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Summary. — We assume a connection between the forward limit of the GPD E
and the first moment of the Sivers transverse-momentum distribution, inspired by
Burkardt’s idea of chromodynamic lensing. Then, we show that it is possible to fit
at the same time the values of the nucleon anomalous magnetic moments and the
data for semi-inclusive single-spin asymmetries originating from the Sivers effect.
This opens a plausible way to quantifying the contribution of the partonic angular
momentum to the spin of the nucleon, according to Ji’s definition.

PACS 14.65.Bt – Light quarks.
PACS 14.20.Dh – Protons and neutrons.
PACS 13.60.-r – Photon and charged-lepton interactions with hadrons.

1. – Introduction

The total angular momentum of a parton a (with a = q, q̄) at some scale Q2 can be
computed as a specific moment of generalized parton distribution functions (GPD) [1]

2Ja(Q2) =
∫ 1

0

dxx
(
Ha(x, 0, 0;Q2) + Ea(x, 0, 0;Q2)

)
.(1)

The GPD Ha(x, 0, 0;Q2) corresponds to the familiar collinear parton distribution func-
tion (PDF) fa

1 (x;Q2). The forward limit of the GPD Ea does not correspond to any
collinear PDF. It is not possible to probe the function Ea in experiments in the for-
ward limit. Assumptions are eventually necessary to constrain Ea(x, 0, 0;Q2). The only
model-independent constraint is the scale-independent sum rule

∑
q

eqv

∫ 1

0

dxEqv (x, 0, 0) = κ,(2)

where Eqv = Eq − E q̄ and κ denotes the anomalous magnetic moment of the parent
nucleon.
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Denoting the Sivers function by f⊥a
1T , we propose this simple relation at a scale QL,

f
⊥(0)a
1T (x;Q2

L) = −L(x)Ea(x, 0, 0;Q2
L),(3)

where f
⊥(0)a
1T is the integral of the Sivers function over transverse momentum. This

assumption is inspired by theoretical considerations [2] and by results of the spectator
model [3]. L(x) is a flavor-independent function, representing the effect of the QCD
interaction of the active quark with the rest of the spectators inside the nucleon.

The advantage of adopting the Ansatz of eq. (3) is twofold: first, the value of the
anomalous magnetic moment fixes the integral of the GPD E and allows us to constrain
the valence Sivers function also outside the region where SIDIS data are available; second,
our Ansatz allows us to obtain flavor-decomposed information on the x-dependence of
the GPD E [4] and, ultimately, on quark and antiquark total angular momentum.

2. – Extraction of Sivers function from data

To analyze SIDIS data, we use the same assumptions adopted in ref. [5]: we neglect the
effect of TMD evolution, which has been studied only recently [6]; we assume a flavor- and
scale-independent Gaussian transverse-momentum distribution for all involved TMDs,
and we include the effect of the standard DGLAP evolution only in the collinear part of
the parametrizing functions.

Neglecting c, b, t flavors, we parametrize the Sivers function in the following way:

f⊥qv

1T (x, k2
⊥;Q2

0)=Cqv

√
2eMM1

πM2
1 〈k2

⊥〉
(1 − x)fqv

1 (x;Q2
0) e−k2

⊥/M2
1 e−k2

⊥/〈k2
⊥〉 1 − x/αqv

|αqv − 1| .(4)

For q̄, we use a similar function, excluding the last term. We used 〈k2
⊥〉 = 0.14 GeV2.

M1 is a free parameter that determines the transverse-momentum width. We imposed
constraints on the parameters Ca in order to respect the positivity bound for the Sivers
function [7]. We multiply the unpolarized PDF by (1−x) to respect the predicted high-x
behavior of the Sivers function [8]. We introduce the free parameter αqv to allow for the
presence of a node at x = αqv , as suggested in refs. [3, 9-11].

For the lensing function we use the Ansatz L(x) = K/(1 − x)η. The choice of this
form is guided by model calculations [3, 9], by the large-x limit of the GPD E [8], and
by the phenomenological analysis of the GPD E proposed in ref. [12]. We checked a
posteriori that there is no violation of the positivity bound on the GPD Eqv .

We performed a combined χ2 fit to the nucleon anomalous magnetic moments (for
our present purposes, we take κp = 1.793 ± 0.001, κn = −1.913 ± 0.001) and the Sivers
asymmetry with identified hadrons from refs. [13-15].

We set the gluon Sivers function to zero (its influence through evolution is anyway
limited) and we chose Q0 = QL = 1 GeV. We fixed αdv,sv = 0 (no nodes in the valence
down and strange Sivers functions). We explored several scenarios characterized by
different choices of the parameters related to the strange quark. In all cases, we obtained
very good values of χ2 per degree of freedom (χ2/dof), around 1.34.

All fits lead to a negative Sivers function for uv and large and positive for dv, in
agreement with previous studies (see ref. [5] and references therein). The data are com-
patible with vanishing sea-quark contributions (with large uncertainties). However, in
the x range where data exist, large Sivers functions for ū and d̄ are excluded, as well as
large and negative for s̄. The Sivers function for sv is essentially unconstrained. It turns
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Fig. 1. – The moment xf
⊥(0) a
1T (x; Q2

L) of the Sivers function at the scale Q2
L = 1 GeV2 for

a = uv, dv (top panel) and ū, d̄ (lower panel). The uncertainty bands are produced by statistical
errors on the fit parameters.

out αuv ≈ 0.78, so there is little room for a node in the up Sivers function, also because
of the constraint imposed by the anomalous magnetic moments.

The best fit, with a χ2/dof 1.32, is reached for vanishing strange contribution Csv =
C s̄ = 0. Our results for the Sivers function are shown in fig. 1 and is comparable with
other extractions(for example, see ref. [6]). The results for the forward limit of the GPD
E also turn out qualitatively similar to available extractions [12,16].

3. – Quark and gluon contributions to the nucleon spin

Using eq. (1), we can compute the total longitudinal angular momentum carried by
each flavor q and q̄ at our initial scale Q2

L = 1 GeV2. Using the standard evolution
equations for the angular momentum (at leading order, with 3 flavors only, and ΛQCD =
257 MeV), we obtain the following results at Q2 = 4 GeV2:

Ju = 0.229 ± 0.002+0.008
−0.012, J ū = 0.015 ± 0.003+0.001

−0.000,

Jd = −0.007 ± 0.003+0.020
−0.005, J d̄ = 0.022 ± 0.005+0.001

−0.000,

Js = 0.006+0.002
−0.006, J s̄ = 0.006+0.000

−0.005.

The first symmetric error is statistical and related to the errors on the fit parameters,
while the second asymmetric error is theoretical and reflects the uncertainty introduced
by other possible scenarios. In the present approach, we cannot include the (probably
large) systematic error due to the rigidity of the functional form in eq. (4). The bias
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induced by the choice of the functional form may affect in particular the determination
of the sea quark angular momenta, since they are not directly constrained by the values
of the nucleon anomalous magnetic moments. Our present estimates (at Q2 = 4 GeV2)
agree well with other estimates, particularly with those ones based on the extraction of
the GPD E [12, 16, 17] and on lattice simulations [18, 19]. Our study indicates a total
contribution to the nucleon spin from quarks and antiquarks of 0.271 ± 0.007+0.032

−0.028, of
which 85% is carried by the up quark.

Our approach can be used also to estimate the size of the total angular momentum
carried by the gluons. In this case, we expect the lensing function to be different from
that of the quarks. However, our extraction leaves little room for a nonzero gluon Sivers
function, since the quark Sivers function already saturates the so-called Burkardt sum
rule [20]. If the Sivers function of the gluons is zero, our reasoning allows us to conclude
that Eg is also zero, independent of the details of the lensing function. This would lead
to a value of Jg = 0.215 at 4 GeV2, which agrees with the result in refs. [16, 17], and
seems compatible within errors with our finding of Jq+q̄ = 0.271±0.007+0.032

−0.028. However,
these considerations are strongly affected by the uncertainties on the sea-quark Sivers
functions outside the x range where data exists. Direct measurements of the sea-quark
and gluon Sivers functions are therefore highly necessary.

At this point, we add a remark on the effect of TMD evolution on the Sivers function.
The discussion in ref. [6] suggests that the inclusion of TMD-evolution effects might lead
to larger values of the Sivers function at the starting scale Q2

0. If this were the case, we
would need to compensate the effect by a smaller size of the lensing function in order
to have an agreement with the anomalous magnetic moments. However, this will have a
negligible net effect on the results for Ja, also because TMD evolution mildly modifies
the Sivers function for sea quarks [6].
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