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Abstract—Understanding data is the main purpose of data
science and how to achieve it is one of data science challenges,
especially when dealing with big data. In order to find meaning
and relevant information drowned in the data flood, while
overcoming big data challenges, one should rely on an analytic
tool able to find relations between data, evaluate them and
detect their changes and evolution over time. The aim of this
paper is to present the DREAM1 tool for dynamic data relations
discovery and dynamic display based on a collective artificial
intelligence Adaptive Multi-Agent System (AMAS) that uses a new
data similarity metric, the Dynamics Correlation. It is currently
being applied in the neOCampus operation, the ambient campus
of the University of Toulouse III - Paul Sabatier.
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I. INTRODUCTION

G. Piatetsky-Shapiro defined the Knowledge Discovery from
Data (KDD) process [1], which has became the standard

data analytics pipeline. The most important step of the KDD

process is finding hidden patterns through data mining. These

patterns are used to build ”Models”, a more compact or a

more useful representation of the raw data.

In response to the rising big data challenges [2] we provide

a computer system able to build and display, in real time from

huge amounts of data, a new model in form of a dynamic

graph, that adjusts itself to adapt to changes in data content

and structure, wherein a node represents a data source (sensor

stream, database attribute, data file column...) and an edge

exhibits a better-meaning correlation between the two related

data sources to help the users find relevant relations.

To process these big data our system relies on a bio-inspired

collective artificial intelligence (Adaptive Multi-Agent Sys-

tems) that uses a new analytical tool (Dynamics Correlation),

described in the following.

The next sections of the paper will focus on a new similarity

metric designed to detect the data dynamics, how it is used

by a collective artificial intelligence with several experiments.

II. ANALYTICAL TOOLS

Our system relies on a new analytical tool, that can handle

dynamic big data, designed from conventional analytical tools

as explained in this section.

1DREAM stands for Dynamic data Relation Extraction using Adaptive
Multi-agent systems

Fig. 1: Non-linearity.

A. Correlation coefficient

When investigating relations between data, one relies first

on the most spread analytical tool, the statistical correlation

defined whit the Pearson’s correlation coefficient r [3] as

follows:

r(A,B) =

∑n
i=1(aibi)− nĀB̄

nσAσB
(II.1)

Where,

- A,B are two variables (data features).

- X̄ is the mean of X .

- σX is the standard deviation of X .

- n is the number of data points (values).

We use the correlation magnitude r2 to measure the strength

of the correlation : the greater r2 is, the stronger is the

correlation.

However, the correlation coefficient has a major downside:

non-linearly correlated variables are considered as independent

(r ≈ 0) but they are in fact correlated and therefore it causes

a loss of relevant information. The non-linear correlation is

mainly due to:

• Non-linearity: when at least one of the variables is non-

linear and random-like (see figure 1).

• Time shift: For example in figure 2 A(x) = ( x
10 )

2 and

B(x) = ( x
10 + 5)2, both are square functions that take

the same argument ( x
10 ), with a delay of 5 for the second

one (B).

• Non-linearity and Time shift: see figure 4.

In order to distinguish between a true independence and a

non-linear correlation, one can look for a pattern or a shape



Fig. 2: Time shift.

Fig. 3: Phase Space.

in the scatter plot (see figure 2, figure 1 and figure 4), which

suggests a non-linear correlation. Conversely, a uniform scatter

plot indicates an independence. Though, this process can be

quiet difficult and non-systematic. Hence another analytical

tool based on a similar process is needed.

B. Phase Space Similarity

The defining feature of a scatter plot is its graphical rep-

resentation of the relation between two variables over time.

This representation may be so complex that it looks like a

uniform scatter, which hints at an independence, as a result of

the projection of one complex variable over another one.

We exploit another representation of the variables, that

avoids the projection, to study the relation between them. This

representation, known as the Phase Space, came from physics

[4] and is built following the behavior of a single variable over

time.

1) Phase Space: The Phase Space PS is a collection of

points, whose coordinates are the difference of successive data

points (values) in a sliding window, defined as follows:

(psxAi
, psyAi

) = (Ai −Ai−1, Ai+1 −Ai) (II.2)

PSA = {(psxAi
, psyAi

), ∀i ∈ [1, n− 1]} (II.3)

For example, in figure 3 the Phase Space of a sinusoidal

function is represented as an ellipse by reason of the cyclic

nature of the sinusoidal function. Moreover, all the time shifted

variables have the same Phase Space.

Fig. 4: Phase Space Similarity VS Correlation Coefficient.

2) Phase Space Similarity metric: As a similarity metric

the Phase Space Similarity (PSS) should vary from 0 to

1, meaning full dissimilarity and full similarity respectively.

Accordingly, we define the PSS metric for an automatic

comparison between two phase spaces, as follows:

Max ED(A,B) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

√
2 if A and B are normalized√√√√√√√√

(
max

2≤i≤n−1
psxi − min

2≤i≤n−1
psxi

)2

+(
max

2≤i≤n−1
psyi − min

2≤i≤n−1
psyi

)2
else

(II.4)

PSD(A,B) =

∑n−1
i=2

√(
psxAi

− psxBi

)2
+

(
psyAi

− psyBi

)2
(n− 2) Max ED(A,B)

(II.5)

PSS(A,B) =
(
1− PSD(A,B)2

)2
(II.6)

If the data are not normalized their phase spaces will have

different scales and the PSS will, probably, be negative even

though they have the same dynamics. Thus, the PSD in

equation II.5 should be divided by the Maximal Euclidean
Distance (equation II.4).

As shown in figure 4, the correlation coefficient r2 starts

with high values then quickly decreases and remains very close

to 0. While the PSS varies between 0.99 and 1 meaning a high

similarity between the phase spaces of the two non-linear and

time shifted variables A and B, which indicate a non-linear

relation between the variables that the coefficient correlation

couldn’t expose.

3) Local Phase Space Similarity: The PSS, like the cor-

relation coefficient, uses an arithmetic mean to compute the

mean euclidean distance of the phase spaces points from

the beginning (equation II.5). Therefore, it gives an overall

similarity value and muffles short Situations of Interest (SI),
time intervals where data (values) are correlated, contained

in data that are mostly not correlated (see figure 5). In other

words, relevant Situations of Interest may be drowned in the

data as a consequence of the PSS memory (arithmetic mean).

Therefore, we define the Local PSS (LPSS) as a PSS
without memory, meaning it is a PSS given only the last

phase space points, as follows:

LPSD(Ai, Bi) =

√(
psxAi

− psxBi

)2
+

(
psyAi

− psyBi

)2
Max ED(A,B)

(II.7)

LPSS(Ai, Bi,m) =

∑i
j=i−m+1

(
1− LPSD(Aj , Bj)

2
)2

m
,m ≥ 1 (II.8)



Fig. 5: Local Phase Space Similarity (LPSS) with m = 1.

Where m is a smoothing factor of the metric output used

to lessen occasional disturbances. In our experiments, we set

m to 5 (see figure 6), which results in 15 data points (values)

because a single phase space point needs three data points.

With m = 5, the LPSS fits the data dynamics well enough

while filtering outlier values.

The data shown in figure 4 have a high PSS when analyzed

as it is. When these correlated data are inserted in random data

(see figure 5) they are considered as a situation of interest
(SI). On one hand, when the SI starts, the PSS increases

slowly although it doesn’t reach the same values as in figure

4 as a consequence of the random data before the SI that

lowers the overall PSS. Then, after the ending of the SI , the

PSS keeps decreasing. On the other hand, the LPSS varies

randomly between 0 and 1 for the data before and after the SI .

Furthermore, the LPSS points out very well to the correlated

data by varying between 0.96 and 1 during the SI .

C. Dynamics correlation

When one variable is constant-like and the other one is

highly dynamic, like respectively B and A in S3 in figure

6), the phase space of the former overwhelms the phase space

of the latter leading phase space based similarity metrics to

be falsely high.

To fix this issue of false positives, we define the Dynamics
Correlation metric, a combination of the LPSS with the

coefficient correlation computed for the data in situations of

interest (Partial r2), as follows:

• If LPSS ≥ 0.95 and Partial r2 ≥ 0.01 it’s a true

situation of interest (S1).

• If LPSS ≥ 0.95 and Partial r2 < 0.01 it’s a false

situation of interest (S2).

• If LPSS < 0.95 it isn’t a situation of interest (3).

To see the 3 possible outputs of the Dynamics Correlation,

we use luminosity [5] data and temperature [6] data with some

artificial noise (figure 6), generated during the 9 first days of

July 2017 by ambient sensors of one room of the neOCampus
operation [7].

To take full advantage of the Dynamics Correlation, we as-

sociate it (see section IV) with a collective artificial technology

described in the next section.

III. ADAPTIVE MULTI-AGENT SYSTEMS THEORY

To keep up with the Data Flood, conventional data analytic

techniques require more storage capabilities and computing

Fig. 6: Dynamics Correlation applied on neOCampus sensor data
(luminosity and temperature) with artificial noise in S2 and S3.

power due to their centralized processing pipeline.

In a centralized processing pipeline, even though distributed,

there is ultimately one unit, or very few, that gather the pro-

cessing sub-results to compute the final result, which induces a

bottleneck equivalent to a cognitive overload in the brain when

the number of the inputs or perceptions reaches the limit of

the system. Natural systems like bird flocking, animal herding

and bacteria, are decentralized and thrive in harmful and highly

dynamic environments. which have led to the family of bio-

inspired collective artificial intelligence.

This section presents the Adaptive Multi-Agent Systems
(AMAS), a collective artificial intelligence used to design our

big data analytic tool.

A. Multi-Agent Systems

A Multi-Agent System (MAS) [8] is defined as a macro-

system composed of autonomous agents which pursue individ-

ual objectives and which interact in a common environment

to solve a common task. The autonomy of an agent is a

fundamental characteristic: an agent is capable of reacting to

its environment and act from its own decision, relying only

on a limited and localized knowledge of the environment.

B. Self-Adaptive Multi-Agent Systems

A self-Adaptive Multi-Agent Systems (AMAS) is a MAS

able to adjust itself, organize itself, heal itself, etc. [9] to

remain in a well-functioning state after a perturbation.

A designer following this approach focuses on giving the

agents a local view (and partial knowledge) of their environ-

ment, means to detect problematic situations and guidelines

to act in a cooperative way, meaning that the agents will try

to achieve their goals while respecting and helping the other

agents around them as best as they can [10]. The fact that the

agents do not follow a global directive towards the solving

of the problem but collectively build this solving, produces

an emergent [11] problem solving process that explores the

search space of the problem in original ways.

The difficulty here is to give the agents the right local

behavior in order to get the right global function and a good

adaptation capability since there is no formal process, which

translates the behavior of the components and their interactions

into a well-defined global function.



IV. AMAS FOR REAL-TIME DYNAMICS CORRELATION

For a system of n inputs (variables), it takes
n(n−1)

2 calls

of the dynamics correlation analytical tool to examine all the

possible relations, which corresponds to a temporal complexity

of O(n2) if computed sequentially or a spatial complexity

if computed in the same time, in either ways, this high

complexity prevents the system to scale up.

Thence, for the sake of designing a computer system that

produces a dynamic graph model of the data relations in real

time, we incorporate the dynamics correlation into a self-

adaptive multi-agent system to focus only on the probably

correlated data and thus reduce the computing power to find

all the data relations.

A. The agents: system architecture

The system is composed of two types of agents: “Percept”

and “Correlation”.

• Percept: a Percept agent represents a unique data stream

(a sensor, an attribute in a database table, a column in a

CSV file, etc.). The Percept receives the data, normalizes

them and sends them to its associated Correlation agents. It

also links itself cooperatively to other Percepts, as described

in the next subsection, by creating common Correlation

agents in order to study the dynamics correlation on the

fly. Furthermore, the percept helps other percepts to find

dynamics correlations between them by linking them when

it is relevant.

• Correlation: a Correlation agent is associated with two

Percept agents, A and B. When it receives new data values

from one of its Percepts, says A, the agent applies the dy-

namics correlation analytical tool following this procedure:

1- Put the new data value of the percept A in a small data

buffer until the correlation agent receives data from the

other percept agent (B).

2- When there is a new data value Bi coming from

the second percept agent (B), get Ai the data value

saved in the buffer if there is only one, or the mean

value of the data saved in the buffer as a consequence

of different data acquisition frequencies of the two

percepts.

For example, in figure 6 the luminosity sensor data [5]

are produced each 20s and the temperature sensor [6]

generates new data each minute. Thus, each tempera-

ture data point corresponds to the mean of the mean

of the 3 last luminosity data points.

3- If i ≥ 3, compute for the new data couple (Ai, Bi)
their phase space points, (psxAi−1

, psyAi−1
) and

(psxBi−1 , psyBi−1) respectively, using equation II.2.

Else, go back to 1.

4- Compute the LPSS with equation II.8. If LPSS ≥
0.95, it is the beginning of a new situation of interest

(SI), then starts computing the correlation coefficient

r2 for SI (Partial r2) incrementally, using equation

II.1 where the mean and the standard deviation are

updated [12] as follow:

Āi =
Si

i
with Si = Si−1 +Ai, S0 = 0

σAi =
Qi

i
− Ā2

i with Qi = Qi−1 +A2
i , Q0 = 0

Else, it’s not a situation of interest (S3, figure 6).

5- When SI ends, because LPSS < 0.95 and Partial
r2 ≥ 0.01, the data of SI are dynamically correlated

(S3, figure 6). Moreover, if Partial r2 ≥ 0.95, the

data are variating at the same time, else they are time-

shifted.

6- Otherwise, SI ends when Partial r2 < 0.01 (see S2

in figure 6), it still is a situation of interest wherein one

of the percept has a well-defined dynamic and needs

the cooperation of the other agents to find a percept

which is correlated with. Then go back to 1.

B. Cooperative behavior & interactions

Cooperation is the engine of the self-organization processes

taking place in the system and the heart of our bottom-up

method. Cooperation is classically defined by the fact that

two agents work together if they need to share resources or

competences. We describe the cooperation mechanism of our

AMAS as follows:

1- Initially, when the system starts, each data stream is

agentified, in other words, a dedicated Percept agent is

created to represent and handle the stream.

2- A new Percept agent first builds a random neighborhood,

which means it links itself to random Percepts agents by

creating common Correlation agents.

3- As soon as a Correlation agent finds a situation of interest,

the agent sends it back to its Percepts agents.

4- Then these percepts agents update their mutual correla-

tion and spread it through their neighbors if the situation

of interest represents a dynamics correlation.

5- Otherwise, the Percept agent with the well-defined dy-

namic tries to find a correlation with another neighbor

for this data segment (active search) and the other Percept

agent puts in contact the former with Percepts agents that

have a well-defined dynamic for the same segment as well

(passive search).

6- If after a long time the Correlation agent doesn’t find

any situation of interest, the agent becomes useless and

signals it to its Percepts agents in order to launch an

inquiry into a potential anomaly (sensors malfunction).

Then the agent destroys itself.

7- Likewise, when a Percept agent doesn’t receive new sit-

uation of interest or doesn’t help other (5-passive search)

anymore, it expands its neigh1borhood randomly to find

new correlations. If this doesn’t work the Percept agent

raises an anomaly alert of uselessness.

8- Also, according to the openness property of the AMAS

theory, when a new Percept agent is created, it will build

a small random neighborhood and each of its neighbors

suggests to it other interesting percepts.

9- Finally, when a Percept agent is not computing (it has

free time) or all of its associated correlation agents are



destroyed, it expands its neighborhood by selecting the

neighbors of its neighbors that have similar situations of

interest.

C. Graph model building

The data relations model is represented by a dynamic

graph, wherein a node expresses a data stream and an edge

exhibits a dynamics correlation between two data sources, built

and updated by the agents with these additional cooperative

behaviors:

1) The nodes: are created and destroyed by the percept agents.

a) When a percept agent starts, it creates a new node

labeled with the corresponding data source name.

b) When a percept agent destroys itself,

i) it sends a message to warn, its associated correlation

agent, of its destruction.

ii) it removes its node from the graph model.

2) The edges: are managed by the correlation agents

a) After detecting situations of dynamics correlation (s) if∑
s∈S |s| ≥ 50, where S is the set of all the situations

s and |s| is the number of data values contained in S
(length of S), then:

i) if there isn’t already an edge, the correlation agent

inserts a new edge that expresses a relation between

the two nodes corresponding to its percepts.

ii) update the relation intensity (RI(A,B)) with:

R Len(A,B) =

∑
s∈S |s|
n

, n is the number of all data values (IV.1)

R LPSS(A,B) =

∑
s∈S LPSS(s)

|S| (IV.2)

R Corr(A,B) =

∑
s∈S r2(s)

|S| (IV.3)

RI(A,B) =
R Len(A,B) +R LPSS(A,B) +R Corr(A,B)

3
(IV.4)

b) When it receives a warning message from one of its

percepts agents (1(b)i), the correlation agent destroys

itself.

c) When destroyed, the agent removes its edge

Some examples of such dynamic graph model are illustrated

in the next section.

V. EXPERIMENTS & APPLICATIONS

Our system is applied mainly to analyze real-time ambient

sensor data and time series data sets. The intensity of a relation

(equation IV.4), for the experiments presented in this section,

are expressed by the opacity of the corresponding edge such

the greater is RI the higher is the edge opacity.

A. Real-time data

For a real time experiment, we rely on the neOCampus op-

eration [7], the ambient campus of the University of Toulouse

III, that is being iteratively equipped with pervasive ambient

sensors and effectors. Student activity will be one of the main

generator of data. The real time data used for this experiment

are generated by sensors of two rooms inside the U4 building

Fig. 7: Graph model after 2H analysis of neOCampus data.

Fig. 8: Graph model after 5H analysis of neOCampus data.

of the university: the room campusfab located on the ground

floor and the room 302 on the third floor.

When the system starts (7) there is few relations, because of

the small size of the first neighborhoods of the percepts. Then

with their cooperative behavior (section IV) the agents explore

more efficiently the sensors network, by focusing the probable

relation with some random linking to avoid stagnation, leading

to the appearance of some clusters (figure 8)

In the scope of ambient systems, Internet of Things and

Smart Cities, our system can provides extra features:

• Anomaly detection: when all the relations of one data

stream disappear, it may be a normal change of the data

stream dynamics or corruption caused by a failure or

disturbances. The system points out this anomaly an then

the user should investigate if there is an issue with the

data stream and fixes it.

• Data generator: if a data stream is corrupted, the user

can use the dynamics model to producing phantom limb

data using the data related data streams.

• Eco-feedback: real time discovery of better-meaning cor-

relations between users action and energy consumption to

present meaningful feedback to help the users find where

and how they can save energy [13].



Fig. 9: Graph model after 100 lines of Ozone data set [14].

Fig. 10: Graph model after 300 lines of Ozone data set [14].

B. Time series data sets

The UC Irvine Machine Learning Repository (UCI) pro-

vides relevant data sets with high number of variables, that

highlight the advantage of using our the DREAM system to

analyze huge data sets. For the next experiments, we use

the Ozone Level Detection Data Set [14], which contains 72

variables and 2536 lines (days) with some missing values

replaced by the mean. The data set is evolving over time from

1998 to 2004. Our dynamic model can give a first hint for

environmental scientists to explain what these variables are

and how they actually interact in the formation of ozone [15].

The resulting graph model can be used for:

• Dimensionality reduction: the variables that have a

high dynamics correlation can be considered as a single

variable.

• Initialization and tuning of Machine Learning algo-
rithms used for prediction: uses the relations of the class

attribute to select the relevant factor for it prediction. For

example, in a neural network set the initial weight of a

variable (neuron) with it relation intensity (RI)

VI. CONCLUSION AND FUTURE WORK

The speed at which new data is generated, and the need to

manage changes in data both for content and structure lead to

new rising challenges in what can be called Dynamic Big Data

Analytics. This is especially true in the context of complex

systems with strong dynamics, as in for instance large scale

ambient systems. One existing technology that has been shown

as particularly relevant for modeling, simulating and solving

problems in complex systems are Multi-Agent Systems. We

described and discussed in this article how such a technology

can be applied to big data in the form of an Adaptive Multi-
Agent System where local analytics agents interact in a self-

organised way.

This technology is currently being applied to several prob-

lems that will show its genericity (i.e. it does not require

domain-specific expertise from the engineer that applies it) and

validate its interests. The first is the neOCampus operation.

The second is the 3Pegase project in which we work with

Orange and hospitals in Toulouse among others. The aim is

an end-to-end predictive platform for elderly people staying at

their own pervasively equipped homes. The third will be the

performance and quality validation in well known big data

on-line competitions.

Our future work will focus on improving our system for fast

real-time correlation detection in dynamic environments with

limited computing power by fixing the number of the active

agents in the same time and adding to the system a dynamic

relation characterization ability using a new reasoning mech-

anism inspired from logic (Inference to the Best Explanation)

and epidemiology (Hill’s criteria of causation).
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