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We appreciate the opportunity to submit a response to
the Letter to the Editor by Giardiello and colleagues [1]
addressing our publication in Breast Cancer Research [2].
Giardiello and colleagues mentioned that our machine

learning (ML) models were not specific for survival data.
BCRAT/BOADICEA were developed and validated using
survival data with binary outcomes and retrospective
case control/cross-sectional data, respectively [3]. Their
clinical application requires only cross-sectional data.
Our ML models included the same risk factors and data
structure in each comparison as BCRAT/BOADICEA.
To avoid exaggerating the function of ML models, we
generated the probability of whether a woman at a given
age would develop breast cancer in her life, and not spe-
cific time frame risks (5-year or 10-year risk).
Giardiello and colleagues mentioned that our validation

was unfair because we applied only internal validation
processes. Cross-validation is not equivalent to internal
validation; it is a statistical out-of-sample testing tech-
nique, which pools the results across many iterations,
while each fold and each iteration do not blend training
and testing data. A slight bias (aka surrogate problem) oc-
curs because the cross-validation training sets are smaller
than the original dataset. A 10-fold cross-validation relies
on training sets that include 90% of the original dataset. In
our study, this translated into two considerable sample
sizes, n1 = 1029 from the US population-based data and
n2 = 2233 from the Swiss clinic-based data. This lower-
sample-size bias often translates into more conservative
fit/prediction estimates [4].

Giardiello and colleagues mentioned that a fair compari-
son of the final models requires reporting parameter esti-
mates and calibration. Reporting parameter estimates and
their confidence intervals in the final model is not always
possible [5]. We generated 80 parameter estimates for
each risk factor based on different ML algorithms and dif-
ferent cross-validation summary approaches. The inter-
pretation and usefulness of these estimates for each risk
factor is limited without reference values from BCRAT/
BOADICEA. Moreover, better/worse calibration does not
lead to better/worse class-based or probability-based pre-
dictions [6]. Calibration comparisons was not our aim.
ML may generate “aggressive” prediction calibration for
minor classes due to “increased” sample size through re-
balancing processes. Several recalibration methods can be
applied and significantly improve some of the ML calibra-
tions and predicted probabilities [6], making calibration
comparisons of ML to BRCAT/BOADICEA unfair. Cali-
brated predicted probabilities should also fit clinically
meaningful sensitivity and specificity for patient stratifica-
tion, instead of one cutoff (cancer/no cancer) [7].
A prediction model cannot be developed, validated, and

tested for utility at once. However, the development and
validation of our ML models improved model predictive
accuracy efficiently, i.e., using less time and fewer re-
sources. Investing into promising new analytic approaches
would improve research in the field of disease prediction
and significantly further our knowledge about the poten-
tial application of ML in personalized medicine.
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