illustration is given in Figure

We will argue on the regions above the conceptual line between the vertex in Cy
and z,. Placing a vertex d; above the conceptual line the radius of its ply-disk Dy,

is > \/g ~ (.61, since the distance to the vertex x, is at least \/g Thereby any

vertex above the conceptual line obstructs the complete remaining area in D*. The
region below has a diameter of < 0.34 and therefore there exists at most one vertex
with ply radius > 0.5.

Case 3. There exist one vertex in By and one vertex in C}".

In any configuration the rightmost coordinate of D™, as well as the leftmost
coordinate of DT, is covered by the ply-disks of the vertices in By and the vertex
in C}'. Thereby we cannot place vertices in D3 or D3 as defined in Observation
The remaining possible configurations result in one of the following cases:

a) Dy and D; are covered.
Similar to Observation+ 4 there cannot be two vertices in D U Dy .

b) Exactly one of the Dy is not covered completely and the center of (z1,x2) is
covered.

42



2.7 Graphs with or without empty-ply drawings

Figure 2.29: The region with the maximal possible diameter in DT whenever there exist
vertices in By and Cy

Thus there can be at most one vertex in either D™ or D~.
O]

These three cases conclude our Observation [8 that whenever there exist vertices
in B~ and CT there exists at most one vertex in DT U D~.

Observation 9. Whenever there exist one vertex in B~ and one vertex in AT
either B or C* is empty.

Proof. Any vertex in AT has a ply-radius of at least w ~ gﬁ. Thus, this
vertex covers either BT or C* completely depending whether the vertex is closer
to BT or C'" as presented in Figure ]

In the next four lemmas we distinguish the different cases about the number of
vertices placed below the edge e = (x1, z3). Note that we fixed the first two vertices
namely z; and x5 in the beginning to argue about the longest edge e.

Lemma 2.17. Whenever no vertex is below the edge (z1, z2), then n =2+ |AT| +
|BY|+ |CF[+|D¥| < 7.

Proof. Assume there exists an empty-ply drawing of Ky without any vertex below
the longest edge e = (1, x2). We can conclude from Observation [1 that the number
of vertices in [BT| < 1 and in |C"| < 1, additionally by Observation [2| the number
of vertices in |AT| < 1 and finally by Observation [3| the number of vertices in
|D*| < 2. Thereby |AT| + |Bf| + |CT| 4+ |D*| <5 and the lemma follows. O
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Figure 2.30: Any vertex in A" has a ply radius of at least w ~ 1'—268. Thus this
vertex covers either BT or O completely whether the vertex is closer to BT or C'F.

Lemma 2.18. Whenever exactly one vertex is below the edge (x,z3), then n =
34+ |At|+|BT|+|CT|+|DF| <7

Proof. Assume there exists an empty-ply drawing of Ky with exactly one vertex
below the longest edge e = (x1, z3). By the same argumentation as in Lemma
there have to be exactly five vertices above (1, z3), namely exactly one in A*, one
in BT, one in Ct and two in D,

By Observation |5 the vertex below e cannot be placed in A~, which would con-
tradict the placement in A*. Furthermore, by Observation [§ the vertex below
cannot be placed in B~ or C~, since that would contradict the placement of ver-
tices in BT or C, and finally by Observation [7| the vertex below cannot be placed
in D, since that contradicts the placement of two vertices in D*. This contradicts
our assumption that K, with n > 8 can be drawn with exactly one vertex below
(21, 22). O

Lemma 2.19. Whenever exactly two vertices are below (x,z5), then n = 4 +
|AF| + [ BT+ |CH[+ [DF| < T.

Proof. Assume there exists an empty-ply drawing of K, with n > 8 with exactly
two vertices below the longest edge e, then there are at least four vertices above
(x1,22). We will distinguish four cases about the placement of the two vertices
below.

Case 1. There exists one vertex in A~
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By Observation [5] there cannot be any vertex in A™ and by Observation [6 there
can be at most one vertex in D*. Since there can be at most one vertex in B+ and
one vertex in C* by Observation[l|the statement n = 4+|AT|+|B*|+|C*|+|DT| <
7 holds. This is independent of the placement of the second vertex below e.

Case 2. A~ is empty and there are exactly two vertices in D~.

By the negation of Observation [f] the placement of any vertex in A* contradicts
the assumption that there exist two vertices in D~. Furthermore, by Observation
there is at most one vertex in DT. All in all, since |BT| < 1 and |CT| < 1
(Observation [I]), the statement n =4 + |[A*| + |BT| +|C*| + |D*| < 7 holds.

Case 3. A~ is empty and there is exactly one vertex in D~.

The second vertex below e exists in either B~ or in C~. Since both cases are
symmetric, we assume without loss of generality that there exists exactly one vertex
in B~. We will argue in two cases on the arrangement of vertices by the existence
of any vertex in AT,

a) Assume there exists a vertex in A™:
By Observation [9] at least one of either B* or C* does not host any vertex.
Using the vertex in D~ we can argue by Observation [7] that there exists at
most one vertex in D, Thereby n =4+ |AT|+|BT|+|C*|+|D*| < 7 holds.

b) Assume AT to be empty:
Assuming Ky is empty-ply drawable and there exist exactly four vertices above
e, namely exactly one in BT, one in C* and two in D*. But by Observation
there can be at most one vertex in D™ U D~ which is already placed in D~.

This concludes the case where exactly one vertex is placed in D™, since n = 4 +
|AT| + |BT| +|C*T| +|D"| < 7 holds in both subcases. The remaining case is the
following:

Case 4. There exist exactly one vertex in B~ and exactly one vertex in C'.

Assuming Ky is empty-ply drawable and there exist four vertices above e. Since
we can place at most one vertex in A" and at most two vertices in Dt (Observation
and , we can conclude that there exists at least one vertex in either BT or
C*. By Observation |§ we can deduce that there can be at most one vertex in
Dt U D™, hence A* must also contain one vertex. Since there is a vertex in AT
and one in B~ there can be at most one vertex in either Bt or C* by Observation
Ol We can conclude that we cannot place four vertices above e and again n =
44 |AT| 4+ |BT|+|CT| + |DT| < 7 holds. O
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Lemma 2.20. Whenever exactly three vertices are below the edge e = (z1,x2)
then n =5+ |AT| 4+ |BT|+ |CT| +|DT| < 7.

Proof. Assume that Ky is empty-ply drawable and there exist three vertices above
e. Note that in any case there exists at least one vertex in either B~ or C'~ since
the placement of two vertices in D~ and one vertex in A~ implies by Observation
that D7 is empty and thereby contradicts the placement of more than two vertices
above e. We distinguish the following cases by the placement of the vertices below

(21, 22).
Case 1. There exist three vertices below, namely in A=, in B~ and in C".

The number of vertices in |AT| = 0 directly by Observation . Furthermore, Bt
and C" are empty by Observation |§|, since there exist exactly two vertices in B~

and C~. Additionally, there is at most one vertex in D* by Observation [6] and
thereby n =5+ |AT| + |BT| + |CT| + |D*| < 7 holds.

Case 2. There exist three vertices below e, namely in A~, in D~ and without loss
of generality in B~.

Again, by Observation , there cannot be vertices in A", i.e. |AT| = 0 and by
Observation @ there exists at most one vertex in DT. Assuming that Ky is empty-
ply drawable, there have to be three vertices above e, namely exactly one in BT,
exactly one in C* and exactly one in D*. By Observation |8 we can conclude, due
to the existence of vertices in C* and B~, that |[D* U D~| < 1, which contradicts
the case since there already exists one vertex in D~.

Case 3. There exist exactly three vertices below, namely in B, in C~ and in D~.

If there exists a vertex in either Bt or C*, then by Observation |8 D% is empty,
since there already exists a vertex in D~. Furthermore, by Observation [ whenever
there exists a vertex in AT, either CT or B™ is empty. The remaining possible
placements are:

1. two vertices in D+

2. one vertex in BT and
a) one vertex in A"

b) one vertex in C*
3. one vertex in A" and exactly one vertex in D"

In any case we cannot place a third vertex above e. Thereby, there exist at most
two vertices above (z1,22) and n =5+ |AT| + |BT| 4+ |CT|+ |DT| < 7.

Case 4. There exist three vertices below, namely two vertices in D~ and without
loss of generality one vertex in B~.
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We can deduce that there cannot be any vertices in A* by Observation [6] since
there already exist two vertices in D~. Furthermore, there cannot be a vertex in
C™" by Observation [8 due to the existence of two vertices in D~. There can be at
most one vertex in D* by Observation [4] and by Observation[l]there is at most one
more vertex in BT. We can conclude that there exist at most two vertices above
the longest edge (z1,2) and n =5+ |[AT| + |BT|+ |CT| 4+ |DT| < 7. O

The four lemmas conclude the proof of Theorem [2.16 Kjg cannot be drawn
empty-ply, since the placement of more than 3 vertices below will be symmetric to
the placement of the corresponding number of vertices above.

O

Theorem 2.21. The complete bipartite graph K, where n > 15 does not admit
an empty-ply drawing.

Before actually stating the proof, we give some preliminary conditions on the
vertices of an empty-ply drawing of a complete bipartite graph K; x and then we
extend these requirements to K x, where X > 1.

Given an empty-ply drawing I' of a complete bipartite graph G € K; x where
X > 2 and let the vertex u be the central vertex in the first set, namely V; and
2m be the distance to the farthest adjacent vertex to u. Thereby the radius of the
ply-disk D,, is m and all adjacent vertices to u have to lie at distances in the range
R = [m,2m] from the center u. Similar to the proof of Theorem we can split
the range R into Ry = [m,v/2m] and Ry = [v/2m,2m] as indicated in Figure m
where the drawing is scaled such that m = 1.

Lemma 2.22. In any empty-ply drawing of K; x with X > 1 the angular distance
of any two vertices x1, x5 € V5 drawn both in R; or Ry, is > 27.89°.

Proof. We prove the statement for Ry, the larger range. The proof for R; is anal-
ogous by scaling arguments.

Given two vertices 1, o € Vi drawn in Ry at distances 2m and v/2m from u (i.e.
the maximum and the minimum distances from u). We can formulate the triangle
formed by u, 1 and z, and specify the sides with length 2m, m and v/2m. Hence
the angle a formed by the two sides incident to w is given by the following equation:

12.m2= (2242 —2-2-v2-cos()) - m?

2.2.4
a = 27.89°
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Figure 2.31: The minimum angular distance with respect to u of two vertices, both with
distance in the same range [v/2m,2m] or [m,v/2m] from u is 27.89°. The triangle with
side lengths m,v/2m, and 2m is indicated in red. Thereby in any circular sector with
angle < 27.89° there can be at most 2 vertices if and only if exactly one is in the range
[m, v/2m] and exactly one is in [v/2m, 2m].

Thereby, we can conclude that any two vertices drawn both in Ry (resp. R;) with
an angular distance of exactly v = 27.89°, then the distances with respect to u are
V2m and 2m (resp. m and \/§m) from wu.

Furthermore, note that the extension of the ray passing through the closer vertex
to u, namely w9, is completely covered by the potential ply-disk of the vertex at
distance 2m, namely z; in Figure Thereby there cannot exist any other vertex
within the angular region of a. By a simple scaling argument the same holds true
for the closer range R; = [m, v/2m]. On the opposite this implies that any angular
region with an angle < a can contain at most one vertex in R; and at most one
vertex in Ry and thereby at most 2 vertices in total. ]

Note that this proof yields a version of Theorem since there cannot be 13
disjoint angular regions of 27.89° in a total of 360° in either range and thereby at
most 12 vertices per range in a star and thus K 95 is not empty-ply drawable.

Definition 2.23. The cover-disk Cov,(u) of u with respect to v is defined for two
adjacent vertices v and v, and describes the circular area such that the ply-disk of
any vertex adjacent to v placed in Cov,(u) contains u in its interior. Formally, the
region is circular fulfilling the inequality dist(x,u) < w

Considering empty-ply drawings the placement of any vertex prohibits the union
of its ply-disk and its cover-disk. Note that this concept is only valid, if (u,v) € E.
An illustration is presented in Figure [2.32
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Figure 2.32: The area in which any vertex z adjacent to v the ply-disk D, will have u in
its interior. This region is called cover-disk of u regarding v Cov,(u). This region can
be geometrically constructed, by taking a circle with radius % centered at u and a
circle width radius dist(u, v) centered at v. The intersections of these two circles together

with ¢/, namely the point v mirrored at u define a circle, which coincides with Cov,,(u).

We can extend the argument given in the proof of Lemma to two vertices in
the complete bipartite graph Ks x. Let, w.l.o.g. the vertices in the first set, namely
u,v € Vp lie on a horizontal line, [, at distance 1 from each other. Furthermore
let 2m, be the largest distance for any vertex from the second set to u and 2m,
the largest distance to v. We can now define the regions regarding u and v namely
Ry(u) = [my, v2m,] the closer region to u, and Ry(u) = [v/2my,, 2m,] the further
region regarding the vertex u. The regions R;(v) and Ry (v) are defined respectively.
Note that the radius of the ply-disk D, is m,, and the radius of D, is m, and
m, < 1, as well as m, < 1 since their ply-disks cannot exceed the distance of 1
between u and v.

Let I. be the perpendicular bisector of (u,v) splitting the plane in the left half-
plane containing u and the right half-plane containing v. Note that for any vertex
in the second set which is placed in the left half-plane the following condition
dist(u, z;) < dist(v, z;) holds and thereby, the distance to v defines the radius of its
ply-disk. Furthermore, any vertex placed on the right side of [., the distance to u
defines the radius of its ply-disk. Thereby the ply-disks of the vertices in the same
half-plane depend only on either v or v. We can define the cover-disk Cov,(v) and
Cov,(u) as shown in Figure [2.33]

In any empty-ply drawing the X vertices of the second set in a complete bipartite
graph K, x have to be placed in the ranges Ry = Ry(u) U Ry(v) or Ry = Ro(u) U
Ry(v) \ Ry but not inside any cover-disk.

We can conclude the following lemmas about the maximal number of vertices in
the areas R; and R, dependent on u and v.
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Figure 2.33: The two vertices of the first set, namely u and v are drawn horizontally with
distance 1 of each other. The perpendicular line [, splitting the plane into two half-planes
where in the left half-plane the distance to the vertex v defines the ply-disk for any vertex
and on the right side respectively the distance to the vertex wu.
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Figure 2.34: The angle to place sectors in Rg(u) is B2 = 151.04° which is maximized if
the radius of the ply-disk D, of u and v is maximal, i.e. m, = 1.

Lemma 2.24. There are at most 10 vertices in Ry = Ra(u) U Ro(v) \ R;.

Proof. Let I' be an empty-ply drawing of K, x and let w.l.o.g. dist(u,v) = 1. By the
properties of empty-ply drawings all vertices must be drawn inside the intersection
of the annuli centered at u and v with radii 2. By construction, the radii of ply-
disks of vertices placed left (or right) of the central bisector [, are purely dependent
on v (u respectively). Thereby the number of vertices placed in R can be estimated
using Lemma by the number of non-overlapping sectors of angular size 27.89°.

By the placement left or right of I. the ply-disks are dependent on either u or v.
We can now define the maximal available angle regarding u and v to place vertices
in the further range R,. Note that this is a slight overestimation in total available
area to place vertices. Observe that the maximum angle to place the sectors is
available if ply-disks of u and v have a radius 1, i.e. there is at least one vertex
at distance 2 from » and v. In this assumption we yield m = 1 and Ry equals the
union of the ranges [v/2,2] from both vertices u and v. The available angle to place
the sectors for each vertex can be calculated using the coordinates with distance 2
from w and v on [, that is fy = 151.04° as illustrated in Figure [2.34, We can give
an upper bound on the number of non-overlapping angular sectors of o = 27.89°
each by L@J = 10. Since we cannot place two vertices in Ry with an angular
distance from either u or v less than 27.89°, we cannot place 11 vertices in the range
Ry = Ry(u) U Ry(v) and the lemma follows. O

Note that we cannot place 11 vertices whereas we observe v = (2/3;) — (10a) =
302,08° — 278.9° = 23,18° of freedom, meaning the placement of the vertices is
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Covy (u) Covy (v)

Figure 2.35: The maximal possible angular area regarding v on the left side of .. De-
creasing the distance of /2 for the range R;(v) decreases the angular area.

not unique whereas the 11th vertex would require at least 27.89°. For the closer
region we take the cover-disks Cov,(v) and Cov,(u) into account and additionally
the available cone is smaller. Thus, we state the following Lemma.

Lemma 2.25. In the area Ry = R;(u) U R;(v) there are at most 6 vertices.

Proof. Similar to the previous proof we can denote the maximal available cone
with respect to u and v. We assume the maximal distance for vertices in R; to
be /2. Note that in the close range R; we are limited by the cover-disks and the
ply-disks of v and v. Assuming there exists a vertex at distance /2 from u, there
has to be another vertex at distance 2 from u. Since otherwise the closer vertex
cannot be in the closer range R;(u).

Computing the available angle, again with respect to . above u and v, the result
is 1 < 41.41° per vertex u and v. Note that this cone to place vertices is again an
overestimation since we only regard the cover-disks and neglect the ply-disks for
simplification. An illustration of the cone is given in Figure [2.35

We can estimate the total available angular area above u and v by 2 - 8; and
below u and v respectively. The maximum number of vertices we can place either
above or below is estimated by [%1 = [2.97] = 3 and thereby we cannot place 4
vertices above or below u and v. The number of vertices in R; is limited to 6. [

Note that at this point Lemma and imply that the complete bipartite
graph with 19 vertices in total, namely K5 ;7 does not admit an empty-ply drawing.
However, refining the argumentation involving the ply-disks of v and v, we can
further reduce the number of potential vertices placed in Ry and R;. Essentially in
the following lemmas we reverse the argumentation assuming a certain number of
vertices and argue on the radii of the ply-disks by enforcing the necessary angular
area around u and v.
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Lemma 2.26. If there exist exactly 10 vertices in Ry, then the number of vertices
in R; is at most 4.

Proof. Assume there exist 10 vertices in the further range Rs, then we need an
angular area of at least 10 - 27.89° around v and v. This implies that m & [1‘2&, 1]
since otherwise there cannot be 10 vertices in Ry. Thereby the radii of the ply-
disks D, and D, are at least % and the area to place vertices in R; shrinks,
since we argue on empty-ply drawings. The vertices in R; have to be placed in the
intersections of the disks with radius v/2m, where we assume m = 1, centered in u
and v and not in the disks with radius %, namely the ply-disks.

We will argue on the area above and below w and v separately, since the ply-
disks D, and D, overlap. Furthermore, any vertex’s ply-disk drawn above u and v
does not interfere with the area to place vertices below u and v.

We can observe that any vertex’s ply-disk drawn in the upper part left of [,
entirely covers R;(v) above u and v. Thereby there can be at most 2 vertices in the
upper part of R; and respectively at most 2 vertices in the bottom part of R;. We
conclude that there can be at most 4 vertices in R; in total, if there are exactly 10
vertices in Rs. O

Lemma 2.27. If there exist exactly 9 vertices in Ry then the number of vertices
in Ry is at most 5.

Proof. Assume there exist exactly 9 vertices in Ry, then we can again conclude
that m € [%, 1] by the same argument as in the previous proof. Thereby the
ply-disk D, or D, has a radius of at least %. Assume there exist three vertices
w.Lo.g in R; in the range [:I%, 1/2] above u and v, then at least one of the vertices
has a minimal distance to either u or v < 1.33. We can observe that any vertex
with distance > 1.33 implies a cover-disk regarding u or v such that there exists an
angular region in R, with at least 45.44° in which no vertex in Ry can be placed.
Thereby, we can conclude that there might exist 3 vertices in R; either in the top
or in the bottom part whereas assuming there exist 3 vertices in the top and in the
bottom part contradicts the placement of 9 vertices in Ry in the first place since
the angular area is not sufficient to place 9 vertices. We can conclude that there
cannot be 9 vertices in Ry and 6 vertices in R; at the same time. O

Note that Lemma and imply Theorem [2.21], since by Lemma there

are at most 6 vertices in the inner range R; in any drawing of a complete bipartite
graph Ky x. Thus the complete bipartite graph K, with n > 15 does not admit
an empty-ply drawing.
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2.8 Conclusion

To conclude the results of this Chapter, we want to shortly summarize our results
mainly published in [4] where the main contribution are the extensive proofs in
Section [2.7, namely Theorem [2.16] and Theorem [2.21]

We gave results on structural properties of drawings with constant ply-number,
i.e. ply-number 1 and drawings which admit ply-number 2. We presented strict
structural properties on the graphs that admit drawings with ply-number 1 and
showed that any star, caterpillar or binary tree can be drawn with ply-number 2 in
exponential area. Furthermore we gave an upper bound on the ply-number for any
graph to be 7, where n is the number of vertices in the graph.

Then we introduced the concept of vertex-ply, which is the maximum number
of ply-disks a vertex is contained in over all vertices. We stated relations between
the ply-number of graphs and the wvertex-ply-number of graphs and proved that
the factor of difference is at most 5. We examined the set of graphs admitting
drawings with vertex-ply, 1 namely empty-ply drawings, in the sense that every ply-
disk is empty apart from its defining vertex. Note that the set of graphs admitting
drawings with ply-number 1 is a subset of the empty-ply graphs whereas this is not
true for graphs with ply-number 2. An example is that any star can be drawn with
ply-number 2 whereas for empty-ply drawings the maximum degree for any vertex
is bounded by 24. Where on the contrary we were able to draw binary trees with
constant ply-number and empty-ply.

As major part of this chapter we identified the complete graphs K 24, K312, K39,
K,6 and K7 to admit empty-ply drawings. We could prove that the bound on
complete bipartite graphs Kj o4 is tight, meaning that K5 does not admit an
empty-ply drawing. The same holds true for the complete graph K7, namely Kg does
not admit an empty-ply drawing. This proof was done by an extensive case analysis
using the previously stated properties of empty-ply drawings and considering any
possible placement of 5 vertices after fixing the longest edge of K7. For the next
graph class K, x we fixed the coordinates of the 2 vertices from the first set rather
than fixing the longest edge. Within the graph class Ky x we know that K9 is
empty-ply drawable and Kj ;5 is not. Here is a small gap X = 13 and X = 14,
which is not proven by now. We conjecture that Kj ;3 does not admit an empty-
ply drawing and it might be proven by refining the argumentation in Theorem [2.21]
together with strict argumentation on the ply-disks. During our argumentation
we rather extensively used the cover-disks and there the largest overestimation in
terms of accuracy took place.

Although not proven, it is reasonable to assume that the empty-ply drawings of
K and K, ¢ are unique with respect to scaling and rotating, since in contrast to
the other known complete graphs these drawings do not allow any movement of
vertices without violating the empty-ply properties.

We conclude with some open problems arising by our work. Recall that we have
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proven a tight bound for complete graphs K; and for complete bipartite graphs
K 24. There is still a small gap whether K 13 or K314 admit empty-ply drawings.
How about larger values of n in complete bipartite graphs K, ,,,?

Looking at empty-ply drawings from the proximity perspective, can we generalize
to drawings where the ply-disk does not need to be empty but can contain at most
k vertices? This corresponds to the generalization of k-proximity drawings where
there are at most k vertices allowed to be in a proximity region for any edge.
This would be an extension in the same fashion as the definition of k-Gabriel and
k-relative- neighbourhood drawings [65].
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Chapter

Applicational aspects of Ply

In the following we will introduce our implementation to compute the ply-number for
a given drawing. We will start with a short summary on the program and its fea-
tures and will go in detail for the computation algorithm. We will continue with
a short section on the different layout algorithms. In the end, we will present our
experimental results comparing our implementation to existing ply-computation by
De Luca et al. presented at WALCOM’17 [30]. We are able to reduce the computa-
tion time from seconds to milliseconds for given drawings and thereby contribute to
further research on the ply topic, by providing an efficient tool to examine graphs
extensively by user interaction, as well as some automatic features to reduce the
ply-number.

Our tool allows the investigation of a graph regarding its ply-number. As ba-
sic functionality, the tool is equipped with some graph layout algorithms, namely
organic, circular and randomized (provided by yFiles library [97]), as presented in
Figure[1.6] and allows for interactive manipulation of the drawing, such as mov-
ing vertices. Basic file formats are graphml [17] and gml [57], where both formats
provide structural information on the graph and a drawing.

Furthermore, we provide a test if a given drawing is empty-ply, where no vertex is
contained in any other vertex’s disk. With our tool we identified that the complete
graph K, ¢ admits an empty-ply drawing whereas this was previously known only for
K44 [4]. Our implementation is able to compute the ply-number for the drawing
during runtime, meaning while the drawing is modified, for example by layout
algorithms or user interaction.

Live feedback of the ply-number on interactive graph manipulations by users is
another feature of our tool. We mark regions where the maximal ply-number oc-
curred. The user can choose between different layouts as start configurations for the
graph and is able to improve the ply-number automatically by a spring embedder
or by manually manipulating the positions of the vertices accordingly.
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3.1 Previous Work

The ply-number of drawings has been considered previously. There exist several
theoretical results on the ply-number of drawings. For a short overview please refer
to the previous Section [2.2]

From the applicational point of view, the importance of the ply-number has been
evaluated in an experimental study by Felice de Luca et al. [30]. The experiments
were designed to confirm that the ply-number of a drawing is closely related to
other known metrics to evaluate aesthetics, like stress [40], crossing number [63],
and edge-length uniformity. The edge-length uniformity is especially motivated by
the property of drawings with ply-number one, since all edges have to be the same
length [36].

Furthermore, the study investigates the ply-number for different layout algo-
rithms. The evaluation has considered six different force-directed algorithms out of
the most popular ones [62], namely the algorithm by Fruchterman-Reingold [47], a
variant proposed by Frick et al. [46], the algorithm proposed by Kamada-Kawai [60],
a stress minimization algorithm by Gansner et al. [49], the fast multipole multilevel
method by Hachul and Jiinger [53], and a model developed by Noack [68] which is
based on a minimum energy layout to emphasize clusters in a graph.

The layout algorithms designed to reduce stress in the drawing compute drawings
with low ply-values. As an intuitive understanding the authors indicate the rela-
tion between stress and edge uniformity. Furthermore, the fast multipole multilevel
method performs very good even on large dense graphs regarding the ply-number of
the drawing. There exist graph classes for which these force-directed layout algo-
rithms produce drawings with a ply-number close to the optimum, like paths, circles,
caterpillars, and binary trees. The authors point out that there exists a strong cor-
relation between the ply-number of the drawing and stress, as well as a moderate
correlation between the ply-number and edge-length uniformity. Even though they
give an example for a drawing with low ply and high stress and vice versa.

In the bachelors thesis of Lukas Bachus [7] a prototype for the ply-computation
algorithm for a given graph has been implemented. The prototype supports a
graphical user interface and emphasizes the user to modify the drawing manually.
It supports one basic layout type. The manual modification does not give instant
feedback, but after the modification is finished, the ply-number will be computed
and the ply-disks will be updated.

We reimplemented the ply-computation algorithm and improved its speed by a
large factor, such that instant feedback on modifications is applicable in our tool.
Furthermore, we added more basic layouts to choose from and we developed an
optimization workflow to minimize the ply-number for a given graph.

Both previous algorithmic approaches are based on the plane-sweep technique
motivated by computational geometry to compute the maximum number of over-
lapping ply-disks. When computing intersections between disks, precision errors are
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one of the first challenges to deal with. To give an intuitive example, look at the
complete graph with three vertices K3. Every straight-line drawing of this graph
is a triangle in the plane. Drawing an equilateral triangle results in a drawing with
ply-number one, since every edge has equal length and thereby the ply-disks touch
but do not overlap. As the mathematical affine reader knows, or simply can prove,
an equilateral triangle in the plane requires irrational coordinates. Rounding these
numbers to store the coordinates leads to precision errors. In this case the preci-
sion errors lead to the computation of a minimal overlap. In other cases they might
result in missed overlaps. In many cases these precision errors do not affect the
ply-computation significantly, but especially if there are many intersections at one
coordinate, it shows its effect. To name one worst case example, take a complete
graph with n > 60 vertices and draw the vertices regularly on a circle. In this sce-
nario all ply-disks touch in the center of the circle and the rounding errors heavily
affect the computation.

To come up with a solution to these precision errors, the approaches of Lukas
Bachus [7] and De Luca et al. [30] use the ApFloat library which is available for
Java. This library allows the computation with an arbitrary pre-chosen level of
accuracy at the cost of computational effort [89]. The implementations are equipped
with a computation inconsistency detector, such that they are able to increase
the level of precision in their calculations, if they encounter such a problem. In
case of several increments of the precision level, the computational effort increases
immensely. In the following (Section we will discuss the issue of inaccuracies
in detail. We took a different approach to deal with inaccuracies, with respect to
the computational effort.

Thereby, the implementation by De Luca et al. requires a drawing of a graph as
input, which is then non editable. Even though, the implementation of |7] provides
a graphical user interface, the ply-number is calculated if and only if there is no user
interaction at this time. The response time of this implementation is reasonable
on small graphs, whereas it might get stuck after several incrementations of the
precision level, if the graph is large, or there are too many intersections at one
coordinate.

One of our main goals was to speed up the computation to provide real-time
evaluation with two additional features in mind, first live feedback on modification
of the drawing and second optimization of the ply-number. An optimization process
involves a large number of ply-number computations.

The previous implementations do not support optimization, where the tool by
Lukas Bachus supports manual modifications. The experimental study by De Luca
et al. compares the ply-number dependent on different layout algorithms. We
introduce an optimization process to reduce the ply-number for a given drawing.

We evaluate our tool in comparison to the implementation of De Luca et al.
especially we compare the results on a large set of graphs in Section Since
both approaches are based on the plane-sweep technique, we count the number of
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executed events in both algorithms and log the computation time.

In a second set of experiments we compare different layout algorithms regard-
ing the ply-number of the produced drawings. A special focus is the comparison
between the fast multipole multilevel method [53], which has been evaluated to pro-
duce drawings with low ply-number consistently, and our optimization approach.
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__ longest edge

ply 2

ply 3

Figure 3.1: A graph with 5 vertices and 5 edges is drawn. For every vertex its ply-disk is
drawn. Some regions with ply one, two, and three are indicated by arrows. The ply-
number of the drawing is three, whereas the ply-number of the graph is one (cf. Figure

33)

3.2 Introduction to the Problem

We formally state the problem and recall the necessary definitions. Let I' be a
straight-line drawing of a graph G = (V, E) with |V| = n vertices and |E| = m
edges. We consider the graph to be simple and undirected, that is if there exists
an edge connecting the vertices u and v, either (u,v) € F or (v,u) € E, meaning
both representations are equivalent. For simplicity we will write for a vertex u, the
edge (u,v) € E if either (u,v) or (v,u) is € E. For any vertex u there exists a
coordinate (u,,u,) € IR>. We do not allow vertices to share the same coordinate
in IR?, that is Vu,v € V,u # v : (uy # v, V uy # uy).

Ply-disk

For every vertex u the ply-disk D, is defined as a disk centered at u where the
radius r of the disk is half the length of the longest edge incident to u. In Figure
the ply-disk for every vertex is drawn. For consistency we will always draw the
ply-disks in all figures, if not stated otherwise explicitly. Recall, that we do not
allow two vertices to share the same coordinate in IR?, in that way the radius of
the ply-disk for every vertex is > 0, if the vertex has at least one incident edge.
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file layout zoom mode optimize file layout zoom mode optimize

ply number: 85 ply number: 779

Figure 3.2: On the left side, a 9-ary tree with 3000 vertices is drawn with the minimum
stress function by Gansner et al. [49]. This drawing admits a ply-number of 85. The
same graph drawn by placing the vertices at random locations, admits a drawing with
ply-number 779.

Ply-number of a drawing

The ply-number of the drawing I' is defined as the maximum number of overlapping
ply-disks at any point in IR?. The main algorithm is defined to solve the problem of
computing this value. The ply-number of the drawing in Figure is three. Note
that for any graph with at least one edge, the ply-number of the drawing I' is at
least one.

Ply-number of a graph

The ply-number for a graph is the minimal ply-number over all possible straight-
line drawings. Note that the ply-number of a graph without any edges is 0. The
graph presented in Figure admits a drawing with ply-number one. A drawing
is given in Figure [3.3, where the left component is an equilateral triangle and all
edges have equal length. To weaken this definition, whenever we talk of the ply-
number of a graph, we mean the smallest known number. On complete graphs, we
were not able to construct drawings with a lower ply-number than 7. In Figure
the complete graph Ky is drawn on a circle and this drawing has ply-number 30.

3.3 Program and Features

We present a tool to get an intuitive understanding of the ply-number, as well
as explore and examine given drawings. The graphical user interface of our tool
is shown in Figure The graph is drawn and every edge is represented as a
straight line. For every vertex the ply-disk is drawn. The disks are presented as red
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Figure 3.3: The same graph as in Figure with 5 vertices and 5 edges is drawn with
ply-number one. All edges have the same length, as the left component is an equilateral
triangle, and the distance between any two nodes > length of any edge. Note that no two
ply-disks overlap each other.

file layout zoom mode optimize

ply number: 30

Figure 3.4: The complete graph Kgg is drawn on a circle. The ply-number meets the
theoretical upper bound of § = 30. Note that we conjecture, that this is the best we can
do.
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circles with some opacity level, such that the user gets some visual feedback, since
overlaps are presented in a darker color. Additionally, we indicate the regions with
the maximum ply-number, which we call mazimum ply-regions, by drawing blue
dots at the intersection points of the ply-disks. If the user selects a vertex to move,
the edges are colored in a way, that the user can quickly identify the longest edge
incident to the selected vertex. In addition to the instant feedback the user will
be informed by a color-switch that the longest edge regarding the selected vertex
changed.

The user can load and save graphs, choose different built-in layout styles, and
modify and inspect the drawing according to its ply-number. Modification of the
drawing includes moving vertices, where the ply-disks are updated instantaneously.
In that way the user can get instant feedback on the changes. The indicators for
the maximum ply-regions are updated as well. On small to medium graphs the
ply-number is updated on the fly. For large or highly symmetric graphs we provide
the option to switch off the automatic update function. If the automatic update
function is toggled off, the ply-disks are still updated but the ply-computation
is stalled until the modification is finished. In this setting the indicators of the
maximum ply-region will not update appropriately.

Since the maximum ply-regions are a local phenomenon, we allow the user to
zoom into the view, and shift the view to focus on the desired region and observe
the local changes. Note that local changes might influence the ply-disks of many
adjacent vertices.

LOAD & SAVE

We allow to load any graph from two main file formats, the first file format is
gml [57], which provides information on the coordinates for each node, as well as
information on the representation of the vertices and edges. In our tool we do
not allow the modification of these meta-data beside the coordinates in the plane.
Edges might contain meta-data regarding the edge routing. Since the ply-number is
strictly defined on straight-line drawings we discard this information. In the gml
format, data is stored as a list of node objects followed by a list of edge objects, as
indicated in Figure and [3.7 We save our graphs in the gml format.

As a second supported file format we chose graphml [I7]. This file format is
based on the HTML syntax and contains similar types of meta-data like coordinates
in the plane, information on the representation of vertices and edges. Even though
in these examples the amount of information in the graphml format seems to be
larger, both formats are able to store the same information. An example of a vertex
and an edge is presented in Figure [3.8]
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file layout zoom mode optimize

ply number: 4

Figure 3.5: The graphical user interface of the ply-exploration tool. A graph with 30
vertices and 40 edges is drawn. The ply-number of this drawing is 4. Note that the
ply-disks are drawn, as well as indicators where the maximum ply-number occurs. Ad-
ditionally, one vertex in the center is marked, and the incident edges are marked blue,
whereas the longest edge is yellow. The options a user can choose from are file, layout,
zoom, mode and optimize.

Z00M

For exploration and further analysis of a given drawing, we implemented a zoom
function. It allows the user to focus on local parts in a big graph. For easy access
this function is bound to the "+" or "-" button as well as the mouse wheel. The
displayed part of the graph can be panned by using the left mouse button.

Additionally, the indicators for the maximum ply-regions keep a constant size on
the screen, regardless of zooming. In that way, looking at a large graph, the user
can observe the regions with the maximal ply-number. This feature is presented in
the Figures [3.9 and [3.10] where the same drawing in different zoom levels is shown.
To reset the zoom we implemented a function to fit the drawing to the view.
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node
[
id 0
label "0"
graphics
[
x 380.77130126953125
y 585.5761108398438
w 30.0
h 30.0
type "rectangle"
fill "#CCCCFF"
outline "#000000"
]
]

Figure 3.6: The representation of a vertex in gml format. The information contains the
coordinates in the plane, as well as layout properties regarding the representation of the
vertex.

edge
L
source 1
target 4
grapics
I
fill "#000000"
targetArrow "none"
]
]

Figure 3.7: The representation of an edge in gml format. The source and the target vertices
are given. Note that we consider undirected graphs.
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<node id="n5">
<data key="d0" >
<y:ShapeNode>
<y:Geometry x="489.5" y="335.5" width="30.0"
height="30.0"/>
<y:Fill color="#FFFFO0" transparent="false"/>
<y:BorderStyle type="line" width="1.0" color="#000000" />
<y:NodeLabel x="13.0" y="13.0" width="4.0" height="4.0"
visible="true" alignment="center"
fontFamily="Dialog" fontSize="12" fontStyle="plain"
textColor="#000000" backgroundColor="#FFFFFF"
modelName="internal" modelPosition="c"
autoSizePolicy="content">
</y:NodeLabel>
<y:Shape type="ellipse"/>
</y:ShapeNode>
</data>
</node>

<edge 1d="e96" source="n89" target='"n88">
<data key="d1" >
<y:PolyLineEdge>
<y:Path sx="0.0" sy="0.0" tx="0.0" ty="0.0"/>
<y:LineStyle type="line" width="1.0" color="#000000" />
<y:Arrows source="none" target="standard"/>
<y:BendStyle smoothed="false"/>
</y:PolyLineEdge>
</data>
</edge>

Figure 3.8: The representation of a vertex and an edge in graphml format. This data
contains the coordinates of the vertex in the plane as well as layout properties of vertices
and edges.
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file layout zoom mode optimize

ply number: 7

Figure 3.9: A binary tree with 300 vertices is drawn. The ply-number of this drawing is
7. Note that the indicators for the maximum ply-regions are observable. Note that the
size does not change, when zooming on the two left indicators. This scene is shown in the

next Figure [3.10]

file layout zoom mode optimize

ply number: 7

Figure 3.10: A part of the drawing from Figure is shown, namely the indicators for
the ply-regions which admit the ply-number 7.
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file layout zoom mode optimize file layout zoom mode optimize

ply number: 9 ply humber: 9

Figure 3.11: The complete graph Kig is drawn on a circle. In the right Figure the ply-
disks are not drawn. Disabling the ply-disks enhances the structure of the graph.

MODE

During inspection and exploration regarding the ply-number of a graph, it turns out
to be helpful to indicate the regions with the maximum ply-number, if the user is
interested in manual modification, or is interested in the ply-disks, which contribute
to the ply-number of the drawing. The indicators allow the user to quickly identify
the regions of interest observing the outline of the drawing. In other cases, the
indicators are not necessary, so we allow to toggle the indication of the maximum
ply-regions.

Modification of large and highly symmetric graphs sometimes results in a jiggle
of the view. These graphs turn out to be hard instances for the algorithm to
compute the ply-number. To guarantee a smooth modification by the user, the
instant feedback on modifications can be toggled off. The user can complete the
modifications smoothly and the ply-number will be computed once the modification
is finished. This does not affect the ply-disks, but the indicators of the maximum
ply-regions and the ply-number will be updated after the modification.

As a last feature we can disable the drawn ply-disks, if the user is interested
in the structure of the graph, without getting distracted by the ply-disks. If we
want to examine dense graphs, the difference between edges and the boundary of
the ply-disks can be confused by the user. Compare the exactly same drawings in
Figure |3.11

3.4 Layout algorithms

Dependent on the users interest, we use the structural information to draw the
graph given in the input file allowing to examine the drawing. For further investiga-
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tion regarding the ply-number of the graph, we provide different layout algorithms,
namely organic, circular and random. In our experimental Section we will show
that the organic layout is most effective on sparse graphs and the circular layout is
effective on dense graphs. These three layouts are provided by the yFiles library.
In the following we present structural properties of the different layout types.

In general, organic layouts are most suited to draw sparse graphs, whereas in
dense graphs the vertices tend to form clusters. When investigating drawings re-
garding their ply-number, we observed that drawings with a high edge-uniformity
and evenly distributed vertices generally have low ply-numbers. For sparse graphs,
the organic layout produces drawings with these properties. In contrast to the or-
ganic layout, where dense regions form clusters and the placement of vertices seems
to be chaotic, highly connected components cluster very symmetrically in the circu-
lar layout. We added a randomized placement of the vertices, as a reference for our
experiments to approve our results. Additionally, since our automated approaches
to minimize the ply-number are heuristics, it was helpful to construct drawings,
which are not biased by one of the other two approaches or the initial drawing.

ORGANIC

The organic layout is a standard force-directed layout algorithm and is implemented
by a spring embedder. This method has been first proposed by Fruchterman and
Reingold [47]. A spring-embedder simulates attractive forces along edges and repul-
sive forces between vertices, as a physical model of springs. Next to the attractive
and repulsive forces, there is a parameter, called the spring-stiffness. This param-
eter allows to influence the variety of edge-lengths throughout the drawing. It is
a very common approach to draw straight-line drawings, which result in a natural
way to draw a graph [62]. In general, spring embedders can be further extended to
satisfy a number of aesthetic criteria, as maximizing crossing angles between edges
or enforcing an equal distribution of the vertices. An example is shown in Figure
.12 the sparse regions (in the lower left part of the drawing) contain very few
overlapping ply-disks in contrast to denser regions (close to the center), where the
vertices are clustered.

CIRCULAR

In the circular layout technique, the vertices are partitioned by connectivity struc-
ture in the graph. Highly connected components are placed along a circle. Each
partition is placed on a different circle. Initially this layout was developed to empha-
size group and tree structures in networks [8I]. Recall the proof of the guaranteed
ply-number of at most |7 ], this can be achieved in this layout style by Theorem
We present a graph drawn in the circular layout in Figure [3.13] Note that the
longest edge of the drawing is close to the center of the circle.
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Figure 3.12: The graph is drawn with the organic layout style. The ply-number of this
drawing is 4. Observe that in sparse regions are very few overlaps i.e. in the bottom
left part of the drawing. Denser regions tend to form clusters, i.e. in the center of the
drawing.

Figure 3.13: A drawing with circular layout style. The ply-number of this drawing is 7.
Singletons are drawn at the outside and the longest edges in this drawing pass through
the center of the circle, on which the vertices are placed regularly.
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Figure 3.14: A drawing with random layout style. The vertices are placed randomly. We
can observe a large number of overlapping ply-disks.

RANDOM

The algorithm places all vertices at x and y coordinates which are chosen uniformly
at random. Since the coordinates are chosen uniformly, we can see the underlying
rectangle, if we have a large amount of vertices. Furthermore, the edges are likely
to cross and the ply-number is likely to be close to the maximum of n. Even though
the randomized placement of the vertices has no benefit in terms of minimal ply-
number , we can exclude side effects in the computation algorithm, which often
occur in symmetrical layouts like the circular one.

3.5 Implementation & Ply Computation

We developed an efficient algorithm to compute the ply-number and our tool to
support the understanding of the ply-number of a drawing of a graph. The main
algorithmic challenge is to compute the ply-number of a given drawing efficiently
in a way that the feedback can be given instantly when the user modifies the
drawing. The algorithm, which is based on the plane-sweep technique, will be briefly
described in the following paragraphs. We will start with the general concept of
plane-sweep algorithms and present the modification to compute the ply-number in
detail in Section

Our tool relies on the yFiles graph drawing library (Version 2.13), a detailed
APT can be found at [99]. The yFiles library offers a large amount of graph-
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drawing tools. Our main functionality is provided by the classes Graph2D and
Graph2DView. The Graph2D class describes the structure of the graph, as composed
of its vertices and edges. Graph2DView is used to display the Graph2D object in the
plane. Together with NodeRealizer and EdgeRealizer, it represents a drawing
of the graph. Graph2DView admits a canvas on which zooming and modifications
i.e. moving vertices manually are supported. These modifications are interpreted
by this class directly. The drawing can further be modified using the interface
Backgrounddrawables. This interface allows to draw ply-disks for every vertex as
well as indicators for the maximum ply-regions. Using the class Graph2DView we
could implement the zoom function, adjust the colors of the edges dependent on
possible vertex selections, and keep track of manual movement of vertices by the
user. The layouts a user can choose from are named organic, circular and random,
which are computed on the Graph2D object.

We conclude this section with a discussion on precision errors using the data
type double throughout our implementation. The previous implementations [7][30]
used the ApFloat library. We will point out the differences between the different
approaches.

Recall that the ply-number of a drawing is defined as the maximum number of
overlapping ply-disks for any coordinate in IR?. To compute the ply-number of a
drawing we need to identify the maximal overlaps of ply-disks in the plane. The
problem to compute the ply-number for a given drawing can be reduced to identify
the maximal number of overlapping circles for any point. Since this is a geometric
problem we used a plane sweep technique like suggested in [7] and [30]. In the
following we present the basic concept of the algorithm, which was initially designed
to calculate all the intersections of a set of straight segments. Then we will point
out how to compute the ply-number by identifying intersections between circular
segments. Furthermore, we will describe the similarities and adjustments to the
original plane-sweep algorithm.

3.5.1 Line Segment Intersection

The idea of the plane-sweep algorithm was introduced by Shamos and Hoey [80]
and improved by Bentley and Ottman [I0] and proved to be a powerful technique
in computational geometry. To present the ideas we follow the description from the
textbook [28]. The initial task of this algorithm is formulated as follows:

Given a set S = {s1,...,8,} of n straight-line segments in the plane, detect all
intersections. In the following we assume general positioning of the line segments
in the plane, that is

1. no two endpoints of line segments share the same xr—coordinate

2. no two crossings share the same x—coordinate
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Figure 3.15: A crossing of two line segments can only occur in the union of their
r—intervals.

3. no two line segments lie on top of each other
4. no three line segments intersect at the same coordinate.

An intuitive solution to this problem would be to consider every pair of segments
and test whether they intersect, which would result in a quadratic time complexity.
In order to achieve a faster algorithm we can observe the following: A crossing of two
line segments can only occur in the intersection of their z-intervals. The x—interval
is defined as the projection of the line segment to the xr—axis as presented in Figure
[3.15] Thereby we only check for intersections between segments, whose z—intervals
overlap, that is pairs of segments for which there exists a vertical line intersecting
both segments.

Sweeping the plane from left to right with a conceptual vertical line L, called
sweep-line, we reduce the candidates to check for intersections to the segments,
which are currently intersecting L. These segments are called active segments.

The status of the sweep line L is the set of active segments ordered from top to
bottom along L. The status can change during the sweep at specific coordinates.
These coordinates are called events. An event can be one of the following and
between any two consecutive events the status remains unchanged:

1. at the leftmost coordinate of a segment, the segment will be marked active
2. at the rightmost coordinate of a segment, the segment will be marked inactive

3. at an intersection the order of segments swap in the sweep line status.
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Figure 3.16: The segments crossing the vertical sweep line L are marked in red. Whenever
two line segments cross there exists a vertical line crossing both at the same x—coordinate.
At a crossing of two active line segments the order from top to bottom is swapped and
the staus L is updated to status L'.

At an intersection of two line segments, the order from top to bottom will change
in the sweep line status. This is illustrated in Figure [3.16] where the order of active
segments is swapped between the status of L and the status of L'.

The second observation is that two line segments can have an intersection only
if they are consecutive in the sweep-line status. Thus, whenever a segment is
marked active, it will be checked for intersections with the segment above and the
segment below in the sweep line status. Note that a new active segment requires
at most two tests for intersections since it has at most two direct neighbours in
the sweep line status. Marking a segment as inactive requires at most one test for
intersections, since the top and bottom neighbour might not have been neighboured
before. Finally an intersection, and thereby a swap in the order along L, requires at
most two tests for intersections, since both candidates might get a new neighbour.

The algorithm is executed as follows: Initially for every segment there is one
event at the leftmost and one event for the rightmost coordinate. These events are
stored in an event-queue ordered by the x-coordinate. For each event we add the
segment to the sweep line status, if the event is a leftmost coordinate. The new
active segment will be added according to its intersection with the sweep line L
and will be tested for intersections with its neighbours. If there is an intersection,
the intersection coordinate will be added to the event-queue. If the event is a
rightmost coordinate, the segment will be removed from the sweep line status and
the neighbours of the removed segment will be checked for intersections, if not done
at some state already. Again, if there is an intersection it will be added to the event-
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queue. If the event is an intersection of two segments, we report the intersection
and the two segments will be swapped in the order of segments in the status and
we will check for intersections with the new neighbours, if not done already.

If the event-queue is empty, we have swept the whole plane from left to right
and the set of active events is empty. As the invariant of this algorithm, we can
guarantee that every crossing to the left of the sweep line L has been detected.
Note that during the sweep each pair of neighboured segments have to be tested
for intersections exactly once.

As data structures for the event queue and the y-structure balanced binary search
trees are used. This can be done, since a total ordering can be enforced. Thereby
adding or removing events can be done in O(log n) time as well as the search
neighbour operation. The total running time is O((n + k) log n) where n is the
number of segments and k is the number of intersections.

3.5.2 Computation of the ply-number

Recall the initial problem: Given a straight-line drawing I' of a graph G = (V| F)
in the plane, we can easily compute the set of ply-disks D = {D,|v € V}. Every
disk D, is associated with the vertex v at position (z,,¥,) and radius r,. The
ply-number of the drawing is the maximum number of overlapping ply-disks in the
plane.

We can reformulate this problem such that the plane-sweep algorithm computes
the ply-number. Therefore we state some observations on the ply-number of draw-
ings. Sweeping upon a set of ply-disks along the z-coorinate, the ply-number can
change, if we observe a leftmost coordinate of a ply-disk, the rightmost coordi-
nate of a ply-disk or at an intersection of two ply-disks, as suggested in Figure
. Formally, the ply-value can change whenever a disk D, starts at (x, — .y, 4,),
ends at (z, + 7,,¥,) or if there is an intersection of two disks. Each disk can be
represented by two halfcircles by cutting the disk at a horizontal line through the
center. Thereby one halfcircle corresponds to the top part of the ply-disk and one
halfcircle to the bottom part. Observe that the two halfcircles corresponding to
one ply-disk enclose a region where the ply-value is at least one.

In contrast to line-segment intersection, we are now looking at halfcircle intersec-
tion, where a halfcircle is either a top or a bottom part of a ply-disk. The sweep-line
status is represented as an ordered list of opening and closing halfcircles along the
vertical sweep line L in a ply drawing. For each state at a fixed x-coordinate every
halfcircle has a specific y-coordinate and the order if fixed. For each halfcircle we
remember the current ply-value above and below. Note that the ply-value above
and below any halfcircle differs by exactly one. The ply-values associated with a
halfcircle can change, if there is an intersection and thereby a reordering of the half-
circles or if halfcircles are inserted or removed from the sweep-line status. In any
state between two events the order of halfcircles is fixed and thereby the ply-value
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Figure 3.17: The ply-number for a drawing can change at the leftmost coordinate, at the
rightmost coordinate or if two ply-disks intersect. The ply-values for the different regions

are given.

can be determined by counting top and bottom halfcircles. The ply-value cannot
change between any two events. The ply-number of the drawing is the maximum
number over all ply-values as presented in Figure |3.18, Note that two disks might
intersect if and only if any two corresponding halfcircles occur next to each other
in the vertical structure. Furthermore, any two disks D, and D, can intersect at
most twice. To keep the computational effort minimal the intersection of disks is
calculated once the first time any two halfcircles appear next to each other in the
vertical structure.

Now we will describe the type of events that occur during the plane-sweep algo-
rithm and how the sweep line status is updated at these events.

A start event is defined at the leftmost coordinate for every ply-disk D,. For
the sweep line status we insert two halfcircles, one corresponding to the top part of
the ply-disk (H!) and one corresponding to the bottom part of the ply-disk (H?).
Both ply-disks have the same y—coordinate in the sweep line status and we define
the top part to be above the bottom part consistently to the order of intersections
along the sweep line L. For each halfcircle we associate a current ply-value. For
newly inserted halfcircles, the ply-value in between is defined as the ply-value above
(below respectively) plus one, i.e presented in Figure . The halfcircles are tested
for intersections with their immediate neighbours. If there is an intersection, this
intersection is added as an intersection event. As a special case, it might occur,
that there already exists another halfcircle sharing the same (x,y)-coordinates as
the leftmost coordinate of the ply-disk. In this scenario, there exists an implicit
intersection event at the same coordinates as the start event. We add the new
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Figure 3.18: The status of the sweep line L contains the active halficrcles, partially drawn
in red and the ply-number associated to the regions between the halfcircles. Note that
the ply-value right above and below a halfcircle can differ at most by 1 and the value is
always 0 at the top and the bottom of L.

»

i
Figure 3.19: At a start event associated with the ply-disk D,,, we insert the two halfcircles

H! and Hfj into the sweep line status. The former ply-value p of the region is increased
to p 4+ 1 between the two halfcircles.
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Figure 3.20: The start event corresponds to an intersection event of H! and either H? or
H!. The newly inserted halfcircles are placed above (below respectively) the halfcircles
that are present at the corresponding y-coordinate. The ply-values of the halfcircles in
between are increased by one.

halfcircles by inserting them above (below respectively) the present halfcircles as
illustrated in Figure [3.20, The ply-values of the halfcircles between the newly
inserted are increased by one, whereas the new ply-values are set by the regions
directly above and below.

An end event is defined as the rightmost coordinate x, + r, for any disk D,.
At the rightmost coordinate of a ply-disk, the region admitting a ply-value p+ 1 is
enclosed and the remaining region beyond the removed ply-disk has the ply-value p
as shown in Figure . Accordingly, we remove the corresponding halfcircles H!
and H? from the sweep line status. To ensure consistency, the newly neighboured
halfcircles are tested for intersections. Ideally the halfcircles to remove are already
consecutive in the sweep line status. It might happen that there exist halfcircles
in between, for example if the z-coordinate is shared by an intersection event with
either H! or H?. For any halfcircle crossing an end event, we decrease its ply-value
as presented in Figure Further intersections with a removed halfcircle are
neglected.

Whenever two halfcircles intersect, there is an intersection event. An inter-
section relates to a swap of halfcircles in the sweep line status. Furthermore, at
such an event the ply-value either increases or decreases dependent on the type of
intersection. First we will describe the intersection of two bottom halfcircles. The
update of the stored ply-values depend on the relative positioning of the sweep line
status. Intersecting the halfcircle H? with the halfcircle H?, they have to occur next
to each other in the sweep line status. Let H® be w.l.o.g. below H’, then during
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Figure 3.21: At an end event associated with the ply-disk D,, we remove the two halfcir-
cles H: and H? from the sweep line status. This encloses the region with ply-value p 4 1,
leaving the ply-value p.
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Figure 3.22: An end event is executed even if there is a halfcircle H? in between. The ply-
values of the halfcircle between HY and H? are decreased by one, since it either intersects
H! or HY. If we encounter an intersection event with any of the removed halfcircles, it
will be neglected later.
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Figure 3.23: An event of two intersecting botom halfcircles is drawn, where H? is below
H? in the sweep line structure. For each halfcircle the ply-value below and above is stored.
Note that this value has to be consistent during all computational steps. The halfcircle
below enters the ply-disk D, and thereby its ply-values increase by one at this intersection.
Respectively the ply-values of the halfcircle H? decrease by one. By symmetry this applies
to top halfcircles intersecting each other too, where the relative positioning in the sweep
line status is reversed.

the intersection, the halfcircle H? enters the ply-disk D, and thus the ply-values
stored for H® increase by one. Symmetrically the ply-values stored for H® decrease
by one. By symmetry this applies to the top halfcircles intersecting each other too,
where the relative positioning in the sweep line status is reversed.

The intersection of bottom and top halfcircles again depend on their relative
positioning. A bottom halfcircle intersecting a top halfcircle from below correspond
to an intersection of ply-disks at the rightmost coordinate of their intersection.
Therefore, the ply-value associated to the halfcircle is reduced. The top halfcircle
in this case reduces its ply-values too, for the same reason. An illustration of this
case is shown in Figure [3.24] A bottom halfcircle intersecting a top halfcircle from
above, enters the ply-disk corresponding to the top halfcircle and thereby increases
its ply-values. Similarly the top halfcircle enters the ply-disk corresponding to the
bottom halfcircle. Both ply-values increase as presented in Figure 3.25] Note that
a swap of halfcircles is possible if and only if the halfcircles are consecutive in the
sweep line status.

In the event-queue the events are stored and sorted by their z-coordinate of
occurrence. In general positioning the x-coordinates are unique for the events,
where in our case there can be several events at the same coordinate. If there are
several events at the same coordinate, we execute the different types in the following
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Figure 3.24: The intersection of a bottom halfcircle and a top halfcircle, where the relative
positioning of the bottom halfcircle is below the top halfcircle. Here both halfcircles
decrease their ply-values.
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Figure 3.25: A bottom halfcircle intersecting a top halfcircle from above. In this case the
ply-values for both halfcircles increase, since they form a new overlap of ply-disks.
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Figure 3.26: Several events at the same (x, y)-coordinates are taken care of in the following

order: We prioritize end-events and then we solve all intersection events and at last we
insert new halfcircles according to the start event.

order: end, intersection, start as presented in Figure[3.26] We prioritize end events
since we simply remove both components, even if in the actual state there are other
halfcircles in between. We decrease the ply-value at each intermediate segment by
one. We confirm this rule by the definition of "open" ply-disks, such that even if
there is an intersection at the corresponding x—coordinate which might increase
the ply-number, we do not want to have the ending disk to be involved.

We have no proper way to determine which intersection event should be executed
first, when we identify them. There might be several intersection events sharing
the same coordinates. Therefore we allow intersection events to be executed if and
only if the corresponding halfcircles are adjacent in the sweep line status. Assume
we have the intersection event intersecting the two halfcircles H, and H, but in
the current sweep line status there exists another halfcircle H,, in between. In
that case, we can conclude that there exists the intersection event intersecting the
intermediate halfcircle H,, with either H, or H, and the intersection events are not
ordered correctly in the event-queue. As we describe in the following Section [3.5.4]
this can have several reasons. If we encounter such an intersection event, we cannot
execute in the actual status, we linearly search for the next event and try the
postponed event again at the next state of the sweep-line. If we have several events
at the same z-coordinate, especially if we have several events at the same (z,y)-
coordinate, we want to state that the order of execution is irrelevant as long as we
only swap neighboured halfcircles.

The third priority are start events and internally the start events are ordered by
the radii of the corresponding ply-disks. A smaller radius has higher priority than
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file layout zoom mode optimize

ply number: 3

Figure 3.27: A graph with 4 vertices is shown. The ply-disks of the vertices 1 to 3 start
at the same coordinate.

a larger radius. The rule to add new halfcircles to the sweep line status is to check
for existing halfcircles at the same y—coordinate and insert the top halfcircle above
and the bottom halfcircle below respectively. The ply-values for each halfcircle in
between is increased by one and we set the ply-values for the inserted halfcircles
accordingly. This requires the start-events to be ordered internally by their radii
as shown in Figure [3.27]

3.5.3 Computing Intersections

Let the disk D, be the ply-disk with center v = (u,,u,) and radius r, intersecting
the ply-disk D, with center v. Furthermore, let w.l.o.g. be u, > v, and by dist
we denote the distance between u and v. Note that r, + r, > dist, since otherwise
the circles are disjoint, as well as dist + r, > r, and dist + r, > r, since otherwise
one disk is in the interior of the other or if equality holds there is exactly one
intersection point, which we neglect in the computation.

Note that for any two intersecting circles there exist two right-angled triangles,
one with the lengths ¢, r, and a, and the second one with the lengths (dist — a), ¢
and 7, as shown in Figure |3.2§]
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Figure 3.28: Two intersecting disks form two right triangles, one with the lengths r,, ¢ and
a (blue) and the second one with the length r,, ¢ and (dist — a) (green).

For the two triangles we get the formulas:

Solving the equations to ¢? and plugging in yields:

r2 —a® =12 — (dist — a)?
r2 — 12 4 dist’

< —
“ 2 - dist

Furthermore, we can determine ¢ as:

NG

For the computation of the intersections we use the vector 20 which we scale to
a
have the length a. The vector @ = U + b - — denotes the central coordinate

is
between the two intersection points of the disks D, and D,. As a last step, we

%
construct an orthonormal vector & with ||k|| =1 and & x ub = 0 and scale it to
have the length ¢. The intersections i; and i, can now be described as
_>
2'1’2 - ?tf . h

and the relative positioning of the intersections regarding the center of the disks
determine, whether the corresponding top or bottom halfcircles will intersect.
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Figure 3.29: A complete graph K3 drawn as an equilateral triangle admits a drawing with
ply-number 1. Furthermore, it requires irrational coordinates which can not be represented
by common datatypes. Therefore the algorithm to compute the ply-number computes the
ply-number of two for any drawing of Kj.

3.5.4 Precision Problems & Debugging

Naturally thinking of an easy case to start with are graphs that admit a drawing
with a ply-number of 1. This case is easy to describe and points out the difficulty of
computing the ply-number: A graph that admits a drawing with ply-number 1 has
no overlapping ply-disks and can be drawn such that every edge has equal length [
and any two vertices are at a distance of at least [.

Suppose that there exists a drawing [ and a vertex v with different edge lengths
[(u,v)| = 11 and |(w,v)| = I and let w.lo.g l; > l. 2 is a lower bound on the
ply-disk D,, and since % + 152 > [y the ply-disks D, and D,, intersect and the ply-
number of I' is > 2. Furthermore, since the radius for any ply-disk D, is %, the
distance dist(v,w) between any two vertices has to be > [.

The complete graph K3 admits a drawing with ply-number 1, since the vertices
can be placed on an equilateral triangle. Computing a drawing of K3 with the ver-
tices u, v, and w, some coordinates must be irrational, since otherwise the condition
dist(u, v) = dist(u, w) = dist(v, w) is violated as shown in Figure [3.29]

Since a computer is limited in the representation of numbers, we run into pre-
cision problems, since the computer would often need an infinite precision to rep-
resent a drawing with ply-number 1. Additionally, the calculation of coordinates
for intersection points of circles involves precise arithmetic and is likely to result in
irrational coordinates.

During the implementation of the plane sweep algorithm we experienced a num-
ber of precision errors in the sweep line status. To check for consistency at the
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Element 3 : TOP 10, current Y position: 1307.011187049395
Element 4 : TOP 7, current Y position: 1295.4695805456354
Element 5 : TOP 1, current Y position: 1235.4794682409479
Element 6 : BOT 10, current Y position: 1163.82255318498

Element 7 : TOP 66, current Y position: 1163.8225531849826
Element 8 : TOP 83, current Y position: 976.3626815537044
Element 9 : BOT 39, current Y position: 959.5613407831479

Figure 3.30: The actual event is an intersection between HY, and HE,. The execution of
the intersection event and thereby the swap of these halfcircles will recover the correct
order of the halfcircles, whereas the current status is inconsistent.

Element 87 : BOT 43, current
Element 88 : TOP 23, current
Element 89 : BOT 62, current
>>Element 90 : TOP 28, current
Element 91 : BOT 72, current
>>Element 92 : TOP 99, current
Element 93 : BOT 9, current
Element 94 : TOP 47, current
Element 95 : BOT 22, current
Element 96 : TOP 61, current

position: 969.0000050810148
position: 969.0000050810147
position: 969.0000027201414
position: 969.0000027201404 <<
position: 969.000002720141
position: 969.0000027201406 <<
position: 969.0000013131587
position: 969.0000013131586
position: 968.9999972798596
position: 968.9999972798594

KRR KRR R <<

Figure 3.31: The current intersection event indicates an intersection between Hig and H{,
but there still exists the halfcircle H2,. The next event solves this issue, since it is the
event indicating the intersection between Hiq and H2,.

current status, we compute the y-coordinates for every halfcircle. As an example
we present a part of the sweep line status where the current event is an intersection
event between the two halfcircles HY, and Hts. By definition of an intersection
point, the (x,y)-coordinates of both halfcircles have to be equal, whereas the top
halfcircle already admits a higher y—coordinate. One of two reasons might have
happened. FEither the x- or the y-coordinate is not exact due to rounding. The
current status is shown in Figure [3.30]

More importantly, these precision errors can induce events which cannot be han-
dled consistently, for example an intersection-event that requires a swap of halfcir-
cles, which are not neighboured in the current state. In the following scenario, the
current intersection event indicates an intersection between Hig and HE, but there
still exists the halfcircle HZ, in between. Additionally, the y—coordinate suggests
that the halfcircle HZ, should be above Hig.

Our solution to this scenario is linearly searching for the closest consistent event.
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This event will be executed and we jump back to the unresolved one. We repeat
this until it can be resolved. The following intersection event swaps Hig and HZ,,
so if we revisit the initial intersection event, it is now solvable. The number of
revisited events will be tracked as postponed events. In the results section we
evaluate this delay and describe graphs where this periodically occurs.

During the plane-sweep algorithm halfcircles are checked for intersections, once
they occur next to each other in the sweep line status. Here another type of precision
problem might occur, if we encounter two halfcircles next to each other. It might
have happened that their first intersection has been at a previous x-coordinate, if
there was a rounding error while computing the intersection event which causes the
halfcircles to be next to each other. When encountering two halfcircles for the first
time, we allow a short distance before the actual sweepline. The distance is set to
0.0001. This range seems to be sufficient, since the precision errors we observed
were around 0.00001. A similar problem involves the leftmost and the rightmost
coordinates of the ply-disk. If there is an intersection exactly at the start coordinate
we cannot distinguish whether there is an intersection with the bottom or top part
of the halfcircles. Ultimately we want to enclose these halfcircles entering the
newly inserted ply-disk between the corresponding halfcircles. Therefore, we allow
intersections with the top halfcircle, if the other halfcircle is above in the sweep-
line status and allow an intersection with the bottom halfcircle if it is below in the
sweep-line status, respectively.

Previous Applications

In previous applications [7), B0] precision errors were tackled by increasing the pre-
cision using the Apfloat library. The apfloat library allows to define the number
of digits, which will be calculated to be precise. This allows calculation on up
to 1000 digit decimal precision. On the downside these arithmetics require high
computational effort and long runtimes.

These implementations suggested that if there is an inconsistent intersection
event, there had to be a precision error. To determine the correct order of intersec-
tion events, the decimal precision of the coordinates were iteratively increased in
[7]. In [30] the decimal precision was set to 20 digits and between the events they
added consistency tests. If an intersection event was encountered, they recalculate
possible intersections to resolve this error. The main issue in these implementations
occurs, if by a rounding error, the z—coordinate of an intersection is incorrect.

Furthermore, they do only allow the removal of neighboured halfcircles if an end
event is queued, this favours intersection events where in our implementation these
intersection events will be neglected. In fact, we encountered some drawn instances,
where the ply-numbers by the two computations differ.
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3.6 Experiments

We applied some experiments to evaluate our algorithms. We compare the different
layouts a user can choose from regarding to the ply-number of the resulting drawing
on a variety of different graphs. We start with a description of the graph sets we
used, stating the number of graphs, the number of vertices and the density, meaning
the edge to node ratio. Additionally, we compare our implementation in terms of
ply-number, running time, and the number of events executed during the plane-
sweep algorithm with the previous implementation by De Luca et al. [30]. As a
third part, we present and evaluate an approach to minimize the ply-number for a
given drawing automatically.

3.6.1 Datasets

Rome graphs The first set is the set of graph also known as Rome graphs. The
Rome graphs are a large set of graphs publicly available at [84]. They have been
introduced to provide benchmark data for graph drawing algorithms [95]. The set
consists of roughly 11500 graphs, where each graph consists of 10 to 100 vertices.
The ratio of edges per node differs from 1 to 2. The files only contain structural
information so we have to compute an initial layout. We use this set to compare
the different layouts on sparse graphs.

For each layout we will compute the ply-number to present an intuition to the
different layouts on sparse graphs and the implications on the ply-number. Addi-
tionally, we present some statistics on the computational speed of the algorithm as
well as the number of events which are executed during the plane-sweep algorithm.
In the following we will refer to this set of graphs as ROMEdata.

Randomly generated graphs The second set includes 60 graphs with 100 vertices
each. The set includes 5 trees with low and 5 trees with high degree inner vertices.
For the other graphs the number of edges is set to 150, 250, 500, 650, 800, 1000,
1200, 1500, 2000 and 4000. These graphs are assigned randomly, meaning we choose
two vertices randomly and add the edge between them until the number of edges is
reached. During this process we maintain the simplicity of the graph. This set of
graphs induces a higher variety in terms of density than the ROMEdata. In the
following we refer to this set as RANDdata.

FM3 drawings The third set will be referred to as FM3data. This set of graphs
was kindly provided by the authors of the experimental study [30]. Each graph was
drawn using the fast multipole multilevel method (FM3) of Hachul and Jiinger [53]
which is among the most effective force-directed algorithms in the literature [54].
The FM3 produces drawings with low ply-numbers on average and was one of the
best performing algorithms in the experimental study by De Luca et al. [30]. Since
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this set was used in previous applications, we use this set to compare computation
time and to evaluate our optimization approach and whether we can identify draw-
ings having a smaller ply-number than the drawings by the FM3. Furthermore, we
observed that the FM3 drawings have a small average edge length. The average
edge length of these drawings is close to 50 and all vertices are placed on integer co-
ordinates. We suggest that small average edge lengths induce a higher probability
of precision errors and thereby computationally more complicated instances.

The FM3data can be subdivided into three graph classes. It contains 50 cater-
pillars. Recall that a caterpillar is defined as a path of vertices and for each vertex
at the path there might be some degree one vertices connected to it. The degree
one vertices in the caterpillar are called legs or leafs. Caterpillars with n vertices
have n — 1 edges. The caterpillars have 250, 300, 350, 400, and 450 vertices, where
for each number of vertices there are 10 caterpillars in the set.

The second subset of FM3data is a set of planar graphs. Again the number of
vertices is one of 250, 300, 350, 400 and 450 where for each number of vertices there
exist 10 graphs for the density 1.5 and the density of 2 each.

The largest and most diverse subset are the general graphs. The graphs are
simple, connected and the edges are chosen by a uniform random distribution.
There are no further restrictions to the graphs. The number of vertices is again
from 250 to 400 whereas the densities vary from 1.5 to 2.5.

3.6.2 Ply-number for different layouts

We compare the different layouts provided by our tool, namely organic, circular,
and random on the ROMEdata. Plotting the ply-number of the drawing against
the number of vertices shows a large variance throughout graphs with the same
number of vertices in the organic and circular layout. We can observe a strong
linear correlation between the number of vertices and the ply-number in the random
placement of the vertices, cf. Figure [3.32

The same holds true for the relation between the density of the graphs and the
ply-number of their drawings. Drawings of graphs with the organic layout have
the smallest ply-numbers overall i.e. less than 13, whereas the drawings with the
circular layout perform a little weaker i.e. ply-numbers less than 25. In both layouts
the ply-number and the number of vertices or the density do not suggest any strong
correlation.

Comparing the ply-number regarding the density for the organic or circular layout
has no significance on this set of graphs, since the variance is high. The random
placement shows a large variance independent of the density of the graphs.

On tree-like graphs, meaning graphs with a density close to 1, the circular and the
organic layouts perform very similar, whereas the organic layout produces drawings
with lower ply-number on average on graphs with density between 1.2 and 1.8.
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Figure 3.32: The graphs of ROMEdata are drawn with different layouts, namely organic,
circular, and random. For each layout, the ply-number of the drawing is plotted against
the number of vertices (left) and the density of the graph (right). We can observe a
strong correlation between the ply-number of the drawing and the number of vertices in
the random layout, and a weak correlation in the circular style.
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Figure 3.33: The number of events during the computation of the ply-number is shown for
the different layouts. The variance in the drawings by the organic layout is low, whereas
the variance in the drawings by the random layout is high. Clearly the organic layout
has the lowest average number of events during the plane-sweep algorithm. The exact
medians of intersection events are 212 for the organic, 432 for the circular, and 1419 for
the random layout.

In this paragraph we evaluate the Rome graphs with focus on the number of
events and the computation time. Note that the total number of events can be
determined as the number of start events plus the number of end events plus the
number of intersections. The number of start and end events is equal to the number
of vertices in the graph and thereby the same for each layout algorithm. The
differences are determined only by the number of intersection events. We present
the variance in the number of intersection events for the different layout styles in
Figure [3.33]

The computation time highly depends on the number of intersection events. This
number highly differs throughout the different layouts. We indicate the range of
intersection events, as well as the median and the upper and lower quartiles in the
figure. The error bars mark the maximum and the minimum number of events.
We can observe that the variance in the organic layout is small, in comparison to
the random layout, which has a large variance. The circular layout has a higher
number of intersection events on average in comparison to the organic layout.

On ROMEdata the time spent computing the ply-number for each drawing
ranges from < 1 to 27 milliseconds, where a drawing in the organic layout takes
0.68 milliseconds on average, a drawing in the circular layout 1.2 milliseconds and
a drawing in the random layout on average 3.3 milliseconds.

In this paragraph we evaluate the randomly generated graphs with focus on
the number of events and the computation time. In the random data we have
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a larger variety in densities. We compute the ply-number on the RANDdata.
We present the average numbers for different densities in Table 3.1 The table is
sorted by different densities and the average ply-numbers for the different layouts
are reported. Additionally, we state computation time and the total number of
events.

In the table we can see that the computation time is proportional to the number
of events. Whereas we observe a relation of roughly 1000 events need 1.5 millisec-
onds to compute. The number of events for all layouts increases by the increasing
densities. Overall the random layout has the highest number of events on average
and the organic layout has an equal number of events in high densities. Throughout
the different densities, the random layout has an almost constant number of events
and computation time. At densities larger than 8 the circular layout meets the
theoretical upper bound of the ply-number of ‘%' and in these graphs the number
of postponed events is noteworthy. While it can be neglected in the organic and
random layout, the number of postponed events in the circular layout is conse-
quential and highly affects the computation time. In the circular layout the highly
symmetric placement of the vertices causes many events to share an x-coordinate.
The number of postponed events, sequentially counts all events which cannot be
processed instantly and thereby tends to highly exceed the number of total events.
Additionally, we report the maximal number of consecutively postponed events in-
dicating the maximal distance to the first solvable event. The average number of
the linear distance is presented as the value in brackets.

We can observe that the spring-embedding algorithms produce drawings with low
ply-number on sparse graphs, whereas on graphs with a high density the computed
ply-numbers are very similar to just randomly placing the vertices. On the dense
graphs the circular layout meets the theoretical upper bound of % Even though
the number of vertices is constant, the ply-number increases with the density in the
random layout.

To confirm the accuracy of our ply-computation algorithm, we compare our re-
sults to the previous implementation of De Luca et al. [30]. All computations were
done on the initial layout, since the previous computation does not support the
change of layouts. In all tested graphs the ply-number was equal, whereas we can
observe a large difference in the number of events and the computation time. To
compare the computation time, the average of the complete set of RANDdata
in our implementation is 8.8 milliseconds. This is a significant improvement in
comparison to the average computation time of the implementation [30] which was
around 27 seconds. The number of events on average differs by the factor of ~ 3,
namely on average over RANDdata by the factor of 2.8.
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Table 3.1: The table presents the results of the ply-computation on RANDdata. For
each density we tested 5 graphs where every graph consists of exactly 100 vertices. We
can observe a strong correlation between the number of events and the computation time.
The number of postponed events increases with the density in the circular layout.

Density Layout Ply Time in ms Events total postponed (max)
Organic | 4.8 1.2 475.2 0 (0)

1 Circular | 3.8 1 408 0 (0)
Random | 40.6 8.8 5893.8 0 (0)
Organic | 11.6 2.4 1404 0 (0)

1.5 Circular | 22.4 5.6 2736.8 0 (0)
Random | 45.4 11 6598 0 (0)
Organic | 21 5.2 3321.2 0 (0)

25  Circular | 36.4 11 6070 0 (0)
Random | 56.4 17 8122.8 0 (0)
Organic | 41.8 10.8 6584.8 0 (0)

5 Circular | 46 10 8722.8 16.4 (7)
Random | 71 16 9366.8 0 (0)
Organic | 48 10.6 7556.4 0 (0)

6.5 Circular | 47.8 13 9149.2 4.8 (4)
Random | 78.8 15 9603.6 0 (0)
Organic | 60.8 10.8 8654.4 0 (0)

8 Circular | 48.8 12 9357.6 27.2 (14)
Random | 80.4 13 9721.6 0 (0)
Organic | 69.4 14.6 9149.2 0 (0)

10 Circular | 49.2 14 9547.6 66.2 (21)
Random | 82.2 14 9818.4 0 (0)
Organic | 76.8 11 9607.2 0 (0)

12 Circular | 50 12 9685.6 118.8 (30)
Random | 85 15 9856.4 0 (0)
Organic | 84.4 13.6 9767.2 0 (0)

15 Circular | 50 16 9772.4 539.6 (68) <«
Random | 87.8 16 9936 0 (0)
Organic | 91 16.2 9895.2 0 (0)

20 Circular | 50 13 9860 761.4 (79) «
Random | 92.2 15 10004 0 (0)
Organic | 95.8 15.2 10055.2 0 (0)

40 Circular | 50 31 9991.2 16349 (438) «
Random | 96.8 14 10085 0 (0)
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Figure 3.34: The graphs of RANDdata ordered by their density are plotted against
the ply-number of the drawing. We observe that the organic layout produces low ply-
numbers for low densities, whereas at higher densities the circular layout outperforms the
organic layout. In very dense graphs the organic layout performs evenly as the random
layout.
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3.6.3 Comparison on the FM3 drawing dataset

The FM3data were kindly provided by the authors of [30] and were found to
be drawings with low ply-number. We take this set as benchmark to compare
the implementations. We will present results in form of the number of events
for the two implementations and state the average computation time. In the two
implementations the ply-numbers are exactly the same, which is an improvement
to our publication [56].

To compare the algorithms, the Apfloat decimal precision was set to 20 digits.
This value was used in the experiments of [30]. To clarify the behaviour, we present
the data split by the type of graphs and according to their density.

Caterpillars There are 50 caterpillars in FM3data, ranging in the number of
vertices from 250 to 450. As a reminder, caterpillars are graphs, which consist of
a path called the spine and degree one vertices which are called legs connected to
vertices along the path. An example is presented in Figure [3.35] The drawings
of the caterpillars are produced by using the FM3 method. We present the re-
sults of the computation in Table where we compare our implementation to the
implementation by [30]. First of all, we want to point out the difference in com-
putation time and the total number of events. Arguing that the number of events
should be constant for a given drawing, we can explain the difference in num-
ber of events by the different approaches to handle inconsistencies. The previous
algorithm [30] introduces a number of redundant events to detect and handle in-
consistencies. As a summary, our implementation clearly reduces the computation
for the ply-number from seconds to milliseconds.

To compare the FM3 layout method to the previous methods we present the
average ply-number and the average computation time in Table [3.5 on the opti-
mization section. We can observe that in general the FM3 layout produces low
ply-numbers on this set of graphs, similar to the organic and the circular layout.
The three layout methods are also comparable in computation time.

Planar graphs In FM3data are 50 planar graphs ranging again from 250 to 450
vertices and the densities between 1.5 and 2. Presenting the results in dependency
on the density, we can again observe the factor ~ 3 difference in the number of
events and the reduction of the computation time from seconds to milliseconds.
We split the density at 1.7 and the results are shown in Table . The average
ply-number indicates a correlation to the density rather than the number of vertices
of the graph. To show that the FM3 and the organic layout perform equally well
on this set, we present Figure [3.36] The circular layout performs slightly weaker
on these graphs whereas the performance was similar on the set of caterpillars.
For low densities the circular layout produces higher ply drawings, where the
organic layout or the FM3 method produces similar ply-numbers. On average the
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Figure 3.35: A caterpillar consists of a path called the spine and degree one vertices
attached to the vertices along the spine which are called legs. This graph consists of 18
vertices.

Table 3.2: The caterpillars of FM3data. Each subset with 250 to 450 vertices contains
10 graphs. During all experiments the ply-numbers for both implementations were the
same. The table presents average values for each set of graphs.
[30] | Our Tool
Vertices Ply | Events Time(ms) | Events Time(ms)

250 3.8 | 2692.4 1328.1 1122.6 3.5

300 4.3 | 35104 1831.9 1430 1.6

350 4.5 | 3827 1883.7 1602.4 1.9

400 4.6 | 4564.9 2291.5 1879.3 2.4

450 4.3 | 5032.8 2581 2110 2.3

drawings generated by FM3 have slightly higher ply than the organic layout. The
average ply-number in the organic layout is 9 for graphs with density < 1.7 and 9.7
for higher density. Again, note the difference in number of events and computation
time, keeping the accuracy of the computation on the same level.

General graphs The remaining subset of FM3data consists of graphs without
further requirements. They have 250 to 450 vertices and the densities vary from
1.5 to 2.5. During the computation of the ply-number on this set, we encountered
one instance where the ply-number of the two implementations differed by one.
Our explanation for this circumstance is our preference to handle end-events first.
In such a case, our algorithm tends to underestimate the ply-number, since an
intersection event at the same coordinate might increase the ply-number by one,
whereas the end-event reduces the ply-number. To conclude this paragraph, we
present the interesting result on different layouts on the third subset of FM3data
presented in Figure [3.37l Note that again the ply-numbers on FM3 and organic
layout are very similar. Observe that the stairs in the plot indicate the jump
between the densities from 1.5 to 2.5 for each set of graphs.
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Table 3.3: The planar graphs of FM3data. The values show the average results for each
subset. Both implementations always computed the same ply-numbers.

[30] | Our Tool
Density Ply | Events Time(ms) | Events Time(ms)

< 1.7 9.6 | 9878.6 8444.2 3434.6 3.7
> 1.7 11.4 | 9625.9 9625.9 3609.4 3.8
FM3data planar
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Figure 3.36: For each planar graph of FM3data the computed ply-numbers for each of
the three layouts is plotted. Note that the organic and the FM3 drawings have similar
ply-numbers, while the circular layout produces higher ply-numbers on low density graphs.

Table 3.4: The average results of the general graphs of FM3data are presented. Note
that the ply-numbers in brackets indicate a different result of the algorithms. These cases
have a high number of postponed events which points to a difficult instance to compute.

[30] Our Tool
Density Vertices Ply Events Time(ms) | Events Time(ms)
250 18 18334 23955 6430 7.4
300 19.8 25688.3 38454.8 8950.8 13.2
1.5 350 23.7 34140.5 52829.1 | 11949.7 15.3
400 254 43543.4 72928.5 15227 19.2
450 28 (27.9) | 55643.2  100653.2 | 19395.6 31.6
250 38.1 47248 92192.7 | 16539.1 21.5
300 45.4 68070.5  147113.6 | 23892.3 33.2
2.5 350 51.4 90943.4  217999.9 | 31850.1 42.6
400 59.3 118188.7  309601.8 | 40606.9 53.1
450 64.3 148973.3  426993.5 | 51640.4 69.4
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Figure 3.37: The set of general graphs can be subdivided in 5 subsets consisting of graphs
with 200, 250, ... , 450 vertices. Each subset can be divided in 10 graphs with density
1.5 and 10 graphs with density 2.5. The figure indicates that the FM3 algorithm and the
organic layout produce similar drawings regarding the ply-number.
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3.6.4 Ply Minimization

We observed that the FM3 and the organic layout produce drawings with low ply-
number on sparse graphs, and the circular layout produces low ply drawings on
dense graphs. An interesting question to ask is whether we can identify drawings
which have a lower ply-number for a given graph in comparison to the previous
methods. In the following we present our strategies to create drawings with low ply-
numbers whereas we can give no guarantees if that is the minimal ply-number over
all drawings for a graph. Afterwards we present the results on the evaluation of
our strategies on FM3data and ROMEdata.

Strategies

Since we have a guaranteed upper bound of ply-number |21| for any graph, we

use this upper bound and apply the circular layout, whenever we cannot identify
drawings whose ply-numbers are smaller than ‘—‘;l

For the interactivity in our tool, we present a workflow to achieve a drawing with
low ply-number which is directly accessible. We start with the current drawing
of the graph, preferably with the organic layout, since it has presented itself to
produce drawings with low ply-number on sparse graphs. We observe that the ply-
number represents equal edge-lengths distributions and equal vertex distributions
in the plane. Following these observations, we tuned a new spring embedder based
on Fruchterman and Reingold [47], similar as it was suggested in [30]. We tuned
the parameters to produce drawings with less ply by strengthening the repulsive
forces between unconnected vertices. We can show that on sparse graphs our tuned
spring embedding algorithm outputs drawings with lower ply-number on average
than the organic layout of the FM3 method on sparse graphs. On dense graphs
we have the guaranteed upper bound. Within the tool we can iterate several steps
and try to reduce the ply-number of the drawing.

Having a closer look to these drawings, we can observe that in many cases there
exist only a few regions which contribute to the maximum ply-number of the draw-
ing. The ply-number can often be reduced by moving some vertices locally. We
could identify some rules for degree one and two vertices, but beyond these we
could not identify a deterministic way to move the vertices, since local changes
might affect other ply-regions far away.

Results

On the ROMEdata we can present the advantages of our methods in comparison
to the organic layout. On average we could reduce the ply-number from 6.3 to 5.1
in the modified setting. The achieved ply-numbers for these graphs are presented
in Figure The spring embedder to create drawings with low ply-number is
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Figure 3.38: For each graph in the ROMEdata set the organic and the improved ply-
number are illustrated. The graphs are ordered by the number of vertices.

Table 3.5: The average values of the ply-computation for the different layouts on the
subset of caterpillars on FM3data are shown. We can observe that on these graphs
the three layout methods produce very similar ply-numbers whereas we can reduce the
ply-number by one on average if we try to minimize the ply-number. We cannot state
the computation time for the optimization approach, since our approach computes several
layouts for every graph.

Layout Average ply-number Average time in ms
FM3 4.3 3.14
Organic 3.92 4

Circular 4.24 3.68
Random 120 101
Optimized 3.24

executed several times with 500 iterations each. Thereby, we do not state the
computation time.

On RANDdata the results can be seen in Figure [3.34. For dense graphs, we
perform equally to the circular layout, whereas between the densities of 1.5 and 5
we can improve in comparison to the other layouts.

In the experimental study of the ply-number [30], one of the results was the
strength of the FM3 algorithm to produce low ply drawings. To test our ply
minimization approach, we evaluate our algorithm on FM3data and compare the
ply-number to the results of our workflow.

The set of caterpillars, which had an average ply-number of 4.3 with the FM3

drawn graphs, we improved with our approach to an average ply-number of 3.3 as
presented in Table [3.5]

On the set of planar graphs, we could improve the ply-number on average from
10.4 to 8.8 and on the set of general graphs we could improve from 37.3 to 36.7.
Note that overall we could improve the ply-number by 1, which on sparse graphs
corresponds to an improvement of about 20 %. The results of our experiments are
presented in Figure [3.39
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Figure 3.39: The plots present the minimization results on FM3data. Note that the
axis change in scale throughout the plots. @ the ply-number of the caterpillars. the
ply-number of the planar graphs. the ply-number of the general graphs.

3.7 Discussion & Conclusion

In this section we will discuss our tool in terms of usability, computation of the
ply-number in different layouts, improvement and comparison to previous imple-
mentations as well as the effectiveness of our ply-minimization approaches. As a
last paragraph we conclude the advantages of our tool.

We have developed an intuitive tool to examine the ply-number for a given draw-
ing. It is possible to load and store drawings of graphs as well as just loading
structural information of a graph. The user can easily get an understanding of the
ply-number as a parameter to evaluate the aesthetics of a drawing.

Our ply-computation allows to give instant feedback to the user during modifi-
cation of the drawing. This supports the understanding on the influence of minor
local changes might effect other ply-regions. A local change can influence the ply-
disk of any adjacent vertex if it induces a new longest edge and thereby a different
ply-disk radius for another vertex. By providing information on the regions where
the maximum ply-number occurs, we furthermore enable the user to identify mean-
ingful modifications.

In our experimental section we have presented results on the ply-number com-
putation for a large variety of graphs and drawings. We examined different layout
methods and can conclude that placing the vertices at random positions generates
an almost worst case scenario. Recall that the ply-number can be at most |V| — 1.
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Analysing the spring-embedder layouts, we can conclude that their effectiveness
to produce low ply-number drawings shines on graphs with low density. This cir-
cumstance confirms the results of the experimental study on the ply-number by
Felice de Luca et al. [30]. When it comes to denser graphs, we could observe the
equilibrium between the spring-embedder algorithm and the circular layout to be at
the density between 5 and 6.5. At this point both layout methods produce drawings
with equal ply-numbers.

Figure indicates, that for densities larger than 6.5 the circular drawings
clearly have lower ply-numbers than the drawings by the organic layout. For very
dense graphs, the spring embedding approaches do not have a significant advantage
in comparison to just randomly placing vertices. In very dense graphs the circular
layout meets the upper bound of |21| This is by now the best we can do.

We want to point out the correlation between the number of events and the
ply-number for graphs with the same amount of vertices. Since the number of
vertices is constant, the difference in the number of events is purely influenced
by intersection events. We can indicate an implication between the number of
intersection events and the ply-number. Additionally, the number of events highly
correlates with the density of the graphs, recall Table Accordingly, the number
of events in dense graphs support the observation that the organic layout produces
similar ply-numbers as the random layout.

The effect of denser graphs having a larger amount of intersection events can
be explained by the fact that more edges tend to induce larger radii of the ply-
disks and thereby more intersections, even though the number of disks is constant.
The increasing number of events for denser graphs can be observed in both evaluated
implementations.

To compute the ply-number of a given drawing we use the plane-sweep technique
used in the provious implementations [7, 30]. We introduced a different event
handling as prioritizing end over intersection over start events. Another major
difference was the handling of prevision errors and using the primitive data type
double. To deal with precision error we look ahead in the priority queue for a event
that can be handled consistently rather than recomputing the coordinates of the
involved intersections.

We observed precision errors especially in very dense graphs in the RANDdata
with the circular layout. In this setting we had a large amount of postponed
events, meaning events that could not be executed instantly. Recall that the
circular layout is highly symmetric and thereby causes many events to share an x-
coordinate. Furthermore, we cannot guarantee that due to the structure we found
every intersection. It might occur that, due to rounding inaccuracies, an inter-
section is not identified correctly, whereas for the majority of graphs the number
of postponed events can be neglected. In the circular layout the radii of the ply-
disks are likely to be irrational numbers and are thus prone for precision errors.
Note that we simply count all events in this parameter and thus the number tends to
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be large. An event might need several prior intersections events to be resolved and
might be counted several times. After identification of a resolvable event, we simply
reinsert the postponed events into the priority queue and try again. This number
is purely an indicator whether precision errors occurred during the computation.

We can conclude that low ply-numbers admit a visually pleasing way to draw
a graph. This confirms the results of De Luca et. al. [30]. Note that the ply-
number does not relate to the crossing number of a drawing. For some planar
graphs it can be beneficial to draw crossings. This relates to the paradigm of
force-directed layouts [47, 62].

We compare our algorithm to the previous implementation by de Luca et al. [30]
and we want to point out mainly three important observations. Clearly, we could
reduce the computation time from seconds to milliseconds as presented in Tables
and [3.5] We can identify several reasons for this improvement. First of
all, the number of total events differs by the factor of ~ 3. The implementation by
[30] introduces additional events to ensure the consistency during the computation.
In contrast to our solution, they can detect and resolve inconsistencies immedi-
ately. Investigating purely the number of events might be a reason for a small time
difference but clearly does not explain the huge difference in computation time.

We suggest that the main improvement in computation time is based on the fact
that our implementation uses the primitive data type double in contrast to the
data type ApFloat. The data type ApFloat allows to compute values at an arbi-
trarily chosen arithmetic precision at the cost of computational speed. Recall that
we identified one drawing where the ply-number differed by one in both computa-
tions. Even though we investigated this drawing carefully, we could not identify
the true ply-number of this instance. We suggest that prioritizing end-events in our
implementation might be the reason that the ply-number differs by one. We did not
observe any postponed events in this instance which would indicate precision errors
during the computation whereby using ApFloat would allow a higher precision in
the computation.

In contrast to the previous implementation, our focus was the examination of
drawings regarding their ply-number. Therefore we needed a fast algorithm to
provide feedback to the user instantaneously. The previous implementation was
designed for computation of the ply-number for given drawings and the computa-
tion time component was not at their focus and thereby their algorithm was not
applicable for our purposes.

To evaluate the accuracy of the algorithms, we had a look to the number of
postponed events. The idea was that a large number of postponed events indicates
the occurrence of precision errors and thereby our algorithm is likely to report an
underestimation of the ply-number. We suggest to state the number of postponed
events as measurement of likelihood of the correctness of the result. As it turned
out, we cannot apply this reasoning to the drawing in which the results differ
between the implementations.

104



3.7 Discussion & Conclusion

In our publication at GD 2017 [56] we detected a few computations with a high
number of postponed events during the analysis of the FM3data, which did
correspond to differences in the computation of the ply-number. We were able to
improve our results in comparison to our publication by identification of a minor bug
and were able to resolve all inconsistencies between the algorithms except one. The
FM3 algorithm tends to have small average edge lengths throughout the drawings
and places the vertices on integer coordinates. Both circumstances are likely to
induce irrational radii for the ply-disks and thereby are likely to induce precision
errors. We conjecture that on FM3data the accuracy of the computation might
be increased by scaling a given drawing. Unfortunately, we cannot support this
hypothesis by experimental data.

The layout algorithms provided in our tool tend to have larger average edge
lengths. As we conjecture, this increases the accuracy of our algorithm and might
be an explanation for the computation error on the graph. All in all we present an
algorithm which can compete in accuracy of the computed result and is very fast.

In this paragraph we will discuss our approach to identify drawings with lower ply-
number. We have evaluated earlier that in case of sparse graphs spring embedding
algorithms create drawings with low ply-numbers. At densities larger than 6.5 the
circular layout, and thereby the upper bound of |2ﬂ, seems to achieve a good value
regarding the ply-number. Comparing the organic layout and our ply-minization
approach on ROMEdata, we could reduce the ply-number on average from 4.3 to
3.3. Overall, ROMEdata consists of sparse graphs. By tuning a spring embedding
algorithm we could use the observation that the maximum ply-number of a drawing
occurred in a few regions and thereby a decrease in the ply-number could often be
achieved by moving a few vertices locally.

According to the experimental study [30], the FM3 layout produces drawings
with low ply-number. We could confirm that result and were even able to identify
drawings with lower ply-number with our spring-embedder. For the FM3data
we could reduce again the ply-number by one over all graphs on average, as we
presented in Figure [3.39

On the subset of caterpillars and the planar graphs, we could achieve a better
improvement in contrast to the general graphs. For the caterpillars the computed
ply-number still ranges up to 4 and we could improve the average ply-number in-
cluding to be around 3.24 whereas we know that caterpillars can be drawn with
ply-number < 2 [3]. Further examination on these graphs suggests that our meth-
ods are often able to construct drawings with ply-number 2 given a suitable start
configuration and enough time. Since we gave a strict time limit during the exper-
iments, we did not manage to produce many ply 2 drawings on this set.

On the set of general graphs, namely FM3data, we were not able to improve
the ply-number on average whereas we identified equally good results. The average
values were 37.33 for the FM3 layout and 37.78 for our approach. In contrast to
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the other two subsets, this difference is minor. This indicates that on these type of
graphs spring-embedding algorithms tend to reach their limits in terms of creating
drawings with low ply-number due to the graph’s densities.

In very dense graphs, purely using the spring embedding algorithm faces the
same issue tending to similar results as the random layout. So for dense graphs
we can at least guarantee the upper bound by using the circular layout, which is
included in our optimization. This can be observed in Figure [3.34] where for larger
densities the optimization and the circular layout have the same values.

As a last feature our tool provides the user with our adjusted spring embedder
and the possibility to enforce equal edge lengths. Enforcing equal edge length ¢ and
the minimal distance between any two vertices to be ¢ as well can be interpreted as
a test, whether the graph can be drawn with ply 1 iff this enforcement converges to
a stable drawing. Stability in this sense means that the vertices stop moving after
some iterations. In case of a non-stable outcome, the graph is most likely not ply
1 drawable. Remember, during our experiments, due to precision errors, we did
not observe ply 1 drawings by automated layout methods. We observed a strong
convergence by including strong forces in this equal edge length approach.

Overall, our optimization process involves several iterative computational steps
using spring embedding algorithms and computation of the ply-number in between.
By using these methods and adjusting the vertices manually, it is possible for the
user to reduce the ply-number even further by moving few vertices, since due to
a previous observation there often exist only few regions with maximal ply. Our
indication of the region with maximum ply-number for a given drawing turns out
to be very useful for this matter.

As a short conclusion on this chapter we want to point out the following. We
introduced a fast ply-computation algorithm which is able to give instant feedback
to user interaction, e.g. whenever the drawing of a graph is modified. We were
successfully able to reduce the computation time from seconds to milliseconds.
Our tool is equipped with basic layout algorithms and automated minimization
techniques that are intuitively to use.

The tool can be used to get a deeper understanding of several graph classes e.g.
according to the question if there exists a lower bound on the ply-number. Since we
discovered some drawings where the investigated implementations reported different
ply-numbers, it might be necessary to include further examination and identification
of the exact reasons.

Since we are somehow neglecting or ignoring precision errors in some cases, the
implementation providing higher precision in the computation might be used as ver-
ification. Furthermore, we see some potential to improve the minimization methods.
Further evaluation and experiments will be necessary to observe the influence of
scaling to our computations and whether scaling can actually improve the accuracy
of the computations.
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Bar Visibility Beyond Planarity

In the wide field of graph drawing, graph theory and combinatorics there exist
several well-studied representation models for graphs. These models describe spe-
cific properties of the drawing. Formally, a representation in graph drawing defines
rules to draw a graph and thereby enforces the graphs, which can be drawn under
a specific rule set, to require certain properties.

A well-known example of graphs are planar graphs. Planar graphs can be drawn
without any crossing edges and have at most 3n — 6 edges in total where n is
the number of vertices. Furthermore, they cannot contain minors of the complete
graph K5 or the complete bipartite graph K3 3. Such drawings can be constructed
in linear time on a grid of quadratic size |29, [79).

In bar-visibility drawings vertices of a graph are represented as pairwise disjoint
horizontal line segments in the plane called bars. We say that two segments u and
v are visible to each other if there exists a vertical rectangle of non-zero width such
that the opposing sides of this rectangle are subsets of v and v and the rectangle
does not intersect any other bar. In other words we can connect the bars v and v
by a vertical edge segment without intersecting or touching any other bar due to
the non-zero width condition.

This representation was introduced in [50] for VLST layout testing. VLSI layouts
have a huge importance in chip design. In chip design it is preferred to realize
connections via straight segments and it is beneficial to avoid crossings to map
the components to a grid [43], [70, 87]. The components itself will be realized in a
rectangular shape and is realized by resizing in one dimension.

Defining an edge segment between two bars if and only if they are visible to each
other we obtain a strong bar-visibility representation. This model has been studied
in [98] showing that a planar graph has a strong bar-visibility representation if and
only if it has an s-t ordering. Any planar graph has a weak bar-visibility representa-
tion [98] which relaxes the condition that an edge between any two bars might exist
if the bars are visible to each other. Formally, in the weak model the edges of the
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Figure 4.1: l@] is a planar drawing of a graph and its bar-visibility representation is
presented in @ A vertex is represented as a horizontal bar and edges are visualized as
vertical lines of sight indicated by dots.

graph are a subset of the visibility relations whereas in the strong model the edges of
the graph are equal to the visibility relations of the bars. Visibility representations
of planar graphs in O(n?) area can be constructed in linear time [77, 87].

In graph drawing graphs beyond planarity have gained increasing interest in
recent years. Partially motivated by applications of network visualisation, it has
become crucial to compute readable drawings of non-planar graphs for humans.
Cognitive experiments by Huang et al [58] indicate that a high angular resolution
of crossing edges does not affect human understanding of graph drawings.

Recall that, planar graphs can be drawn in the plane without any crossing
edges. Extending the graphs by the allowance of crossing edges we encounter the
graphs beyond planarity. Important approaches on graphs beyond planarity are k-
planarity [71], bar k-visibility [31,55], k-quasi planarity [I] and right-angle-crossings
(RAC)[31].

A graph is called k-planar if it can be drawn in the plane such that any edge is
crossed at most k times. Furthermore, a graph is called k-quasi planar if no £ edges
pairwise intersect. It is known that any k-planar graph is a (k + 1)-quasi planar
graph [2]. In RAC drawings we consider straight-line edges and the crossing angle
of any two edges is always 90°. RAC graphs have at most 4n — 10 edges [37] and
the recognition problem for RAC graphs is known to be NP-hard [5].

More recently, bar k-visibility and especially bar 1-visibility have been studied
i.e. by Brandenburg [15], Evans et al. [44] and Sultana et al. [83].

Bar k-visibility representation is the extension of bar-visibility beyond planarity.
In bar k-visibility representations vertex segments are allowed to "see" through k
other bars. Even though the edges in this representation formally do not cross, the
routing of edges through bars correspond to crossing edges in other representations.
Moreover, every 1-planar graph is bar 1-visible [15].

In this chapter we present and extend our results published in [I6] where we
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refine the model and introduce bar (k, j)-visibility representations of graphs. In
this notation, k£ defines the maximal number of intersections per edge segment and
J denotes the maximal number of intersections per bar. Using the refined definition,
(weak) bar-visibility graphs are bar (0, 0)-visibility graphs, bar k-visibility graphs
as defined by Evans et al. [44] correspond to bar (k, 0o)-visibility graphs and bar
1-visibility graphs as defined by Brandenburg [15] are bar (1, 1)-visibility graphs.

In the following we will present our results focusing on bar (1, j)-visibility graphs.
Among others, we present upper bounds on the density for bar (1,2)- and bar
(1, 3)-visibility graphs. We continue by presenting a structure with very limited
bar-visibility representation and use this structure to derive edge maximal graphs
with 5n + O(1) edges where the general upper bound is 6n — 20 [31]. Finally, we
state our observations on bar (k, 1)-visibility graphs.

4.1 Previous Work

Bar-visibility graphs were initially introduced by Garey et al. [50] where edges are
represented by an unobstructed line of sight. It has been shown that planar graphs
admit bar-visibility representations. Allowing the edges to cross bars, extends this
model. This extension has been recently studied and as the main previous results
we will shortly summarize the results of Brandenburg [15], Evans et al. [44] and
Sultana et al. [83].

In [83] the authors give an O(n) time algorithm to construct bar I-visibility
drawings of some 1-planar graphs, in particular diagonal grid graphs, maximal outer
1-planar graphs, recursive quadrangle graphs and pseudo double wheel 1-planar
graphs. Grid graphs are embedded graphs forming a grid with quadrangular faces.
In the class of diagonal grid graphs the diagonals are drawn in each quadrangular
face. These graphs are known to be maximal 1-planar graphs with 4n — 8 edges.
A maximal outer 1-planar graph is a graph where all vertices are incident to the
outer face. By the additional maximality constraint it is not possible to add any
edge without violating the outer 1-planarity properties. Recall that, each edge is
crossed at most once in 1-planarity. Recursive quadrangle graphs follow a recursive
construction pattern as the name suggests. We start with an quadrangular face
and either add the diagonals or an internal cycle of length 4. The vertices of this
cycle are then connected to the corners of the surrounding face such that there are
5 newly constructed quadrangular faces. These graphs are again maximal 1-planar
graphs.

The introduced notation of bar k-visibility defines the number £k of bars which
can be crossed by a single edge. The number of crossings per bar is not limited in
this definition. Recall that in our definition this corresponds to bar (1, co)-visibility
representations. Dean et al. [31] present a tight upper bound of the number of edges
in bar 1-visibility graphs to be 6n — 20.
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Quasi-Planar

Figure 4.2: The relative relationship of strong (StB1) and weak (WeB1) bar 1-visibility
graphs within the class of nearly planar graphs as presented in [44].

This work is extended by Evans et al. [44] where the authors focus on the case
that k equals 1 and deduce relations to nearly planar graphs, meaning graphs which
are 1-planar or quasi-planar. In general, 1-planar graphs have at most one crossing
per edge and in quasi-planar graphs no three mutually different edges cross each
other. The authors show that squares of planar 1-flow networks are weak bar 1-
visibility graphs. In general, a k-flow network describes a directed planar graph,
where for any vertex v min{indegree(v), outdegree(v)} < k holds [88]. Recall that
a square of a graph can be obtained by adding edges between any two vertices with
distance 2 in the original graph. Formally, let G = (V, E), then G* = (V,E U E’)
where any edge (u,v) € E’ such that there exists a vertex ¢t € V with (u,t) € E
and (t,v) € E.

Furthermore, any 1-planar graph admits a weak bar 1-visibility drawing (WeB1).

Investigating strong bar 1-visibility (StB1) drawings, the authors deduce a rela-
tionship within other graph classes presented in Figure [d.2] with existential example
graphs for each class.

Further restricting the model of bar-visibility representations, Brandenburg re-
stricts the number of crossings per bar to be at most 1 [I5]. This relates to bar
(1, 1)-visibility drawings in our model. These graphs have at most 4n — 8 edges
which coincides with maximal 1-planar graphs. It is clearly a subclass of the WeB1
graphs, since the complete graph with 7 vertices missing one edge, namely K; — e,
is edge maximal in this case since every internal bar has exactly one crossing as
shown in Figure [4.3a] [I5] presents a linear time algorithm to construct a bar
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Figure 4.3:|(a)|is a bar (1, 1)-visibility drawing of an edge maximal graph, namely K7 — e.
In the complete graph K7 is drawn in a bar (1,2)-visibility representation. Note that
inserting the missing edge induces a crossing since there exist 3n — 6 planar edges. For
clarification and counting purposes, the planar edges are indicated by downward pointing
arrows (non-planar upward) and the crossing points at the bars are marked by circles.

(1,1)-visibility drawing given a 1-planar embedding in O(n?) area. Furthermore,
they give an example for an edge maximal bar (1, 1)-visibility graph which is not
I-planar, namely K;—e. Recall that by definition in Brandenburg [15], the drawing
in Figure is a bar 1-visibility drawing and the drawing in Figure is not.
By the definition in Sultana et al. [83] both drawings are bar 1-visibility drawings.

4.2 Maximal bar (1, j)-visibility representations

A maximal graph G belongs to a class G such that adding any edge e would violate
the properties of G, namely G € G and G + e € G. In this section we present
existential upper bounds on the number of edges for dense bar (1, j)-visibility rep-
resentations for j = 0,1,2,3 and j > 4.

Note that any bar (1,0)-visibility representation where each bar is crossed at
most once, is a bar (0,0)-visibility representation since edges are not allowed to
cross any bar and thereby no bar is crossed. These are exactly the planar graphs
with 3n — 6 edges [98]. Considering triangulated planar graphs, this bound is tight.

We observe that for any bar (1, 1)-visibility representation, the upper bound of
edges can be determined as the set of planar edges, namely 3n — 6 plus the number
of bars, since every bar is crossed at most once. By the general structure of bar-
wistbility representations, the topmost and the bottommost vertex cannot be crossed
at all. We can deduce the maximum number of edges in any bar (1, 1)-visibility
drawing to be at most 3n — 6 + (n — 2) = 4n — 8. This number coincides with the
maximal number of edges in any 1-planar graph. Brandenburg gave an example of
K7 — e as shown in Figure [.3a] which is edge-maximal in bar (1,1)-visibility but
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not 1-planar. Furthermore, the graph K; — e can be subsequently augmented by
vertices of degree 4. Thereby, this bound is tight for any n > 7 [15].

Bar (1,2)-visibility representations have a theoretical upper bound of 5n — 10
edges since every internal bar can be crossed at most twice. We give a construction
for graphs with 5n — 12 edges which leaves a small gap.

Lemma 4.1. For every odd n > 9 there exists a graph G,, with a bar (1, 2)-visibility
representation and 5n — 12 edges.

Proof. Let the graph G = (V| E) have n = 2k + 1 vertices where n > 9. We will
first place the vertex segments denoted as v; = (I;, 7, ;) where [; is the x-coordinate
of the leftmost point of the segment v;, r; the rightmost x-coordinate and y; the
y-coordinate respectively. In the following we will use indexing according to the
y-coordinate i.e. y; = i for all vertices.

In the following we introduce the central structure G§ with n = 9 vertices and
5n — 17 = 28 vertical edge segments. Afterwards we give an inductive construction
to add two vertices and 10 edge segments. As a last step we show how to elongate
the outermost vertex segments to increase the number of edges from 5n — 17 to
on — 12.

Gy is constructed such that every bar is crossed exactly twice except for the
central bar and the two outer bars. Moreover, every planar face is triangulated,
except the outer face which has size 4. Thereby Gj has 20 planar edges and 8
crossing edges and is presented in Figure [£.4a] In Gj for the even numbered vertex
segments the leftmost coordinates start alternating from top to bottom. v5 as the
central vertex segment has its leftmost coordinate and then the remaining odd
numbered vertices have their left endpoints alternating from top to bottom.

For the rightmost coordinates of the bars, the vertex segments vg, v5 and v4 build
a staircase where the bar vg has its rightmost coordinate between the rightmost
coordinates of vg and vs. Then, the remaining even numbered bar v, has its right-
most coordinate, and finally the remaining odd numbered vertices end alternating
starting with v; in the center, c.f. Figure |4.4a]

For the inductive addition of vertices we want to keep as invariant that the four
outermost vertex segments do not have crossings. This is important within the last
step, where we describe how to add the remaining edges to achieve a drawing with
5n — 12 edges in total.

Depending on the orientation of the outermost vertices, namely whether they
extend the drawing to the left or the right side, we choose the opposite side to
add two vertices inductively. Assume w.l.o.g. that the outermost bars are oriented
to the right side. Two vertices, namely vy and vy; are added to obtain G, as
presented in Figure [£.5a] The newly added vertex segments are oriented to the left.
Both vertices exceed the second to outer vertices and the upper vertex segment
namely vy; exceeds vig to the left whereas vy exceeds v1; to the right. We add 6
planar edges according to the visibility of viy and vy; as well as two crossing edges
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Figure 4.4: l@] The central structure of a maximally dense bar (1,2)-visibility represen-
tation is shown. The planar edges are directed downwards and the crossing edges are
directed upwards for reading purposes. Additionally the crossings are marked by small
circles. Note that except for the four outermost and the central vertex segment vs, all
bars are crossed exactly twice. This structure has 5-9 — 17 = 28 edges. Shows the
same structure with vertices as dots and curved edges.

for vy and vg. In total we add 10 edge segments when adding two vertices. Note
that, due to the invariant, vg and v, are not crossed at all. By symmetry we obtain
G'; using the same rules shown in Figure [4.5b]

For simplicity we draw only the newly added edges in Figure and Figure
Note that the structure at the right and left side of the drawing is maintained
such that this inductive step can be repeated.

In the ith iteration we have constructed the graph G, ,; with n = 9+ 2i vertices
and 5n — 17 edges in a bar (1,2)-visibility representation. For simplicity let us
assume that 7 is even. The case that ¢ is odd can be handled analogously by
symmetry. As we present exemplary in Figure [4.6] we elongate the outermost
vertices to overlap the complete drawing. By construction, the second to outer bars
can be crossed exactly twice and we can add one additional planar edge segment.
In total, we add 5 more edges in this post processing step to construct the graph G,
from G!,. G,, has a bar (1, 2)-visibility representation and exactly 5n—12 edges. [

Next, we will augment the graph G!, to be a bar (1, 3)-visibility representation.
The upper bound for the number of edges can be estimated by the number of planar
edges (3n—6) plus 3 edges crossing each internal bar (3-(n—2)). The upper bound
for the number of edges thereby is 6n — 12 which is close to the lower bound of
6n — 20 edges for bar (1, 0o)-visibility representations [31].

Lemma 4.2. For every odd n > 9 there exists a graph G,, with 6n — 21 edges,
which has a bar (1, 3)-visibility representation.

Proof. We start with an augmentation of the basic structure of the bar (1,2)-
visibility graph Gj to achieve a bar (1, 3)-visibility representation with 6n — 24
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left side. Adding inductively two more vertices to G';, we obtain G4 For every 2

newly inserted vertices we add 10 edges. Note that for readability, only the newly added

Figure 4.5: Starting from G{ we obtain G, |(a)| by adding two vertices v1g and v on the
edge segments are drawn in both figures.
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Figure 4.6: The elongation of the two outermost vertices to construct Gz from G5 is
shown. There are 5 newly added edges, namely one planar edge segment and the previously
uncrossed vertices are crossed exactly twice. In general, the graph G, has 5n — 17+ 5 =
5n — 12 edges.

edges. We will use a very similar inductive approach and present the adjusted
steps to achieve a bar (1, 3)-visibility representation with 6n — 21 edges. Recall
that now every vertex segment can be crossed three times.

We start with G§ from the previous proof and add two edges, namely (v, vy)
and (vg, vg). For simplicity we will only draw the crossing edge segments and omit
the 3n — 7 planar edges. The planar edges will stay exactly the same as in the
previous proof. We obtain a bar (1, 3)-visibility drawing with n = 9 vertices and
5n — 15 = 6n — 24 edges as shown in Figure Note that the second to outer bar
is crossed once in this representation.

We augment the inductive step such that for any two newly added vertices, we
add 12 new edges as shown in Figure and Figure [4.8b] Note that every vertex
segment is crossed at most three times and thereby we maintain a bar (1, 3)-visibility
representation of GI, with 6n — 23 edges.

In analogy to the previous proof, we conclude with the elongation of the topmost
and bottommost vertex segments to add the 3 missing edges as presented previously
in Figure 4.6l We can only add 3 more edges, since we already added 2 edges,
namely (vi9,v3) and (vs,vy3) during the inductive step. In the final graph, the
central vertex and the outermost vertices are not crossed at all. 4 bars close to the
center have exactly 2 crossing edges as well as the 2 bars which are placed second
to outer. The remaining (n — 9) vertices have exactly 3 crossings each. Together
with 3n — 6 planar edges, we obtain 3n — 6+ (n—9)-3+4+6-2+3-0 = 6n — 21.
Thereby, we gave an construction for a bar (1,3)-visibility representation of G,
with 6n — 24 + 3 = 6n — 21 edges for a given odd n > 9. O]
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Figure 4.7: The augmented bar (1, 3)-visibility basic structure Gf, with two additional
edge segments, namely (v, v4) and (ve, v9) with 6-9 —24 = 30 edges. (of which are 3n—7
planar)

We can show, that three more crossings suffice to reach 34 = 6 - n — 20 edges
if n =9 in Figure 4.9 whereas we were able to generalize the drawing to 6n — 21
edges for any odd n > 9 for bar (1, 3)-visibility graphs. Unfortunately, we were
not able to identify a general way to construct edge maximal bar (1, 3)-visibility
graphs with 6n — 20 edges but we can show that bar (1, 4)-visibility graphs admit
such a generalization. Thereby, 4 crossings per bar are sufficient to construct edge
maximal bar-visibility graphs G,, for odd n.

Lemma 4.3. For every odd n > 9 there exists a graph with a bar (1, 4)-visibility
representation with 6n — 20 edges.

Proof. Since we presented a graph in Figure 4.9 with 9 vertices and 6 - 9 — 20
edges, we can augment the inductive step based on this graph. The difference is
an elongation of vs to the left and of vg and vg to the right. The basic structure
and the first two inductive steps are presented in Figure The elongations are
marked by rectangles. The procedure inductively follows the same pattern as in
the previous proofs. By the same argumentation as in bar (1, 3)-visibility graphs
with 6n — 21 edges, we add one additional edge crossing v and obtain a bar (1,4)-
visibility drawing with 6n — 20 edges which matches the general upper bound for
any bar (1, j)-visibility representation for j > 4 [31].

O

Corollary 4.4. There exist maximal bar (1,4)-visibility graphs with 6n — 20 edges
and only 1 bar is crossed 4 times.

116



V11

4.2 Maximal bar (1, j)-visibility representations

..... T o
DY PR S Prememememmnennes o P
..... P - -
o P----
ko]
wmummumwmm@,.,um»g,.,esugqlmm
N -]
e -]
A e

117

)

Figure 4.8: In the bar (1,3)-visibility presentation with 6n — 24 edges of G§ we add two
vertices and 6 edges in every inductive step according to the adjustment of the central

b
structure in Figure 4.7| G/, [(a)|and G5 |(b)| are bar (1, 3)-visibility graphs. Note that the

(

vertex segments ve and vg are crossed 3 times in total. The placement of the new vertex

segments is the same as in the proof of Lemma :
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Figure 4.10: A bar (1,4)-visibility drawing of a graph with 6n — 20 edges. This drawing
can be generalized to any odd n > 9 by inductively adding outer vertices as presented in
the previous lemmas. Again the final step to elongate the outermost vertices is the same.
The adjustments to the central structure are indicated by bars in rectangles, whereas the
rectangles at the outermost vertices indicate their elongation. In this drawing the only
bar crossed 4 times is vs.
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4.3 Infinite hierarchy of bar (1, j)-visibility graphs

In this section we present an infinite hierarchy of bar (1, j)-visibility graphs by
arguing on complete bipartite graphs. First we will neglect the geometric properties
of a bar-visibility representation by representing vertices as convex regions and
allowing edges to be continuous curves. These edges are allowed to surpass one
vertex-region but are not allowed to cross each other.

We represent vertices as disjoint blobs. Edges are continuous simple curves and
connect the boundaries of adjacent blobs. Furthermore, edges are not allowed to
cross any other edges but they might pass through one blob. We call the intersec-
tions between blobs and edges ports. If an edge is incident to a blob they share
exactly one port. An edge passing through a blob shares two ports with the blob.
To cross a blob we require another port to be between the two ports of this edge.
This is necessary to prevent edges from entering and leaving a port immediately
and avoid face intersections this way. Note that since edges are not allowed to cross
each other an edge passing through a blob subdivides this blob into two parts. An-
other edge passing through the same blob has to pass through either part. A face in
the blob graph is defined by an alternating series of edge parts and blob boundary
parts. Thereby an edge passing through a blob splits two existing faces into four
faces. Note that these faces have to share parts of the same blob rather than parts
of the same edge. An example of a blob drawing is shown in Figure [4.11}

Figure 4.11: In a blob graph the vertices are represented as blobs. The intersection of
edges and blobs are called ports. An edge and its incident blob share exactly one port
and an edge passing through a blob induces exactly two ports. A face is defined by an
alternating sequence of edge and blob parts.

Lemma 4.5. Any bar (1, j)-visibility graph can be drawn as blob graph.

Proof. Given a bar (1, j) visibility drawing of a graph GG, we can transform every bar
to a blob, by assigning an interior region to any bar. Thereby we can guarantee that
the blobs are disjoint. The edges stay vertical straight-line segments connecting the
boundaries of the blobs. Thus, the edges do not cross each other and since we had
a bar (1, j)-visibility representation any edge passes through at most one blob. [
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Figure 4.12: Drawing the complete bipartite graph K3 planar |(a)| we obtain three faces,
namely fi, fo, f3. Any further vertex of K3, has to be drawn in one of these. The
placement of a vertex in f3 @ subdivides the faces f3 and fs. Note that it is not possible
to place any vertex in fJ.

We argue that in a complete bipartite graph K3, for n > 8 any newly added
vertex has a crossing edge with at least one vertex of the first set and thereby the
graph K3 (s13;) admits a bar (1, j)-visibility representation but not a bar (1, (j—1))-
visibility drawing.

Lemma 4.6. For n > 8 in K3, any newly added vertex has an edge crossing one
of the three vertices from the first set, namely by, by or bs.

Proof. We will start with a drawing of K34 in a topological bar-visibility represen-
tation neglecting the geometric properties as shown in Figure [4.12a] Let us assume
for the contrary that the blobs by, by and b3 are not allowed to be crossed by any
edge. We obtain three faces, namely f1, fo and f3 where we can add further ver-
tices. The placement of a third blob in w.l.o.g f3 will subdivide f3 and a second
face, let us say fo as shown in Figure Furthermore, we can place another
blob either in f} or in ff since otherwise we would induce a crossing of edges. Let
us place the next blob in f;. This configuration is illustrated in Figure . Note

that the remaining face to place vertices is f}’. Placing one more blob there, we

obtain Figure

We can use symmetrical arguments to deduce that there are at most 3 more
blobs either in f;, fo or f3. For this observation we use the property that the
initially placed blob is crossed three times. This prohibits the routing of further
edges through this blob. Thereby we can place at most 3 more blobs in either
face as indicated in Figure [{.14al This configuration is realizable in a bar-visibility
drawing, as shown in Figure [£.14b] Now any further vertex in Kj,, n > 8 has to
induce at least one crossing edge on one of the b blobs. By Lemma this holds
true for bar-visibility representations. O]
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Figure 4.13: The last remaining face to place vertices is f3 m Placing a vertex there|(b)
induces a third intersection with the left vertex-region. In this subregion there cannot be
any further vertices.
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Figure 4.14: By topological argumentation, any further vertex has to induce a crossing edge
in either by, by or b @ This structure can be realized in a bar-visibility representation
. Note that neither of by, ba, bg are crossed.

Theorem 4.7. The complete bipartite graph K, with n =8+ (35 + 1) has a bar
(1,7 + 1)-visibility representation but no bar (1, j)-visibility representation.

Proof. Following up the previous proof, the set of newly added vertex segments
crossing the bar b; is called S7, and the vertex segments in S3 have an edge crossing
bs, as presented in Figure [£.15] Note that the vertex segment by can be crossed
either from below or above, thereby we introduce the sets Sy and 5. Let us assume
we have a bar (1, j)-visibility graph K3, then for each set |S;| < 7,[S U S| < j
and |S5] < 7 must hold. Since we have n = 8 + (35 + 1) vertices at least one of
S1,52 U S5, S5 must contain at least j + 1 vertices and thereby the graph is bar
(1,7 4 1)-visible but not bar (1, j)-visible.

O
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Figure 4.15: A bar-visibility drawing of K3, where n — 8 vertices are distributed among
S1,S2 U S, and S3. One edge of every vertex in Sy crosses the bar by, (S2 U S}) crosses
bs and Ss crosses bs respectively. Let j be the smallest cardinality of these sets, then the
drawing is a bar (1, min{3, j})-visibility drawing.

Corollary 4.8. There is a infinite hierarchy of classes of bar (1, 7)-visibility graphs.
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Figure 4.16: Every internal vertex segment u;,¢ > 2, in the stack of size ¢, has 5 edges
connected to the bottom of each bar, namely connecting to c¢1, co, b, u;—1 and u;_o.

4.4 Maximal bar (1, 7)-visibility graphs with low
density

In this section we present a family of maximal bar (1, 00)-visibility graphs whose
number of edges is in the order of 5n+c, cis a constant. Recall that a maximal graph
G belongs to a class G such that adding any edge e would violate the properties of
G, namely G € G and G + e ¢ G. To ensure the limited number of edges, we need
a graph with a very restricted bar-visibility representation.

In the following we introduce a graph with a restricted bar-visibility represen-
tation. Furthermore, we describe how to include a stack U = {uy,...,up} of ¢
bars such that every bar in the stack, except for the outermost ones, has exactly
5 edges. The general idea of this stack is presented in Figure [4.16], where we have
to make sure that the crossed bar b in the bottom is unique. Note that the two
topmost vertices and the two bottommost vertices might have more than 5 edges
each which will be included in the constant. For counting purposes we state that
every internal segment u;, ¢ > 2, has 5 edges connected to the bottom of each bar,
namely connecting to u;_1,u;_2,b,c; and cs.

In a restricted bar-visibility representation we can guarantee a partial vertical
ordering of the bars. This we can use to state the relative placement for most of
the bars, meaning we have a limited number of exceptions.

Recall the construction for the infinite hierarchy of bar (1, 7)-visibility graphs
using the complete bipartite graph Kj,. We call the first set B = {by, bs, b3}. We
argue on possible placements of the second set, of bars to be either above, between
or below the three vertices from B. In the following we will define the second set
to form a path and argue on two additional bars, which we will call h; and hy. We
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Chapter 4 Bar Visibility Beyond Planarity

Figure 4.17: The vertices by, b2, b3 form a complete bipartite graph K3 50 with the vertices
{v1,v2,...,u50}. The vertices {vi,ve,...,v50} form a path and of this subset the odd-
numbered vertices are connected to hy and the even-numbered vertices to ho. Furthermore,
the vertices by, by, bs, h1, he form a K5. We add two more edges, namely (v1, he) and
(vs0, h1). In [16] we refer to this graph as ship-gadget, where we intended to prove the
NP-hardness of the recognition of bar (1, j)-visibility graphs.

conclude that this graph has a restricted bar-visibility representation, such that the
vertical order of the three vertices, namely by, by, b3 and hq, hs is fixed. Additionally,
most of the vertices from the second are contained in the common interval of these.
This imples that most of these vertices have to be placed vertically between b; and
b3.

Then, we apply a stacking argument as indicated in Figure .16, We will ensure
that the bar b = by is unique. Therefore, we start with the complete graph Kj 5.
Note that, 50 is an overestimation of vertices for argumentation purposes. We
order the 3 vertices {by, bs, b3} by their y-coordinate so by is the central bar in any
drawing. We name the 50 bars {vy,vs,...,v5} = C and add the edges (v;,v;11)
for 1 <4 < 49, so there exists a path. Recall that by Lemma in the previous
section, at least 42 vertices in C' have an edge crossing one of the b’s. Since, as
presented in the previous section, the 42 bars are placed in either above, between
or below by, bs, by (cf. Figure [4.15)).

Now, we introduce 2 vertices {hy,ho} = H, and add the edges such that v; is
connected to h; if 7 is odd and connected to hs if 7 is even. Furthermore, we add
edges (h;,b;) for any ¢ and j so hy, he, by, by and by form a complete graph K.
An illustration of the setting is presented in Figure .17} Note that in any bar-
wsibility representation there exists a common interval I = BN H, since they form
a Kj5. Recall that, by Helly’s Theorem, a set of pairwise intersecting bars has a
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Figure 4.18: Bars crossing the outermost vertex by (or symmetrically b3) have to be stacked.
Let the crossing edges be at the rightmost coordinate of each bar. Since the bars form a
path we can place one of hy or hy at the left (planar) edges. The remaining area to place
ho is marked as a blue rectangle. Note that we cannot place any further vertex in this
configuration.

common intersection. Furthermore, this implies distinct y-coordinates of the bars
in BUH. At last we add the edges (v1, he) and (vsg, h1). Note that the vertices in
BU H U {vy,vs50} form a K; — e, where the edge e = (v, v50) is missing.

Lemma 4.9. There are at most 7 consecutive vertices in C', whose edge (v;, bs) is
crossing by, namely placed above B, and by symmetry at most 7 vertices below B.

Proof. Assume there are 7 consecutive vertices placed above B and each of the
edges (v;, be) cross the segment b;. W.l.o.g. we place the bar hy connected to the
odd-numbered vertices close to b3 and realize their connections. Recall that the bars
in C' form a path and note that in bar (1, co)-visibility graphs we can alternate the
numbering of vertices in a stack for a few vertices in a way that even-numbered bars
are close to each other. Let us furthermore observe that all the rightmost edges of
v; are the crossing edges.

We can place at most 7 consecutive vertices, and the placement of hs is limited to
be inside the stack as shown in Figure[d.18| In this configuration the placement of hy
is limited to be in the marked area. Hence the total number of consecutive vertices
above B cannot be larger than 7 in total. Additionally observe, that regardless of
the placement of hy we cannot extend the path by any further vertex.

Alternatively to placing hy between the vertices in C, we can place ho on top
of C. That way, the number of bars from C' at one side is at most 5 as presented
in Figure [1.19 Note that the vertices vs and vg might be above hy which would
be the same setting as in the previous case, since they would have to exceed hs to
the left to ensure the edge (vs,be). Again there cannot be more than 7 vertices in
total. O]
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Figure 4.19: Placing he above the stack of vertices leads to at most 4 proper placed bars.
The vertices vs and vg might be placed above hy which results in a similar configuration
as the previous case since they have to exceed hy at both sides.

Lemma 4.10. At least 50 — 2 - (4 + 7) = 28 vertices have to be vertically between
by and bs.

Proof. Recall that there can be at most 4 vertices in C' whose connections to by, by, b3
are planar at the right and the left side respectively. Furthermore, by Lemma 4.9
there can be at most 7 vertices either above or below B. The remaining vertices
have to be in the common intersection of B N H. [

Lemma 4.11. A consecutive sequence C' of vertices in the common interval of B
and H alternate above and below by, the middle segment, and the vertices hy, ho
have to be above and below by, b, bs.

Proof. Recall that the vertices in C' have alternating connections to h; and hy by
their indices and most of them have an edge crossing b, to connect to either by or
bs. Furthermore, by Lemma there are at least 28 of the 50 vertices in C' with
this property.

The even vertices have to be placed in the center between the four bars of ho, by, bo
and b3 as indicated in Figure |4.20L The positioning between b; and b, is chosen
without loss of generality by symmetry. Note that by now the bars b; and hy are
ambiguous. The edges either cross h; to connect to b; or vice versa. The same
argumentation holds true for the odd vertices.

By placing the even vertices between by and b3, we determine the vertical order to
be hy, by, by, bs, hy from top to bottom. Since hs has to be on the opposite side of b;
and by. Furthermore, note that between two even vertices there is exactly one odd
vertex between by and by, whose length of the bar is limited by the placement of the
crossing edge connecting to b;. Recall that the edge connecting the even vertices
to by has to cross by. These edges enforce an order on the alternating vertices along
the path.

A valid configuration is given in Figure [4.21] Note that not all of the vertices
can be between b; and by since there is no valid placement of the vertices h; and
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Figure 4.20: The even-numbered vertices have to be placed between the four bars of
b1, b2, b3 and he. By symmetry we can argue w.l.o.g. that the edges connecting to b3 have
to cross through b2. Note that the bars b; and ho are ambiguous without considering the
odd-numbered vertices.

hy in this case. Additionally, h; and hs cannot be placed between b; and b3 and
not both on the same side since there exist crossing edges in between the bars
in C'. For the same reason the bars in C' cannot be extended infinitely to either
side. Furthermore, the bars are ordered from left to right in either increasing or
decreasing order, dependent on the side the first two bars are completely in the
common interval of hy, by, ba, b3, hs. n

Lemma 4.12. v; and vsy cannot be in the common interval I = H N B and thereby
have to be at one of the sides.

Proof. Assume the contrary, that is either v; or vsy is in the common interval I of
HNB. Let w.l.o.g. v; be in the common interval I. Thus, there are at least 3 bars
of H U B vertically above (or below) vy. Since vy is completely in I there is at least
one edge that cannot be realized in a bar (1, co)-representation since it would have
to cross at least two bars. Thereby, the vertices v; and vy, cannot be placed within
I. O

Lemma 4.13. The graph G has a restricted bar-visibility representation. And we
can choose vy to be ¢; and w9 to be ¢y in Figure

Proof. In any bar (1, co)-visibility drawing of G, by Lemma the bars of v; and
Vs cannot be within the common interval I of H U B and thus have to be at either
side of the drawing. Furthermore, by Lemma there are at most 20 bars not in
the common interval beside v; and wvsy. Thereby the remaining bars are placed in
I, especially the bars vey, v95 and v are placed alternating between b, and bs. The
edges (va4, ho) and (vgg, he) are crossing one of by or bs. O

Thus we can use these bars to add a stack between the bars of b; and hs, where
each vertex is connected to vyy and veg.
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Figure 4.21: Edges for any bar in C have to cross by, the central b-vertex, at least once.
In the valid configuration of alternating vertices by odd and even indices the vertices hy
and hy are above (below) the b-vertices. Note that the bars in C' cannot be extended to
either right or left infinitely since there exist crossing edges to both sides. Note that for
clarification we name the vertices of an internal subsequence 1,...,7 and do not consider
the bars placed at the sides.

Theorem 4.14. There exist mazimal bar (1,00)-visibility graphs with n vertices
and 5n + ¢ edges, where ¢ is a constant.

Proof. Lemma [4.13| concludes the restricted visibility representation of the graph
G with 55 vertices. It ensures the properties of ¢; = vy and ¢y = v9g, Which are
required to place a stack of ¢ vertices. To argue on maximal graphs, we know that
the basic structure with n = 55 + 2 has at most 6n — 20 edges. The stack of ¢ — 2
bars has exactly 5¢ edges. Recall that the counted edges always attach to the bars
from below. In total we have n’ = n + £ vertices and at most 6n — 20 + 5¢ edges.
For large ¢, n’ converges to ¢ and the number of edges is equal to 5n’ 4 ¢, where ¢
is a constant. O

4.5 On bar (k,1)-visibility graphs

Now we consider the second parameter, namely j in bar (k, j)-visibility graphs to
be fixed at j = 1. Especially we look for graphs that are bar (k, 1)-visible for & > 1
but not bar (1, 1)-visible. In these bar-visibility graphs any edge is allowed to cross
up to k bars and each bar is allowed to be crossed at most once. Note that these
graphs are very sparse for large k. It is difficult to show that a graph is not bar
(1, 1)-visible not using the sparsity constraint. Note that a drawing with more than
n — 2 crossings on bars can not be bar (k, 1)-visible.
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0 (b)

Figure 4.22: l@] A planar subgraph of the embedded quadrangular grid graph G,, and l@]
its bar-visibility prepresentation.

Theorem 4.15. Bar (k,1)-visibility for k > 1 graphs have at most 4n — 8 edges.

Proof. In any bar (k, 1)-visibility representation all bars except the outer ones can
be crossed once. Therefore the graph has at most (n — 2) crossing edges. Together
with 3n — 6 planar edges the graph can have at most 4n — 8 edges. This bound is
tight for maximal bar (1, 1)-visibility graphs. O

Corollary 4.16. Bar (1,1)-visibility graphs are a subset of bar (k,1)-visibility
graphs for k > 1.

Proof. By definition any bar is crossed at most once and each edge crosses at most
1 < k bars. O

Theorem 4.17. There exist embedded graphs that are bar (k,1)-visible but not bar
(1,1)-visible for k > 1.

Proof. Let the graph G,, be a quadrangular grid graph with diagonals with a fixed
embedding. An embedding defines the cyclic order of edges around every vertex.
Thereby, the planar quadrangular faces are well defined. Furthermore, we define
the graph of Figure to be a subgraph of GG,,. Note that any quadrangulation
with diagonals is an optimal 1-planar graph and has exactly 4n — 8 edges. By [15],
this graph is bar (1, 1)-visible and the embedding is shown in Figure . Note
that in any quadrangular face in a bar-visibility representation has one topmost
and one bottommost vertex and the two middle vertices can be either on one side
or on both sides (cf. Figure [4.23). Recall that we consider optimal bar (1,1)-
visibility graphs with 4n — 8 edges and thereby every bar except the outermost bars
is crossed exactly once. Furthermore, inserting the diagonals in the bar-visibility
representation any crossing edge is associated to a middle vertex of the face.
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(a) (b)

Figure 4.23: Inserting the diagonals (blue) into the quadrangular faces induces a crossing
at one of the middle vertices for any face. Note that the assignment of crossing edges to
bars is ambiguous.
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Figure 4.24: After removing one diagonal edge in either quadrangular face ¢ or ¢’ and in
either of b and &’ we can insert the edges (A, C) and (B, D) to construct an optimal bar
(1,1)-visible graph G/,.

We now alter the bar (1, 1)-visibility representation of G,, in Figure to get a
maximal bar (1,1) visibility graph G!,. For the bars (vertices) B and C' we remove
one of the diagonals of the faces where B and C occur as middle bars. Thereby we
ensure that B and C can be drawn crossing-free. Then, we add the edge (A, C)
crossing the bar B and the edge (B, D) crossing the bar C. G still has 4n — 8
edges and every internal bar is crossed exactly once and thereby G/, is an optimal
bar (1,1)-visibility graph. G/, is sketched in Figure [£.24] By optimality for any
crossing edge in G, the planar edges along the crossing edges exist. In Figure m
the crossing edge is drawn in red and the planar edges are drawn in blue.

Furthermore, we alter G/, by replacing the previously added crossing edges (A, C')
and (B, D) by a long edge (A, D) to achieve the graph G. Note that due to the
embedding of G,, the vertical order of the bars A, B,C, D and the orientation of
the faces between them is fixed. Clearly, G, is bar (2, 1)-visible.

For the sake of contradiction assume that G/ is bar (1,1)-visible. Since G, is
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Figure 4.25: In any optimal bar (1, 1)-visible drawing the two planar edges (blue) along
any crossing edge (red) exist.

optimal bar (1, 1)-visible and the edges (A, C) and (B, D) are crossing edges in G7,
G” has 3n — 6 planar edges.

By the fixed vertical order of A, B, C, D and the presence of 3n — 6 planar edges,
the edge (A, D) has to be a crossing edge and has to cross either B or C. Without
loss of generality assume that the crossed bar is B but not C' (the other case is
analogous). By the fact that there exist two planar edges next to any crossing edge
in bar (1,1)-visibility drawings, we can reinsert the edge (B, D) as a planar edge
but then we have 3n — 5 planar edges in total, which is a contradiction to Euler’s
Formula.

]

4.6 Conclusion and open problems

To conclude this chapter, we will shortly list the results on bar (1, j)-visibility
graphs. We focus on bar (1, j) visibility representations and investigate properties
of maximal graphs. Recall that a maximal graph G belongs to a class of graphs
G such that adding any edge e to GG violates the properties of G. We inherit the
maximal density for bar (1, j)-visibility graphs. Knowing the upper bound of 6n—20
edges for bar (1, 00)-visibility graphs by Dean et al. [31], we gave a construction
for bar (1,4)-visibility graphs with exactly this number of edges. For general bar
(1,2)-visibility graphs we presented graphs with 5n — 12 edges, whereas there is a
small gap to the optimal upper bound of 5n—10. We construct graphs with 6n—21
edges for general bar (1, 3)-visibility representations with the special case of 6n — 20
edges if n = 9. Thereby, we continued our work in [16] and answered the question
whether there exist bar (1, 3)-visibility graphs with n vertices and 6n — 20 edges.

We present an infinite hierarchy of bar (1, j)-visibility graphs and show that bar
(1, 7)-visibility graphs are a subset of bar (1,7 + 1)-visibility graphs but not vice
versa. This result extends our publication [16], since we are able to answer the
remaining question: Can the hierarchy be completed for the small values of j7

As a further result we give a construction of a graph which has a restricted bar
(1, co)-representation and show that there exist edge-maximal graphs with 5n+O(1)
edges.
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Chapter 4 Bar Visibility Beyond Planarity

We start the investigation of bar (k, 1)-visibility graphs. This class of graphs has
quite interesting properties regarding the sparsity. Even though, these graphs are
at most as dense as bar (1, 1)-visibility graphs they are a class of graphs beyond
planarity, meaning the upper bound for the number of edges is 4n —8. We conclude
that bar (1,1)-visibility graphs are clearly the most dense subset of bar (k,1)-
visibility graphs for larger k.

Next, we want to state some thoughts and formulate a conjecture extending the

Theorem [AL.1T

Conjecture 4.18. There exist graphs that are bar (k, 1)-visible for £ > 1 but not
bar (1, 1)-visible.

The difference between this conjecture and the previous Theorem is the
given embedding of the graph. We present the construction for class of graphs G,
n > 4, presented in Figure , that has a bar (k, 1)-visibility representation and
we conjecture that this graph has no bar (1, 1)-visibility drawing for a fixed k.

The construction of G,, is as follows:

We argue on two vertices, namely A and B, with the edge (A, B) and a cycle of
size (1 +n-(k+1)). Now we connect every vertex in the cycle with an edge to
both A and B, an example is presented in Figure [£.26al Then, as shown in Figure
[1.26b], we add a sequence of (k + 1)-hops, connecting every (k + 1)th vertex in the
circle starting and ending at the last vertex v(14n.(k4+1)). For each vertex of a hop we
add the edge connecting its predecessor and its successor and the edge (v2, Up.(k+1))-
The last edge (va, Vp.(k+1)) surrounds the first and the last vertex. An illustration is
given in Figure[1.26d This construction admits a bar (k, 1)-visibility representation.
In Figure we present two different bar (3, 1)-visibility representations of the
exemplary graph from Figure [£.26] Conveniently, we draw only the crossing edges
in this drawing.

From our understanding of bar (k, 1)-visibility drawings we have two major ways
to realize the segments belonging to the cycle. We can either stack the bars as a
staircase or as a pyramid and connect the hops crossing k bars. Both extreme cases
are presented in Figure [£.27 and we observe that a mixture of these configurations
is realizable. The placement of A and B depends on the structure and most of the
vertices are either between them or above. Note that in both configurations every
bar except for the outermost ones is crossed exactly once.

To support the conjecture, first of all we want to recall that the vertices A and
B have a common overlap. By this common overlap we can deduce that most of
the vertices are either vertically between A and B or above (resp. below). If the
vertices of the cycle are represented as bars in a staircase as in Figure the
majority of the vertices have to connect to A on the left side and to B on the right
side as indicated in Figure [4.28 The same implication would hold in the pyramid
setting from Figure [£.27b] Note that it is likely to mix both configurations having
a pyramid on the top part and a staircase between A and B. Nonetheless many
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Figure 4.26: @ shows a circle with 17 = 1 4+ 4 - (3 + 1) vertices where each vertex is
connected to A and B. Additionally, the edge (A, B) is drawn. In [(b)] we added a
sequence of 4 hops, that is connecting every 4th vertex starting and ending at vertex v;.
Finally, we add the dashed edges sourrounding the vertices used in the hops in

it ’ — :

Figure 4.27: Two different bar (3,1)-visibility representations of the graph G,, with 19
vertices from Figure Note that every bar except for the outermost bars is crossed
exactly once in both representations.
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A

. B

Figure 4.28: Bars which are located between A and B have to connect to both vertices.
The majority of these vertices connect at the right side to B and at the left side to A.

vertices in either configuration should imply a subset of bars which is vertically
ordered by their occurrence in the cycle.

A fixed vertical ordering of a sufficiently large subset of bars in either configura-
tion would imply bar (k, 1)-visibility and not bar (1, 1)-visibility.

To conclude our work on bar (k, j)-visibility graphs, recall that we focused mainly
on bar (1, 7)-visibility graphs. We continued with graphs, where j is fixed to be
j = 1 instead of k, namely bar (k, 1)-visibility graphs.

Recall that the number of edges in bar (1,00) is at most 6n — 20, by the work
of Dean et al. [31]. In bar (1, 1)-visibility graphs the number of edges is bound by
4n — 8 [15]. Furthermore, bar (1, 1)-visbility graphs include the class of 1-planar
graphs. Extending this model to bar (k, 1)-visibility representations, for k£ > 1 we
describe a class of graphs, which includes all bar (1, 1)-visibility graphs. Therefore,
bar (k,1)-visibility graphs have the same upper bound in the number of edges,
namely 4n — 8. This leads to a class of graphs beyond planarity with few edges.

Given this upper bound for the class of bar (k,1)-visibility for & > 1 and the
knowledge, that bar (1, 1)-visibility graphs are a subset of these graphs, the further
investigation of this class of graphs would be interesting.

In a fan-planar graph an edge is allowed to cross multiple other edges, as long as
the crossed edges share a common vertex. In the corresponding bar-visibility repre-
sentation, it might suffice to cross one bar, rather than a fan of edges. We would be
interested if fan-planar graphs can be drawn as bar (k, j)-visibility representation
with small values for k£ and j.

To the best of our knowledge, there is still no efficient algorithm to draw bar
(k,g)-visibility graphs for & > 2. We conjecture the recognition of bar (1,7)-
visibility graphs to be NP-hard, even for fixed j due to their close relation of bar
(1, 1)-visibility graphs to 1-planar graphs. A remaining task is to develop an ap-
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proximation algorithm or a heuristic to minimize 7, k or both parameters in given
drawings.
We conclude this chapter with a short list of open problems:

1. Can we further describe the class of bar (k,1)-visibility graphs? Is there a
relation of these to other known graph classes?

2. Can we relate fan-planar graphs to bar (k, j) visibility graphs?

3. Can every bar (1, 1)-visibility graph be drawn efficiently allowing more cross-
ings, e.g. as bar (1,2)- or bar (2,2)-visibility representation?

4. Can we derive bounds on the number of edges for general bar (k, j)-visibility
graphs, especially for k = 27
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Chapter

Sumimary

In this thesis we present new insights on three topics in graph drawing. The ply-
number was initially introduced by Eppstein et al. [42] during their study of road
networks. Further investigation by De Luca et al. [30] suggest the ply-number as
measurement for aesthetically pleasing drawings of graphs. We present new theo-
retical insights on drawings with low ply-number. We extend our research to the
vertex-ply-number and focus on empty-ply drawings, namely drawings with vertez-
ply-number 1. In our third chapter, we propose an efficient algorithm to compute
the ply-number for a given drawing. Our algorithm is experimentally evaluated and
directly compared to previous implementations by [30]. We introduce a workflow to
optimize drawings regarding the new parameter. In the fourth chapter we present
our work on bar-visibility representations beyond planarity. For planar graphs it
is known that they have planar bar-visibility representations [98], as well as for
I-planar graphs [83]. We introduce a new notation, namely bar (k, j)-visibility rep-
resentations, where each bar can be crossed at most j times and any edge can cross
at most k bars. This allows us to clarify the different notations of bar k-visibility
graphs used in [31], [83] and [I5] in Section [4.1] Especially, we continue our work
published in [16] and answer some of our remaining open problems.

In the beginning of Chapter [2] we give a summary on the previous work on the
ply-number of drawings [3, 4, 30, 42]. Then, we present results on graphs which
have drawings with bounded ply-number, namely ply-number 1 and 2. Drawings
with ply-number 1 have very restrictive properties such as uniform edge lengths and
uniform vertex distribution. Thereby, drawings with ply-number 1 are polynomial
in area. We conclude that the correspondence to unit-disk contact representation
and thereby the recognition of graphs that can be drawn with ply-number 1 is
NP-hard.

Graphs that can be drawn with ply-number 2 include stars, binary trees and
caterpillars. Recall that in drawings with ply-number 2 at most two ply-disks over-
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lap in any coordinate and we observe that for binary trees the ratio r between
the lengths of two incident edges can be % We give constructions to obtain draw-
ings with ply-number 2 for the named graph classes in Section [2.3.2] Recalll that
drawings with ply-number 2 might require exponential area.

We state in Theorem that any graph with n vertices can be drawn with ply-
number less or equal to 5 and prove this bound considering complete graphs with
n vertices. Additionally, we have polynomial area requirements for these drawings.

We continue by pointing out the relation between the ply-number and the vertez-
ply-number of drawings in Section [2.5] Recall that the vertex-ply-number denotes
the maximal number of ply-disks any vertex in the drawing is contained in. Note
that the vertez-ply-number of a drawing cannot exceed the ply-number of the draw-
ing. In particular we show that any drawing with vertexz-ply-number h has a ply-
number less than 5h (recall Theorem [2.5). For further examination of the vertez-
ply-number we focus on empty-ply drawings. In any empty-ply drawing the ratio
between edges incident to the same vertex have a edge-length ratio of at most 2.
This fact directly translates to the radii of ply-disks of adjacent vertices. Nonethe-
less, the area requirements can be exponential, since the ratio between the shortest
and the longest edge in the drawing of a graph G can be as large as 2¢, depending
on the diameter d of G. Additionally, we discovered that the square of a graph
with ply-number 1 admits an empty-ply drawing. This does not hold for graphs
with ply-number > 1, as we present a counterexample. Furthermore, we give a

proof that the maximum vertex-degree in any empty-ply drawing is less than 24
(cf. Theorem [2.12)).

We continue to name graphs with and without empty-ply drawings in Section [2.7]
We present drawings for the star K o4, the complete graph K7, and the complete
bipartite graphs K2712, K379, and K4’6.

We present an exhaustive case distinction to prove that the complete graph Ky
does not admit an empty-ply drawing. Thereby, for any n > 8 the complete graph
K, is not empty-ply. Applying the same techniques, we are able to show that the
complete bipartite graph Kj 15 does not admit an empty-ply drawing. Thus the
remaining question, whether the graphs Ky ;3 and Ky 14 have empty-ply drawings,
is still open.

We conjecture that Ky ;3 does not admit an empty-ply drawing and it might
be proven by refining the argumentation in Theorem [2.21] The argumentation on
the ply-disks could be more restrictive, since during our argumentation we rather
extensively use the cover-disks. Thereby, the result is an overestimation in terms
of accuracy arguing on any drawing. Although not proven, it is reasonable to
conjecture that the empty-ply drawings of K; and K, ¢ are unique with respect to
scaling and rotating since, in contrast to the other known complete and complete
bipartite graphs, these drawings do not allow any movement of vertices without
violating the empty-ply property.
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In Chapter |3| we present our algorithmic approach to compute the ply-number of
a given drawing. There have been some attempts to solve this task before, see [7]
and [30]. We present a supportive tool to give the user an intuitive understanding of
the ply-number as aesthetic criterion. The user can see the impact of modification
of the drawing on the ply-number. We implemented different layout techniques,
namely organic, circular, and random placement of the vertices.

Beside the basic functionality, described in Section [3.3] we improved the existing
algorithm to compute the ply-number of a given drawing. This is an important step
to enable instant feedback to the users actions. Our algorithm is significantly faster
maintaining the same accuracy as previous implementations [56]. In fact we are
able to reduce the time spent on the computation of the ply-number from seconds
to milliseconds. This result is presented in Section [3.6.3]

Our algorithm uses the plane-sweep technique to compute intersections of ply-
disks and keeps track of the current number of intersecting disks, namely the ply-
value. The maximum over all ply-values is the ply-number of the drawing. For
details recall Section [3.5] In contrast to the previous applications, we handle in-
consistencies regarding precision errors differently. While in previous implementa-
tions [7,[30] the precision of the computation was increased, we focus on keeping the
ply-disks invariant intact. That is the order of closing and opening ply-disks along a
vertical line can only be changed by computed intersections. This technique allows
us to use computationally effective operations on the data structure double.

To confirm the use of our algorithm, we perform experiments on the well known
Rome graphs, and set of randomly generated graphs. The set are described in
Section in detail. Furthermore, we compare our implementation to the imple-
mentation in [30] on a set of drawings kindly provided by Felice De Luca. These
graphs are drawn using the multipole multilevel method by Hachul and Jiinger [53].

On the Rome graphs, we identify a linear correlation between the number of
vertices and the ply-number, rather than a correlation between the density of the
graphs and the ply-number. Nonetheless, the density of the graphs clearly has a
minor impact on the ply-number of the drawings. Furthermore, we confirm that
the time spent on computation is mainly determined by the number of intersections
of ply-disks in the drawing. Throughout the comparison of the different layout
algorithms on this set, we can conclude that in sparse graphs the organic layout
gives drawings with the lowest ply-number and the least number of intersections.
As expected, the randomized placement of vertices yield the highest ply-numbers
and highest number of intersecting ply-disks. Interestingly, the circular layout gives
the most problematic intersections due to the symmetric placement of the vertices,
and thereby a high likelihood of precision errors. The precision errors have a huge
impact on the computation time, namely on average the circular layout took by far
the longest time to compute the ply-number on the compared layouts. This can
also be confirmed by the large amount of postponed events in these computations.

We use the provided set FM3data to compare the speed of the algorithms and
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confirm that we reduce the overall computation time from seconds to milliseconds
in Section [3.6.3] This allows us to further investigate a heuristic optimization ap-
proach, which requires many computations of the ply-number for various drawings
of the graphs.

Since the FM3data drawings have been shown to have low ply-numbers in [30],
we perform another experiment on this set in Section [3.6.41 We use a tuned spring-
embedder to further optimize the drawings. On average we can reduce the ply-
number on this set from 4.3 to 3.3, which leads to the conclusion that there can be
even better results. Recall the upper bound of %, which is presented in Section
we use the circular layout as fall-back strategy, whenever the ply-number exceeded
this bound. This gave us an advantage on dense graphs, where the force directed
algorithms do perform similarly to just randomly placing vertices.

The upper bound of 7 is a good starting point for further optimization, since
dense graphs are challenging for force directed algorithms [62, 85]. Furthermore,
this indicates that the circular layout in dense graphs is an appropriate approach
to draw graphs with respect to aesthetic criteria in straight-line drawings.

In order to optimize drawings of sparse graphs we can observe that the or-
ganic layout performed similar to the multilevel multipole method by Hachul and
Jinger [53]. Recall that the multilevel multipole method places vertices on an inte-
ger grid with small average edge lengths. Thereby, the occurrence of precision errors
and thus a negative effect on the computation is likely. In our tool, the organic
layout has larger average edge lengths. We conjecture that we can increase the ac-
curacy of computations by scaling, but cannot confirm this thesis by experimental
data.

In Chapter , we present the generalization to bar (k,j)-visibility representa-
tions to clarify the different definitions of bar 1-visibility being used in [15] 31, 44|
and [83]. Recall that the definitions relate to bar (1, 00)-visibility or bar (1,1)-
visibility representations.

In particular, we present results on bar (k, j)-visibility representations for fixed
k, namely k = 1. We know the upper bound of 6n — 20 edges for any bar (1, c0)-
visibility representation by Dean et al. [3I] and we investigate bar (1, j)-visibility
representations for fixed j regarding their maximality. Recall that a maximal graph
G belongs to a class of graphs G such that adding any edge e would violate the
properties of G. In particular, we construct maximal graphs with bar (1,2), bar
(1, 3)-visibility representations and proved that bar (1,4)-visible graphs are suffi-
cient to construct maximal graphs with 6n — 20 edges. We observe that there exist
maximal bar (1,4)-visibility graphs with 6n — 20 edges with exactly 1 bar that is
crossed 4 times and all other bars have less crossings.

Furthermore, we show in Section that there exists an infinite hierarchy of
bar (1,7) graphs, meaning that for any j > 1 there exist graphs that have a bar
(1, j)-visibility representation but not a bar (1,(j — 1))-visibility representation.
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Thereby, we extend our work [16] and complete the argumentation for small values
of 7. We use topological arguments, neglecting the geometric properties of bar
(1, 7)-visibility representations in this part of the thesis.

We give a sparse class of maximal bar (1, 0o)-visible graphs with about 5n edges in
Section For this purpose we identify a graph with a very restricted bar-visibility
representation. Most of the vertices of a path, where any vertex is connected to
3 base vertices and alternating connected to 2 vertices, have to be placed between
the 5 vertices in an alternating fashion. From this restricted base structure, we can
conclude that there exist sparse graphs with maximal bar (1, co)-representation.

In the final section we present our results on the investigation on bar (k,j)-
visibility representations with fixed j = 1. We know that the number of edges in
this graph class is less or equal to the number of edges in maximal bar (1, 1)-visibility
graphs, namely 4n — 8. Furthermore, we discover that these graphs are a sparse
class of graphs class beyond planarity. In contrast to most of the investigated graph
classes beyond planarity, which have the common property that they are dense. We
know that the bar (1, 1)-visibility graphs include all 1-planar graphs [31, 83] and
any bar (k,1), where k > 1, includes all bar (1, 1)-visibility graphs.

The sparsity constraint is a commonly used property to argue on graph classes
beyond planarity and therefore, bar (k, 1)-visibility graphs, as a sparse set of graphs,
should be investigated in further research.

5.1 Open Problems

We want to conclude this thesis with a short list on open problems, arising from our
work. We presented empty-ply drawings for several graphs, namely K7, K312, K39
and K, ¢ in Section . Arising from this, we would be interested is we can close the
gap on complete bipartite graphs, especially if K513 or K514 have empty-ply draw-
ings. Are there similar results for other complete bipartite graphs as K, ,, for larger
values of n?

During our work on the ply-number of drawings, we encounter the conjecture by
Stephen Kobourov that any 3-regular planar graph has an empty-ply representation.
We tested a few instances of these graphs and it seems that the conjecture holds
true, where we do not have a proof in any sense. Interestingly most of the drawings
where not planar. This would be a good result, since by now we only know a few
graphs that have empty-ply drawings rather than a class of graphs.

We want to recall the question for k-vertez-ply drawings. Here, any vertex can be
contained in at most k ply-disks. This corresponds to the relaxation of k-proximity
drawings, where at most k vertices are allowed to be in any proximity drawing. In
this topic there exist concepts of k-Gabriel and k-relative- neighbourhood draw-
ings [65].

Clearly, by Theorem [2.5] any graph with vertez-ply-number h has a ply-number at
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most 5h and the vertez-ply-number is at most equal to the ply-number in any
drawing. Can we describe drawings where these values are always equal? Can we
describe drawings with vertex-ply-number h and ply-number 5h?

We introduced a workflow to optimize the ply-number of a given drawing. We
can formulate rules for low degree vertices to minimize their ply-disk ’s radius and
thereby their contribution to the ply-number of the drawing. For example vertices
with degree 1 can be placed close to their adjacent vertex to minimize the ply-
disk of this vertex. We think that the optimization of drawings regarding their
ply-number can be further improved.

For the algorithmic part, recall that we mention the possible influence of scaling
to the accuracy and the number of precision errors in our ply-computation, which
we cannot support by experiments by now. It would be interesting, if the number
of precision errors can be efficiently reduced just by scaling the drawing.

Furthermore, we mentioned in Section [3.7]that spring-embedding algorithms with
enforced equal edge lengths seem to converge if and only if the drawing has ply-
number 1. This might be extended to a test for the NP-hard recognition problem
of Unit-Disk contact representation. Note that this is still a heuristic.

By [44] we have the relationship between bar (1, c0)-visibility representations in
both, strong and weak, models to planar, 1-planar and quasi-planar graphs. Even
though 1-planar graphs are well categorized for a long time, a complete characteri-
zation of optimal 2-planar and 3-planar graphs has been done recently [9]. Can we
extend results on these graphs to bar (k, 7)-visibility representations with constant
k > 1or j > 1?7 In particular, do all 2-planar graphs have a bar (2, 2)-visibility rep-
resentation? Following up our work, can we derive bounds on the number of edges
for general bar (k, j)-visibility graphs, especially for k = 27 Clearly, any complete
graph with n vertices has a bar (n — 4, n — 4)-visibility representation. This bound
can be derived by drawing all vertices above each other and allowing the topmost
and bottommost vertices to be connected by planar edges. The remaining n — 4
vertices simply connect through all the other vertices.

We started the investigation of bar (k,1)-visibility graphs. We would be inter-
ested in the characterization of these graphs. By now, we know that they are a
class of sparse graphs beyond planarity. Can we relate bar (k, 1)-visibility graphs
to known graph classes? We think that fan-planar graphs might be realizable as
bar (k, 7)-visible drawings with small values for £ and j. Recall that in a fan-planar
graph, an edge can cross multiple other edges as long as all the crossed edges share
a common vertex. This is likely to relate to a crossed bar. The detailed relationship
has yet to be discovered.
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