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Jet production in pp collisions: Dependence on jet algorithm
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Summary. — We report on a recent calculation of single-inclusive high-pT jet
production in unpolarized and longitudinally polarized pp collisions at RHIC, in-
vestigating the effect of the algorithm adopted to define the jets on the numerical
results for cross sections and spin asymmetries.

PACS 12.38.Bx – Perturbative calculations.
PACS 13.85.Ni – Inclusive production with identified hadrons.

1. – Introduction

Jets are important tools in QCD for investigating the partonic substructure of hadrons
and interactions among partons. There is no unique way to define a jet. It is thus
important to compare and contrast the different available algorithms. The jet algorithms
can be divided into two broad classes;

i) successive combination [1]: in this scheme, one defines a distance between a pair of
objects and a beam distance for every object as follows:

dij = min(k2p
t,i, k

2p
t,j)

R2
ij

R2
, diB = k2p

t,i.(1)

dij is called the distance between two particles i and j and diB is the distance between
the beam and the particle; kt,i is the transverse momentum of the i-th particle with
respect to the beam direction and

R2
ij = (ηi − ηj)2 + (φi − φj)2.(2)

At each step, the smallest of all distances is determined. If it is a beam distance, the
object is called a jet and is removed from the event; otherwise the two objects j, k are
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combined into a single one. Examples of successive combination algorithms are the kt

algorithm [2], where p = 1, and the anti-kt algorithm [3] for which p = −1.
ii) Cone algorithms: in these algorithms the jet is defined in terms of stable cones

as circles of fixed radius in the η-φ plane, such that the sum of the 4-momenta of the
particles in it points in the direction of the center of the cone. One defines the jet by all
particles j that satisfy [4]

R2
jJ ≡ (ηJ − ηj)2 + (φJ − φj)2 ≤ R2,(3)

where ηJ and φJ are the pseudo-rapidity and azimuthal angle of the jet, respectively.
Higher order QCD corrections are important as the dependence on the factorization and
renormalization scales is expected to be reduced when the corrections are included. In
the case of jet production, higher order corrections are particularly important, as only
at NLO the QCD structure of the jet starts to play a role in the theoretical description
of the process. In fact, some of the popular cone algorithms are known to be collinear
and infra-red unsafe at NNLO or when multiple jets are considered.

Single inclusive large pT jets in longitudinally polarized pp collisions at RHIC are
important tools to gain access to the polarized gluon distribution in the nucleon. The
cross section for single inclusive jet production at RHIC has been calculated at NLO using
a Monte-Carlo technique [5] in the cone algorithm. However a largely analytic technique
was developed in [6] in the limit when the cone opening is relatively small (small cone
approximation). This is advantageous because it leads to much faster and more efficient
computer codes as the singularities in the intermediate steps cancel analytically and
one does not have to treat them through delicate numerical techniques. The basis of
such an analytic calculation is the observation that the inclusive jet production proceeds
through the same partonic subprocesses as single inclusive hadron production and it
is possible to convert an NLO cross section for single inclusive hadron production to
the one for jet production. The main difference between the two cases is the fact that
in single inclusive hadron production, one integrates over the full phase space of the
unobserved partons. This leads to collinear singularities, which are absorbed in the
parton to hadron fragmentation functions. In contrast, for a jet, final-state particles
that move in roughly the same direction will jointly produce the jet. This makes the
cross section more inclusive, and (for a proper jet definition) final state singularities
must cancel. The cross section for single inclusive hadron production can however be
transformed into that for single inclusive jet production [6]. In the limit of small cone
size, this transformation can even be performed analytically.

We have recently extended the above analytic technique to the more widely used
successive combination schemes (for example, kt or anti-kt), assuming again that the jet
parameter R used to define the distance between two objects in this algorithm is not too
large [7]. When systematically expanded around R = 0, the dependence of the partonic
cross sections on R is of the form A log R + B + O(R2). The coefficients A and B are
calculated analytically, and the remaining terms O(R2) and beyond are neglected. We
refer to this approximation as “Narrow Jet Approximation” (NJA). The NJA gives a very
accurate description of the single inclusive jet cross sections at RHIC, Tevatron and even
at the LHC [7]. It turned out that the cross sections for single inclusive jet production
in the cone and the successive recombination algorithms differ by calculable finite terms.
We have also given numerical estimates of the cross section both for unpolarized and
longitudinally polarized collisions at RHIC, and examined the effect of the choice of jet
algorithm on the double longitudinal spin asymmetry. Here we give a brief report of [7].
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2. – Cross section for single inclusive jet production in pp collisions

We consider single-inclusive jet production in hadronic collisions, pp → jet X, where
the jet has a transverse momentum pTJ

, rapidity ηJ , and azimuthal angle φJ . Note
that on top of the choice of jet algorithm one also has to define how objects are to be
merged to form the jet. We choose to define the four-momentum of the jet as the sum
of four-momenta of the partons that form the jet for both algorithms (“E recombination
scheme” [4]).

In order to calculate the single-inclusive jet cross section at NLO, we start from the
NLO single-parton inclusive cross sections dσ̂ab→cX , relevant for single-inclusive hadron
production process pp → hX and analytically known. For a jet cross section, the observed
final state should not be given by parton c only, but by partons c and d jointly, when the
two are close to each other (as two partons together can form the jet). In order to calcu-
late this one first considers a “jet cone” characterized by a jet parameter R around the
observed parton c and notices that in the NLO single-parton inclusive cross section there
is a configuration where an additional parton d is inside the cone (we use the term “cone”
for simplicity, the considerations apply to any jet definition). One subtracts these contri-
butions and replaces them by terms for which partons c and d are both inside the cone
and form the observed jet together. For a given partonic process ab → cde we then have,

dσ̂ab→jetX = [dσ̂c − dσ̂c(d) − dσ̂c(e)](4)

+[dσ̂d − dσ̂d(c) − dσ̂d(e)]

+[dσ̂e − dσ̂e(c) − dσ̂e(d)]

+dσ̂cd + dσ̂ce + dσ̂de.

Here dσ̂j is the single-parton inclusive cross section where parton j is observed (which
also includes the virtual corrections), dσ̂j(k) is the cross section where parton j is
observed but parton k is also in the cone, and dσ̂jk is the cross section when both
partons j and k are inside the cone and jointly form the jet. One has to note that
the single-parton inclusive cross section contains a subtraction of final-state collinear
singularities in the modified minimal subtraction (MS) scheme. One has to perform an
MS subtraction also of the singularities in the dσ̂j(k) + dσ̂k(j) − dσ̂jk.

The difference between the cone and kt type algorithms resides entirely in the dσ̂jk,
which can be calculated analytically in the NJA. The reason for this difference is as
follows: for the kt-type algorithms the two partons j, k are merged into one jet if their
distance defined in (1) is smaller than their respective beam distances diB and djB defined
in (1). For dσ̂jk this has to hold, and we arrive at the condition

R2
jk ≤ R2 for kt-type algorithms,(5)

with Rjk defined in eq. (2). This condition is true for all kt-type algorithms. Whereas
in cone algorithm, eq. (3) is valid:

R2
jJ ≤ R2 ∧ R2

kJ ≤ R2 for cone algorithm.(6)

We find that the difference in the cross sections calculated for the two algorithms is finite,
as it must be.
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Fig. 1. – The ratio Ralgo at RHIC for
√

S = 200 GeV (left) and
√

S = 500 GeV (right), for the
spin-dependent case. Results are shown for two different values of the jet parameter R. We
have chosen the factorization and renormalization scales as μF = μR = pTJ .

3. – Numerical results

Next, we present some numerical results for single-inclusive jet production cross sec-
tions and spin asymmetries in pp collisions at RHIC. We use the CTEQ6.6M parton
distributions [8] for the unpolarized cross section and the “DSSV” helicity parton distri-
butions of ref. [9] for the polarized case. We define the ratio

Ralgo ≡
[
d2(Δ)σ/dpTJ

dηJ

]
kt-type

[d2(Δ)σ/dpTJ
dηJ ]cone

,(7)

where the jet parameter R is the same for both cross sections.
Figure 1 shows the ratio Ralgo for polarized collisions at RHIC, calculated for the

factorization and renormalization scales as μF = μR = pTJ
, as a function of pTJ

in bins
of pTJ

, for R = 0.4 and 0.7. We present results for two values of c.m.s. energies at RHIC,√
S = 200 GeV (left) and

√
S = 500 GeV (right). Ralgo is around 90% at high pTJ

,
but deviates largely from one in the bin around pTJ

= 12.5 GeV. The reason for this is
that for the DSSV set of parton distributions the polarized jet cross section changes sign
around pTJ

= 10 GeV. Depending on the jet algorithm, the zero is at a slightly different
value of pT . This shows that in regions where the polarized cross section is very small it
is very sensitive to the choice of jet algorithm.

Fig. 2. – Double-longitudinal spin asymmetries ALL at RHIC, for
√

S = 200 GeV and
√

S =
500GeV and various jet definitions. We have averaged over |ηJ | ≤ 1. The factorization and
renormalization scales have been chosen to be μF = μR = pTJ .
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The double longitudinal spin asymmetries ALL at RHIC are defined by

ALL ≡ d2Δσ/dpTJ
dηJ

d2σ/dpTJ
dηJ

.(8)

For the denominator we use the spin-averaged cross sections and for the numerator the
polarized ones. The results are shown in fig. 2. As one can see, the asymmetries are quite
insensitive to the jet algorithm chosen, and also to the value of the jet parameter R for
all values of pTJ

where the asymmetry is sizable. Our results are useful for the analysis
of the data on the double longitudinal spin asymmetry in single inclusive jet production
by the STAR Collaboration at RHIC [10].
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