
SMRL: A Metamorphic Security Testing Tool for Web Systems

Phu X. Mai
SnT, University of Luxembourg

Arda Goknil
SnT, University of Luxembourg

Fabrizio Pastore
SnT, University of Luxembourg

Lionel C. Briand
SnT, University of Luxembourg

University of Ottawa

ABSTRACT

We present a metamorphic testing tool that alleviates the oracle

problem in security testing. The tool enables engineers to specify

metamorphic relations that capture security properties of Web

systems. It automatically tests Web systems to detect vulnerabilities

based on those relations. We provide a domain-specific language

accompanied by an Eclipse editor to facilitate the specification of

metamorphic relations. The tool automatically collects the input

data and transforms the metamorphic relations into executable Java

code in order to automatically perform security testing based on

the collected data. The tool has been successfully evaluated on a

commercial system and a leading open source system (Jenkins).

Demo video: https://youtu.be/9kx6u9LsGxs.

CCS CONCEPTS

• Security and privacy→ Software and application security;

• Software and its engineering → Software verification and

validation.

ACM Reference Format:

Phu X. Mai, Arda Goknil, Fabrizio Pastore, and Lionel C. Briand. 2020. SMRL:

AMetamorphic Security Testing Tool forWeb Systems. In 42nd International

Conference on Software Engineering Companion (ICSE ’20 Companion), May

23–29, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 4 pages.

https://doi.org/10.1145/3377812.3382152

1 INTRODUCTION

Security testing aims at verifying that the softwaremeets its security

properties [14–16]. In modern Web systems, this often entails the

verification of the outputs generated when exercising the system

against a very large set of inputs [17]. For example, authorization

problems might be discovered only by accessing all the resources of

the systemwith different user profiles and by verifying if the system

grants access only to authorized users. Full automation will thus

lower costs and increase the effectiveness of security testing. Un-

fortunately, although Web crawlers provide means to automatically

exercise Web systems, there is a lack of solutions to automatically

verify the correctness of outputs. Therefore, security testing suffers

from the oracle problem [4], which refers to situations where it is

extremely difficult to determine the correct output for a given test

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’20 Companion, May 23–29, 2020, Seoul, Republic of Korea

© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7122-3/20/05.
https://doi.org/10.1145/3377812.3382152

input (e.g., the correct response to be received after a specific HTTP

GET request). State-of-the-art approaches do not address the oracle

problem and assume the availability of an implicit oracle [4, 17].

Metamorphic Testing (MT) has proved, in some contexts, to be

very effective to alleviate the oracle problem [8, 13]. MT is based on

the idea that it may be simpler to reason about relations between out-

puts of multiple test executions, called metamorphic relations (MRs),

than it is to specify its input-output behaviour [22]. In MT, system

properties are captured as MRs that are used to automatically trans-

form an initial set of test inputs (source inputs) into follow-up test

inputs. If the system outputs for the initial and follow-up test inputs

violate the MR, it is concluded that the system is faulty.

There is considerable research devoted to developing MT ap-

proaches (e.g., [7, 11]). However, all these approaches focus on test-

ing functional requirements, not potential security threats within

the context of security testing. Although MT is automatable, very

few MT approaches provide proper tool support [22]. This is also a

significant obstacle for tailoring the current MT approaches in the

context of security testing.

In this paper, we present the SMRL (Security Metamorphic Rela-

tion Language) tool, which enables engineers to specify MRs that

capture security properties of Web systems. Our tool automatically

detects vulnerabilities (i.e., property violations) based on those rela-

tions. It is built on top of the following novel contributions [17]: (1)

a Domain-Specific Language (DSL) for specifying MRs for software

security, (2) a set of system-agnostic, MRs targeting well-known

security vulnerabilities of Web systems [19], (3) a framework auto-

matically collecting the input data required to performMT, and (4) a

testing framework automatically performing security testing based

on the MRs and the collected data. To facilitate the specification of

MRs in our DSL, we provide an editor implemented as a plug-in for

Eclipse IDE.

In the remaining sections, we outline the tool and highlight the

findings from our evaluation of the tool over two case studies.

2 RELATED WORK

Several security testing approaches have been proposed relying

on an implicit test oracle that only deals with simple abnormal

system behavior such as unexpected system termination (e.g., buffer

overflows, memory leaks, and denial of service [5, 21]). What is

abnormal in one system might be considered normal in a different

context [4]. Our tool complements these approaches for cases in

which it is impractical to define an exact oracle for each test case.

A number of solutions and tools provide support for MT in

various domains such as computer graphics (e.g., [11]) and em-

bedded systems (e.g., [7]). None of these approaches facilitate the

This paper apprears in the Companion proceedings of the 42nd International Conference on Software Engineering
(ICSE'20). IEEE.



ICSE ’20 Companion, May 23–29, 2020, Seoul, Republic of Korea Phu X. Mai, Arda Goknil, Fabrizio Pastore, and Lionel C. Briand

specification of MRs capturing security properties or targeting vul-

nerabilities. MT is highly automatable. However, there is a lack of

tool support that enables engineers to write system-level MRs [22].

The tools require that relations be defined as JUnit methods [23]

or pre-/post-conditions [20]. This is an obstacle to the adoption of

the current MT approaches in security testing. To the best of our

knowledge, the SMRL tool is the first MT tool addressing the oracle

problem in the context of security testing.

3 OVERVIEW OF THE SMRL TOOL

The SMRL tool supports our approach for security testing based on

MRs, described in our recent research paper [17].

Fig. 1 provides an overview of our tool. It consists of (1) an Eclipse

plugin, which provides the Editor for our DSL and automatically

generates Java code from MRs, (2) a library (i.e., SMRL.jar), which

implements our MT algorithm and provides utility functions sup-

porting the writing of MRs, (3) an extension of the Crawljax Web

crawler [18] to collect source inputs for MT. The SMRL tool relies

on JUnit to automatically execute MT within Eclipse through our

library. The Eclipse workspace is used to store all the data, which

includes MRs and source inputs.

Fig. 2 presents an overview of our approach. In Step 1, the en-

gineer specifies MRs with our Eclipse editor. We derived a catalog

of MRs from the OWASP testing guidelines [19]. The engineer can

also select, from this catalog, the MRs for the system under test.

Selection is performed by specifying the MRs to be executed in a

JUnit test, i.e., in the same way as for JUnit test suites. In Step 2,

the relations are automatically transformed into Java code.

In Step 3, Crawljax is used to automatically collects the source

inputs for MT (e.g., the URLs that can be visited by an anonymous

user). In Step 4, testing is automatically performed based on the

executable relations and the collected data. In the rest of the section,

we elaborate each step in Fig. 2.

3.1 Specification of Metamorphic Relations

As a first step, the engineer specifies MRs. To enable specifying new

relations, we provide the Security Metamorphic Relation Language

(SMRL) as an extension of Xbase [10]. Xbase is a statically typed ex-

pression language for Java, implemented in Xtext. Its specifications

can be translated to Java code. Xbase is extended by SMRL with

data representation functions, boolean operators and Web-specific

functions. New Java APIs can be defined to extend these functions.

Fig. 3 presents an MR in our SMRL editor. In an SMRL specifi-

cation, we first import the SMRL operators and functions (Line 1

in Fig. 3). We then define a package for MRs (Line 4). SMRL sup-

ports 18 data representation functions to represent system inputs

and outputs. We represent data with some keywords followed by

an index number identifying data items (e.g., Input(1), Input(2)

and User(2) in Line 12). Input(1) returns the first input sequence,

while User(2) returns the second user of the system. Output is

a data function which executes the actions in an input sequence

(e.g., requests a sequence of URLs) and returns the sequence of

corresponding outputs (Lines 11, 14 and 15).

SMRL supports boolean operators IMPLIES, AND, OR, TRUE, FALSE,

NOT and EQUAL. EQUAL does not necessarily evaluate the equality

of two arguments. It can also be used to define a follow-up input.

For instance, in Fig. 3, the follow-up input Input(2) is defined by

EQUAL as a modified copy of Input(1) by assigning the second

parameter to the first parameter. EQUAL acts as an equality operator

only when its first parameter refers to an input that has already

been used in previous expressions of the MR .

We use four Web-specific functions (cannotReachThroughGUI,

isSupervisorOf, isError, and changeCredentials) in Fig. 3. In

the MR in Fig. 3, the same sequence of actions should provide dif-

ferent outputs for two different users under a condition. According

to the condition, the user should not be allowed to access URLs

that are not provided through a GUI. cannotReachThroughGUI

checks if the URL of the current action cannot be reached from the

GUI (Line 9). isSupervisorOf checks if User(2) is a supervisor

of User(1) (Line 10). isError uses configurable regular expres-

sions to check if an output page contains an error message (Line

11). changeCredentials defines the follow-up input (Line 12). It

creates a copy of the input sequence using different credentials.

3.2 Transformation of MRs into Java

Our tool automatically transforms SMRL specifications into Java

code. It employs the SMRL compiler, an Xbase compiler extended

with transformation rules in Xtend (a language provided with

Xbase [6]). Each MR is transformed into a Java class with the

name of the relation and its package. The generated classes extend

the class MR and implement its method mr.

The metamorphic expressions in the relation are executed by

the method mr. The method returns true if the relation holds and

false otherwise. The SMRL compiler creates a set of nested IF

conditions for each boolean operator in the relation. For example,

for IMPLIES, mr returns false when the first parameter is true and

the second one is false. For the case in which the relation holds, mr

returns true at the end. Fig. 4 shows the Java code generated from

the relation in Fig. 3.

3.3 Data Collection

The SMRL tool automatically derives source inputs for MT. To do

so, we extended the Crawljax Web crawler [18]. Crawljax explores

the user interface of a Web system by requesting URLs in HTML

anchors or by entering text in HTML forms. Its output is graphs

having nodes representing the system states reached through the

user interface and edges capturing the actions performed to reach

these states. System states are detected based on the content of the

displayed page. To reduce the number of system states, the Crawljax

extension distinguishes states by using the edit distance [12]. Our

tool caches HTML pages associated to states identified by Crawljax.

It computes the edit distance between the new loaded page and the

cached pages. It is assumed that two pages belong to the same state

if the distance is below a given threshold (5% of the page length);

otherwise, a new state is added to the graph. To crawl the system

under test, our tool requires only its URL and a list of credentials.

It stops crawling the system under test when there is no more state

for a certain number of new pages or a timeout is reached.

Our tool automatically extracts source inputs from the Crawljax

graphs to be later queried by the SMRL functions during test exe-

cution (see Section 3.4). Fig. 5 shows two example Crawljax graphs

and the source inputs extracted from the graphs. For example, the





ICSE ’20 Companion, May 23–29, 2020, Seoul, Republic of Korea Phu X. Mai, Arda Goknil, Fabrizio Pastore, and Lionel C. Briand

4 EVALUATION

This section provides an overview of the main findings of an evalu-

ation conducted to address the following research questions [17]:

• RQ1. To what extent can the SMRL tool address the oracle

problem for security testing?

• RQ2. Is the SMRL tool effective?

To address RQ1, we analyzed the security testing activities recom-

mended by OWASP [19]. We classified the activities based on state-

of-the-art oracle automation approaches (implicit oracle, catalog-

based, and vulnerability-specific approaches). We identified that,

out of 90 testing activities, 19 do not need an oracle, 30 are auto-

mated by state-of-the-art approaches, and 41 cannot be addressed

by state-of-the-art approaches. Based on the MRs in our catalog,

the SMRL tool can automate 16 (39%) of these 41 activities. The

remaining 25 activities require humans to determine vulnerabili-

ties. We conclude that the SMRL tool can thus play a key role in

addressing the oracle problem in security testing.

To address RQ2, we selected two case studies, a commercial

healthcare Web system, EDLAH2 [2], and a leading open source

system, Jenkins [9]. EDLAH2 is affected by 11 vulnerabilities discov-

ered by manual testing. Concerning Jenkins, we considered version

2.121.1. We selected all the vulnerabilities (20 in total) triggerable

from the Web interface, discovered in 2018, and reported in the

CVE database [1] after June 1st, 2018.

In line with the RQ1 findings, our tool addressed 36% (4 out of

11) and 40% (8 out of 20) of the vulnerabilities affecting EDLAH2

and Jenkins, respectively. We thus evaluated our tool against this 12

vulnerabilities addressed. We measured the fault detection rate (i.e.,

the percentage of vulnerabilities discovered) and the false positive

rate (i.e., the portion of follow-up inputs leading to false alarms).

The tool achieved a very high fault detection rate when we used

both Crawljax and manual test scripts for the data collection (100%

for EDLAH2 and 75% for Jenkins). Overall, it detected 83.33% of the

vulnerabilities targeted in our evaluation. The tool achieved a fault

detection rate of 75% for EDLAH2 and of 50% for Jenkins, when we

used only Crawljax for the data collection. In total, it detects 7 out

of 12 vulnerabilities, 58.33%, a very promising result considering

that it is almost completely automated.

The tool achieved an extremely low false positive rate (0.50%).

The very small fraction of follow-up inputs leading to false alarms

(32 out of 6401) show that our MRs are sound. False alarms are

due to Crawljax, which, in Jenkins, did not traverse all the URLs

provided by the GUI.

The SMRL tool is approximately 13k lines of code, excluding

automatically generated code and third-party libraries. Additional

details about the tool, including the catalog of predefined MRs, case

studies, executable files and a screencast covering motivations, are

available on the website at:

https://sntsvv.github.io/SMRL/

5 CONCLUSION

We presented a tool that aims to alleviate the oracle problem in

security testing. The key characteristics of our tool are (1) a DSL

for specifying metamorphic relations for security testing, (2) a data

collection framework automatically deriving input data, and (3) a

testing framework automatically performing security testing.

The tool can automate 39% of the OWASP security testing activ-

ities not currently targeted by state-of-the-art techniques, which

in turn indicates that it significantly alleviates the oracle problem

in security testing. Our evaluation with two case studies shows

that the tool detects 83% of the targeted vulnerabilities with limited

manual effort and, thus suggesting it is highly effective.

ACKNOWLEDGMENT
This work has received funding from the National Research Fund (FNR), Luxembourg,
with grant INTER/AAL/15/11213850, from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation programme (grant
agreement No 694277), and from the Canada Research Chair programme.

REFERENCES
[1] 2019. Common Vulnerabilities and Exposures. https://cve.mitre.org/cve/.
[2] 2019. EDLAH2. http://www.aal-europe.eu/projects/edlah2/.
[3] 2019. Selenium Web Testing Framework, https://www.seleniumhq.org/.
[4] Earl T Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. 2015.

The Oracle Problem in Software Testing: A Survey. IEEE Transactions on Software
Engineering 41, 5 (2015), 507–525.

[5] Sofia Bekrar, Chaouki Bekrar, Roland Groz, and Laurent Mounier. 2011. Finding
Software Vulnerabilities by Smart Fuzzing. In ICST’11. 427–430.

[6] Lorenzo Bettini. 2016. Implementing Domain-Specific Languages with Xtext and
Xtend. Packt Publishing Ltd.

[7] Wing Kwong Chan, Tsong Y Chen, Shing Chi Cheung, TH Tse, and Zhenyu
Zhang. 2007. Towards the Testing of Power-aware Software Applications for
Wireless Sensor Networks. In ADA Europe’07. 84–99.

[8] Tsong Yueh Chen, Shing-Chi Cheung, and Siu-Ming Yiu. 1998. Metamorphic
Testing: a New Approach for Generating Next Test Cases. Technical Report. The
Hong Kong University of Science and Technology.

[9] Eclipse Foundation. [n.d.]. Jenkins CI/CD server. https://jenkins.io/.
[10] Sven Efftinge, Moritz Eysholdt, Jan Köhnlein, Sebastian Zarnekow, Robert von

Massow, Wilhelm Hasselbring, and Michael Hanus. 2012. Xbase: Implementing
Domain-Specific Languages for Java. In GPCE’12. 112–121.

[11] Ralph Guderlei and JohannesMayer. 2007. Towards Automatic Testing of Imaging
Software by Means of Random and Metamorphic Testing. International Journal
of Software Engineering and Knowledge Engineering 17, 6 (2007), 757–781.

[12] V. I. Levenshtein. 1966. Binary Codes Capable of Correcting Deletions, Insertions
and Reversals. Soviet Physics Doklady 10 (Feb. 1966).

[13] Huai Liu, Fei-Ching Kuo, Dave Towey, and Tsong Yueh Chen. 2014. How Effec-
tively DoesMetamorphic Testing Alleviate the Oracle Problem? IEEE Transactions
on Software Engineering 40, 1 (2014), 4–22.

[14] Phu X. Mai, Arda Goknil, Lwin Khin Shar, Fabrizio Pastore, Lionel C. Briand,
and Shaban Shaame. 2018. Modeling Security and Privacy Requirements: a Use
Case-Driven Approach. Information and Software Technology 100 (2018), 165–182.

[15] Phu X. Mai, Fabrizio Pastore, Arda Goknil, and Lionel C. Briand. 2018. A Natural
Language Programming Approach for Requirements-based Security Testing. In
ISSRE’18. 58–69.

[16] Phu X. Mai, Fabrizio Pastore, Arda Goknil, and Lionel C. Briand. 2019. MCP: A
Security Testing Tool Driven by Requirements. In ICSE’19. 55–58.

[17] Phu X. Mai, Fabrizio Pastore, Arda Goknil, and Lionel C. Briand. 2020. Metamor-
phic Security Testing for Web Systems. In ICST’20.

[18] Ali Mesbah, Arie Van Deursen, and Stefan Lenselink. 2012. Crawling Ajax-Based
Web Applications through Dynamic Analysis of User Interface State Changes.
ACM Transactions on the Web 6, 1 (2012), 3.

[19] Matteo Meucci and Andrew Muller. 2019. OWASP Testing Guide v4. https:
//www.owasp.org/images/1/19/OTGv4.pdf.

[20] C. Murphy, K. Shen, and G. Kaiser. 2009. Using JML Runtime Assertion Checking
to Automate Metamorphic Testing in Applications without Test Oracles. In
ICST’09. 436–445. https://doi.org/10.1109/ICST.2009.19

[21] Saahil Ognawala, Martín Ochoa, Alexander Pretschner, and Tobias Limmer. 2016.
MACKE: Compositional Analysis of Low-level Vulnerabilities with Symbolic
Execution. In ASE’16. 780–785.

[22] Sergio Segura, Gordon Fraser, Ana B. Sanchez, and Antonio Ruiz-Cortes. 2016. A
Survey on Metamorphic Testing. IEEE Transactions on Software Engineering 42, 9
(2016), 805–824.

[23] H. Zhu. 2015. JFuzz: A Tool for Automated Java Unit Testing Based on Data
Mutation and Metamorphic Testing Methods. In TSA’15. 8–15.




