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Abstract 31 

The analysis of heparan sulfate disaccharides poses a real challenge both from chromatographic 32 

and mass spectrometric point of view. This necessitates the constant improvement of their 33 

analytical methodology. In the present study, the chromatographic effects of solvent 34 

composition, salt concentration, and salt type were systematically investigated in isocratic 35 

HILIC-WAX separations of heparan sulfate disaccharides. The combined use of 75% 36 

acetonitrile with ammonium formate had overall benefits regarding intensity, detection limits, 37 

and peak shape for all salt concentrations investigated. Results obtained with the isocratic 38 

measurements suggested the potential use of a salt gradient method in order to maximize 39 

separation efficiency. A 3-step gradient from 14 mM to 65 mM ammonium formate 40 

concentration proved to be ideal for separation and quantitation. The LOD of the resulting 41 

method was 0.8-1.5 fmol for the individual disaccharides and the LOQ was between 2.5-5 fmol. 42 

Outstanding linearity could be observed up to 2 pmol. This novel combination provided 43 

sufficient sensitivity for disaccharide analysis, which was demonstrated by the analysis of 44 

heparan sulfate samples from porcine and bovine origin. 45 

 46 

Keywords: glycosaminoglycan; heparan sulfate; capillary liquid chromatography; 47 

HILIC-WAX; salt gradient 48 

  49 
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1. Introduction 50 

Glycosaminoglycans (GAGs) are long linear polysaccharides consisting of repeating 51 

disaccharide units that comprise an amino sugar (N-acetylglucosamine or 52 

N-acetylgalactosamine) and a hexuronic acid (HexA; glucuronic acid or iduronic acid) or 53 

galactose and are sulfated along the chain which results in highly polar nature. The saccharide 54 

units can be sulfated at various positions and epimerization may also occur along the chain. 55 

They are localized in the extracellular matrix and on cell surfaces and are involved in numerous 56 

biological functions, including organogenesis, cell adhesion, signaling, inflammation, and 57 

tumorigenesis [1-3]. GAG chains may interact with different effector proteins (e.g. cytokines 58 

and chemokines) and this interaction depends on sulfation motifs within the chain [4, 5]. 59 

Heparan sulfate (HS) is the class of GAGs carrying the largest diversity. It consists of HexA 60 

and N-acetylglucosamine (GlcNAc) disaccharide units. Following the synthesis of the sugar 61 

chain, epimerization of glucuronic acid to iduronic acid occurs in certain regions, and finally, 62 

sulfation is carried out by sulfotransferases [6]. 63 

Due to their large size (up to 70 kDa), the investigation of intact HS chains is practically 64 

impossible by instrumental analytical tools. The structural characterization of the average 65 

sulfation pattern is usually performed after enzymatic hydrolysis of the polymeric chain into 66 

the constituent disaccharide units [7]. Bacterial polysaccharide lyase enzymes degrade the 67 

chains into Δ4,5-unsaturated disaccharides with varying degrees of sulfation. The characteristics 68 

of the resulting HS disaccharides are summarized in Table 1. Determining the ratio of these 69 

different structures is important in understanding the mechanisms underlying several diseases. 70 

Because of the above-mentioned facts, even the structural characterization of GAG 71 

disaccharides poses several challenges [8]. Various chromatographic methods have been 72 

reported to analyze Δ4,5-unsaturated and sulfated HS disaccharides. These include 73 

derivatization (for retention or detection) followed by reversed-phase chromatography [9-11], 74 

reversed-phase ion-pairing chromatography (RPIP) [12-14], size exclusion chromatography 75 

(SEC) [15-17], graphitized carbon [18, 19], amide-HILIC [20, 21], or HILIC-WAX [22, 23] 76 

chromatography. Most of these separation methods can be on-line coupled to mass 77 

spectrometry (MS) thus detailed structural information of GAGs can be acquired [24, 25]. The 78 

main disadvantage of the above-mentioned methods is their relatively high detection limits, 79 

most have LODs in the picomole, some in the high femtomole range [17, 22]. An excellent 80 
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review was written recently, by Solakyildirim, summarizing the recent advances of 81 

glycosaminoglycan analysis [26]. 82 

We have recently reported an isocratic nanoflow HPLC-MS method [23] using self-packed 83 

columns which allowed quantification of as few as 10 fmol HS disaccharides from four out of 84 

the six investigated compounds.  Sensitivity was an order of magnitude better than that of 85 

previously reported methods. A mixed-mode resin combining hydrophilic interaction (HILIC) 86 

and weak anion exchange (WAX) retention mechanisms was chosen as packing material, as it 87 

enables separation of polar solutes based on charge, size, and polarity [22]. When an ion-88 

exchange column is operated under HILIC elution conditions, electric repulsion hydrophilic 89 

interaction chromatography (ERLIC) is created [27], which is an efficient technique in the 90 

separation of differently polarized components [28]. 91 

Building on our previously reported method [23], several further steps were considered in order 92 

to maximize the performance of HS quantitation from limited sample amounts. Lower limits 93 

were desirable especially for the non-sulfated D0A0 and the triply sulfated D2S6 disaccharides 94 

which showed relatively high quantitation limits (20 fmol and 50 fmol, respectively).  95 

To achieve this goal, it was necessary to increase the sensitivity of the individual disaccharides 96 

and to obtain better peak shapes. Moreover, in order to increase throughput, a fast 97 

chromatographic method with a more robust coupling (normal ESI source) was intended. In our 98 

earlier work the pH, acetonitrile content and ammonium formate concentration were optimized 99 

independently after one another, and the developed isocratic method was applied for the sample 100 

preparation development and characterization of tissue microarrays. We have concluded that 101 

acetonitrile gradients could not be applied due to the loss in sensitivity for the late eluting 102 

doubly and triply sulfated disaccharides. 103 

Since the above-mentioned parameters were observed to be interdependent, a detailed 104 

investigation on the individual and cross-effects of acetonitrile content and salt concentration 105 

showed great promise. Thus, we decided to map the individual and interaction effects through 106 

a 3-factor experimental design operating with ammonium acetate and ammonium formate salts. 107 

Although frequently used in ion (exchange) chromatography, salt gradients are almost entirely 108 

neglected in HILIC-based chromatography, mainly because of the lack of theoretical 109 

understanding of the retention mechanisms which still need theoretical and experimental 110 

elucidation [29-31]. Using salt gradients in reversed-phase chromatography is also uncommon, 111 

even for pH-gradient there are only a few reported examples [32, 33]. However, it was recently 112 
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proven that salt gradients can provide different selectivity, this way supplementing traditional 113 

solvent gradients [34, 35]. 114 

Our aim was to pursue a detailed examination of the salt and solvent effects in the 115 

chromatography of HS disaccharides to further improve throughput, quantitation limits, and 116 

repeatability. As opposed to its rare previous utilization, we designed a method building on salt 117 

gradients for HS disaccharide separation. The developed method proved to be applicable for 118 

determining the sulfation pattern of HS chains from biological origin.  119 
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2. Materials and Methods 120 

2.1. Chemicals and reagents 121 

The Δ4,5-unsaturated heparan sulfate disaccharide standards (listed in Table 1, ‘HS 122 

disaccharides’ hereinafter) and heparan sulfate from porcine intestinal mucosa (HSPIM) were 123 

purchased from Iduron (Cheshire, UK). LC-MS grade water and acetonitrile, crystalline 124 

ammonium formate and ammonium acetate, formic acid and acetic acid, and heparan sulfate 125 

from bovine kidney (HSBK) were purchased from Sigma-Aldrich (Budapest, Hungary). 126 

2.2. Column packing 127 

A GlycanPac™ AXH-1 1.9 µm analytical HPLC column (2.1x100mm, Thermo Fisher 128 

Scientific, Waltham, MA USA) was unpacked and repacked into capillaries. For this purpose, 129 

250 µm i.d. capillaries were cut and fritted as previously reported [36]. Briefly, capillaries were 130 

dipped in a solution containing potassium silicate (Kasil® 1624, Kasil 1) and formamide in the 131 

ratio of 3:1:1. The capillaries were then placed in an oven at 80 °C for 4 hours. After the fully 132 

porous frit was produced, it was trimmed to 0.5 cm to reduce dead volume.  133 

The packing itself was based on a method published recently [23] as follows. The capillary was 134 

placed in a pressure injection cell and was washed with 1 mL methanol. A 1 mg/mL suspension 135 

was prepared from the GlycanPac™ AXH-1 resin in 75% acetonitrile - 25% water. The slurry 136 

was continuously vortexed using a magnetic stir bar and the column was packed using nitrogen 137 

at 2000 psi. After reaching the desired 13 cm length, the pressure was carefully released 138 

overnight. Finally, a 60-minute-long UPLC compression procedure at 8000 psi was applied to 139 

maximize the axial homogeneity of the chromatographic bed. 140 

2.3. Liquid chromatography-mass spectrometry 141 

For microscale chromatography, a ’hybrid’ system was assembled. The in-house packed 142 

capillary column was mounted on a Waters® nanoAcquity UPLC system (Waters, Milford, 143 

MA, USA) coupled to a high-resolution Waters® QTOF Premier™ Mass Spectrometer 144 

(Waters, Milford, MA, USA) via normal electrospray ionization source.  145 

2.3.1. MS parameters 146 

The mass spectrometry parameters were optimized for the highest sensitivity avoiding 147 

undesirable fragmentation in the ion source by directly infusing Leucine Enkephalin, D0A0, 148 

and D2S6 standards and further optimized via HPLC measurements. The capillary voltage was 149 

set to 2.4 kV, sampling cone to 20 eV, extraction cone to 4 V, the ion guide to 1.5. The source 150 

temperature was 80 °C, the desolvation temperature was 100 °C, the cone gas was 25 L/h and 151 

the desolvation gas 300 L/h. The investigated compounds were measured as singly-charged 152 
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anions (deprotonated molecules, [M-H]-). Multiply charged ions or adduct forms complicating 153 

the analysis were not observed. 154 

2.3.2. UHPLC parameters 155 

For the investigation of the chromatographic behavior, we injected a mixture of the HS 156 

standards: 1 pmol of D0A0, D0S0, D2A6; 0.5 pmol of the D2A0 and D0A6 standards 157 

(positional isomers, thus resulting in a total of 1 pmol D2A0/D0A6 content); 2.5 pmol of D2S0 158 

and D0S6 (positional isomers, thus resulting in a total of 5 pmol D2S0/D0S6 content) and 5 159 

pmol of the D2S6 standard. The injection of this mixture resulted in similar peak heights. 160 

The flow rate was selected to be 8 µL/min based on the stability of the signal investigated in a 161 

flow injection study (details not shown). 162 

The column temperature was adjusted using an AgileSleeve capillary heater with MonoSleeve 163 

column heater controller (Analytical Sales and Services Inc, Flanders, NJ USA). The 164 

temperature was optimized and thermostating at 45°C was found optimal for the 165 

chromatographic performance (details not shown). 166 

 167 

2.4. Screening of salt effects with ammonium formate 168 

2.4.1. Mobile phase preparation 169 

Mobile phase solvents were prepared by dissolving ammonium formate in water, then formic 170 

acid was added in an acid-to-salt molar ratio of 0.13 to adjust the pH to a previously optimized 171 

value of 4.4 [23], and finally, acetonitrile was added.  172 

2.4.2. Solvent composition and salt content in isocratic methods  173 

The effects were investigated by isocratic measurements at the respective salt concentration and 174 

solvent composition. The eluents were prepared with 75%, 50% and 25% acetonitrile content, 175 

and in each case 5 mM, 10 mM, 15 mM, 20 mM, 25 mM, 30 mM, 35 mM, 45 mM, 55 mM, 176 

and 65 mM ammonium formate concentrations were adjusted. 177 

As a further optimization step, isocratic methods using 80%, 75%, 70%, 65% and 60% 178 

acetonitrile content were also tested, in order to justify that the formerly established 75% 179 

acetonitrile content provides the optimal conditions. The salt concentration for these runs was 180 

set to 45 mM. 181 

2.5. Screening of salt effects with ammonium acetate 182 

After optimizing the acid-to-salt molar ratio to reach the necessary pH of 4.4, and minimize 183 

ion-suppression, the same experimental design was performed as in the case of ammonium 184 

formate.  185 
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2.6. Salt gradient method  186 

Based on the results of the isocratic screening, we designed a salt gradient method using the 187 

following parameters. Eluent A: 10 mM ammonium formate in 75:25 v/v ACN:water (pH 4.4); 188 

Eluent B: 65 mM ammonium formate in 75:25 v/v ACN:water (pH 4.4). 189 

The flow rate was 8 µL/min and the gradient program was the following: after 0.5 minutes 190 

isocratic flow at 6% B, then the eluent ratio changed in 3 minutes to 70% B, then in 1 minute 191 

to 90% B, finally to 100% B in 4 minutes. 100% B solvent composition was held for 1.5 minutes 192 

and was followed by a 9-minute-long equilibration at the initial composition. 193 

 194 

2.7. Enzymatic digestion of heparan sulfate 195 

300 ng heparan sulfate from HSPIM/HSBK was dissolved in 45 µL aqueous digestion solution 196 

(12.5 mM ammonium bicarbonate, 2.5 mM Ca(OH)2 containing 2.5 mU of Heparan Lyase I, 197 

2.5 mU of Heparan Lyase II, and 1.25 mU of Heparan Lyase III). Following 24 hours of 198 

incubation at 37 °C, another cycle of enzymes (2.5 mU of Heparan Lyase I, 2.5 mU of Heparan 199 

Lyase II, and 1.25 mU of Heparan Lyase III) in 5 µL volume was added and the mixture was 200 

incubated at 37 °C for 24 more hours. The reaction was quenched by heating the sample to 201 

80 °C for 5 minutes. The samples were dried down and re-dissolved in 50 µL ‘gradient starting 202 

solvent’ from which 2 µL was injected containing 12 ng HS portions. 203 

 204 

2.8. Data evaluation and interpretation 205 

Chromatographic parameters, like resolution, peak area, and intensity values were calculated 206 

with the QuanLynx add-in of Waters MassLynx 4.1 software. Then, the data were imported to 207 

OriginPro 8 to visualize in a contour plot using default settings of the program. 208 

  209 
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3. Results and discussion 210 

3.1. Solvent and salt effects 211 

Previous findings suggest that both salt concentration and solvent composition may have crucial 212 

effects on the separation efficiency of HS disaccharides in HILIC-WAX chromatography. In 213 

these studies, we used an acetonitrile-water solvent system with ammonium formate salt. We 214 

had previously tested a methanol-water solvent system as well, but it produced worse results. 215 

The combined effects of ammonium formate concentration and acetonitrile-water solvent ratio 216 

were mapped using a 3x10 factorial design. Three different acetonitrile contents were studied, 217 

75%, 50%, and 25%. Initial studies have shown that acetonitrile content higher than 75% 218 

resulted in wide and shallow peaks, so we did not exceed this range for detailed investigations 219 

in the current study. Ammonium formate content was studied in the 5-65 mM range using 10 220 

steps. This way we mapped the whole range that can be conveniently used for HPLC coupled 221 

to MS. It is important to note that even at high salt concentration we have observed no 222 

contamination of the ion source and the MS signals were stable over several weeks of analysis.  223 

The key objectives in studying the effect of salt concentration and solvent composition were 224 

the proper separation of early eluting components, improving the resolution of monosulfated 225 

(D0S0-D2A0/D0A6) and disulfated (D2A6-D2S0/D0S6) peak pairs, eluting highly sulfated 226 

components in a relatively short time, and providing good sensitivity of analysis for all 227 

components. Note, that D2A0/D0A6 and D2S0/D0S6 disaccharides are positional isomers 228 

having practically identical hydrophilicity and charge, respectively, thus their separation is not 229 

feasible in this setup. The effect of salt concentration on the separation of the HS disaccharides 230 

is demonstrated in Fig. 1 (at 75% acetonitrile content), while that of solvent composition is 231 

shown in Fig. 2 (at 25 mM ammonium formate concentration). These effects are discussed in 232 

detail below in terms of retention factor, selectivity, resolution, sensitivity (peak area), and S/N 233 

ratio (intensity) parameters. 234 

The first criterion is, that all the target compounds should be eluted from the column in a 235 

reasonable time, presuming appropriate retention and selectivity. Plotting retention factors as a 236 

function of salt concentration and solvent composition (Fig. 3), the changes were remarkable. 237 

Increasing salt concentration resulted in a fast decrease in the retention factors for all the 238 

components at all solvent compositions. Relatively low (10 mM) ammonium formate 239 

concentration (Fig. 1A) gave unsatisfactory results: retention factors were too high, thus not all 240 

components eluted in the 25-minute elution window. Increasing salt concentration to 25 mM 241 

resulted in a remarkable improvement (Fig. 1B). Using even higher (45 mM) salt concentration 242 
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(Fig. 1C) further decreased the retention factors, but this also resulted in co-elution of several 243 

components, mainly monosulfated (peaks 2, 3) and disulfated (peaks 4, 5) HS disaccharides 244 

which are closest to each other in polarity. 245 

Increasing water content also changed the retention factors, although to a lower degree, and 246 

unequally for various components. Retention factors of non-sulfated and monosulfated 247 

disaccharides (peaks 1, 2, 3) showed a minor decrease with elevated water content, while those 248 

for doubly and triply sulfated disaccharides (peaks 4, 5, 6) increased, and co-elution of 249 

monosulfated (peaks 2, 3) and doubly sulfated components (peaks 4, 5) occurred (Fig. 2 and 250 

Fig. 3). 251 

In highly aqueous solvents ion-exchange mechanism dominates, thus ions are distinguished 252 

primarily by the number of their charges, therefore co-elution of similarly charged 253 

disaccharides occur. 254 

Second, we considered the resolution (R) of monosulfated and doubly sulfated peak pairs an 255 

important indicator for chromatographic separation. The contour plots in Fig. 4 show the change 256 

in resolution of the monosulfated (Fig. 4A) and the disulfated (Fig. 4B) peak pairs. As both the 257 

peak width and retention time decreased with increased salt concentration (as seen in Fig. 1) it 258 

was important to find a balance between these two to maximize resolution. The highest 259 

resolution of monosulfated components can be achieved by using relatively low (5-15 mM) 260 

ammonium formate concentration, while the resolution of disulfated HS disaccharides 261 

increased practically monotonously with increasing salt concentration at 75% acetonitrile 262 

content, and elaborately at other solvent compositions. This suggested that using a salt gradient 263 

may be optimal for the analysis of sulfated disaccharides. 264 

A further important factor to consider is the overall sensitivity in ESI mass spectrometry.  265 

In fact, in most biological applications this is of crucial importance. Although proper 266 

quantitation is typically based on peak area, for optimal sensitivity, peak intensity (related to 267 

S/N ratio, being best for narrow peaks) may be even more important. The average peak areas, 268 

peak heights, and signal-to-noise ratios as a function of salt concentration and solvent 269 

composition are shown in the contour plots in Fig. 4C, 4D, and 4E, respectively. These show 270 

that sensitivity decreases fast with decreasing acetonitrile content with respect to both peak 271 

areas and peak intensities, due to lower ionization efficiency and increasing peak width. 272 

Increasing salt concentration (going from bottom to top on the contour plots) influenced peak 273 

areas only slightly, but (due to sharper peaks) intensities and the S/N ratio increased 274 

substantially. These imply that ion suppression or deterioration of ion source conditions do not 275 

happen even at elevated salt concentrations.  276 
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The results discussed above show that optimal solvent composition was found at the high edge 277 

of the investigated range, so we have performed further experiments (at 45 mM ammonium 278 

formate content) to map the range of 65% - 80% acetonitrile ratio in detail. It was found 279 

(analogously to that reported earlier [23]) that the best results were obtained at 75% acetonitrile 280 

content. Using 65-70% acetonitrile content resulted in a decreased resolution. Increasing 281 

acetonitrile content to 80% resulted in approximately 5-times increase in peak widths, resulting 282 

in a major loss (3-5-fold) of peak intensities (Fig. A-1). As it is seen in Fig. A-2, S/N ratios had 283 

a maximum at 70% ACN, the peak areas had maximum at 75% and 80%, but peak height had 284 

a large maximum at 75%. For this reason, we decided not to study solvent compositions over 285 

75% in more detail. 286 

Besides ammonium formate, the other commonly used buffer salt in HILIC-based separations 287 

(especially when on-line coupled to mass spectrometry) is ammonium acetate. We repeated the 288 

study discussed above using ammonium acetate. This study did not yield any further 289 

information: salt concentration and solvent composition had the same effects as obtained with 290 

ammonium formate. However, chromatographic peak shapes were more asymmetric, and mass 291 

spectrometry sensitivity was also worse. The data are shown in details in Appendix B. 292 

3.2. Discussion of retention mechanism 293 

The GlycanPac AXH-1 column is a HILIC-WAX mixed-mode resin, the chemistry of which is 294 

unknown for the public. The HILIC functional group is used to retain very polar compounds, 295 

and the WAX property separates based on charge. Discussing the possible interactions 296 

governing retention is rather difficult due to the unknown stationary phase chemistry and the 297 

mixed-mode operation. The solvation of the analytes and their dissociation states are strongly 298 

influenced by the acetonitrile ratio in the mobile phase [37]; and the fact that besides the 299 

effective pH [38, 39], the ionic strength may also have an influence [29], further complicating 300 

the picture. Instead of the pure HILIC and WAX operation conditions, their resultant determines 301 

the retention. Besides, the amino group in the HS disaccharides may be protonated under 302 

operating conditions, thus electric repulsion hydrophilic interaction chromatography (ERLIC) 303 

mechanism might also play a role [27]. This means that under HILIC conditions, the positively 304 

charged WAX functional groups repel the molecules that bear a protonated amino group. 305 

Bearing all of these in mind, we would like to propose an explanation for the interactions 306 

governing the retention of HS disaccharides on a HILIC-WAX column. 307 

25% acetonitrile (thus high water) content in the mobile phase provides ideal circumstances for 308 

ion exchange, while under such high water content the HILIC effect is inoperative. In WAX, 309 
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the interaction of the analytes with both the stationary and the mobile phase is based on ionic 310 

effects, and therefore separation is mainly due to charge differences. Under such conditions, it 311 

is not possible to separate the mono- and the disulfated HS disaccharides, respectively. This 312 

mode of action is illustrated in Fig. 3, where at 25% acetonitrile content these components 313 

coelute (Fig. 3C).  314 

Increasing acetonitrile content up to 50%, WAX interactions are weakened, and HILIC effects 315 

start to modify chromatography. The retention of non-sulfated and monosulfated components 316 

are hardly affected, while retention decrease of doubly and triply sulfated components becomes 317 

significant (Fig. 3B). Note, that the interactions affected by acetonitrile content may cause 318 

further changes [37], but their detailed investigation and discussion is out of the scope of the 319 

present paper. 320 

Using 75% acetonitrile content, chromatographic effects are fairly complicated. Under such 321 

conditions, the HILIC functionality becomes dominant, while the WAX functionality may 322 

switch from ionic interactions to electric repulsion hydrophilic interaction chromatography 323 

(ERLIC). Separation is determined by the combination of the two. This is shown by the 324 

increased retention of non-sulfated and monosulfated disaccharides compared to lower 325 

acetonitrile content (Fig. 3A vs Fig. 3B). On the other hand, the retention of di- and trisulfated 326 

disaccharides decreases significantly due to the switch of WAX related strong retention to 327 

HILIC and ERLIC. The large selectivity increase between N-sulfated and N-acetylated 328 

disaccharides of the same charge can be explained as follows. N-sulfation decreases the electron 329 

density of the N-atom, the protonation is less likely, this way the effect of ERLIC is smaller; 330 

this is corroborated by the larger retention times of N-sulfated components (D0S0 and 331 

D2S0/D0S6) compared to the respective N-acetylated compounds (D2A0/D0A6 and D2A6). 332 

In mixed-mode separations, the orientation of the various molecules may also play a crucial 333 

role [40], therefore even small structural differences result in increased separation. At 75% 334 

ACN content, planar coordination of the molecules is likely, as the proximity of O-sulfate 335 

groups to the amino group has no effect, while modification of the N-acetyl group has a large 336 

effect on retention. In contrast, at 50% and 25%, acetonitrile content the column operates 337 

mainly as an anion exchanger, and the coordination of the sulfate groups to the stationary phase 338 

has no effect on the strength of retention. 339 

In summary, the degree of significance of HILIC, WAX and ERLIC mechanisms on the 340 

retention behavior depends on both the sulfation degree (i.e. charge state) of the various 341 
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compounds and the experimental conditions. Multiply charged disaccharides exhibit strong 342 

ionic interactions with the stationary phase and their retention is governed predominantly by 343 

the ion-exchange process in the whole experimental space (mostly WAX, partly ERLIC). 344 

HILIC, on the other hand, provides a substantial contribution to the retention of disaccharides 345 

with a lower number of sulfate groups present, especially at high acetonitrile content and at low 346 

salt concentration. Finally, when the acetonitrile content is increased above 75%, HILIC-type 347 

interactions with the stationary phase become very strong, and the various disaccharides do not 348 

elute from the column in a reasonable time (see Fig. A-1 and A-2). 349 

3.3. Salt gradient separation of HS disaccharides 350 

Results of the isocratic screening discussed above show that best separation characteristics  351 

(in terms of sensitivity, peak shape, and resolution) were obtained using 75% ACN – 25% H2O 352 

solvent composition with ammonium formate buffering salt. However, separation of all 353 

components in reasonable run time and at high sensitivity could not be achieved simultaneously 354 

for all components using a constant salt concentration. Applying a generally used solvent 355 

gradient would have no significant benefits, as this would result either in bad elution 356 

characteristics or poor sensitivity (as seen in Fig. 3 and 4). Another alternative, rarely used in 357 

HILIC-based separations, is applying a salt gradient. The concept was to start the run at 358 

relatively low ammonium formate concentration (10-15 mM) so that the non-sulfated and 359 

monosulfated components were baseline-separated, then apply a moderately fast salt gradient 360 

to decrease the retention time and to increase intensity/sensitivity of the highly sulfated 361 

components. Note that this concept resolved the most important limitations of the previously 362 

reported HILIC studies, i.e. low sensitivity, badly resolved, and often irreproducible peaks for 363 

highly sulfated HS disaccharides. Detailed information on the development of the 3-step 364 

gradient is shown in Appendix C. 365 

We designed a salt gradient method which used a 3-step gradient starting from 14 mM to 65 mM 366 

ammonium formate concentration. This way we have obtained a chromatogram (Fig. 5) with 367 

close to ideal peak shapes (FWHM of the last peak was practically the same as that of the first 368 

peak), good resolution, selectivity, and sensitivity. Note that salt concentration had a crucial 369 

effect on the retention and peak shape, but in contrary to usual mass spectrometry experience, 370 

it caused no additional ion suppression and gave no problems even in the long run (over several 371 

weeks). Resolution for all peak pairs was over 1.5, except that of the D2A6-D2S0/D0S6 peak 372 

pair, which was around 1.3. We considered this separation acceptable, especially as the two 373 

components have different molecular mass; separating them by mass spectrometry is trivial.  374 
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For the D0A0 and the D2S0/D0S6 components, the limit of quantitation (LOQ, defined 375 

according to the FDA Bioanalytical Method Validation guidelines [41]) was determined at 5 376 

fmol, while for the D0S0, D0A6/D2A0, D2A6, and D2S6 components the LOQs were below 377 

2.5 fmol. The limit of detection (LOD, estimated as 3-times S/N) was approximately 1.5 fmol 378 

for D0A0 and D2S0/D0S6, and below 1 fmol for the other components. These values show that 379 

our method is 100 times more sensitive than one of the recent papers on heparan sulfate analysis 380 

[22], and approximately 2-10 better than obtained before [23] using the same instrument in 381 

isocratic mode. Improved sensitivity may be attributed to gradient focusing and lower noise 382 

observed.  383 

The linearity of the method was characterized in a wide range from 2.5 fmol to 2 pmol, each 384 

concentration was measured in triplicate. The R2 values covering the whole range were all 385 

above 0.99, except in the case of D0A0, where it was 0.98. Calibration curves are shown in the 386 

Supplementary Information plotted both in linear and logarithmic mode (Fig. A-2).  387 

The repeatability of the method was analyzed in 5 consecutive runs (intra-day repeatability) on 388 

3 different days of the week (inter-day repeatability) using a 1 pmol HS disaccharide standard 389 

mixture. Intra-day repeatability (relative standard deviation of peak areas) was 3% on average, 390 

while inter-day repeatability was 5% (Table A-1). The retention time stability was 0.32 % 391 

intra-day, and 0.73% inter-day (RSD values). Long-term robustness of the system was 392 

outstanding; around 3 months of problem-free operation was observed when working with these 393 

high salt-content methods. Furthermore, no carry-over was experienced, even after injecting as 394 

much as 10 pmol samples. 395 

3.4. Analysis of heparan sulfate samples 396 

Performance of the developed method has been tested in the case of two different HS samples, 397 

which have been studied before [20, 42]. The samples, derived from porcine intestinal mucosa 398 

(HSPIM) and bovine kidney (HSBK), were enzymatically degraded with bacterial lyase 399 

enzymes into unsaturated HS disaccharides. Four replicates of digested samples were injected 400 

and separated using the developed salt gradient µHPLC-MS method. The sulfation pattern of 401 

heparan sulfate was demonstrated by the relative abundance of the HS disaccharides (Fig. 6). 402 

The non-sulfated D0A0, the disulfated D2S0/D0S6, and the triply sulfated D2S6 were the 403 

dominant disaccharides in both samples, while the disulfated D2A6 disaccharide was present 404 

only in a negligible amount. The monosulfated disaccharides, D0S0 and D0A6/D2A0, were 405 

present in moderate amounts in both samples. The ratio of the multiply sulfated components 406 
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was lower in the bovine than in the porcine sample, thus the degree of sulfation was much lower 407 

in HSBK than in HSPIM. This can be numerically described by the average number of sulfate 408 

groups on disaccharides, which is 0.96 for HSBK and 1.92 for HSPIM. These results agree well 409 

with previously reported data [20, 42]. The relative standard deviation of peak areas for all 410 

components in both samples remained under 20%, except for the D2S6 in HSBK (21.79%), 411 

present in relatively low amount. These RSD values are considered acceptable contemplating 412 

the variability of the biological samples, the difficult sample preparation steps, and the low 413 

amounts of the measured disaccharides. 414 

  415 
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4. Conclusions 416 

The HPLC-MS analysis of heparan sulfate disaccharides poses a challenge from both 417 

chromatography and mass spectrometry sides, due to their diverse polarity and unfavorable 418 

ionization characteristics. In this paper, we performed a detailed isocratic screening of salt and 419 

solvent effects through a factorial design. We found that the acetonitrile-water ratio of the 420 

solvent highly influenced both the elution characteristics and ionization efficiency. Altering the 421 

salt concentration improved elution characteristics, but did not cause problems on the mass 422 

spectrometry side of the analysis.   423 

Based on the above-mentioned results, we developed a salt gradient operating with self-packed 424 

HILIC-WAX µHPLC columns coupled to ESI mass spectrometry working in negative ion 425 

mode. Using the salt gradient improved sensitivity and repeatability could be achieved, 426 

compared to previous methods using the same resin [22, 23]. It was possible to separate and 427 

quantify the unsaturated HS disaccharides down to a few femtomoles, using a relatively short, 428 

20-minute-long gradient. Sulfation patterns of heparan sulfates determined using the present 429 

method gave analogous results to those determined using other techniques.  430 

The developed salt gradient method on mixed-mode HILIC-WAX resin offers several 431 

advantages as compared to previously published methods. First, the method is shorter than any 432 

other method reported (20 minutes instead of 30-60 minutes) [15-18, 20, 26]. Second, it 433 

provides utmost sensitivity with LOD below 1 fmol for all HS disaccharides (min. 100 fmol 434 

with other resins, and 10-50 fmol with HILIC-WAX was possible before). Furthermore, it 435 

facilitates proper investigation of non-sulfated and triply sulfated components in a single run. 436 
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Appendices 446 

Appendix A - Supplementary figures and tables 447 

Figure A-1. Effects of solvent ratios surrounding 75% acetonitrile. A: 70% ACN; B: 75% 448 

ACN; C: 80% ACN content. The ammonium formate concentration was set to 45 mM, which 449 

resulted in sharp peaks but moderate resolution using 75% ACN content.  450 

Figure A-2. Effects of solvent ratios surrounding 75% acetonitrile on average peak area (red), 451 

average peak height (blue), and average signal-to-noise ratio (black). The ammonium formate 452 

concentration was set to 45 mM at all points. 453 

Figure A-3. The linearity of the method, calibration curves for the individual HS disaccharide 454 

standards: D0A0 (A), D0A6/D2A0 (B), D0S0 (C), D2A6 (D), D2S0/D0S6 (E), and D2S6 (F).  455 

Table A-1. Intra-Day and Inter-Day repeatability of analysis characterized by the relative 456 

standard deviation of peak areas and retention times for HS disaccharides.  457 

Appendix B - Ammonium acetate isocratic screening 458 

Appendix C - Development of the 3-step gradient 459 

  460 



18 
 

List of tables 461 

Table 1. Structure, nomenclature, and m/z values of the HS disaccharides investigated. Note, 462 

that D2A0/D0A6 and D2S0/D0S6 are positional isomers and are not distinguished in the 463 

present study.  464 

 465 

List of figures 466 

Figure 1. Effect of different salt concentrations using 75 % acetonitrile – 25% water solvent 467 

composition. Sums of extracted ion chromatograms (EICs) are shown in the diagram for A: 468 

10 mM (not sufficient elution); B: 25 mM (sufficient resolution); and C: 45 mM (insufficient 469 

retention and resolution) ammonium formate salt concentrations. 470 

Figure 2. Sums of EICs indicating the changes caused by different solvent compositions using 471 

25 mM ammonium formate concentration. A: 75% ACN; B: 50% ACN; C: 25% ACN.  472 

Figure 3. Retention factor (k) values of individual disaccharides as a function of ammonium 473 

formate salt concentration. Results are shown for three solvent compositions separately (A: 474 

75% ACN; B: 50% ACN; C: 25% ACN content). Missing points mean that the respective 475 

component did not elute within the 25-minute elution window.  476 

Figure 4. Resolution values of D0S0 - D2A0/D0A6 (A) and D2A6 - D2S0/D0S6 peak 477 

pairs (B), average peak areas (C), average peak intensities (D), and average signal-to-noise 478 

ratios (E) of all the HS disaccharides plotted on a contour plot as a function of salt concentration 479 

and acetonitrile content of the solvents. Color codes with the corresponding values are 480 

incorporated in the figure for each plot.  481 

Figure 5. Extracted ion chromatograms of HS disaccharides obtained by separating 1 pmol of 482 

each compound using the developed salt gradient method.  483 

Figure 6. The sulfation patterns of heparan sulfate from porcine intestinal mucosa (HSPIM) 484 

and bovine kidney (HSBK). The sulfation pattern of the respective compound is characterized 485 

by the relative abundance of the HS disaccharides present following bacterial lyase digestion.  486 
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 Table 1. Structure, nomenclature, and m/z values of the HS disaccharides investigated. Note, 590 

that D2A0/D0A6 and D2S0/D0S6 are positional isomers and are not distinguished in the 591 

present study.  592 

 593 

Chemical structure Traditional name 
Lawrence 

code 

m/z  

(-) mode 

 

ΔHexA-GlcNAc D0A0 378.1 

 

ΔHexA2S-GlcNAc D2A0 458.1 

 

ΔHexA-GlcNAc6S D0A6 458.1 

 

ΔHex-GlcNS D0S0 416.1 

 

ΔHexA2S-GlcNAc6S D2A6 538.1 

 

ΔHexA2S-GlcNS D2S0 496.1 

 

ΔHex-GlcNS6S D0S6 496.1 

 

ΔHexA2S-GlcNS6S D2S6 576.1 
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Fig. 1. 597 

  598 



23 
 

 599 

Fig. 2 600 
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Fig.3  603 
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Fig.5 627 

  628 

D0A0 

D0A6/D2A0 

D0S0 

D2S0/D0S6 

D2A6 

D2S6 



27 
 

 629 

Fig.6 630 

0%

10%

20%

30%

40%

50%

D0A0 D0S0 D0A6/D2A0 D2S0/D0S6 D2A6 D2S6

R
e
la

ti
v
e

 a
b

u
n

d
a

n
c

e

HS disaccharide HSPIM HSBK


