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Abstract—This paper proposes an agent based
approach to the scheduling of jobs in datacenters
under thermal constraints. The model encompasses
both temporal and spatial aspects of the temperature
evolution using a unified model, taking into account
the dynamics of heat production and dissipation.
Agents coordinate to eventually move jobs to the best
suitable place and to adapt dynamically the frequency
settings of the nodes to the best combination. Several
objectives of the agents are compared under different
circumstances by an extensive set of experiments.

I. INTRODUCTION

In this research work, we tackle the problem

of job placement in datacenters with the aim

of reducing energy consumption and guaranteeing

performances while preserving constraints on heat

production. Scheduling of jobs to nodes in a data-

center is not a novel problem, and the literature is

replete with works addressing job placement and

scheduling. Taking into account heat production

and dissipation in a datacenter is more rare. Models

exist for task placement under temperature con-

straint of the nodes or in the room, but few include

both the heat recirculation that affects datacenters

(spatial dispersion of heat between nodes, using a

static dispersion model) and the dynamic tempo-

ral evolution of the temperature (nodes tempera-

ture increasing when jobs are present, decreasing

thanks to the cooling system, either room CRAC

-computer room air conditioning- and nodes fan).

Some researchers have addressed the problem

using heuristics [18] having a global knowledge of

the system. While these solutions give very good

results, we believe that in order to scale to exascale,

a distributed approach is mandatory. Multi-Agent-

Systems (MAS) have proven to be effective solu-

tions to solve multi-objectives problems in general,

as well as placement and scheduling problems in

particular. Since the workload distributed to the

datacenter is continuously evolving, a dynamic

system able to adapt the node configuration and

the job placement to the load of the system and

to the evolution of the temperature is necessary.

Agents following techniques such as reinforcement

learning [19], [20], [21], [23], and more precisely

in the context of job scheduling [22], [25], [24]

allowing for an adaptive and flexible solution.

The main contributions of this paper are:

• We propose a novel architecture and algorithm

for multi-agent system dynamics, self adapt-

ing to the environmental conditions

• We show how the genericity of the approach

can handle multiple objectives

• We show the benefit of using dynamic adap-

tive approach to static ones.

The rest of this paper is organised as follows:

Section II discusses related works and exhibits the

novelty of our work. Section III gives an overview

of the problem statement and presents the system

model and its dynamics. In Section V, we propose

a MAS architecture that we evaluate in Section VI.

Section VII concludes the paper and discusses

future work.

II. RELATED WORK

There exists a large literature using multi agent

systems for job scheduling and resource allocation,

sometimes together with reinforcement techniques.

For instance, in [24], Wu et al. propose a MAS us-

ing reinforcement techniques for the job scheduling

problem in Grid Computing. Their ultimate goal is

the load balancing on the Grid, and they favour

a distributed approach where a limited explicit

communication is necessary between the agents so

that they can share information. In our work, no

A generic learning multi-agent-system 
approach for Spatio-Temporal-, Thermal-

and Energy-Aware Scheduling



explicit communication is done between agents,

they communicate only with the evolution of the

environment (heat), independently of the agents

behaviours. Using reinforcement learning has been

widely adopted for resource scheduling, and the ex-

isting works can be categorised in two kinds: One

is the policy gradient learning [26], [27] and the

other uses value-function-based algorithms [28],

[25]. While the first showed slow convergence and

scalability issues, our approach is following this

latter trend where we evaluate the past environ-

ments. In [28] there is no explicit communication

or interaction between the agents: the only infor-

mation that agents receive is the expected response

time of a job it submitted to a particular resource,

serving as the reinforcement signal. In our case,

agents interact directly by sending and receiving

jobs to/from others. In [29] the authors describe

an agent-based power distribution approach for

dynamic thermal management. However they do

not consider agents exhanging jobs.

Many authors have considered thermal-aware

scheduling in datacenters [30]. Most of these works

rely on thermal models that capture spatial or tem-

poral impacts or a combination of both in order to

construct a thermal map of the datacenter. A spatial

thermal model characterises the spatial correlation

of the temperatures in different servers/outlets of a

datacenter. [12] first introduced the notion of heat

recirculation to capture the thermal profile of a dat-

acenter by taking the topology and heat flow into

account. [11] formally defined a heat-distribution

matrix via an abstract heat flow model for the

optimisation of the cooling cost of a datacenter.

It has been subsequently adopted in many thermal-

aware scheduling research [14]. In contrast to a

spatial model, a temporal thermal model captures

the temperature evolution of a single server over

different time intervals. [10] were the first to

apply the lumped-RC model to capture the transient

evolution of temperatures in processors. Sun et

al. [18] proposed a holistic thermal model that

captures both spatial and temporal correlations of

the temperature evolution in datacenters.

Since most thermal-aware scheduling problems

are NP-complete, many heuristic solutions have

been proposed with the objective of minimising

the cooling cost, the energy consumption, and/or

the application performance. Based on the spatial

thermal model, [12] proposed, among other heuris-

tics, MinHR, which assigns each job to a server

that contributes minimally to the heat recirculation

in the datacenter. [17] reduced the total energy con-

sumption of a datacenter with server consolidation

while accounting for heat recirculation, like [4],

[6]. For temporal thermal models, [13] applied

the lumped RC model to predict the temperatures

of the servers. [5] relied on the same model to

maintain the temperature threshold of the system

by using DVFS while maximising the throughput.

III. PROBLEM STATEMENT

The problem statement is presented in this Sec-

tion. The scheduling problem that we solve consist

in determining which job to execute at which

moment on which node, for a workload executed in

typical datacenters to optimise various objectives.

• Platform: the platform is composed of a set of

(heterogenous) compute nodes in a datacenter

with air cooling. We consider datacenters with

several rows of server racks organised with

alternating cold and hot aisles. Cold air is

provided by the CRAC unit and we consider

the air temperature from the CRAC constant.

• Workload: it consists of a set of independent

jobs, each characterised by an amount of work

to perform (expressed in MI, Million Instruc-

tions), and by a power drawn from the nodes,

considered constant during the execution of

the job. This assumption is not that strong, i.e.

if a job is having different phases consuming

different powers, it can be split in different

jobs from the model point of view.

• Objective: the optimisation problem to be

solved can address different objectives. For

example:

– Minimise the energy consumption. The ob-

jective is to run the set of jobs using the

minimal energy, expressed in Joules.

– Minimise the makespan, the time when all

the tasks in the workload are completed.

– Maximise the energy efficiency, the amount

of work performed using a single Joule.

• Constraint: the objective functions are subject

to the constraint that the nodes temperature

should always be maintained below a given

threshold temperature.

IV. SYSTEM MODEL AND DYNAMICS

A. System Model

The model we use for the description of a

datacenter and the temporal and spatial evolution

of the temperature of the nodes is the same as

in [18]. We consider a datacenter with N compute

nodes. A compute node ni is characterised by

following parameters: thermal resistance Ri, ther-

mal capacitance Ci, compute speed si, idle power

consumption PiIDLE
, a frequency set (FSi) and a



number of jobs Capacityi that can be handled at

the same time (for instance the number of cores of

the node).

The time is discretised, and each varying value

will be indexed by time t. We consider these values

as constant in the interval [t, t+Δt), where Δt is

the timestep. T in
i (t) is the inlet temperature of ni at

time t, while T out
i (t) is the outlet temperature of ni

at time t (this is the temperature of ni itself). Pi(t)
is the power consumption of ni at time t. freqi(t)
is the frequency of node ni at time t (freqi(t) ∈
FSi).

Given the above definitions, the “RC model”

[10], [15], [13] gives the temperature evolution of

ni over time as:

T out
i (t+Δt) = Pi(t)Ri + T in

i (t)

+ (T out
i (t)− Pi(t)Ri − T in

i (t))

× e
− Δt

RiCi

To avoid overheating of the processor, T out should

be below T thresh, a threshold temperature linked

to the junction temperature of the chip [16]. We

set Pcriti as T thresh/Ri, the maximum power a

node ni can use without overheating.

Another aspect that must be taken into account

is the air recirculation between the nodes which

causes the inlet temperature of a node to deviate

from that provided by the CRAC unit, or specif-

ically to increase due to the hot air recirculated

from the outlets of other nodes in the datacenter.

The work in Tang et al. [11] gives:

−−→
T in(t) =

−−−→
T sup(t) +D × →P (t)

where
−−→
T in(t) is an N -dimensional vector whose

components are the T in
i (t)’s,

−−−→
T sup(t) is an N -

dimensional vector whose components are all equal

to T sup,
→
P (t) is an N -dimensional vector whose

components are the
→
P i(t)’s, and D is an N ×N

air recirculation matrix, which is constant and pre-

computed for a given datacenter configuration as

in Tang et al [11].

Combining the spatio-temporal model, we can

get the outlet temperature for each node as:

−−−→
T out(t+Δt) =

→
P (t)×R+

−−→
T in(t) + (

−−−→
T out(t)

− →P (t)×R−
−−→
T in(t))× F

where R = diag(R1, . . . , RN ) and F =

diag(e−
Δt

R1C1 , . . . , e
− Δt

RNCN ).
The number of jobs to be scheduled is J . Job

j is defined by an amount of work (number of

operations) wj , a remaining work to be done at

time t (rwt
j) and by a power pij used from the

node ni when running at full speed using the full

capacity of ni.

The power consumption of ni at time t is:

Pi(t) = PiIDLE
+ (freqi(t)

3) ∗
j=J−1∑

j=0

(αi,j,t ∗ pij)
(1)

where αi,j,t is the fraction of node ni used by job

j at time t.

We consider the following scenario: several jobs

share the same node at any time t. A job can be

suspended for some time steps and resumed later,

e.g., to allow the node temperature to cool down.

Job migration is possible.

B. System Dynamics

At a regular pace, the system distributes the jobs

from a waiting queue to each node, using a given

assignment policy. Each node has a maximum

number of jobs able to be run at the same time

(corresponding for instance to the case of Cloud

computing and a number of vcpu available on one

node). Jobs enter a node either from the system, by

being stolen by that node from another node, or by

being migrated from another node. A job can be

active or not at a given time (see Section V).

The dynamics of the system proceed as fol-

lows: at each time step τ , each node ni makes

a decision concerning its own behaviour, handling

its resources and work to do (CPU frequency

increase / decrease, resource dispatch between jobs,

activate/deactivate jobs, migrating/stealing jobs,...).

These decisions are made based on agents’ prob-

ability vectors, which are set using a learning

algorithm (See Section V).

Then node ni performs some work for its jobs. If

a job k is active at a time t, then it will be executed

on the node and its remaining work rwτ
k will de-

crease depending on the node ni speed si, freqi(τ)
(the frequency of node ni), and αi,j,τ (the amount

of resource node ni gave to job j at time τ ). If a

job is inactive, it does not consume resources and

rwτ
k will be constant for this timestep.

The power of the nodes and their temperatures

are updated according to equations in SectionIV-A,

meaning the influence of the other nodes are taken

into account and the temperature diffuse among

nodes. If the power of node ni is above Pcriti,
then node ni deactivates the hottest jobs until the

power goes under Pcriti. This is mandatory to

ensure the system is viable, and not going to burn

down. It is therefore possible that at a given time τ



all jobs on one node are inactive if their execution

would endanger the node.

V. MULTIAGENT ARCHITECTURE

Given a specific datacenter with N nodes, we

selected an architecture with N agents where one

agent maps to one node. Each agent is autonomous

and can decide upon actions on its own node,

and interact with others by migrating jobs to, or

stealing jobs from, other nodes. The key for each

agent is to learn what is the best option that will

optimise not only its own behaviour but also a

global objective. Taking inspiration from the work

of [7], we assign to each agent a probability vector

whose components give the probability of taking

one action or another. In this scenario, the agents

are responsible for setting and evolving their own

probability vector. The question is therefore to

determine what objective function an agent should

attempt to optimise so that the probability vector

is set also to optimise the global objective of the

system.

A. Possible actions of the agents

The different actions one agent i can take are

the following:

Action 1: activate local coolest jobs ; set node

frequency freqi to its minimal value ;

Action 2: activate local hottest jobs ; set node

frequency freqi to its maximal value ;

Action 3: activate randomly local jobs ; if the

capacity of the node ni is not reached, ask

another node for its hottest job, and steal it

; set optimal frequency to node: this is the

maximum frequency the node i can run given

the current active jobs and Pcriti (see [18])

Action 4: activate randomly local jobs ; migrate

the local hottest job to the coolest node ; set

optimal frequency to node.

In all Actions:

• the nodes are fully used and their resources

shared evenly between the active jobs (i.e. at

a given time τ , on each node ni, αi,j,τ is the

same for all active jobs j).

• the number of jobs activated at the beginning

of the actions is the number of available slots

on the node ni (depends on Capacityi).
• after the action, if Pi(t) > Pcriti, then deacti-

vate local hottest jobs until Pi(t) <= Pcriti,
recompute the share of resources, and for

Action 3 and 4, set the optimal frequency.

It is obvious that some Actions are better than

others at certain moment: for instance, when a

node becomes too hot, it is wise to choose Action

1, or Action 4 in order to decrease the load,

hence the temperature locally. Conversely, when a

node becomes cold, it is wise to choose Action

2, or Action 3 to increase the local performance

(performing then more work). As these situations

evolve during time, and may differ from node to

node, the agents should be able to learn what is the

wiser Action to take over time, given the current

conditions.

Intuitively, Action 1 will give no difficulty to

the node (minimal frequency, cooler jobs selected

first so the temperature is unlikely to overpass the

Pcriti and T thresh thresholds), but the progress

is slow due to the minimal frequency. Conversely,

Action 2 will stress the node, using it at maximum

performance and processing the hottest jobs first,

i.e. it is likely that the thresholds are reached or

surpassed, meaning some jobs will be obviously

deactivated, making remaining jobs getting more

resources, while other are stalled. Action 3 will

favour a cooperative behaviour, helping other nodes

while Action 4 will favour a selfish behaviour.

Other Actions could easily be added, but we re-

frained to 4 Actions so that we can understand

clearly and see the different evolutions depending

on the objectives.

For the dynamics of the system evolution, we

distinguish between two time scales. τ is the

timestep the system will operate (nodes performing

job computation, and adjusting according to the

decision set by the agents). t will be the time period

at which the agents operate, meaning observing

their objectives and setting the actions performed

by their node during the next observation period.

It is important that t >> τ , so that an agent

can actually see the impact of a setting during a

long enough observation period. An agent changes

therefore its probability vector at each period t
(meaning after a number of τ timesteps), and the

agent will learn after each t time period.

The pseudo-code of the algorithm for each agent

is finally given in Algorithm 1. Every t timesteps

an agent i computes the target objective (see Sec-

tion V-C for the different objectives), and adapts its

policy thanks to the learning algorithm (see Sec-

tion V-D for the details of the learning algorithm).

Then, depending on the policy learnt, the agent

activates jobs and updates the frequency of the

node (one of the four Actions previously stated).

Finally, it computes the amount of resources it can

give to each job, and updates the power of the node.

If the power is exceeding the critical power Pcriti,
the agent deactivates the hotter job, recomputes the



resources allocated to remaining jobs and updates

the power until the power is acceptable.

Algorithm 1 Pseudo-code for agent i

procedure AGENTBEHAVIOUR(i)

for Ever do
if time%t == 0 then

obj = ComputeObjective()

policy = AdaptNewBehaviour(obj)

end if
UpdateJobs(policy)

UpdateFrequency(policy)

AdjustJobsAlphaToNode()

P = UpdatePowerNode()

while P > Pcriti do
DeactivateHotterJob()

AdjustJobsAlphaToNode()

P = UpdatePowerNode()

end while
end for

end procedure

B. State of the system and Global Objective

The state of the full system, zt, at time t is:

zt = {(j0, rwt
0), ...(jk, rw

t
k), ...(jJ−1, rw

t
J−1)}

where jk identifies job k, rwt
k identifies the re-

maining work of job k at time t.
The objective G(zt) of the system is to max-

imise, at each time t, its energy efficiency, meaning

making the maximum work with the less overall

energy.

More precisely, with zt the state of the system

at time t (t > 0), then:

G(zt) =

∑J−1
k=0 (rw

t
k − rwt−1

k )
∑t

tt=t−1

∑N−1
i=0 Pi(tt)

(2)

Intuitively, this equation gives the energy efficiency

of the system during the last time period t, i.e.

during the last τ timesteps. Recall that time t is

a window of time, not a single timestep from the

point of view of the nodes and the jobs.

C. Agent Objectives

In this research, we investigated several types of

agent objectives. Each was used exactly in the same

manner, the same configuration, the same learning

algorithm. Only the objectives the agents are trying

to optimise are different and will give different

system performances.

1) The first agent objective is the global objective

given in equation (2). With this objective, each

agent attempts to optimise directly the global

objective. One can see that, by definition, if

all agents (each responsible for one node)

succeed in optimising their own objectives,

then the global objective will be optimised.

However this has been shown suboptimal for

large systems because of the mutual influences

of the agents (in our case: sending and receiv-

ing jobs, heat dispersion,...) and provides good

solutions only for small systems [8], [9].

2) The second agent objective is the difference

objective, that aims at isolating the impact

of that agent on the system [8], [9]. This

is done by computing the difference between

the global objective and the global objective

that would be achieved if the agent would

be removed from the system (G(z−i
t )). The

resulting objective Di for agent i is:

Di(t) = G(zt)−G(z−i
t )

=

∑J−1
k=0 (rw

t
k − rwt−1

k )
∑t

tt=t−1

∑N−1
l=0 Pl(tt)

−
∑J−1

k=0 ((rw
t
k − rwt−1

k ) ∗ etik)∑t
tt=t−1

∑N−1
l=0 P ∗l (tt)

where etik = 0 if job k is active on node ni at

time t, 1 otherwise, and P ∗l (tt) = Pl(tt) for

all l! = i, and P ∗i (tt) = 0.

3) The third agent objective is the selfish ob-

jective, where the agents are only concerned

by optimising their own energy efficiency,

meaning:

Si(t)

=

∑J−1
k=0 ((rw

t
k − rwt−1

k ) ∗ (1− etik))∑t
tt=t−1 Pi(tt)

D. Agent Learning

As mentioned above, we have two time scales.

The agents perform their operations at each time

period t = 40τ . An Action that has been decided

by an agent is therefore valid for 40τ timesteps

from the point of view of the nodes they are

responsible for. It means the probability vector are

fixed for this time period. At the end of each time

period t, the objectives functions are computed

and recorded in the agents’ training sets. In order

to be able to compare the system behaviour due

to the decisions of the agents, and therefore the

performance of the individual probability vectors,

all jobs are considered not scheduled after each

period t. During an initial phase (lasting 20 periods

in our experiment), the probability vectors are set

completely randomly. This is the initial training set

of the agents. After this initial phase, the agents



use the following learning algorithm to set their

probability vectors that will be valid for the next

time period t.
The learning algorithm is inspired from the work

of [7], with adjustments to our case. The idea of

updating a probability vector according to a given

objective distance is taken from [7]. However, their

approach only considered the allocation of jobs to

resources while we reconsider the placement (mi-

grating jobs) and the node configuration (frequency

setting) during the life of the platform. Moreover

the details of the parameters are given in our work,

facilitating the reproducibility of our approach.

First the algorithm proceeds by generating a set

of 10 candidate probability vectors, following a

Gaussian distribution about the current probabil-

ity vector, using a mean of 0.2 and a standard-

deviation of 0.1. For each candidate vector # »pT ,

an expected resulting objective O( # »pT ) is estimated

using the last items in the agents training set.

Our experiments showed that using 20 items in

the history is enough, because older values from

the history have a too little impact. The objective

values from the history are weighted by both how

long ago this value was recorded (to favour fresh

data, more adapted to the current environmental

conditions of the agents) and the distance between

the candidate vector and the current probability

vector (in order to keep close enough probability

vector from one period to the next).

O( # »pT ) =

∑t=T
t=T−20 Ote

−αT (T−t)e−αD‖  »pT− »pt‖
∑t=T

t=T−20 e
−αT (T−t)e−αD‖  »pT− »pt‖

where T is the current learning period, t is the

period that resulted in objective Ot,
# »pT is the

considered candidate vector, pt is the probability

vector that resulted in objective Ot. αT and αD are

system parameters, set to 0.1 and 10, respectively.

Depending on the agents objective chosen for the

experiment, Ot is given by G, Di, or Si. The

new probability vector is simply the one with the

best value (i.e. maximal values if we want to

maximise an objective, minimal otherwise) among

all candidates.

VI. EVALUATION

A. Experimental settings

The described MAS has been implemented in

Netlogo 5.3.1 [1]. This simulation framework al-

lows to implement agents and to follow their evo-

lution. It has been used in many different fields,

from sustainability, economics, agriculture to biol-

ogy [3], [2].

The number of nodes is N = 20 (homogeneous

nodes), the number of jobs is J = 1000. Following

the works of [18], the parameters of the simulation

and the thresholds are set as following: the heat

dispersion matrix is the same as in [6]; the pa-

rameters for all nodes are the same: the frequency

set is ∀i, FSi = (0.60.7330.8661), Ri = 0.7,

Ci = 2.06, Capacityi = 10, Tthread = 80◦C,

Pcriti = 80/0.7 = 114 Watts, PiIDLE
= 20

Watts, and T sup = 25◦C. The work wk for job

k is set randomly following a uniform distribution

in [100, 500]. The dynamic power pik of job k is set

randomly in [30, 94], so that a job can run on any

node ni, if it is alone on that node. The processing

power of all nodes is set to 1 (1 unit of work per

time step), and the nodes don’t shut down.

The scheduling frequency is set to 1, i.e. at

each timestep τ , an assignment policy is started to

distribute the jobs. With this scheduling frequency,

a node is never let without jobs to process and its

full capacity is used at all moments, at least until

no more jobs are to be processed. In this paper, the

jobs are assigned randomly to the nodes.

The learning frequency is set to 40τ . The differ-

ent possible Actions have some impacts that will

show their benefit after a short time. For instance,

when a node policy is set to Action 4, then for τ
timesteps it will migrate its hottest job to another

node. Since the capacity of a node is limited to

Capacityi (set to 10 in our setting), then after

10 timesteps the node has no more jobs (except

if another node with also Action 4 sends it some

new job), and it can cool down (making it an even

better candidate to receive a new job, if another

node follows Action 4). The same holds for the

other Actions in our settings.

B. Evaluation Metrics

An experiment finishes when all the N jobs have

been processed. For each random seed, the same

set of jobs is processed using different objectives.

To the objectives described in Section V-C, we

added the following ones where agents have static

behaviour, for comparison purpose:

• minimum frequency: the agent sets the node

frequency to its minimum

• maximum frequency: the agent sets the node

frequency to its maximum

• random behaviour: the agent sets the action

randomly among the four Actions given in

Section V-A.

In order to compare the performance of the dif-

ferent objectives, we decided to use the following

metrics:



• The makespan M of the system, meaning the

time when all jobs have completed.

• The energy E(M) of the system, meaning

the energy used to perform all the jobs, with

E(t) =
∑t

tt=1

∑i=N
i=1 Pi(tt). E(t) is the en-

ergy consumed until time t.
• The energy efficiency EE(M) of the system,

computed as the total amount of work per-

formed divided by the energy used to process

it at the end of the simulation, with EE(t) =
∑k=J

k=1 (wk−rwk)

E(t) . EE(t) is the energy efficiency

achieved until time t.

The results presented in this Section are averaged

over 10 executions. The standard-deviations of the

reported values are very small (less than 2%).

C. Results

1) Objective evolution: Figure 1 shows the evo-

lution of the global objective given in equation (2)

during the experiments (Y axis) while the X-

axis is the time in terms of time period t, i.e.

a measure is taken at each learning phase (and

not at every single step τ ). The legends OGE,

ODE, OSE stand for Optimise G objectivE (G),

Optimise D objectivE (Di) and Optimise Selfish

objectivE (Si), respectively. We can see that the

Fig. 1: Evolution of the global objectif G during the

experiments when agents follow the six different

objectives

worst is the MaxFreq while the best is MinFreq.

Since there is no time limit to finish the jobs, it

is obvious from equation (1) linking power (thus

energy) to frequency (thus performance) that the

best strategy is to minimise the frequency. Besides,

the OGE strategy for agents, optimising directly

the global objective G, gives only small benefit

compared to the random strategy. Finally, when the

agents optimise Di and Si, they outperforms G

significantly. With more jobs to handle (remember

here the number of jobs is fixed to 1000), we can

foresee that ODE and OSE strategies will continue

to increase the energy efficiency of the system.

Another observation is that, with all strategies,

the global objective G is decreasing at the very

end of the experiment. This is normal since at

the end, the work to be done is limited, and the

nodes maybe empty, still consuming PIDLE but

not producing any work.

On Figures 2 and 3, one can see the final values

of the makespan M and the energy efficiency

EE. The makespan M (shown here in terms of

timesteps τ ) is obviously better with maxfreq than

other strategies, since, when possible, the fastest

frequency is selected. Conversely, the energy E
(not shown here) is lower with the minimum fre-

quency. ODE gives a slightly better makespan, but

consumes a little more energy than OSE. Compared

to OGE, both ODE and OSE give higher makespan

and lower energy. This translates to better energy

efficiencies EE for ODE and OSE compared to

OGE, meaning the agents altogether use the energy

in a better way when having a selfish behaviour

(OSE) and when isolating their contribution to the

global energy (ODE), instead of directly trying to

optimise the global objective G.

Fig. 2: Makespan using the different strategies for

agents

2) Impact of learning frequency: To better un-

derstand the impact of the learning strategy, we re-

peated the experiments, changing only the learning

frequency to 20τ and 200τ , instead of the original

40τ (used in previous section VI-C1). Figure 4

shows the evolution of the global objective G using

these frequencies. Please note that the x-axis repre-

sents the periods t, not the single timesteps τ (that’s

why the duration, expressed in periods, changes

that much). Using a high learning frequency (20τ )

we can see that the global objective is reaching

higher values faster than using smaller learning



Fig. 3: Energy Efficiency using the different strate-

gies for agents

frequencies, whatever the agents’ objective, but it is

more noticeable with ODE and OSE. Indeed when

the learning frequency is small, the agents take a

lot of time to learn the optimal behaviour. Using

the higher learning frequency, the global objectives

reaches a limit and seems to increase only slowly

after the initial increase.

Fig. 4: Evolution of the global objectif G during the

experiments when agents follow the six different

objectives, using learning frequency 20 (top) and

200 (down)

The makespan, energy, energy efficiency metrics

have also been computed. By lack of space, only

the conclusions are given here. The makespan is

reduced using a lower learning frequency (200τ ).

This is probably due to the fact that the jobs

progress without being interrupted by new learning

phases, and altogether the jobs finish earlier. The

energy used is much higher, leading to a better

energy efficiency with a higher frequency (20τ ).

3) Impact of scheduling frequency: We tested

several different scheduling frequencies, besides 1,

the default in the previous experiments. The evo-

lution of G with different scheduling frequencies

(1, 20 and 40 timesteps) has been studied. With a

scheduling every 40 timesteps, it is synchronised

with the learning frequency, and the scheduling is

therefore done only once per time period. With 20,

it is done twice. However the differences are almost

not visible when using the random assignment. The

same goes with the other metrics for makespan,

energy, energy efficiency.

4) Scalability issues and complexity analysis:
The experimental setup represents a small size

datacenter, with 20 nodes. Experiments extended

to 50 nodes, for which a heat dispersion matrix

can be found [6], have shown the same results’

tendencies, taking more time. A typical experiment

with 20 nodes and 1000 jobs lasts no longer than 1

minute (with plotting enabled in NetLogo), but re-

peating experiments for each case (different seeds,

objectives, scheduling and learning frequencies)

multiplies the total time of experiments. Larger

scale experiments suffer from the lack of available

heat dispersion matrix and without it the model

would be limited. Considering the jobs, they have

only an impact on the length of the experiment,

since at the same instant only Capacityi jobs can

be processed per node ni, limiting the parallelism

of job execution. At each timestep, the complexity

of job execution is therefore O(MaxiCapacityi)
on each node. Finally, at each timestep, each agent

is potentially searching a job from another node,

or transferring a job to another node, leading to a

O(N2) complexity in the worst case (when each

agent is acting according to Action 3 or Action 4).

VII. CONCLUSION AND FUTURE WORKS

In this paper we proposed a multi-agent-system

for the scheduling of independent jobs. The

scheduling takes into account the heat produced

and disseminated in the datacenter room. Agents

attached to nodes choose the best action to perform

among a set of predefined actions, depending on

the node current environment and global objective.



A learning mechanism allows the agents to adapt

to evolving conditions. In general, better results

are obtained when the agents do not try to opti-

mise directly the global objective (OGE) of energy

efficiency, but when they act either in a selfish

way (OSE strategy), or by taking into account the

benefit to the system of their own behaviour (ODE

strategy). More importantly, we developed a multi-

agent simulation tool that can be reused to test

other strategies or other environmental conditions.

As future works, we will add a deadline to the

jobs, so that the order of processing them has an

impact. We will have to redefine the global objec-

tive accordingly so that it takes into account also

the number of missed deadlines, if any. Second, we

plan to attach one agent to each job, so that such

agents can also control the progress of the jobs,

independently of the nodes. They will be conflict-

ing objectives with the nodes, and the question of

which global objective should be optimised is still

to be understood.
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