
Moreines et al. Translational Psychiatry  (2017) 7:1275 
DOI 10.1038/s41398-017-0039-9 Translational Psychiatry

ART ICLE Open Ac ce s s

Divergent effects of acute and repeated
quetiapine treatment on dopamine neuron
activity in normal vs. chronic mild stress
induced hypodopaminergic states
Jared L. Moreines1,2,3, Zoe L. Owrutsky1, Kimberly G. Gagnon1 and Anthony A. Grace1,3

Abstract
Clinical evidence supports the use of second-generation dopamine D2 receptor antagonists (D2RAs) as adjunctive
therapy or in some cases monotherapy in patients with depression. However, the mechanism for the clinical
antidepressant effect of D2RAs remains unclear. Specifically, given accumulating evidence for decreased ventral
tegmental area (VTA) dopamine system function in depression, an antidepressant effect of a medication that is
expected to further reduce dopamine system activity seems paradoxical. In the present paper we used
electrophysiological single unit recordings of identified VTA dopamine neurons to characterize the impact of acute
and repeated administration of the D2RA quetiapine at antidepressant doses in non-stressed rats and those exposed
to the chronic mild stress (CMS) rodent depression model, the latter modeling the hypodopaminergic state observed
in patients with depression. We found that acute quetiapine increased dopamine neuron population activity in non-
stressed rats, but not in CMS-exposed rats. Conversely, repeated quetiapine increased VTA dopamine neuron
population activity to normal levels in CMS-exposed rats, but had no persisting effects in non-stressed rats. These data
suggest that D2RAs may exert their antidepressant actions via differential effects on the dopamine system in a normal
vs. hypoactive state. This explanation is supported by prior studies showing that D2RAs differentially impact the
dopamine system in animal models of schizophrenia and normal rats; the present results extend this phenomenon to
an animal model of depression. These data highlight the importance of studying medications in the context of animal
models of psychiatric disorders as well as normal conditions.

Introduction
Quetiapine and other second-generation dopamine D2

receptor antagonists (D2RA), e.g., lurasidone, are
increasingly popular monotherapy and as an adjunct to
other antidepressant drugs in patients with inadequate
responses to traditional antidepressants alone1. However,
the therapeutic mechanism of these agents in depression
is largely unknown. For quetiapine specifically, existing

theories highlight the role of a drug metabolite N-desalkyl
quetiapine, which functions as a potent norepinephrine
reuptake inhibitor2. However, this model does not
incorporate the D2RA properties of quetiapine.
Mounting evidence suggests that in depression the

dopamine system is underactive3–6. Thus, it is important
to reconcile how a compound that is thought to block
dopamine transmission may actually help a condition that
results from already reduced dopamine system function7.
Importantly, existing theories are based on data from
administering quetiapine to normal rats, whereas the
effect of quetiapine on the dopamine system in rodent
depression models has not been examined. However, as
has become clear in other settings such as animal models
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of schizophrenia, the effects of D2RAs on a normally
functioning dopamine system often differ substantially
from their effects on a dopamine system functioning in a
pathological state8. It is therefore critical to examine the
impact of quetiapine on animal models of depression that
exhibit clinically relevant pathological functioning of the
dopamine system.
Dopamine neurons fire in two patterns: a slow, irregular

discharge pattern of tonic activity, and a rapid sequential
discharge of burst firing9. Most dopamine neurons alter-
nate between these two firing patterns, however in order
to burst fire a neuron must already be in a spontaneously
active state. Using single unit electrophysiological
recordings of identified dopamine neurons, one can
quantify the relative number of spontaneously active
dopamine neurons, as well as the proportion of their firing
that occurs during a burst. We have recently reported that
across multiple animal models of depression, including
chronic mild stress (CMS)10 and learned helplessness11,
the number of spontaneously active dopamine neurons is
markedly reduced without changes to their firing rate or
amount of burst firing. In the CMS model specifically, we
have further elucidated that this decrease in dopamine
population activity following exposure to chronic stress is
due to enhanced afferent GABA-ergic input from the
ventral pallidum driving dopamine neurons into a silent
state, as inactivation of this region restores dopamine
population activity to normal levels12.
Multiple studies across animal models13 and human

patients with depression14 suggest that restoring normal
dopamine system function is a valuable approach to
treating depression, particularly in cases with prominent
dopamine related symptoms such as anhedonia. Thus, if
quetiapine were to increase the population activity of
dopamine neurons, this would be expected to contribute
to its antidepressant effect. While the effects of quetiapine
on the dopamine system have been extensively studied in
normal rodents, the effects of quetiapine on the dopamine
system in animal models of depression have not been
examined. Specifically, acute administration of quetiapine
at antidepressant doses has been shown to increase
dopamine population activity15, whereas after repeated
administration dopamine neuron population activity is at
baseline or lower levels16. However, behavioral studies
using the CMS model suggest that quetiapine may have
the ability to reverse deficits in behavioral assays relevant
to depression, specifically when administered at doses of
10 mg/kg for long durations17. This dose is comparable to
150–300 mg daily in humans, which has been supported
to have antidepressant effects and is substantially lower
than the doses used for schizophrenia18. This suggests
that the effects of repeated quetiapine may differ in the
presence of factors driving a hypodopaminergic state, e.g.,
chronic stress.

In the present study, we evaluated the acute and repe-
ated treatment effects of antidepressant dosage of que-
tiapine in both non-stressed and CMS-exposed rats. We
find that acute and repeated quetiapine administration
produces strikingly different effects in non-stressed vs.
stressed rodents.

Materials and methods
Subjects
All procedures were performed in accordance with the

National Institutes of Health Guide for the Care and Use
of Laboratory Animals and were approved by the Insti-
tutional Animal Care and Use Committee of the Uni-
versity of Pittsburgh.
Adult male Sprague-Dawley rats (Envigo, Indianapolis,

Indiana) weighing 300–340 g at baseline were used for all
experiments. They were acclimated to the facilities for
>7 days, housed in pairs in a temperature (22 °C) and
humidity (47%) controlled colony room (lights ON 7:00 a.
m.–7:00 p.m.). Food and water were available ad libitum.
Sample size was determined by calculating the group size
needed to achieve power ≥ 80%. Rats were randomly
assigned to CMS or control and drug or vehicle groups.

CMS procedure
CMS was performed as reported previously10,12. CMS

exposed rats were single-housed in individual cages
within an isolated colony room. Stressors included peri-
odic restricted access to food and water, cage tilt, damp
bedding, continuous overnight illumination, intermittent
paired housing with an unfamiliar cage-mate, white
noise (80–90 dB), stroboscopic lighting, and predator
odor, all delivered in the home cage. Each week rats were
exposed to 3–4 stressors in a pre-determined order con-
sistent with our prior published studies10,12,19.

Drug preparation
Quetiapine 10mg/mL was dissolved in 0.3% tartaric acid

in physiological saline and neutralized with sodium hydro-
xide to a final pH of 5-6. This dose (10mg/kg) was selected
based on prior studies showing electrophysiological15 and
behavioral17 effects at this dose. Vehicle treated rats
received 1ml/kg injections of the same solution without the
addition of quetiapine; the two solutions were equivalent in
pH and temperature. Compared to humans, rats produce
markedly lower levels of the norquetiapine metabolite from
quetiapine, allowing us to partially dissociate the D2RA
effects of quetiapine from the norepinephrine effects of the
norquetiapine metabolite20.

Electrophysiological recordings
Surgery
Electrophysiological recordings were performed coun-

terbalanced for light phase and experimenter across
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groups. Rats anesthetized with chloral hydrate (400 mg/
kg; i.p.) were placed in a stereotaxic frame (David Kopf
Instruments, Tujunga, CA) and maintained at 37 °C using
a thermocouple-controlled heating pad (Fine Science
Tools, Foster City, CA). To access the VTA, the skull was
cleared of skin and fascia, and a partial craniectomy of the
skull was performed 5.3–5.7 mm posterior and+ 0.6–1.0
mm lateral to bregma.

Signal acquisition
Single barrel electrodes were constructed with a vertical

electrode puller (Narishige, Tokyo, Japan) using 2mm
diameter borosilicate capillary tubes (World Precision
Instruments, Sarasota, FL), and then broken to a target of
6–10MΩ under microscopic control and filled with a 2M
saline solution with 2% Chicago Sky Blue (Sigma Aldrich).
Signals were fed through silver wire to an amplifier
(Fintronics, Orange, CT) operated with open filter settings
(10 Hz low cutoff, 16 kHz high cutoff, 1000x gain), dis-
played on an oscilloscope (B&K Precision, Yorba Linda,
CA), and stored on a computer running Lab Chart 7 (AD
Instruments, Sidney, Australia). Units were recorded
when signal-to-noise ratio exceeded 3:1. Electrode integ-
rity was ensured by replacing electrodes and repeating
tracks when either (1) no cells with biphasic waveform
(either dopamine or non-dopamine) were identified on
two consecutive tracks, or (2) an acute obvious change in
recorded neuron shape or background noise level sug-
gested damage to the electrode.

VTA sampling and dopamine neuron identification
The VTA was sampled over a grid of nine sequential

electrode tracks separated by 0.2 mm and arranged in a
predetermined pattern to reliably sample across the
medial-lateral and anterior-posterior extent of the A10
region10. Electrodes were lowered into the VTA using a
manual hydraulic microdrive (Kopf Instruments) and
dopamine neurons were identified using well-established
criteria including location, slow (<12 Hz) and irregular
firing pattern, and long duration action potential (>2.2
msec, with onset to bottom of trough> 1.1 msec) with
variable shape and biphasic waveform21,22. Identified
dopamine neurons were recorded for 3 min (1 min mini-
mum), and three parameters of dopamine neuron firing
were calculated: (1) the number of spontaneously firing
dopamine neurons identified in each track (i.e., popula-
tion activity averaged over nine tracks), (2) firing rate, and
(3) proportion of spikes occurring as burst firing (%SIB) in
which the burst onset was defined as two spikes with ≤80
msec interspike interval and termination by >160msec
interspike interval23. Additional bursting characteristics
historically examined in studies of dopamine neurons
were also calculated including burst duration (sec),
bursting rate (Hz), number of spikes per burst, intra-burst

inter-spike interval, and coefficient of variation. No sig-
nificant group differences in these parameters were found
(see supplemental information Fig. S1, Tables S1–S2).

Experimental outline
The experiments performed are outlined in Fig. 1.
Experiment 1: Acute quetiapine in non-stressed and

CMS-exposed rats. Rats were exposed to 5–7 weeks of
CMS or control conditions. On the day of dopamine
neuron recording, quetiapine was administered 2 h prior
to beginning the recording.
Experiment 2: Repeated quetiapine in non-stressed and

CMS-exposed rats. Rats were exposed to 5 weeks of
standard CMS or control conditions, followed by an
additional 3+ weeks during which they received daily
injections of quetiapine 10 mg/kg or vehicle in parallel
with the CMS protocol. Electrophysiological recordings
began 2 h following the final dose.
Experiment 3: Repeated quetiapine plus apomorphine in

non-stressed rats. Rats received daily injections of que-
tiapine 10mg/kg for >21 days, which is a standard
minimum duration for the induction of depolarization
block24. Electrophysiological recordings were performed
beginning 2 h after the final dose. A recording of VTA
population activity was performed. Apomorphine dis-
solved in normal saline (50 mcg/mL) was then delivered
intravenously at autoreceptor-selective dosages via the
lateral tail vein until a decrease in firing rate of >20% was
observed, with most rats showing response with 40–80 µg/
kg, consistent with prior studies8. The VTA was then
resampled for population activity. These recordings were
counterbalanced across animals for anteroposterior
starting location within the VTA.

Histology
Final electrode placement at the conclusion of recording

was marked by electrophoretic ejection of Chicago Sky
Blue. Rats were overdosed with additional chloral hydrate
and decapitated. Brains were removed and fixed in 8%
paraformaldehyde followed by 25% sucrose for cryopro-
tection. Sixty micrometer coronal sections were prepared
using a cryostat (Leica, Buffalo Grove, IL), mounted onto
gelatin-chromalum coated glass slides, and stained with
cresyl violet and neutral red for microscopic confirmation
of recording electrode location. Rats were excluded from
the study if histological review showed recording elec-
trode location outside of the VTA. Histological review
was conducted with the investigator blinded to an ani-
mal’s experimental group.

Data analysis
Spike time courses for individual neurons were exported

from Lab Chart into Neuroexpolorer (Nex Technologies,
Madison, AL) for calculation of firing rate and burst firing.
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Within each rat, population activity was calculated by
dividing the total number of dopamine neurons identified
by the number of valid tracks performed, yielding the
metric of Cells Per Track (CPT). The average firing rate
and amount of burst activity for dopamine neurons
recorded were averaged across rats in a group, consider-
ing each cell as an independent replicate. Data were
analyzed in SPSS 23 (IBM, Armonk, NY) and Prism 7
(GraphPad, La Jolla, CA). For experiments 1 and 2, 2-way
ANOVAs with post-hoc tests were performed to compare
treatment groups. For experiment 3, paired t-tests were
performed to compare data collected before and after
apomorphine administration.

Results
Experiment 1: Acute quetiapine increased dopamine
neuron population activity in non-stressed rats but not
chronically stressed rats
The differential effect of acute quetiapine in non-

stressed and stress-exposed rats was evaluated by
administering an acute dose of quetiapine (10 mg/kg) 2 h
prior to assessing VTA dopamine neuron firing proper-
ties. This resulted in a significant interaction effect

between treatment with acute quetiapine and exposure to
CMS for dopamine population activity (2-way ANOVA
interaction F(1,25)= 4.3, p= 0.049, Fig. 2, Table 1). Acute
administration of quetiapine to non-stressed rats
increased dopamine population activity (CON-VEH-
Acute 1.1± 0.11 CPT, n= 8; CON-QTP-Acute 1.4±
0.068 CPT, n= 11; 2-way ANOVA interaction F(1,25)=
4.3, p= 0.049; post-hoc t25= 3.3, p= 0.0054; Fig. 2a,
Table 1), in line with prior reported results15. There was
no change in the average firing rate of recorded dopamine
neurons (CON-VEH-Acute 4.4± 0.30 Hz, n= 69; CON-
QTP-Acute 3.5± 0.23 Hz, n= 120; 2-way ANOVA p>
0.05 for main effects of drug or interaction; Fig. 2b–d,
Table 1) or proportion of burst activity (CON-VEH-Acute
33.9± 3.6%SIB, n= 69; CON-QTP-Acute 25.0± 2.4%SIB,
n= 120; 2-way ANOVA p> 0.05 for main effects of drug
or interaction; Fig. 2e–g, Table 1). However, histogram
examination suggests the increased population activity
may involve the emergence of slower firing and less
bursting cells, offset by increases in these measures in
already active neurons (Fig. 2c, f), resulting in no net
change across the population.

Acute Quetiapine
or Vehicle, i.p.

Exp 1. CMS or Control (5-7 Weeks) Dopamine Recording

CMS or Control (8 Weeks) Dopamine Recording

Repeated Quetiapine
or Vehicle, i.p.

Exp 2.

Repeated Quetiapine, i.p.

Exp 3. Control (3-4 Weeks) Dopamine RecordingDopamine Recording

Apomorphine, i.v.

Fig. 1 Experimental Timeline. In Experiments 1 and 2, rats experienced 5–7 weeks of CMS or control conditions. This was followed by acute
administration of quetiapine on the day of dopamine neuron recording (Experiment 1) or 21+ days of quetiapine with continued CMS exposure up
to the day of dopamine neuron recording (Experiment 2). In Experiment 3, rats living in normal housing conditions received 21+ days of quetiapine
up to the day of dopamine neuron recording, which included measurements of dopamine neuron population activity before and immediately
following a pre-synaptic dose of apomorphine
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In line with prior results, CMS-exposed rats treated
acutely with vehicle had fewer spontaneously active
dopamine neurons as compared to non-stressed rats
treated acutely with vehicle (CON-VEH-Acute 1.1± 0.11
CPT, n= 8; CMS-VEH-Acute 0.47± 0.11 CPT, n= 4; 2-
way ANOVA main effect of stress F(1,25)= 72.6; p<
0.0001; post-hoc t25= 4.2, p= 0.0006; Fig. 2a, Table 1),
without a change in firing rate (CON-VEH-Acute 4.4±
0.30 Hz, n= 69; CMS-VEH-Acute 3.7± 0.30 Hz, n= 19;
2-way ANOVA p> 0.05 for main effects of stress or
interaction; Fig. 2b–d, Table 1) or proportion of burst
activity (CON-VEH-Acute 33.9± 3.6 %SIB, n= 69; CMS-
VEH-Acute 29.9± 6.1%SIB, n= 19; 2-way ANOVA p>

0.05 for main effects of stress or interaction; Fig. 2e–g,
Table 1).
In contrast to the effects observed in non-stressed rats,

quetiapine had no effect on dopamine neuron population
activity in CMS-exposed rats (CMS-VEH-Acute 0.47±
0.11 CPT, n= 4; CMS-QTP-Acute 0.45± 0.019 CPT, n=
6; post-hoc t25= 0.15, p= 0.99; Fig. 2a, Table 1). Similarly,
there was no effect on average dopamine neuron firing
rate (CMS-VEH-Acute 3.7± 0.30 Hz, n= 19; CMS-QTP-
Acute 3.4± 0.31 Hz, n= 23; 2-way ANOVA p> 0.05;
Fig. 2b–d, Table 1), or proportion of burst activity (CMS-
VEH-Acute 29.9± 6.1%SIB, n= 19; CMS-QTP-Acute

VEH QTP VEH QTP
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Fig. 2 Impact of Acute Quetiapine Treatment in Non-stressed and Chronically Stressed Rats. Acute administration of quetiapine increased dopamine
population activity in non-stressed rats, but had no effects on CMS-exposed rats. a Dopamine population activity was increased following acute
administration of quetiapine to non-stressed rats, but the reduction observed in stressed rats was not ameliorated by acute administration. b-g
Average dopamine neuron firing rate b-d and proportion of burst firing e-g were unchanged by acute administration of quetiapine to non-stressed
or CMS-exposed rats. The parallel increase in slow firing c, nonbursting f neurons in non-stressed rats likely reflects activation of previously silent
neurons, that when combined with a rightward shift in these parameters in previously firing neurons results in no net change in firing rate or pattern
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23.2± 4.7%SIB, n= 23; 2-way ANOVA p> 0.05; Fig. 2e–g,
Table 1).

Experiment 2: Repeated quetiapine normalized decreased
dopamine neuron population activity in chronically
stressed rats but had no effect in non-stressed rats
We next assessed whether repeated quetiapine admin-

istration differentially affected dopamine neuron activity
in non-stressed and CMS-exposed rats. As with acute
administration of quetiapine, we observed a significant
interaction between CMS exposure and repeated treat-
ment with quetiapine (F(1,42)= 5.2, p= 0.028; Fig. 3,
Table 2). However, in contrast to the effects of acute
treatment, repeated quetiapine treatment did not alter
dopamine neuron population activity in non-stressed rats
at these doses (CON-VEH-Repeated 0.99± 0.06 CPT, n
= 10; CON-QTP-Repeated 0.92± 0.10 CPT, n= 13; t42=
0.53, p= 0.84; Table 2a, Fig. 3). Similarly, no effect was
observed in average dopamine firing rate (CON-VEH-
Repeated 2.9± 0.21 Hz, n= 78; CON-QTP-Repeated 3.4
± 0.21 Hz, n= 92; 2-way ANOVA p> 0.05 for main
effects of drug or interaction; Fig. 3b–d, Table 2). While a
main effect of repeated quetiapine on proportion of burst
activity was observed across all groups (F(1,301)= 5.4; p=
0.020), a post-hoc test within non-stressed rats did not
reveal a significant effect (CON-VEH-Repeated 31.6±
2.9%SIB, n= 78; CON-QTP-Repeated 23.8± 2.6%SIB, n
= 92; t(301)= 2.0; p= 0.084; Fig. 3e–g, Table 2).

Rats exposed to CMS that received 21+ days of vehicle
injections showed reduced dopamine neuron population
activity compared to non-stressed rats treated repeatedly
with vehicle (CON-VEH-Repeated 0.99± 0.06 CPT, n=
10; CMS-VEH-Repeated 0.58± 0.07 CPT, n= 10; t42=
2.9, p= 0.011; Fig. 3a, Table 2). Consistent with the
acutely-treated vehicle groups, CMS-exposed rats treated
repeatedly with vehicle were similar to non-stressed rats
treated repeatedly with vehicle in average dopamine
neuron firing rate (CON-VEH-Repeated 2.9± 0.21 Hz, n
= 78; CMS-VEH-Repeated 3.4± 0.34 Hz, n= 44; 2-way
ANOVA p> 0.05 for main effects of stress or interaction;
Fig. 3b–d, Table 2) and proportion of burst activity (CON-
VEH-Repeated 31.6± 2.9%SIB, n= 78; CMS-VEH-
Repeated 28.9± 4.2 %SIB, n= 44; 2-way ANOVA p>
0.05 for main effects of stress or interaction; Fig. 3e–g,
Table 2).
In rats exposed to CMS, repeated treatment with que-

tiapine increased dopamine neuron population activity
compared to CMS-exposed rats that received repeated
treatment with vehicle (CMS-VEH-Repeated 0.58± 0.07
CPT, n= 10; CMS-QTP-Repeated 0.93± 0.11 CPT, n=
13; t42= 2.7, p= 0.021; Fig. 3a, Table 2). This increase
reversed the CMS-induced attenuation of dopamine
neuron population activity to levels identical to that of the
non-stressed control rats. Compared to rats treated
repeatedly with vehicle, the rats that received repeated
treatment with quetiapine did not show significantly

Table 1 Summary of dopamine neuron data for acute quetiapine treatment in Experiment 1

CON-VEH-Acute CON-QTP-Acute CMS-VEH-Acute CMS-QTP-Acute

Cells Per Track 1.1 ± 0.11 1.4 ± 0.068 0.47 ± 0.11 0.45 ± 0.019

2-Way interaction F(1,25) = 4.3; p = 0.049a − − −

Drug effect F(1,25) = 3.3; p = 0.081a t(25) = 3.3; p = 0.0054b − t(25) = 0.15; p = 0.99b

Stress effect F(1,25) = 72.6; p < 0.0001a − t(25) = 4.2; p = 0.0006c t(25) = 8.3; p < 0.0001c

Firing Rate (Hz) 4.4 ± 0.30 3.5 ± 0.23 3.7 ± 0.30 3.4 ± 0.31

2-Way interaction F(1,227) = 0.46; p = 0.50a −d −d −d

Drug effect F(1,227) = 2.6; p = 0.11a −d − −d

Stress effect F(1,227) = 0.94; p = 0.33a − −d −d

Bursting (%SIB) 33.9 ± 3.6 25.0 ± 2.4 29.9 ± 6.1 23.2 ± 4.7

2-Way interaction F(1,227) = 0.056; p = 0.81a −d −d −d

Drug effect F(1,227) = 2.8; p = 0.094a −d − −d

Stress effect F(1,277) = 0.39; p = 0.53a − −d −d

Group N (Rats) N = 8 rats, 69 cells N = 11 rats, 120 cells N = 4 rats, 19 cells N = 6 rats, 23 cells

%SIB, Percent of Spikes in Burst; CMS chronic mild stress, CON control, QTP quetiapine, VEH vehicle;
aMain effects among all groups
bSidak’s post-hoc test for drug effect (within same stress category)
cSidak’s post-hoc test for stress effect (within same drug group)
dMain effect not significant, post-hoc test not performed
Bold values signify summaries of primary data or a statistically significant analysis of data
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altered average dopamine neuron firing rate (CMS-VEH-
Repeated 3.4± 0.34 Hz, n= 44; CMS-QTP-Repeated 3.2
± 0.21 Hz, n= 91; 2-way ANOVA p> 0.05 for main
effects of drug or interaction; Fig. 3b–d, Table 2) or pro-
portion of burst activity (CMS-VEH-Repeated 28.9± 4.2%
SIB, n= 44; CMS-QTP-repeated 22.8± 2.4 %SIB, n= 91;
t301= 1.3, p= 0.33; Fig. 3e–g, Table 2), despite a sig-
nificant main effect of drug treatment across all groups for
bursting (F(1,301)= 5.4; p= 0.020). Histogram review
suggests preserved firing rate distribution (Fig. 3c, d), and
the possibility of fewer high-bursting neurons in both

CMS and non-stressed rats following repeated quetiapine
(Fig. 3f, g).

Experiment 3: Repeated low-dose quetiapine does not
induce depolarization block in normal rats
Repeated administration of antipsychotic drugs,

including high antipsychotic doses of second generation
agents such as quetiapine, have been shown to induce
depolarization block following> 21 days of administration
to normal rats15. However, the induction of depolarization
block following lower antidepressant doses of quetiapine
such as 10mg/kg used at present has not been examined.
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Fig. 3 Impact of repeated quetiapine administration in non-stressed and chronically stressed rats. Repeated administration of quetiapine for 21+ days
reversed the CMS-induced decrease in dopamine population activity without affecting this measure in non-stressed rats. a Dopamine population
activity was significantly increased in CMS-exposed rats following repeated quetiapine treatment, but was unchanged in non-stressed rats treated
repeatedly with vehicle. b-d Average dopamine neuron firing rate was unchanged by chronic stress or quetiapine b, nor was the distribution of firing
rates c-d. e-g Despite a significant main effect of Drug in 2-way ANOVA e possibly reflecting fewer high-bursting neurons f-g, post-hoc testing did
not reveal significant changes in proportion of burst activity in either non-stressed or CMS-exposed rats treated repeatedly with quetiapine as
compared to their respective control group treated repeatedly with vehicle
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Thus, for a portion of the non-stressed rats that received
repeated treatment with quetiapine in Experiment 2, we
tested for the presence of depolarization block at the
conclusion of dopamine neuron recording. Following an
initial recording of dopamine neurons from 6–9 tracks
within the A10 region, a dose of apomorphine selective
for pre-synaptic D2 receptors (40–80 µg/kg) was admi-
nistered via the lateral tail vein (infusion verified by a
decrease in firing rate of a single recorded dopamine
neuron), and an additional 6–9 tracks of dopamine neu-
ron recording was performed, allowing for pre- and post-
apomorphine assessments of dopamine neuron popula-
tion activity within the same animal. We observed no
change in dopamine neuron population activity following
apomorphine administration (Pre-APO 0.75± 0.11 CPT;
Post-APO 0.79± 0.14 CPT; paired t3= 1, p= 0.39), sug-
gesting that depolarization block did not occur following
repeated administration of 10 mg/kg quetiapine.

Discussion
In this study, we found divergent effects of acute and

repeated administration of quetiapine in non-stressed and
CMS-exposed rats. While acute quetiapine increased
dopamine population activity in non-stressed rats, it had
no effect on CMS-exposed rats. Conversely, quetiapine
administered repeatedly was uniquely capable of restoring
normal levels of dopamine neuron population activity in
CMS-exposed rats, but had no persisting effects on
population activity in non-stressed rats. Furthermore, we

show that the return to baseline levels of dopamine
neuron population activity in non-stressed rats adminis-
tered quetiapine for 21 days is unlikely to be due to the
induction of depolarization block in VTA dopamine
neurons.
Prior studies have administered quetiapine to CMS-

exposed rats and observed behavioral effects consistent
with an antidepressant action17. However, as far as we are
aware, this is the first study to examine the electro-
physiological impact of quetiapine on the dopamine sys-
tem in rats subjected to an animal model of depression.
Our results suggest that quetiapine has significantly dif-
ferent effects on the dopamine system in CMS-exposed
rats as compared to its effects in non-stressed rats. These
data add to existing literature on the dopamine system
impact of acute and repeated quetiapine treatment in
normal rats. These studies found that acute administra-
tion of quetiapine at doses of 10 mg/kg or greater will
induce acute increases in population activity of the A10
(i.e., VTA) but not A9 (i.e., substantia nigra) dopamine
neurons15. Moreover, the impact of repeated administra-
tion of quetiapine was examined at increasing dosages,
and found to induce depolarization inactivation only
when administered at doses of 40 mg/kg or greater16. This
higher dose is more in line with the doses used clinically
in the treatment of psychosis or acute mania (i.e.,
600–800 mg), whereas the dose used in the treatment of
depression (i.e., 300 mg) is more in line with the 10 mg/kg

Table 2 Summary of dopamine neuron data for repeated quetiapine treatment in Experiment 2

CON-VEH-Repeated CON-QTP-Repeated CMS-VEH-Repeated CMS-QTP-Repeated

Cells Per Track 0.99 ± 0.060 0.92 ± 0.10 0.58 ± 0.070 0.93 ± 0.11

2-Way interaction F(1,42) = 5.2; p = 0.028a - - -

Drug effect F(1,42) = 2.3; p = 0.13a t(42) = 0.53; p = 0.84b - t(42) = 2.7; p = 0.021b

Stress effect F(1,42) = 4.5; p = 0.040a - t(42) = 2.9; p = 0.011c t(42) = 0.11; p = 0.99c

Firing Rate (Hz) 2.9 ± 0.21 3.4 ± 0.21 3.4 ± 0.34 3.2 ± 0.21

2-Way interaction F(1,42) = 1.5; p = 0.21a -d -d -d

Drug effect F(1,42) = 0.22; p = 0.64a -d - -d

Stress effect F(1,42) = 0.23; p = 0.63a - -d -d

Bursting (%SIB) 31.6 ± 2.9 23.8 ± 2.6 28.9 ± 4.2 22.8 ± 2.4

2-Way interaction F(1,301) = 0.077; p = 0.78a -d -d -d

Drug effect F(1,301) = 5.4; p = 0.020a t(301) = 2.0; p = 0.084b - t(301) = 1.3; p = 0.33b

Stress effect F(1,301) = 0.36; p = 0.55a - -d -d

Group N (Rats) N = 10 rats, 78 cells N = 13 rats, 92 cells N = 10 rats, 44 cells N = 13 rats, 91 cells

aMain effects among all groups
bSidak’s post-hoc test for drug effect (within same stress category)
cSidak’s post-hoc test for stress effect (within same drug group)
dMain effect not significant, post-hoc test not performed
%SIB, Percent of Spikes in Burst; CMS chronic mild stress, CON control, QTP quetiapine, VEH vehicle
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dose used in the present study, as measured by D2
receptor occupancy18.
Although behavioral confirmation of the anhedonic

state would have been useful to corroborate the electro-
physiological studies, no universally accepted behavioral
assays are available. Thus, future studies should assess
whether stress pre-exposure alters the impact of a one-
time dose or repeated doses of quetiapine. Of note, prior
studies have demonstrated the ability of quetiapine to
prevent stress induced depressive behaviors17. However,
whether quetiapine can rescue an existing depressive
phenotype remains to be examined.
The mechanism through which quetiapine, like other

D2RAs, increases dopamine neuron population activity is
believed to occur via activation of striatal-midbrain
feedback circuits, given that lesions of these feedback
pathways block the antipsychotic drug-induced increase
in dopamine population activity25. Similarly, the induction
of depolarization block by high-dose antipsychotic drugs
is also believed to occur via hyperactivation of these
pathways, resulting in over-depolarization of the dopa-
mine neuron membrane potential to the point of spike
inactivation24. One plausible mechanism by which que-
tiapine or other D2RA medications could be effective as
antidepressants is that, at the low doses used to treat
depression, the drugs produce sufficient activation of
these feedback pathways to restore dopamine population
activity to normal but not sufficient to induce depolar-
ization block. In contrast, the low level of striatal D2
receptor blockade produced by low doses of quetiapine is
likely to be compensated homeostatically by increased D2
receptor number, increased dopamine synthesis,
increased release, etc. As a result, the normalization of
dopamine neuron population activity in the depressed
state produced by quetiapine results in a greater restora-
tion of phasic dopamine system responsivity to afferent
drive3 compared to the low tonic level of D2 receptor
blockade.
The principle brain region believed to impact VTA

dopamine neuron population activity is the ventral palli-
dum (VP), as pre-infusion of the GABA-A receptor
antagonist into the VP blocks the increase in dopamine
population activity observed following acute administra-
tion of sertindole or haloperidol26. Thus, D2RAs are
hypothesized to enhance accumbal inhibitory drive of the
VP, releasing dopamine neurons from VP inhibition and
subsequently increasing the number that are sponta-
neously active. We have shown previously that the VP is
also a critical node in the pathway driving the CMS-
induced hypodopaminergic state12. Therefore, these col-
lective data lead to the intriguing possibility that con-
vergent and counteracting effects on the VP is the
mechanism of action of these D2RA medications’ anti-
depressant effects, with CMS increasing and quetiapine

decreasing VP inhibitory tone over VTA dopamine
neurons.
The approach of using subsets of D2RA medications for

an antidepressant effect is a promising therapeutic
mechanism. The present study focused only on quetiapine
rather than other D2RAs such as haloperidol or clozapine
because quetiapine has been shown to possess anti-
depressant effects clinically27. Moreover, the binding
profile of quetiapine is much different than other D2RA
antipsychotic drugs, even within the second generation
(atypical) class28. Thus, quetiapine demonstrates a unique
receptor occupancy curve wherein it binds fleetingly with
high potency and rapid dissociation, rather than a pro-
longed occupancy seen with other compounds29. It is
possible that these additional collective qualities may
account for the unique ability of quetiapine to act as an
antidepressant medication while haloperidol and other
more traditional antipsychotic drugs are not effective as
antidepressants. Of note, recent clinical data supports a
dopamine enhancing mechanism for D2RA treatment in
MDD30. It is worth mentioning, however, that quetiapine
and its metabolites do have a number of effects on other
receptors such as 5-HT1A, which likely also contribute to
a major portion of its antidepressant actions31.
In conclusion, the present data support unique and

divergent effects of acute and repeated administration of
the D2RA quetiapine in non-stressed and chronically
stress-exposed rodents. These data offer compelling evi-
dence for further investigating the dopaminergic com-
ponent of the therapeutic mechanism of select D2RA
medications, and highlight the importance of conducting
these studies using an animal model of depression in
addition to normal rats.
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