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Summary. — We present calculations of next-to-leading order and resummed QCD
corrections for semi-inclusive deep-inelastic scattering and single-inclusive e+e− an-
nihilation. The resummation is performed to next-to-leading logarithmic accuracy.
Knowing these QCD corrections is important in order to extract parton distribution
functions and fragmentation functions from present and future data for these reac-
tions. We present phenomenological results relevant for the COMPASS, HERMES,
and BELLE experiments.

PACS 13.85.Ni – Inclusive production with identified hadrons.
PACS 12.38.Bx – Perturbative calculations.

1. – Introduction

Processes with identified final-state hadrons play important roles in QCD. In the
present work, we address higher-order perturbative corrections to two of the key hadron
production processes, single-inclusive annihilation (SIA) e+e− → hX and semi-inclusive
deep-inelastic scattering (SIDIS), �p → �hX, where h denotes a final-state hadron. Mod-
ern analyses [1-3] of fragmentation functions variously use data for these two processes.
Our study is very much motivated by the recent advent of data for these reactions with un-
precedented high precision. The BELLE collaboration at KEK has presented data [4] for
pion and kaon multiplicities in SIA with a very fine binning and extremely high precision
at the sub-1% level. New preliminary high-statistics SIDIS data have been shown by the
HERMES [5] and COMPASS [6] lepton scattering experiments over the past year or so.

In the kinematic regimes accessed by these experiments, perturbative-QCD correc-
tions are expected to be fairly significant. The infrared cancellations between virtual and
real-emission diagrams in higher orders leave behind logarithmic contributions. These
“threshold logarithms” become large when the phase space for real-gluon radiation is
shrinking and therefore have to be taken into account to all orders in perturbation the-
ory. In this work, we will examine this resummation of the large corrections. We will
restrict ourselves to resummation at next-to-leading logarithmic (NLL) accuracy, which
should capture the main effects. A more detailed description of the analysis presented in
this paper was published in ref. [7].
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2. – Resummation for SIDIS multiplicities

We consider semi-inclusive deep-inelastic scattering �p → �hX. Using the usual kine-
matic variables, the SIDIS cross section may be written as [8]
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where α is the fine structure constant and Fh
T,L are the transverse and the longitudinal

structure functions. SIDIS hadron multiplicities are defined by
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,

where d2σ/dxdy is the cross section for inclusive DIS, �p → �X. In order to investigate
higher-order effects on SIDIS multiplicities, we have to consider QCD corrections to both
the SIDIS and the inclusive DIS cross section.

Using factorization, the transverse and longitudinal structure functions in eq. (1) are
given by (i = T,L)
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dẑ

ẑ
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ẑ
, μ2

)
Ci

f ′f

(
x̂, ẑ,
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where f(ξ, μ2) denotes the distribution of parton f = q, q̄, g in the nucleon at momentum
fraction ξ and scale μ, while Dh

f ′(ζ, μ2) is the corresponding fragmentation function for
parton f ′ going to the observed hadron h. The hard-scattering coefficient functions Ci

f ′f
can be computed in perturbation theory.

Since threshold resummation can be derived in Mellin-moment space [9, 10], it is
useful to take Mellin moments of the structure functions Fh

T and Fh
L. Since x and z are

independent variables, we take moments separately in both. We find from eq. (3)
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Thus, the Mellin moments of the structure functions are obtained from ordinary products
of the moments of the parton distribution functions and fragmentation functions, and
double-Mellin moments of the partonic hard-scattering functions. To NLO, the latter
may be found in [11]. Using the techniques developed in ref. [12], we find that the final
NLL resummed coefficient function becomes in the MS scheme (see also [13])
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Here Aq and Hqq are perturbative functions. For resummation at NLL, one needs to
know Hqq to first order in the strong coupling collecting the hard virtual corrections.
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Fig. 1. – NLO and NLL resummed SIDIS multiplicities for π− compared to the preliminary
COMPASS data [6].

As the exponentiation of soft-gluon corrections is achieved in Mellin moment space,
the hadronic structure function is obtained by taking the inverse Mellin transforms of
eq. (4), which are given by contour integrals in the complex plane.

The NLL resummed results for DIS and SIA can be found in ref. [7] and refs. therein.

3. – Phenomenological results

We now investigate the numerical size of the threshold resummation effects for SIDIS
and SIA multiplicities. For the parton distribution functions we use the NLO MSTW
2008 set of [14], whereas we choose the NLO DSS [1] pion fragmentation functions.

Starting with SIDIS, fig. 1 (fig. 2) shows our results for the NLO and the resummed
multiplicities with COMPASS (HERMES) kinematics. The center-of-mass energy of
COMPASS is

√
s ≈ 17.4 GeV. The kinematic cuts employed are 0.041 < x < 0.7,

Fig. 2. – Same as fig. 1, but for HERMES kinematics. The preliminary data are from [5].
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Fig. 3. – π− multiplicity in electron-positron annihilation at
√

s = 10.52 GeV. The data are
from [4].

0.1 < y < 0.9, Q2 > 1 GeV2 and W 2 = Q2(1 − x)/x + m2
p > 49 GeV2, where mp is the

proton mass. For HERMES the center-of-mass energy is
√

s ≈ 7.26 GeV. The kinematic
cuts are 0.023 < x < 0.6, 0.1 < y < 0.85, Q2 > 1 GeV2 and W 2 > 10 GeV2. We choose
the renormalization and factorization scales as Q and consider the SIDIS multiplicity for
π− as a function of z, but integrating numerator and denominator of eq. (2) over x and
y. It turns out that resummation leads to a moderate, but significant, enhancement of
the multiplicities.

In fig. 3, we present our results for the SIA π− multiplicity at
√

s = 10.52 GeV and for
−1 < cos θ < 1. The results can also be studied as ratios (Th′ −NLO)/NLO, where Th′

denotes any of the higher-order SIDIS multiplicities generated by resummation. These
ratios are shown in fig. 4, making the large resummation effects even more apparent at
high xE .

Fig. 4. – Ratios (Th′ − NLO)/NLO, where Th′ corresponds to the multiplicity at higher orders
as generated by resummation.
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4. – Conclusions

We have derived threshold-resummed expressions for the coefficient functions for the
SIDIS and SIA processes. We have presented phenomenological results for pion multiplic-
ities for these processes in the kinematic regimes presently accessed by the COMPASS,
HERMES and BELLE experiments. We found that resummation leads to modest but
significant enhancements of the multiplicities. Our main point is that, given the good
accuracy of the new preliminary data sets, it will be crucial to include resummation
effects for both processes in the next generation of analyses of fragmentation functions.
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