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Abstract—During the analytical design process of wideband
impedance matching major problems may arise, that might lead
to non-realizable matching networks, preventing the successful
impedance matching. In this paper two practical design rules
and a simplified equation is presented, supporting the design of
physically realizable impedance matching networks. The design
rules and calculation technique introduced by this paper is
summarized, and validated by microwave circuit simulation
examples.

Index Terms—physical matching limits, wideband impedance
matching, realizable matching networks

I. INTRODUCTION

Analytical wideband impedance matching techniques have
been thoroughly discussed in previous many studies [1],

but most of these only focus on the theoretical limits of
the matching techniques, by issuing an infinite number of
passive L-C elements for the matching circuit [2]. Several
approaches have been shown to be successful for matching
complex impedances [3] [4], but hardly any of them discuss
the physical realization problems, and practical limitations of
the finite length matching networks [5] [6]. Due to the high
calculation complexity, of the wideband matching networks,
mostly only third-order matching networks are used due to
practical reasons (higher order matching networks have various
problems, such as weak parameter tolerance margins, inhibit-
ing manufacturing processes), thus this paper only discusses
third-order lossless matching networks.

This paper presents two of the practical realization lim-
its of the analytical wideband complex impedance matching
technique, presented by R. M. Fano [1], and H. W. Bode
[2]. Utilising the proposed limitation factors, and simplified
calculations presented in this paper, matching optimalization
goals are easier to define, and a wide range of practically
unrealizable solutions are excluded before the complex calcu-
lation process. The rest of this paper is organized as follows:
first the Bode-Fano matching technique is presented in detail
followed by the practical parameter restrictions in Section IV.
and Section V. Later on in Section VI. the modified matching
algorithm and a simplified caluclation for a certain matching
parameter is introduced as well. Finally the proposed design
rules are validated by two simulation examples in Section VIII.
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II. ANALYTICAL MATCHING TECHNIQUE (BODE-FANO)

The analytical wideband complex impedance matching
methods are based on the Darlington-theorem, which states,
that a complex load can be substituted, with a passive reactant
network that is terminated in a unity value resistance [7].
This principle allows that the complex wideband impedance
matching task can be redefined as a double-terminated filter
synthesis problem. In most situations complex impedances
are matched (on the largest possible bandwidth) to a purely
real valued generator impedance, thus the matching network’s
purpose is to completely cancel out the imaginary part of
the load impedance, and match the remaining real part to
the generator at the same time. Well-known examples for
analytical matching methods are: Bode-Fano matching [2], and
Youla’s matching technique based on complex normalization
[11]. In this paper an in-depth analysis is presented discussing
the Bode-Fano method for complex terminations, matched to
purely real 50 Ω source impedance.

Within the design equations lies a problem which partially
inhibits the realization of matching networks, at certain initial
parameters. Furthermore the upper, and lower matched fre-
quency should be very carefully chosen, otherwise analytical
matching can result in matching networks that are physically
unrealizable. In the following section the detailed equations
and restrictions are presented for realizable matching net-
works (where matching networks are constructed from shorted
quarter wavelength stubs, that can only represent purely real
valued impedances). Shortly thereafter, the physical design
limitations are taken into consideration during the calculations,
highly restricting the range of complex impedances where
the Bode-Fano analytical method provides adequate matching.
Obeying these design rules during the design process may
help designing load impedances (where allowed), at which the
Bode-Fano method results in acceptable matching (e.g. where
|S11| is less than -10 dB).

III. THE ANALYTICAL MATCHING PROCESS

An important aspect of the Bode-Fano matching method is
that it can only be used for terminations where the impedance-
frequency dependency resembles a single-reactance load’s
impedance or admittance. Thereby the load shall be substituted
with a well chosen single-reactance circuit model, i.e. a series
or parallel R-C, R-L impedance. Substitution model validation
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methods are omitted here. All matching results will be com-
pared to the ideal infinite matching networks limits, discussed
for single-reactance models by Bode and Fano in [1]. The
problems that may arise during the matching process is shown
through a practical example. The goal is to match a series R-L
impedance to a purely real 50 Ω generator impedance. First,
the series capacitance (Cseries) should be calculated through
which the series R-L can be turned into a resonant R-L-C
structure. (for parallel terminations, parallel resonance may be
required, and design equations are slightly different)

Cseries =
1

4π2f2
c L

, (1)

where fc represents the center frequency of the desired
matched band. The quality factor (Q) for this R-L-C structure
is defined as

Q =
2π fc L

R
. (2)

The theoretical matching quality limit can be calculated using
the decrement factor,

δ =
1

Q

√
4π2fhfl

2π(fh − fl)
, (3)

where fh is the upper, and fl is the lower frequency limit.
Using the decrement factor and the minimum of the maximal
reflection coefficient on the desired bandwidth is expressed as

Γmax = 20 log10

(
e−πδ

)
, (4)

where Γmax stands for the best available reflection coefficient
in case of an ideal matching network consisting of an infinite
number of L-C ladder components. This limit is also known
as the Bode matching limit. This parameter is used for the
comparison of theoretical and the finite third-order matching
quality. In order to point out the critical parameters during the
matching process, the detailed process of the single reactance
matching example is presented. The following equations will
lead to the solution of the low pass filter prototype, for the
matching circuit,

d = sinh
sinh−1

√
1

10(r/10)−1

n
, (5)

D =
d

δ sin
(

π
2n

) − 1, (6)

where n represents the order of the matching circuit, and
r stands for the maximal allowed Chebyshev ripple factor
in the matched frequency band. Later on in Section VII.,
a simplified parameter calculation method is presented for
d. These parameters are used for evaluating the coupling
coefficients for the low pass filter prototype network, provided
by Green’s equations [10]:

k1,2 =

√
3

8

(
1 +

(
1 +

D2

3

)
δ2
)
, (7)

k2,3 =

√
3

8

(
1 +

(
1

3
+D2

)
δ2
)
. (8)

Based on [8] and [10], the low pass filter prototype component
values for the double-terminated filter are

g0 = 1, (9)

g1 =
1

δ
, (10)

g2 =
1

g1 · k21,2
, (11)

g3 =
1

g2 · k22,3
, (12)

g4 =
1

D · δ · g3
. (13)

As seen in (9), the generator impedance (Rg) is determined
as the synthesis result. This overrides the original generator
impedance (50Ω), which is unacceptable. Furthermore this
is a low-pass filter prototype circuit, hence filter transfor-
mation steps are required for a passband configuration. For
overcoming these synthesis problems, admittance inverters are
used. The auxilary parameters used for defining the admittance
inverter’s parameters are

dp ≈ 1, (14)

ωm =
(fh − fl)

fc
, (15)

Θ1 =
π

2

(
1− ωm

2

)
(16)

and the admittance inverter parameters are calculated using
equations in [10] and [9]:

C2 = g2, (17)

C3 = g0 g3 g4
RL

Rg
, (18)

C
′

2 = g2 (1− dp), (19)

C
′′

2 = dp g2, (20)

C
′

3 = C
′′

2 , (21)

C
′′

3 = C3 − C
′

3, (22)

J2,3 =
1

RL

√
C2 C3

g2 g3
, (23)

N2,3 =

√
(J2,3 RL)2 +

(
C

′′
2 tan(Θ1)

g0

)2

. (24)

The construction of the matching network is based on quar-
ter wavelength (at the center frequency), shorted stubs. The
shorted stubs only have a single free parameter in this case:
transmission line admittance (or impedance). These admittance
values are obtained by the following equations:

Y2 =
1

g0 RL
C

′

2 tan (Θ1) +
1

RL
(N2,3 − J2,3 RL) , (25)

Y3 =
1

g0 RL
C

′′

3 tan (Θ1) +
1

RL
(N2,3 − J2,3 RL) , (26)

Y2,3 = J2,3. (27)
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methods are omitted here. All matching results will be com-
pared to the ideal infinite matching networks limits, discussed
for single-reactance models by Bode and Fano in [1]. The
problems that may arise during the matching process is shown
through a practical example. The goal is to match a series R-L
impedance to a purely real 50 Ω generator impedance. First,
the series capacitance (Cseries) should be calculated through
which the series R-L can be turned into a resonant R-L-C
structure. (for parallel terminations, parallel resonance may be
required, and design equations are slightly different)

Cseries =
1

4π2f2
c L

, (1)

where fc represents the center frequency of the desired
matched band. The quality factor (Q) for this R-L-C structure
is defined as

Q =
2π fc L

R
. (2)

The theoretical matching quality limit can be calculated using
the decrement factor,

δ =
1

Q

√
4π2fhfl

2π(fh − fl)
, (3)

where fh is the upper, and fl is the lower frequency limit.
Using the decrement factor and the minimum of the maximal
reflection coefficient on the desired bandwidth is expressed as

Γmax = 20 log10

(
e−πδ

)
, (4)

where Γmax stands for the best available reflection coefficient
in case of an ideal matching network consisting of an infinite
number of L-C ladder components. This limit is also known
as the Bode matching limit. This parameter is used for the
comparison of theoretical and the finite third-order matching
quality. In order to point out the critical parameters during the
matching process, the detailed process of the single reactance
matching example is presented. The following equations will
lead to the solution of the low pass filter prototype, for the
matching circuit,

d = sinh
sinh−1

√
1

10(r/10)−1

n
, (5)

D =
d

δ sin
(

π
2n

) − 1, (6)

where n represents the order of the matching circuit, and
r stands for the maximal allowed Chebyshev ripple factor
in the matched frequency band. Later on in Section VII.,
a simplified parameter calculation method is presented for
d. These parameters are used for evaluating the coupling
coefficients for the low pass filter prototype network, provided
by Green’s equations [10]:

k1,2 =

√
3

8

(
1 +

(
1 +

D2

3

)
δ2
)
, (7)

k2,3 =

√
3

8

(
1 +

(
1

3
+D2

)
δ2
)
. (8)

Based on [8] and [10], the low pass filter prototype component
values for the double-terminated filter are

g0 = 1, (9)

g1 =
1

δ
, (10)

g2 =
1

g1 · k21,2
, (11)

g3 =
1

g2 · k22,3
, (12)

g4 =
1

D · δ · g3
. (13)

As seen in (9), the generator impedance (Rg) is determined
as the synthesis result. This overrides the original generator
impedance (50Ω), which is unacceptable. Furthermore this
is a low-pass filter prototype circuit, hence filter transfor-
mation steps are required for a passband configuration. For
overcoming these synthesis problems, admittance inverters are
used. The auxilary parameters used for defining the admittance
inverter’s parameters are

dp ≈ 1, (14)

ωm =
(fh − fl)

fc
, (15)

Θ1 =
π

2

(
1− ωm

2

)
(16)

and the admittance inverter parameters are calculated using
equations in [10] and [9]:

C2 = g2, (17)

C3 = g0 g3 g4
RL

Rg
, (18)

C
′

2 = g2 (1− dp), (19)

C
′′

2 = dp g2, (20)

C
′

3 = C
′′

2 , (21)

C
′′

3 = C3 − C
′

3, (22)

J2,3 =
1

RL

√
C2 C3

g2 g3
, (23)

N2,3 =

√
(J2,3 RL)2 +

(
C

′′
2 tan(Θ1)

g0

)2

. (24)

The construction of the matching network is based on quar-
ter wavelength (at the center frequency), shorted stubs. The
shorted stubs only have a single free parameter in this case:
transmission line admittance (or impedance). These admittance
values are obtained by the following equations:

Y2 =
1

g0 RL
C

′

2 tan (Θ1) +
1

RL
(N2,3 − J2,3 RL) , (25)

Y3 =
1

g0 RL
C

′′

3 tan (Θ1) +
1

RL
(N2,3 − J2,3 RL) , (26)

Y2,3 = J2,3. (27)
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Fig. 1. Third order matching network with λ/4 shorted stubs.

The impedance values are the reciprocal, of the given
admittances respectively (Z2, Z3, Z2,3). The third-order match-
ing network structure is shown in Fig. 1. However, this
method does not always provide purely real transmission line
impedance values. In several cases, if the input parameters
are not well chosen the equations may lead to complex trans-
mission line immittances. Complex transmission lines are not
realizable with lossless components. For effective impedance
matching, only lossless circuit elements are allowed (with
purely real impedance values), otherwise the required power
would not reach the load, but dissipate in the lossy elements.
In the following section mandatory parameter restriction is
presented, used for avoiding these unwanted complex trans-
mission line impedances.

IV. AVOIDING COMPLEX TRANSMISSION LINE
IMPEDANCES

Matching network transmission line impedances are ex-
pressed as the reciprocal of the admittance values. As known
from linear network theory, these impedance values can be
solely purely real (assuming lossless transmission lines). How-
ever there are multiple cases where the results are complex
impedance values. Complex impedance value may arise first
during the design if

Im (J2,3) �= 0. (28)

It is also worth mentioning that J2,3 can be purely real, or
pure imaginary due to the nature of the square root function,
in (24). In order to avoid the pure imaginary impedance value
it is necessary to point out which parameter values affect this.
If

C2 C3

g2 g3
< 0, (29)

then J2,3 is pure imaginary. As the parameters are multiplied
together, an odd number of negative coefficients in the ex-
pression can result in a value less than zero. Due to the fact
that the decrement δ, and Green-coefficients k1,2 and k2,3 are
always greater than or equal to zero, g0, g1, and g2 can only
be positive. Thus a negative value in Eq. (29) can solely occur

if C3 < 0, leading to g4 < 0. The g4 parameter is negative if,
D < 0, resulting

D < 0 iff.
d

δ sin
(

π
2n

) < 1, (30)

assuming that n = 3 (third-order matching network) and
δ > 0:

Im
(
J2,3

)
= 0 iff. 2 d > δ. (31)

In order to avoid complex transmission line impedance values,
the mandatory rule is to set,

d >
δ

2
. (32)

On one hand the d parameter can be set by modifying r,
which stands for the amount of allowed Chebyshev-ripple in
the matched frequency band, on the other hand the decrement
factor (δ) is pre-determined by the quality factor, and the
frequency band. If the matching task allows the modification
of either r, or fl and fh, this mandatory rule can be satisfied
(in some cases), as shown later in Section VIII-B.

V. PHYSICAL TRANSMISSION LINE IMPEDANCE
LIMITATIONS

As most of the matching circuit designs are based on
microstrip transmission lines, one should always avoid extreme
line impedances. As a basic rule e.g. on a printed circuit board,
transmission line impedances should be 15Ω ≤ Z ≤ 150Ω.
This is due to the copper structure manufacturing tolerance
limits. The matching network realization fails, if any of these
transmission line impedances do not obey this rule. As an
example let’s assume a purely real Z2,3 that satisfies the rule

15Ω < RL

√
g2 g3

C2 C3
< 150Ω. (33)

Substituting into this expression,

RL

√
g2 g3
C2 C3

= RL

√√√√DRg k21,2

RL k22,3

, (34)

where RL is the real part of the load impedance, and Rg is
the generator impedance. If the condition,

15Ω < RL

√√√√DRg k21,2

RL k22,3

< 150Ω, (35)

does not apply, the matching network is not realizable, due
to the aforementioned physical limits. This short expression
requires only five parameters, and can be used to exclude non-
realizable matching networks at an early phase of the network
design. The same limit calculation can be applied to Z2 and
Z3, however the expression is more complex, and irrelevant,
considering the fact, that if at least one of the transmission line
impedances is not realizable, the matching network is non-
realizable as well.
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Algorithm 1 Modified matching algorithm
task → initial parameters(RL, Rg, L, fc, b, r)
while |S11| > −10 dB do

calculate d and δ parameters
if 2 d > δ then

non-complex matching network
calculate D, k1,2, k2,3

if 15Ω < RL

√
DRg k2

1,2

RL k2
2,3

< 150Ω then

physically realizable, non-complex network
calculate network impedances (Z2, Z3, Z2,3)
recalculate |S11|

else
physical realization problem, modify r or b

end if
else

if 2 d < δ then
complex matching network, modify r or b

end if
end if

end while
successful matching is achieved

VI. ALGORITHMIC IMPLEMENTATION OF THE MODIFIED
MATCHING METHOD

A modified matching algorithm (Algorithm 1) is defined
herein for avoiding the non-realizable matching network solu-
tions, by using the rules given in previous sections. As it can be
seen in Algorithm 1, the matching network impedances should
only be calculated, if both physical limitations are satisfied.
The complexity of these calculations can be further reduced,
if the calculation of parameters d and δ is faster. The aim of
the upcoming section is to show a possible faster approximate
expression to calculate the required parameter d from r, thus
speeding up the iteration process.

VII. SIMPLIFIED CALCULATION OF THE d PARAMETER

The exact calculation of the parameters d and D for Green’s
coupling coefficients were shown in Section III. As the hyper-
bolic, and the inverse hyperbolic functions may be difficult
to evaluate, this paper will introduce a simplified approximate
expression for the parameter d. As

sinhx =
ex − e−x

2
, (36)

sinh−1 x = ln
(
x+

√
x2 + 1

)
, (37)

these expressions can be used to transform hyperbolic equa-
tions to their exponential and logarithmic forms. By substitut-
ing

u =

√
1

10(r/10) − 1
,

the parameter d can be rewritten in the form:

d =
1

2

(
eln (u+

√
u2+1)

1
3 − eln (u+

√
u2+1)

− 1
3

)
=

=
1

2

(
3

√
u+

√
u2 + 1

)
− 1

2

(
3

√
u+

√
u2 + 1

)−1

.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

r

0.4

0.6

0.8

1

1.2

1.4

1.6

d

Exact function of d vs. r

Original function, d vs. r

Fig. 2. The original function of d vs. r
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Fig. 3. The original and the approximate function of d vs. r

As can be seen from Fig. 2, if d vs. r is plot in the Carte-
sian coordinate-system, the function resembles a monotonic
decending hyperbolic function. These embedded square, and
third-root functions are computationally extensive, thus an ac-
ceptable approximate function is proposed. The approximation
(i.e the curve fitting task) was carried out in MATLAB 2017b.
As mentioned before the proposed initial function is a custom
hyperbolic function which has the symbolic form

d̂(r) =
1

a · rb
+ c,
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where a, b, c are arbitrary constants. Utilizing the Least-Square
Method based curve fitting, these constants were determined

a = 0.618, b = 0.1118, c = −1.1233.

Based on these constants, the approximate function for d is

d̂(r) =
1

0.618 · r0.1118
− 1.1233. (38)

This approximate and the original exact function is presented
in Fig. 3. The curve-fitting approximation exhibited acceptable
results, with an RMSE (Root Mean Squared Error) value of
8.86 · 10−4, and R-square factor of 1.00. On this basis it can
be safely stated that

d ≈ 1

0.618 · r0.1118
− 1.1233. (39)

During the iterative solution to the best matching network, in
Algorithm 1 the parameter d should be reevaluated as soon
as r changes. This evaluation occurs everytime the algorithm
runs into an unrealizable matching solution. With this new
hyperbolic formula introduced here in Eq. (39), the resulting
algorithm exhibits a reduced processing time.

VIII. MATCHING EXAMPLES (SIMULATIONS)
In this section two matching examples are introduced. One

where the 2 d > δ condition is initially satisfied, and another
where it is not. These simulation setups were created in AWR
Microwave Design Studio 2010. The simulated impedance
matching networks are designed for matching series R-L loads
to a Rg = 50Ω generator, on a specific European ISM UHF
frequency band, i.e. 868 MHz.

A. Impedance matching example 1.

The impedance matching example parameters are shown in
Table I,

TABLE I
IMPEDANCE MATCHING EXAMPLE 1. - INITIAL PARAMETERS

fc b Rg RL L r δ d

868 MHz 25% 50Ω 30Ω 20 nH 0.066 0.5366 1.068

where values in bold, are parameters calculated from the
six initial parameters: center frequency, relative matching
bandwidth, generator source impedance, load resistance, load
inductor value, and maximal Chebyshev-ripple factor respec-
tively. Regarding the values in Table I, the fundamental rule
for non-complex transmission line impedances (presented in
Section IV.) and the practical impedance realization limit are
both satisfied (see Eq. (35)).

The matching network consists of the following transmis-
sion line impedances, and series capacitance.

Fig. 4 presents the input reflection coefficient as a function
of frequency, for the matching network. As it is highlighted
with the markers, an acceptable matching (|S11| ≤ −10 dB)
is reached on the 738 . . . 1116MHz frequency band. The
physical line impedance realization limit is satisfied as well,

15Ω < 50
√
1.153 < 150Ω.

Fig. 4. Wideband matching result, for example 1.

TABLE II
MATCHING NETWORK COMPONENT PARAMETERS (EX. 1.)

Z2,3 Z2 Z3 Cseries

51.36Ω 26.75Ω 70.9Ω 1.68 pF

As a conclusion, this example clearly states, that by abiding
the rules introduced in Section IV. and Section V. one can
avoid matching networks that are practically impossible to
implement.

B. Impedance matching example 2.

In this example the initial parameters do not satisfy the fun-
damental realization rule (see Eq. (32)), therefore resulting in
a non-realizable matching network. Overcoming this problem
is presented hereby.

TABLE III
IMPEDANCE MATCHING TASK 2. - INITIAL PARAMETERS

fc b Rg RL L r δ d

868 MHz 10% 50Ω 50Ω 20 nH 0.066 2.281 1.068

One might presume, that this matching task is easier, due
to the smaller bandwidth, and higher real part of the load
impedance, however the Bode-Fano method basically does not
respect the realization rule shown in Section IV., hence the
synthesis results in complex transmission line impedances.

TABLE IV
MATCHING NETWORK COMPONENT PARAMETERS (EX. 2.)

Z2,3 Z2 Z3 Cseries

− 18.86 jΩ 7.31 + 3.472 jΩ −1.21 + 0.0668 jΩ 1.68 pF

The solution for this problem is to either modify the
matched relative bandwidth, or the Chebyshev-ripple factor,
if allowed. This time, by setting r = 0.0001 the results have
become acceptable (Fig. 5).
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TABLE V
MODIFIED NETWORK PARAMETERS (EX. 2.)

Z2,3 Z2 Z3 Cseries

53.17Ω 27.18Ω 104.1Ω 1.68 pF

By modifying r, d is also modified (d = 3.668) and Eq.
(32) is thereby satisfied, thus the matching task is solvable
exclusively utilizing lossless components (impedance values
are in Table V). The results in Fig. 5 show that the matching
quality is better than expected, and the matched bandwidth
is almost 50%, contrary to the predefined b = 10%. This
result is due to the outstandingly low, maximal Chebyshev-
ripple factor, prescribed as the fix for avoiding complex
impedances. As seen in this second matching example varying
the Chebyshev-ripple factor has beneficiary effects on avoiding
transmission line impedances. If the matching task allows,
modifying the upper and lower frequency limits may have the
same effect on avoiding unrealizable networks.

Fig. 5. Modifying r factor results in successful impedance matching and
realizable network

CONCLUSION

The presented physical realization problems and solutions
introduced in Section IV. and Section V. were successfully
validated with simulation examples. The modified wideband
matching algorithm was presented, and successfully applied
for multiple matching tasks. If the realization limiting equa-
tions presented in this paper are satisfied, avoiding non-
realizable matching networks becomes possible before com-
plex calculations and optimalization steps were made. Fur-
thermore the approximation for the parameter d reasonably
reduces the calculation time at the iterative stage, thus speed-
ing up the complete matching process.
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